Merge branch 'master' into systemz
[llvm/systemz.git] / lib / Target / X86 / X86RegisterInfo.cpp
blob437986fb9c3b54e8007ec9244f2ae1d3a9925d8c
1 //===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetRegisterInfo class.
11 // This file is responsible for the frame pointer elimination optimization
12 // on X86.
14 //===----------------------------------------------------------------------===//
16 #include "X86.h"
17 #include "X86RegisterInfo.h"
18 #include "X86InstrBuilder.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/Type.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineLocation.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Target/TargetAsmInfo.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/BitVector.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace llvm;
44 X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
45 const TargetInstrInfo &tii)
46 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
47 X86::ADJCALLSTACKDOWN64 :
48 X86::ADJCALLSTACKDOWN32,
49 tm.getSubtarget<X86Subtarget>().is64Bit() ?
50 X86::ADJCALLSTACKUP64 :
51 X86::ADJCALLSTACKUP32),
52 TM(tm), TII(tii) {
53 // Cache some information.
54 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
55 Is64Bit = Subtarget->is64Bit();
56 IsWin64 = Subtarget->isTargetWin64();
57 StackAlign = TM.getFrameInfo()->getStackAlignment();
58 if (Is64Bit) {
59 SlotSize = 8;
60 StackPtr = X86::RSP;
61 FramePtr = X86::RBP;
62 } else {
63 SlotSize = 4;
64 StackPtr = X86::ESP;
65 FramePtr = X86::EBP;
69 // getDwarfRegNum - This function maps LLVM register identifiers to the
70 // Dwarf specific numbering, used in debug info and exception tables.
72 int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
73 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
74 unsigned Flavour = DWARFFlavour::X86_64;
75 if (!Subtarget->is64Bit()) {
76 if (Subtarget->isTargetDarwin()) {
77 if (isEH)
78 Flavour = DWARFFlavour::X86_32_DarwinEH;
79 else
80 Flavour = DWARFFlavour::X86_32_Generic;
81 } else if (Subtarget->isTargetCygMing()) {
82 // Unsupported by now, just quick fallback
83 Flavour = DWARFFlavour::X86_32_Generic;
84 } else {
85 Flavour = DWARFFlavour::X86_32_Generic;
89 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
92 // getX86RegNum - This function maps LLVM register identifiers to their X86
93 // specific numbering, which is used in various places encoding instructions.
95 unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
96 switch(RegNo) {
97 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
98 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
99 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
100 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
101 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
102 return N86::ESP;
103 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
104 return N86::EBP;
105 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
106 return N86::ESI;
107 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
108 return N86::EDI;
110 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
111 return N86::EAX;
112 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
113 return N86::ECX;
114 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
115 return N86::EDX;
116 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
117 return N86::EBX;
118 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
119 return N86::ESP;
120 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
121 return N86::EBP;
122 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
123 return N86::ESI;
124 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
125 return N86::EDI;
127 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
128 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
129 return RegNo-X86::ST0;
131 case X86::XMM0: case X86::XMM8: case X86::MM0:
132 return 0;
133 case X86::XMM1: case X86::XMM9: case X86::MM1:
134 return 1;
135 case X86::XMM2: case X86::XMM10: case X86::MM2:
136 return 2;
137 case X86::XMM3: case X86::XMM11: case X86::MM3:
138 return 3;
139 case X86::XMM4: case X86::XMM12: case X86::MM4:
140 return 4;
141 case X86::XMM5: case X86::XMM13: case X86::MM5:
142 return 5;
143 case X86::XMM6: case X86::XMM14: case X86::MM6:
144 return 6;
145 case X86::XMM7: case X86::XMM15: case X86::MM7:
146 return 7;
148 default:
149 assert(isVirtualRegister(RegNo) && "Unknown physical register!");
150 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
151 return 0;
155 const TargetRegisterClass *X86RegisterInfo::getPointerRegClass() const {
156 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
157 if (Subtarget->is64Bit())
158 return &X86::GR64RegClass;
159 else
160 return &X86::GR32RegClass;
163 const TargetRegisterClass *
164 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
165 if (RC == &X86::CCRRegClass) {
166 if (Is64Bit)
167 return &X86::GR64RegClass;
168 else
169 return &X86::GR32RegClass;
171 return NULL;
174 const unsigned *
175 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
176 bool callsEHReturn = false;
178 if (MF) {
179 const MachineFrameInfo *MFI = MF->getFrameInfo();
180 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
181 callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
184 static const unsigned CalleeSavedRegs32Bit[] = {
185 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
188 static const unsigned CalleeSavedRegs32EHRet[] = {
189 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
192 static const unsigned CalleeSavedRegs64Bit[] = {
193 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
196 static const unsigned CalleeSavedRegs64EHRet[] = {
197 X86::RAX, X86::RDX, X86::RBX, X86::R12,
198 X86::R13, X86::R14, X86::R15, X86::RBP, 0
201 static const unsigned CalleeSavedRegsWin64[] = {
202 X86::RBX, X86::RBP, X86::RDI, X86::RSI,
203 X86::R12, X86::R13, X86::R14, X86::R15,
204 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9,
205 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
206 X86::XMM14, X86::XMM15, 0
209 if (Is64Bit) {
210 if (IsWin64)
211 return CalleeSavedRegsWin64;
212 else
213 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
214 } else {
215 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
219 const TargetRegisterClass* const*
220 X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
221 bool callsEHReturn = false;
223 if (MF) {
224 const MachineFrameInfo *MFI = MF->getFrameInfo();
225 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
226 callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
229 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
230 &X86::GR32RegClass, &X86::GR32RegClass,
231 &X86::GR32RegClass, &X86::GR32RegClass, 0
233 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
234 &X86::GR32RegClass, &X86::GR32RegClass,
235 &X86::GR32RegClass, &X86::GR32RegClass,
236 &X86::GR32RegClass, &X86::GR32RegClass, 0
238 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
239 &X86::GR64RegClass, &X86::GR64RegClass,
240 &X86::GR64RegClass, &X86::GR64RegClass,
241 &X86::GR64RegClass, &X86::GR64RegClass, 0
243 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
244 &X86::GR64RegClass, &X86::GR64RegClass,
245 &X86::GR64RegClass, &X86::GR64RegClass,
246 &X86::GR64RegClass, &X86::GR64RegClass,
247 &X86::GR64RegClass, &X86::GR64RegClass, 0
249 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
250 &X86::GR64RegClass, &X86::GR64RegClass,
251 &X86::GR64RegClass, &X86::GR64RegClass,
252 &X86::GR64RegClass, &X86::GR64RegClass,
253 &X86::GR64RegClass, &X86::GR64RegClass,
254 &X86::VR128RegClass, &X86::VR128RegClass,
255 &X86::VR128RegClass, &X86::VR128RegClass,
256 &X86::VR128RegClass, &X86::VR128RegClass,
257 &X86::VR128RegClass, &X86::VR128RegClass,
258 &X86::VR128RegClass, &X86::VR128RegClass, 0
261 if (Is64Bit) {
262 if (IsWin64)
263 return CalleeSavedRegClassesWin64;
264 else
265 return (callsEHReturn ?
266 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
267 } else {
268 return (callsEHReturn ?
269 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
273 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
274 BitVector Reserved(getNumRegs());
275 // Set the stack-pointer register and its aliases as reserved.
276 Reserved.set(X86::RSP);
277 Reserved.set(X86::ESP);
278 Reserved.set(X86::SP);
279 Reserved.set(X86::SPL);
280 // Set the frame-pointer register and its aliases as reserved if needed.
281 if (hasFP(MF)) {
282 Reserved.set(X86::RBP);
283 Reserved.set(X86::EBP);
284 Reserved.set(X86::BP);
285 Reserved.set(X86::BPL);
287 // Mark the x87 stack registers as reserved, since they don't
288 // behave normally with respect to liveness. We don't fully
289 // model the effects of x87 stack pushes and pops after
290 // stackification.
291 Reserved.set(X86::ST0);
292 Reserved.set(X86::ST1);
293 Reserved.set(X86::ST2);
294 Reserved.set(X86::ST3);
295 Reserved.set(X86::ST4);
296 Reserved.set(X86::ST5);
297 Reserved.set(X86::ST6);
298 Reserved.set(X86::ST7);
299 return Reserved;
302 //===----------------------------------------------------------------------===//
303 // Stack Frame Processing methods
304 //===----------------------------------------------------------------------===//
306 static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
307 unsigned MaxAlign = 0;
308 for (int i = FFI->getObjectIndexBegin(),
309 e = FFI->getObjectIndexEnd(); i != e; ++i) {
310 if (FFI->isDeadObjectIndex(i))
311 continue;
312 unsigned Align = FFI->getObjectAlignment(i);
313 MaxAlign = std::max(MaxAlign, Align);
316 return MaxAlign;
319 // hasFP - Return true if the specified function should have a dedicated frame
320 // pointer register. This is true if the function has variable sized allocas or
321 // if frame pointer elimination is disabled.
323 bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
324 const MachineFrameInfo *MFI = MF.getFrameInfo();
325 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
327 return (NoFramePointerElim ||
328 needsStackRealignment(MF) ||
329 MFI->hasVarSizedObjects() ||
330 MFI->isFrameAddressTaken() ||
331 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
332 (MMI && MMI->callsUnwindInit()));
335 bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
336 const MachineFrameInfo *MFI = MF.getFrameInfo();
338 // FIXME: Currently we don't support stack realignment for functions with
339 // variable-sized allocas
340 return (RealignStack &&
341 (MFI->getMaxAlignment() > StackAlign &&
342 !MFI->hasVarSizedObjects()));
345 bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
346 return !MF.getFrameInfo()->hasVarSizedObjects();
349 bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
350 int &FrameIdx) const {
351 if (Reg == FramePtr && hasFP(MF)) {
352 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
353 return true;
355 return false;
360 X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
361 int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize;
362 uint64_t StackSize = MF.getFrameInfo()->getStackSize();
364 if (needsStackRealignment(MF)) {
365 if (FI < 0)
366 // Skip the saved EBP
367 Offset += SlotSize;
368 else {
369 unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI);
370 assert( (-(Offset + StackSize)) % Align == 0);
371 Align = 0;
372 return Offset + StackSize;
375 // FIXME: Support tail calls
376 } else {
377 if (!hasFP(MF))
378 return Offset + StackSize;
380 // Skip the saved EBP
381 Offset += SlotSize;
383 // Skip the RETADDR move area
384 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
385 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
386 if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
389 return Offset;
392 void X86RegisterInfo::
393 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
394 MachineBasicBlock::iterator I) const {
395 if (!hasReservedCallFrame(MF)) {
396 // If the stack pointer can be changed after prologue, turn the
397 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
398 // adjcallstackdown instruction into 'add ESP, <amt>'
399 // TODO: consider using push / pop instead of sub + store / add
400 MachineInstr *Old = I;
401 uint64_t Amount = Old->getOperand(0).getImm();
402 if (Amount != 0) {
403 // We need to keep the stack aligned properly. To do this, we round the
404 // amount of space needed for the outgoing arguments up to the next
405 // alignment boundary.
406 Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
408 MachineInstr *New = 0;
409 if (Old->getOpcode() == getCallFrameSetupOpcode()) {
410 New = BuildMI(MF, Old->getDebugLoc(),
411 TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
412 StackPtr).addReg(StackPtr).addImm(Amount);
413 } else {
414 assert(Old->getOpcode() == getCallFrameDestroyOpcode());
415 // factor out the amount the callee already popped.
416 uint64_t CalleeAmt = Old->getOperand(1).getImm();
417 Amount -= CalleeAmt;
418 if (Amount) {
419 unsigned Opc = (Amount < 128) ?
420 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
421 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
422 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
423 .addReg(StackPtr).addImm(Amount);
427 if (New) {
428 // The EFLAGS implicit def is dead.
429 New->getOperand(3).setIsDead();
431 // Replace the pseudo instruction with a new instruction...
432 MBB.insert(I, New);
435 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
436 // If we are performing frame pointer elimination and if the callee pops
437 // something off the stack pointer, add it back. We do this until we have
438 // more advanced stack pointer tracking ability.
439 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
440 unsigned Opc = (CalleeAmt < 128) ?
441 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
442 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
443 MachineInstr *Old = I;
444 MachineInstr *New =
445 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
446 StackPtr).addReg(StackPtr).addImm(CalleeAmt);
447 // The EFLAGS implicit def is dead.
448 New->getOperand(3).setIsDead();
450 MBB.insert(I, New);
454 MBB.erase(I);
457 void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
458 int SPAdj, RegScavenger *RS) const{
459 assert(SPAdj == 0 && "Unexpected");
461 unsigned i = 0;
462 MachineInstr &MI = *II;
463 MachineFunction &MF = *MI.getParent()->getParent();
464 while (!MI.getOperand(i).isFI()) {
465 ++i;
466 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
469 int FrameIndex = MI.getOperand(i).getIndex();
471 unsigned BasePtr;
472 if (needsStackRealignment(MF))
473 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
474 else
475 BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
477 // This must be part of a four operand memory reference. Replace the
478 // FrameIndex with base register with EBP. Add an offset to the offset.
479 MI.getOperand(i).ChangeToRegister(BasePtr, false);
481 // Now add the frame object offset to the offset from EBP.
482 if (MI.getOperand(i+3).isImm()) {
483 // Offset is a 32-bit integer.
484 int Offset = getFrameIndexOffset(MF, FrameIndex) +
485 (int)(MI.getOperand(i+3).getImm());
487 MI.getOperand(i+3).ChangeToImmediate(Offset);
488 } else {
489 // Offset is symbolic. This is extremely rare.
490 uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
491 (uint64_t)MI.getOperand(i+3).getOffset();
492 MI.getOperand(i+3).setOffset(Offset);
496 void
497 X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
498 RegScavenger *RS) const {
499 MachineFrameInfo *FFI = MF.getFrameInfo();
501 // Calculate and set max stack object alignment early, so we can decide
502 // whether we will need stack realignment (and thus FP).
503 unsigned MaxAlign = std::max(FFI->getMaxAlignment(),
504 calculateMaxStackAlignment(FFI));
506 FFI->setMaxAlignment(MaxAlign);
508 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
509 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
510 if (TailCallReturnAddrDelta < 0) {
511 // create RETURNADDR area
512 // arg
513 // arg
514 // RETADDR
515 // { ...
516 // RETADDR area
517 // ...
518 // }
519 // [EBP]
520 MF.getFrameInfo()->
521 CreateFixedObject(-TailCallReturnAddrDelta,
522 (-1*SlotSize)+TailCallReturnAddrDelta);
524 if (hasFP(MF)) {
525 assert((TailCallReturnAddrDelta <= 0) &&
526 "The Delta should always be zero or negative");
527 // Create a frame entry for the EBP register that must be saved.
528 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
529 (int)SlotSize * -2+
530 TailCallReturnAddrDelta);
531 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
532 "Slot for EBP register must be last in order to be found!");
533 FrameIdx = 0;
537 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
538 /// stack pointer by a constant value.
539 static
540 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
541 unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
542 const TargetInstrInfo &TII) {
543 bool isSub = NumBytes < 0;
544 uint64_t Offset = isSub ? -NumBytes : NumBytes;
545 unsigned Opc = isSub
546 ? ((Offset < 128) ?
547 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
548 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
549 : ((Offset < 128) ?
550 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
551 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
552 uint64_t Chunk = (1LL << 31) - 1;
553 DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
554 DebugLoc::getUnknownLoc());
556 while (Offset) {
557 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
558 MachineInstr *MI =
559 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
560 .addReg(StackPtr).addImm(ThisVal);
561 // The EFLAGS implicit def is dead.
562 MI->getOperand(3).setIsDead();
563 Offset -= ThisVal;
567 // mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
568 static
569 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
570 unsigned StackPtr, uint64_t *NumBytes = NULL) {
571 if (MBBI == MBB.begin()) return;
573 MachineBasicBlock::iterator PI = prior(MBBI);
574 unsigned Opc = PI->getOpcode();
575 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
576 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
577 PI->getOperand(0).getReg() == StackPtr) {
578 if (NumBytes)
579 *NumBytes += PI->getOperand(2).getImm();
580 MBB.erase(PI);
581 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
582 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
583 PI->getOperand(0).getReg() == StackPtr) {
584 if (NumBytes)
585 *NumBytes -= PI->getOperand(2).getImm();
586 MBB.erase(PI);
590 // mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
591 static
592 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
593 MachineBasicBlock::iterator &MBBI,
594 unsigned StackPtr, uint64_t *NumBytes = NULL) {
595 return;
597 if (MBBI == MBB.end()) return;
599 MachineBasicBlock::iterator NI = next(MBBI);
600 if (NI == MBB.end()) return;
602 unsigned Opc = NI->getOpcode();
603 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
604 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
605 NI->getOperand(0).getReg() == StackPtr) {
606 if (NumBytes)
607 *NumBytes -= NI->getOperand(2).getImm();
608 MBB.erase(NI);
609 MBBI = NI;
610 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
611 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
612 NI->getOperand(0).getReg() == StackPtr) {
613 if (NumBytes)
614 *NumBytes += NI->getOperand(2).getImm();
615 MBB.erase(NI);
616 MBBI = NI;
620 /// mergeSPUpdates - Checks the instruction before/after the passed
621 /// instruction. If it is an ADD/SUB instruction it is deleted
622 /// argument and the stack adjustment is returned as a positive value for ADD
623 /// and a negative for SUB.
624 static int mergeSPUpdates(MachineBasicBlock &MBB,
625 MachineBasicBlock::iterator &MBBI,
626 unsigned StackPtr,
627 bool doMergeWithPrevious) {
629 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
630 (!doMergeWithPrevious && MBBI == MBB.end()))
631 return 0;
633 int Offset = 0;
635 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
636 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
637 unsigned Opc = PI->getOpcode();
638 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
639 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
640 PI->getOperand(0).getReg() == StackPtr){
641 Offset += PI->getOperand(2).getImm();
642 MBB.erase(PI);
643 if (!doMergeWithPrevious) MBBI = NI;
644 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
645 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
646 PI->getOperand(0).getReg() == StackPtr) {
647 Offset -= PI->getOperand(2).getImm();
648 MBB.erase(PI);
649 if (!doMergeWithPrevious) MBBI = NI;
652 return Offset;
655 void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
656 unsigned LabelId,
657 unsigned FramePtr) const {
658 MachineFrameInfo *MFI = MF.getFrameInfo();
659 MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
660 if (!MMI) return;
662 // Add callee saved registers to move list.
663 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
664 if (CSI.empty()) return;
666 std::vector<MachineMove> &Moves = MMI->getFrameMoves();
667 const TargetData *TD = MF.getTarget().getTargetData();
668 bool HasFP = hasFP(MF);
670 // Calculate amount of bytes used for return address storing
671 int stackGrowth =
672 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
673 TargetFrameInfo::StackGrowsUp ?
674 TD->getPointerSize() : -TD->getPointerSize());
676 // FIXME: This is dirty hack. The code itself is pretty mess right now.
677 // It should be rewritten from scratch and generalized sometimes.
679 // Determine maximum offset (minumum due to stack growth)
680 int64_t MaxOffset = 0;
681 for (std::vector<CalleeSavedInfo>::const_iterator
682 I = CSI.begin(), E = CSI.end(); I != E; ++I)
683 MaxOffset = std::min(MaxOffset,
684 MFI->getObjectOffset(I->getFrameIdx()));
686 // Calculate offsets.
687 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
688 for (std::vector<CalleeSavedInfo>::const_iterator
689 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
690 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
691 unsigned Reg = I->getReg();
692 Offset = MaxOffset - Offset + saveAreaOffset;
694 MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
695 MachineLocation CSSrc(Reg);
696 Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
700 void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
701 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
702 MachineFrameInfo *MFI = MF.getFrameInfo();
703 const Function* Fn = MF.getFunction();
704 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
705 MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
706 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
707 MachineBasicBlock::iterator MBBI = MBB.begin();
708 bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
709 !Fn->doesNotThrow() ||
710 UnwindTablesMandatory;
711 bool HasFP = hasFP(MF);
712 DebugLoc DL;
714 // Get the number of bytes to allocate from the FrameInfo.
715 uint64_t StackSize = MFI->getStackSize();
717 // Get desired stack alignment
718 uint64_t MaxAlign = MFI->getMaxAlignment();
720 // Add RETADDR move area to callee saved frame size.
721 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
722 if (TailCallReturnAddrDelta < 0)
723 X86FI->setCalleeSavedFrameSize(
724 X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
726 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
727 // function, and use up to 128 bytes of stack space, don't have a frame
728 // pointer, calls, or dynamic alloca then we do not need to adjust the
729 // stack pointer (we fit in the Red Zone).
730 bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
731 if (Is64Bit && !DisableRedZone &&
732 !needsStackRealignment(MF) &&
733 !MFI->hasVarSizedObjects() && // No dynamic alloca.
734 !MFI->hasCalls() && // No calls.
735 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone
736 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
737 if (HasFP) MinSize += SlotSize;
738 StackSize = std::max(MinSize,
739 StackSize > 128 ? StackSize - 128 : 0);
740 MFI->setStackSize(StackSize);
743 // Insert stack pointer adjustment for later moving of return addr. Only
744 // applies to tail call optimized functions where the callee argument stack
745 // size is bigger than the callers.
746 if (TailCallReturnAddrDelta < 0) {
747 MachineInstr *MI =
748 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
749 StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
750 // The EFLAGS implicit def is dead.
751 MI->getOperand(3).setIsDead();
754 // uint64_t StackSize = MFI->getStackSize();
755 std::vector<MachineMove> &Moves = MMI->getFrameMoves();
756 const TargetData *TD = MF.getTarget().getTargetData();
757 int stackGrowth =
758 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
759 TargetFrameInfo::StackGrowsUp ?
760 TD->getPointerSize() : -TD->getPointerSize());
762 uint64_t NumBytes = 0;
763 if (HasFP) {
764 // Calculate required stack adjustment
765 uint64_t FrameSize = StackSize - SlotSize;
766 if (needsStackRealignment(MF))
767 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
769 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
771 // Get the offset of the stack slot for the EBP register, which is
772 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
773 // Update the frame offset adjustment.
774 MFI->setOffsetAdjustment(-NumBytes);
776 // Save EBP/RBP into the appropriate stack slot...
777 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
778 .addReg(FramePtr, RegState::Kill);
780 if (needsFrameMoves) {
781 // Mark effective beginning of when frame pointer becomes valid.
782 unsigned FrameLabelId = MMI->NextLabelID();
783 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
785 // Define the current CFA rule to use the provided offset.
786 if (StackSize) {
787 MachineLocation SPDst(MachineLocation::VirtualFP);
788 MachineLocation SPSrc(MachineLocation::VirtualFP,
789 HasFP ? 2 * stackGrowth :
790 -StackSize + stackGrowth);
791 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
792 } else {
793 // FIXME: Verify & implement for FP
794 MachineLocation SPDst(StackPtr);
795 MachineLocation SPSrc(StackPtr, stackGrowth);
796 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
799 // Change the rule for the FramePtr to be an "offset" rule.
800 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
801 MachineLocation FPSrc(FramePtr);
802 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
805 // Update EBP with the new base value...
806 BuildMI(MBB, MBBI, DL,
807 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
808 .addReg(StackPtr);
810 if (needsFrameMoves) {
811 unsigned FrameLabelId = MMI->NextLabelID();
812 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
814 // Define the current CFA to use the EBP/RBP register.
815 MachineLocation FPDst(FramePtr);
816 MachineLocation FPSrc(MachineLocation::VirtualFP);
817 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
820 // Mark the FramePtr as live-in in every block except the entry.
821 for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
822 I != E; ++I)
823 I->addLiveIn(FramePtr);
825 // Realign stack
826 if (needsStackRealignment(MF)) {
827 MachineInstr *MI =
828 BuildMI(MBB, MBBI, DL,
829 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
830 StackPtr).addReg(StackPtr).addImm(-MaxAlign);
832 // The EFLAGS implicit def is dead.
833 MI->getOperand(3).setIsDead();
835 } else {
836 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
839 // Skip the callee-saved push instructions.
840 bool RegsSaved = false;
841 while (MBBI != MBB.end() &&
842 (MBBI->getOpcode() == X86::PUSH32r ||
843 MBBI->getOpcode() == X86::PUSH64r)) {
844 RegsSaved = true;
845 ++MBBI;
848 if (RegsSaved && needsFrameMoves) {
849 // Mark end of callee-saved push instructions.
850 unsigned LabelId = MMI->NextLabelID();
851 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
853 // Emit DWARF info specifying the offsets of the callee-saved registers.
854 emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
857 if (MBBI != MBB.end())
858 DL = MBBI->getDebugLoc();
860 // Adjust stack pointer: ESP -= numbytes.
861 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
862 // Check, whether EAX is livein for this function.
863 bool isEAXAlive = false;
864 for (MachineRegisterInfo::livein_iterator
865 II = MF.getRegInfo().livein_begin(),
866 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
867 unsigned Reg = II->first;
868 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
869 Reg == X86::AH || Reg == X86::AL);
872 // Function prologue calls _alloca to probe the stack when allocating more
873 // than 4k bytes in one go. Touching the stack at 4K increments is necessary
874 // to ensure that the guard pages used by the OS virtual memory manager are
875 // allocated in correct sequence.
876 if (!isEAXAlive) {
877 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
878 .addImm(NumBytes);
879 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
880 .addExternalSymbol("_alloca");
881 } else {
882 // Save EAX
883 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
884 .addReg(X86::EAX, RegState::Kill);
886 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
887 // allocated bytes for EAX.
888 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
889 .addImm(NumBytes - 4);
890 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
891 .addExternalSymbol("_alloca");
893 // Restore EAX
894 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
895 X86::EAX),
896 StackPtr, false, NumBytes - 4);
897 MBB.insert(MBBI, MI);
899 } else if (NumBytes) {
900 // If there is an SUB32ri of ESP immediately before this instruction, merge
901 // the two. This can be the case when tail call elimination is enabled and
902 // the callee has more arguments then the caller.
903 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
905 // If there is an ADD32ri or SUB32ri of ESP immediately after this
906 // instruction, merge the two instructions.
907 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
909 if (NumBytes)
910 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
913 if (!HasFP && needsFrameMoves && NumBytes) {
914 // Mark end of stack pointer adjustment.
915 unsigned LabelId = MMI->NextLabelID();
916 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
918 // Define the current CFA rule to use the provided offset.
919 if (StackSize) {
920 MachineLocation SPDst(MachineLocation::VirtualFP);
921 MachineLocation SPSrc(MachineLocation::VirtualFP,
922 -StackSize + stackGrowth);
923 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
924 } else {
925 // FIXME: Verify & implement for FP
926 MachineLocation SPDst(StackPtr);
927 MachineLocation SPSrc(StackPtr, stackGrowth);
928 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
933 void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
934 MachineBasicBlock &MBB) const {
935 const MachineFrameInfo *MFI = MF.getFrameInfo();
936 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
937 MachineBasicBlock::iterator MBBI = prior(MBB.end());
938 unsigned RetOpcode = MBBI->getOpcode();
939 DebugLoc DL = MBBI->getDebugLoc();
941 switch (RetOpcode) {
942 case X86::RET:
943 case X86::RETI:
944 case X86::TCRETURNdi:
945 case X86::TCRETURNri:
946 case X86::TCRETURNri64:
947 case X86::TCRETURNdi64:
948 case X86::EH_RETURN:
949 case X86::EH_RETURN64:
950 case X86::TAILJMPd:
951 case X86::TAILJMPr:
952 case X86::TAILJMPm: break; // These are ok
953 default:
954 llvm_unreachable("Can only insert epilog into returning blocks");
957 // Get the number of bytes to allocate from the FrameInfo
958 uint64_t StackSize = MFI->getStackSize();
959 uint64_t MaxAlign = MFI->getMaxAlignment();
960 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
961 uint64_t NumBytes = 0;
963 if (hasFP(MF)) {
964 // Calculate required stack adjustment
965 uint64_t FrameSize = StackSize - SlotSize;
966 if (needsStackRealignment(MF))
967 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
969 NumBytes = FrameSize - CSSize;
971 // pop EBP.
972 BuildMI(MBB, MBBI, DL,
973 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
974 } else {
975 NumBytes = StackSize - CSSize;
978 // Skip the callee-saved pop instructions.
979 MachineBasicBlock::iterator LastCSPop = MBBI;
980 while (MBBI != MBB.begin()) {
981 MachineBasicBlock::iterator PI = prior(MBBI);
982 unsigned Opc = PI->getOpcode();
983 if (Opc != X86::POP32r && Opc != X86::POP64r &&
984 !PI->getDesc().isTerminator())
985 break;
986 --MBBI;
989 DL = MBBI->getDebugLoc();
991 // If there is an ADD32ri or SUB32ri of ESP immediately before this
992 // instruction, merge the two instructions.
993 if (NumBytes || MFI->hasVarSizedObjects())
994 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
996 // If dynamic alloca is used, then reset esp to point to the last callee-saved
997 // slot before popping them off! Same applies for the case, when stack was
998 // realigned
999 if (needsStackRealignment(MF)) {
1000 // We cannot use LEA here, because stack pointer was realigned. We need to
1001 // deallocate local frame back
1002 if (CSSize) {
1003 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1004 MBBI = prior(LastCSPop);
1007 BuildMI(MBB, MBBI, DL,
1008 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1009 StackPtr).addReg(FramePtr);
1010 } else if (MFI->hasVarSizedObjects()) {
1011 if (CSSize) {
1012 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1013 MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1014 FramePtr, false, -CSSize);
1015 MBB.insert(MBBI, MI);
1016 } else
1017 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1018 StackPtr).addReg(FramePtr);
1020 } else {
1021 // adjust stack pointer back: ESP += numbytes
1022 if (NumBytes)
1023 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1026 // We're returning from function via eh_return.
1027 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1028 MBBI = prior(MBB.end());
1029 MachineOperand &DestAddr = MBBI->getOperand(0);
1030 assert(DestAddr.isReg() && "Offset should be in register!");
1031 BuildMI(MBB, MBBI, DL,
1032 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1033 StackPtr).addReg(DestAddr.getReg());
1034 // Tail call return: adjust the stack pointer and jump to callee
1035 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1036 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1037 MBBI = prior(MBB.end());
1038 MachineOperand &JumpTarget = MBBI->getOperand(0);
1039 MachineOperand &StackAdjust = MBBI->getOperand(1);
1040 assert(StackAdjust.isImm() && "Expecting immediate value.");
1042 // Adjust stack pointer.
1043 int StackAdj = StackAdjust.getImm();
1044 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1045 int Offset = 0;
1046 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1047 // Incoporate the retaddr area.
1048 Offset = StackAdj-MaxTCDelta;
1049 assert(Offset >= 0 && "Offset should never be negative");
1051 if (Offset) {
1052 // Check for possible merge with preceeding ADD instruction.
1053 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1054 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1057 // Jump to label or value in register.
1058 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1059 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
1060 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1061 else if (RetOpcode== X86::TCRETURNri64)
1062 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1063 else
1064 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1066 // Delete the pseudo instruction TCRETURN.
1067 MBB.erase(MBBI);
1068 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1069 (X86FI->getTCReturnAddrDelta() < 0)) {
1070 // Add the return addr area delta back since we are not tail calling.
1071 int delta = -1*X86FI->getTCReturnAddrDelta();
1072 MBBI = prior(MBB.end());
1073 // Check for possible merge with preceeding ADD instruction.
1074 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1075 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1079 unsigned X86RegisterInfo::getRARegister() const {
1080 if (Is64Bit)
1081 return X86::RIP; // Should have dwarf #16
1082 else
1083 return X86::EIP; // Should have dwarf #8
1086 unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1087 return hasFP(MF) ? FramePtr : StackPtr;
1090 void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1091 const {
1092 // Calculate amount of bytes used for return address storing
1093 int stackGrowth = (Is64Bit ? -8 : -4);
1095 // Initial state of the frame pointer is esp+4.
1096 MachineLocation Dst(MachineLocation::VirtualFP);
1097 MachineLocation Src(StackPtr, stackGrowth);
1098 Moves.push_back(MachineMove(0, Dst, Src));
1100 // Add return address to move list
1101 MachineLocation CSDst(StackPtr, stackGrowth);
1102 MachineLocation CSSrc(getRARegister());
1103 Moves.push_back(MachineMove(0, CSDst, CSSrc));
1106 unsigned X86RegisterInfo::getEHExceptionRegister() const {
1107 llvm_unreachable("What is the exception register");
1108 return 0;
1111 unsigned X86RegisterInfo::getEHHandlerRegister() const {
1112 llvm_unreachable("What is the exception handler register");
1113 return 0;
1116 namespace llvm {
1117 unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) {
1118 switch (VT.getSimpleVT()) {
1119 default: return Reg;
1120 case MVT::i8:
1121 if (High) {
1122 switch (Reg) {
1123 default: return 0;
1124 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1125 return X86::AH;
1126 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1127 return X86::DH;
1128 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1129 return X86::CH;
1130 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1131 return X86::BH;
1133 } else {
1134 switch (Reg) {
1135 default: return 0;
1136 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1137 return X86::AL;
1138 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1139 return X86::DL;
1140 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1141 return X86::CL;
1142 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1143 return X86::BL;
1144 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1145 return X86::SIL;
1146 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1147 return X86::DIL;
1148 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1149 return X86::BPL;
1150 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1151 return X86::SPL;
1152 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1153 return X86::R8B;
1154 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1155 return X86::R9B;
1156 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1157 return X86::R10B;
1158 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1159 return X86::R11B;
1160 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1161 return X86::R12B;
1162 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1163 return X86::R13B;
1164 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1165 return X86::R14B;
1166 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1167 return X86::R15B;
1170 case MVT::i16:
1171 switch (Reg) {
1172 default: return Reg;
1173 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1174 return X86::AX;
1175 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1176 return X86::DX;
1177 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1178 return X86::CX;
1179 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1180 return X86::BX;
1181 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1182 return X86::SI;
1183 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1184 return X86::DI;
1185 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1186 return X86::BP;
1187 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1188 return X86::SP;
1189 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1190 return X86::R8W;
1191 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1192 return X86::R9W;
1193 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1194 return X86::R10W;
1195 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1196 return X86::R11W;
1197 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1198 return X86::R12W;
1199 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1200 return X86::R13W;
1201 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1202 return X86::R14W;
1203 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1204 return X86::R15W;
1206 case MVT::i32:
1207 switch (Reg) {
1208 default: return Reg;
1209 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1210 return X86::EAX;
1211 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1212 return X86::EDX;
1213 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1214 return X86::ECX;
1215 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1216 return X86::EBX;
1217 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1218 return X86::ESI;
1219 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1220 return X86::EDI;
1221 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1222 return X86::EBP;
1223 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1224 return X86::ESP;
1225 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1226 return X86::R8D;
1227 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1228 return X86::R9D;
1229 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1230 return X86::R10D;
1231 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1232 return X86::R11D;
1233 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1234 return X86::R12D;
1235 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1236 return X86::R13D;
1237 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1238 return X86::R14D;
1239 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1240 return X86::R15D;
1242 case MVT::i64:
1243 switch (Reg) {
1244 default: return Reg;
1245 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1246 return X86::RAX;
1247 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1248 return X86::RDX;
1249 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1250 return X86::RCX;
1251 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1252 return X86::RBX;
1253 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1254 return X86::RSI;
1255 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1256 return X86::RDI;
1257 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1258 return X86::RBP;
1259 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1260 return X86::RSP;
1261 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1262 return X86::R8;
1263 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1264 return X86::R9;
1265 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1266 return X86::R10;
1267 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1268 return X86::R11;
1269 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1270 return X86::R12;
1271 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1272 return X86::R13;
1273 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1274 return X86::R14;
1275 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1276 return X86::R15;
1280 return Reg;
1284 #include "X86GenRegisterInfo.inc"
1286 namespace {
1287 struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
1288 static char ID;
1289 MSAC() : MachineFunctionPass(&ID) {}
1291 virtual bool runOnMachineFunction(MachineFunction &MF) {
1292 MachineFrameInfo *FFI = MF.getFrameInfo();
1293 MachineRegisterInfo &RI = MF.getRegInfo();
1295 // Calculate max stack alignment of all already allocated stack objects.
1296 unsigned MaxAlign = calculateMaxStackAlignment(FFI);
1298 // Be over-conservative: scan over all vreg defs and find, whether vector
1299 // registers are used. If yes - there is probability, that vector register
1300 // will be spilled and thus stack needs to be aligned properly.
1301 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1302 RegNum < RI.getLastVirtReg(); ++RegNum)
1303 MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
1305 FFI->setMaxAlignment(MaxAlign);
1307 return false;
1310 virtual const char *getPassName() const {
1311 return "X86 Maximal Stack Alignment Calculator";
1315 char MSAC::ID = 0;
1318 FunctionPass*
1319 llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }