1 //===-- TargetData.cpp - Data size & alignment routines --------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines target properties related to datatype size/offset/alignment
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Module.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Mutex.h"
29 #include "llvm/ADT/DenseMap.h"
34 // Handle the Pass registration stuff necessary to use TargetData's.
36 // Register the default SparcV9 implementation...
37 INITIALIZE_PASS(TargetData
, "targetdata", "Target Data Layout", false, true)
38 char TargetData::ID
= 0;
40 //===----------------------------------------------------------------------===//
41 // Support for StructLayout
42 //===----------------------------------------------------------------------===//
44 StructLayout::StructLayout(const StructType
*ST
, const TargetData
&TD
) {
47 NumElements
= ST
->getNumElements();
49 // Loop over each of the elements, placing them in memory.
50 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
51 const Type
*Ty
= ST
->getElementType(i
);
52 unsigned TyAlign
= ST
->isPacked() ? 1 : TD
.getABITypeAlignment(Ty
);
54 // Add padding if necessary to align the data element properly.
55 if ((StructSize
& (TyAlign
-1)) != 0)
56 StructSize
= TargetData::RoundUpAlignment(StructSize
, TyAlign
);
58 // Keep track of maximum alignment constraint.
59 StructAlignment
= std::max(TyAlign
, StructAlignment
);
61 MemberOffsets
[i
] = StructSize
;
62 StructSize
+= TD
.getTypeAllocSize(Ty
); // Consume space for this data item
65 // Empty structures have alignment of 1 byte.
66 if (StructAlignment
== 0) StructAlignment
= 1;
68 // Add padding to the end of the struct so that it could be put in an array
69 // and all array elements would be aligned correctly.
70 if ((StructSize
& (StructAlignment
-1)) != 0)
71 StructSize
= TargetData::RoundUpAlignment(StructSize
, StructAlignment
);
75 /// getElementContainingOffset - Given a valid offset into the structure,
76 /// return the structure index that contains it.
77 unsigned StructLayout::getElementContainingOffset(uint64_t Offset
) const {
79 std::upper_bound(&MemberOffsets
[0], &MemberOffsets
[NumElements
], Offset
);
80 assert(SI
!= &MemberOffsets
[0] && "Offset not in structure type!");
82 assert(*SI
<= Offset
&& "upper_bound didn't work");
83 assert((SI
== &MemberOffsets
[0] || *(SI
-1) <= Offset
) &&
84 (SI
+1 == &MemberOffsets
[NumElements
] || *(SI
+1) > Offset
) &&
85 "Upper bound didn't work!");
87 // Multiple fields can have the same offset if any of them are zero sized.
88 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
89 // at the i32 element, because it is the last element at that offset. This is
90 // the right one to return, because anything after it will have a higher
91 // offset, implying that this element is non-empty.
92 return SI
-&MemberOffsets
[0];
95 //===----------------------------------------------------------------------===//
96 // TargetAlignElem, TargetAlign support
97 //===----------------------------------------------------------------------===//
100 TargetAlignElem::get(AlignTypeEnum align_type
, unsigned abi_align
,
101 unsigned pref_align
, uint32_t bit_width
) {
102 assert(abi_align
<= pref_align
&& "Preferred alignment worse than ABI!");
103 TargetAlignElem retval
;
104 retval
.AlignType
= align_type
;
105 retval
.ABIAlign
= abi_align
;
106 retval
.PrefAlign
= pref_align
;
107 retval
.TypeBitWidth
= bit_width
;
112 TargetAlignElem::operator==(const TargetAlignElem
&rhs
) const {
113 return (AlignType
== rhs
.AlignType
114 && ABIAlign
== rhs
.ABIAlign
115 && PrefAlign
== rhs
.PrefAlign
116 && TypeBitWidth
== rhs
.TypeBitWidth
);
119 const TargetAlignElem
TargetData::InvalidAlignmentElem
=
120 TargetAlignElem::get((AlignTypeEnum
) -1, 0, 0, 0);
122 //===----------------------------------------------------------------------===//
123 // TargetData Class Implementation
124 //===----------------------------------------------------------------------===//
126 /// getInt - Get an integer ignoring errors.
127 static unsigned getInt(StringRef R
) {
129 R
.getAsInteger(10, Result
);
133 void TargetData::init(StringRef Desc
) {
134 initializeTargetDataPass(*PassRegistry::getPassRegistry());
137 LittleEndian
= false;
140 PointerPrefAlign
= PointerABIAlign
;
142 // Default alignments
143 setAlignment(INTEGER_ALIGN
, 1, 1, 1); // i1
144 setAlignment(INTEGER_ALIGN
, 1, 1, 8); // i8
145 setAlignment(INTEGER_ALIGN
, 2, 2, 16); // i16
146 setAlignment(INTEGER_ALIGN
, 4, 4, 32); // i32
147 setAlignment(INTEGER_ALIGN
, 4, 8, 64); // i64
148 setAlignment(FLOAT_ALIGN
, 4, 4, 32); // float
149 setAlignment(FLOAT_ALIGN
, 8, 8, 64); // double
150 setAlignment(VECTOR_ALIGN
, 8, 8, 64); // v2i32, v1i64, ...
151 setAlignment(VECTOR_ALIGN
, 16, 16, 128); // v16i8, v8i16, v4i32, ...
152 setAlignment(AGGREGATE_ALIGN
, 0, 8, 0); // struct
154 while (!Desc
.empty()) {
155 std::pair
<StringRef
, StringRef
> Split
= Desc
.split('-');
156 StringRef Token
= Split
.first
;
162 Split
= Token
.split(':');
163 StringRef Specifier
= Split
.first
;
164 Token
= Split
.second
;
166 assert(!Specifier
.empty() && "Can't be empty here");
168 switch (Specifier
[0]) {
170 LittleEndian
= false;
176 Split
= Token
.split(':');
177 PointerMemSize
= getInt(Split
.first
) / 8;
178 Split
= Split
.second
.split(':');
179 PointerABIAlign
= getInt(Split
.first
) / 8;
180 Split
= Split
.second
.split(':');
181 PointerPrefAlign
= getInt(Split
.first
) / 8;
182 if (PointerPrefAlign
== 0)
183 PointerPrefAlign
= PointerABIAlign
;
190 AlignTypeEnum AlignType
;
191 switch (Specifier
[0]) {
193 case 'i': AlignType
= INTEGER_ALIGN
; break;
194 case 'v': AlignType
= VECTOR_ALIGN
; break;
195 case 'f': AlignType
= FLOAT_ALIGN
; break;
196 case 'a': AlignType
= AGGREGATE_ALIGN
; break;
197 case 's': AlignType
= STACK_ALIGN
; break;
199 unsigned Size
= getInt(Specifier
.substr(1));
200 Split
= Token
.split(':');
201 unsigned ABIAlign
= getInt(Split
.first
) / 8;
203 Split
= Split
.second
.split(':');
204 unsigned PrefAlign
= getInt(Split
.first
) / 8;
206 PrefAlign
= ABIAlign
;
207 setAlignment(AlignType
, ABIAlign
, PrefAlign
, Size
);
210 case 'n': // Native integer types.
211 Specifier
= Specifier
.substr(1);
213 if (unsigned Width
= getInt(Specifier
))
214 LegalIntWidths
.push_back(Width
);
215 Split
= Token
.split(':');
216 Specifier
= Split
.first
;
217 Token
= Split
.second
;
218 } while (!Specifier
.empty() || !Token
.empty());
229 /// @note This has to exist, because this is a pass, but it should never be
231 TargetData::TargetData() : ImmutablePass(ID
) {
232 report_fatal_error("Bad TargetData ctor used. "
233 "Tool did not specify a TargetData to use?");
236 TargetData::TargetData(const Module
*M
)
237 : ImmutablePass(ID
) {
238 init(M
->getDataLayout());
242 TargetData::setAlignment(AlignTypeEnum align_type
, unsigned abi_align
,
243 unsigned pref_align
, uint32_t bit_width
) {
244 assert(abi_align
<= pref_align
&& "Preferred alignment worse than ABI!");
245 for (unsigned i
= 0, e
= Alignments
.size(); i
!= e
; ++i
) {
246 if (Alignments
[i
].AlignType
== align_type
&&
247 Alignments
[i
].TypeBitWidth
== bit_width
) {
248 // Update the abi, preferred alignments.
249 Alignments
[i
].ABIAlign
= abi_align
;
250 Alignments
[i
].PrefAlign
= pref_align
;
255 Alignments
.push_back(TargetAlignElem::get(align_type
, abi_align
,
256 pref_align
, bit_width
));
259 /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
260 /// preferred if ABIInfo = false) the target wants for the specified datatype.
261 unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType
,
262 uint32_t BitWidth
, bool ABIInfo
,
263 const Type
*Ty
) const {
264 // Check to see if we have an exact match and remember the best match we see.
265 int BestMatchIdx
= -1;
267 for (unsigned i
= 0, e
= Alignments
.size(); i
!= e
; ++i
) {
268 if (Alignments
[i
].AlignType
== AlignType
&&
269 Alignments
[i
].TypeBitWidth
== BitWidth
)
270 return ABIInfo
? Alignments
[i
].ABIAlign
: Alignments
[i
].PrefAlign
;
272 // The best match so far depends on what we're looking for.
273 if (AlignType
== INTEGER_ALIGN
&&
274 Alignments
[i
].AlignType
== INTEGER_ALIGN
) {
275 // The "best match" for integers is the smallest size that is larger than
276 // the BitWidth requested.
277 if (Alignments
[i
].TypeBitWidth
> BitWidth
&& (BestMatchIdx
== -1 ||
278 Alignments
[i
].TypeBitWidth
< Alignments
[BestMatchIdx
].TypeBitWidth
))
280 // However, if there isn't one that's larger, then we must use the
281 // largest one we have (see below)
282 if (LargestInt
== -1 ||
283 Alignments
[i
].TypeBitWidth
> Alignments
[LargestInt
].TypeBitWidth
)
288 // Okay, we didn't find an exact solution. Fall back here depending on what
289 // is being looked for.
290 if (BestMatchIdx
== -1) {
291 // If we didn't find an integer alignment, fall back on most conservative.
292 if (AlignType
== INTEGER_ALIGN
) {
293 BestMatchIdx
= LargestInt
;
295 assert(AlignType
== VECTOR_ALIGN
&& "Unknown alignment type!");
297 // By default, use natural alignment for vector types. This is consistent
298 // with what clang and llvm-gcc do.
299 unsigned Align
= getTypeAllocSize(cast
<VectorType
>(Ty
)->getElementType());
300 Align
*= cast
<VectorType
>(Ty
)->getNumElements();
301 // If the alignment is not a power of 2, round up to the next power of 2.
302 // This happens for non-power-of-2 length vectors.
303 if (Align
& (Align
-1))
304 Align
= llvm::NextPowerOf2(Align
);
309 // Since we got a "best match" index, just return it.
310 return ABIInfo
? Alignments
[BestMatchIdx
].ABIAlign
311 : Alignments
[BestMatchIdx
].PrefAlign
;
316 class StructLayoutMap
: public AbstractTypeUser
{
317 typedef DenseMap
<const StructType
*, StructLayout
*> LayoutInfoTy
;
318 LayoutInfoTy LayoutInfo
;
320 void RemoveEntry(LayoutInfoTy::iterator I
, bool WasAbstract
) {
321 I
->second
->~StructLayout();
324 I
->first
->removeAbstractTypeUser(this);
329 /// refineAbstractType - The callback method invoked when an abstract type is
330 /// resolved to another type. An object must override this method to update
331 /// its internal state to reference NewType instead of OldType.
333 virtual void refineAbstractType(const DerivedType
*OldTy
,
335 LayoutInfoTy::iterator I
= LayoutInfo
.find(cast
<const StructType
>(OldTy
));
336 assert(I
!= LayoutInfo
.end() && "Using type but not in map?");
337 RemoveEntry(I
, true);
340 /// typeBecameConcrete - The other case which AbstractTypeUsers must be aware
341 /// of is when a type makes the transition from being abstract (where it has
342 /// clients on its AbstractTypeUsers list) to concrete (where it does not).
343 /// This method notifies ATU's when this occurs for a type.
345 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) {
346 LayoutInfoTy::iterator I
= LayoutInfo
.find(cast
<const StructType
>(AbsTy
));
347 assert(I
!= LayoutInfo
.end() && "Using type but not in map?");
348 RemoveEntry(I
, true);
352 virtual ~StructLayoutMap() {
353 // Remove any layouts.
354 for (LayoutInfoTy::iterator
355 I
= LayoutInfo
.begin(), E
= LayoutInfo
.end(); I
!= E
; ++I
) {
356 const Type
*Key
= I
->first
;
357 StructLayout
*Value
= I
->second
;
359 if (Key
->isAbstract())
360 Key
->removeAbstractTypeUser(this);
362 Value
->~StructLayout();
367 void InvalidateEntry(const StructType
*Ty
) {
368 LayoutInfoTy::iterator I
= LayoutInfo
.find(Ty
);
369 if (I
== LayoutInfo
.end()) return;
370 RemoveEntry(I
, Ty
->isAbstract());
373 StructLayout
*&operator[](const StructType
*STy
) {
374 return LayoutInfo
[STy
];
378 virtual void dump() const {}
381 } // end anonymous namespace
383 TargetData::~TargetData() {
384 delete static_cast<StructLayoutMap
*>(LayoutMap
);
387 const StructLayout
*TargetData::getStructLayout(const StructType
*Ty
) const {
389 LayoutMap
= new StructLayoutMap();
391 StructLayoutMap
*STM
= static_cast<StructLayoutMap
*>(LayoutMap
);
392 StructLayout
*&SL
= (*STM
)[Ty
];
395 // Otherwise, create the struct layout. Because it is variable length, we
396 // malloc it, then use placement new.
397 int NumElts
= Ty
->getNumElements();
399 (StructLayout
*)malloc(sizeof(StructLayout
)+(NumElts
-1) * sizeof(uint64_t));
401 // Set SL before calling StructLayout's ctor. The ctor could cause other
402 // entries to be added to TheMap, invalidating our reference.
405 new (L
) StructLayout(Ty
, *this);
407 if (Ty
->isAbstract())
408 Ty
->addAbstractTypeUser(STM
);
413 /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
414 /// objects. If a TargetData object is alive when types are being refined and
415 /// removed, this method must be called whenever a StructType is removed to
416 /// avoid a dangling pointer in this cache.
417 void TargetData::InvalidateStructLayoutInfo(const StructType
*Ty
) const {
418 if (!LayoutMap
) return; // No cache.
420 static_cast<StructLayoutMap
*>(LayoutMap
)->InvalidateEntry(Ty
);
423 std::string
TargetData::getStringRepresentation() const {
425 raw_string_ostream
OS(Result
);
427 OS
<< (LittleEndian
? "e" : "E")
428 << "-p:" << PointerMemSize
*8 << ':' << PointerABIAlign
*8
429 << ':' << PointerPrefAlign
*8;
430 for (unsigned i
= 0, e
= Alignments
.size(); i
!= e
; ++i
) {
431 const TargetAlignElem
&AI
= Alignments
[i
];
432 OS
<< '-' << (char)AI
.AlignType
<< AI
.TypeBitWidth
<< ':'
433 << AI
.ABIAlign
*8 << ':' << AI
.PrefAlign
*8;
436 if (!LegalIntWidths
.empty()) {
437 OS
<< "-n" << (unsigned)LegalIntWidths
[0];
439 for (unsigned i
= 1, e
= LegalIntWidths
.size(); i
!= e
; ++i
)
440 OS
<< ':' << (unsigned)LegalIntWidths
[i
];
446 uint64_t TargetData::getTypeSizeInBits(const Type
*Ty
) const {
447 assert(Ty
->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
448 switch (Ty
->getTypeID()) {
449 case Type::LabelTyID
:
450 case Type::PointerTyID
:
451 return getPointerSizeInBits();
452 case Type::ArrayTyID
: {
453 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
454 return getTypeAllocSizeInBits(ATy
->getElementType())*ATy
->getNumElements();
456 case Type::StructTyID
:
457 // Get the layout annotation... which is lazily created on demand.
458 return getStructLayout(cast
<StructType
>(Ty
))->getSizeInBits();
459 case Type::IntegerTyID
:
460 return cast
<IntegerType
>(Ty
)->getBitWidth();
463 case Type::FloatTyID
:
465 case Type::DoubleTyID
:
466 case Type::X86_MMXTyID
:
468 case Type::PPC_FP128TyID
:
469 case Type::FP128TyID
:
471 // In memory objects this is always aligned to a higher boundary, but
472 // only 80 bits contain information.
473 case Type::X86_FP80TyID
:
475 case Type::VectorTyID
:
476 return cast
<VectorType
>(Ty
)->getBitWidth();
478 llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
485 \param abi_or_pref Flag that determines which alignment is returned. true
486 returns the ABI alignment, false returns the preferred alignment.
487 \param Ty The underlying type for which alignment is determined.
489 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
490 == false) for the requested type \a Ty.
492 unsigned TargetData::getAlignment(const Type
*Ty
, bool abi_or_pref
) const {
495 assert(Ty
->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
496 switch (Ty
->getTypeID()) {
497 // Early escape for the non-numeric types.
498 case Type::LabelTyID
:
499 case Type::PointerTyID
:
501 ? getPointerABIAlignment()
502 : getPointerPrefAlignment());
503 case Type::ArrayTyID
:
504 return getAlignment(cast
<ArrayType
>(Ty
)->getElementType(), abi_or_pref
);
506 case Type::StructTyID
: {
507 // Packed structure types always have an ABI alignment of one.
508 if (cast
<StructType
>(Ty
)->isPacked() && abi_or_pref
)
511 // Get the layout annotation... which is lazily created on demand.
512 const StructLayout
*Layout
= getStructLayout(cast
<StructType
>(Ty
));
513 unsigned Align
= getAlignmentInfo(AGGREGATE_ALIGN
, 0, abi_or_pref
, Ty
);
514 return std::max(Align
, Layout
->getAlignment());
516 case Type::IntegerTyID
:
518 AlignType
= INTEGER_ALIGN
;
520 case Type::FloatTyID
:
521 case Type::DoubleTyID
:
522 // PPC_FP128TyID and FP128TyID have different data contents, but the
523 // same size and alignment, so they look the same here.
524 case Type::PPC_FP128TyID
:
525 case Type::FP128TyID
:
526 case Type::X86_FP80TyID
:
527 AlignType
= FLOAT_ALIGN
;
529 case Type::X86_MMXTyID
:
530 case Type::VectorTyID
:
531 AlignType
= VECTOR_ALIGN
;
534 llvm_unreachable("Bad type for getAlignment!!!");
538 return getAlignmentInfo((AlignTypeEnum
)AlignType
, getTypeSizeInBits(Ty
),
542 unsigned TargetData::getABITypeAlignment(const Type
*Ty
) const {
543 return getAlignment(Ty
, true);
546 /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
547 /// an integer type of the specified bitwidth.
548 unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth
) const {
549 return getAlignmentInfo(INTEGER_ALIGN
, BitWidth
, true, 0);
553 unsigned TargetData::getCallFrameTypeAlignment(const Type
*Ty
) const {
554 for (unsigned i
= 0, e
= Alignments
.size(); i
!= e
; ++i
)
555 if (Alignments
[i
].AlignType
== STACK_ALIGN
)
556 return Alignments
[i
].ABIAlign
;
558 return getABITypeAlignment(Ty
);
561 unsigned TargetData::getPrefTypeAlignment(const Type
*Ty
) const {
562 return getAlignment(Ty
, false);
565 unsigned TargetData::getPreferredTypeAlignmentShift(const Type
*Ty
) const {
566 unsigned Align
= getPrefTypeAlignment(Ty
);
567 assert(!(Align
& (Align
-1)) && "Alignment is not a power of two!");
568 return Log2_32(Align
);
571 /// getIntPtrType - Return an unsigned integer type that is the same size or
572 /// greater to the host pointer size.
573 const IntegerType
*TargetData::getIntPtrType(LLVMContext
&C
) const {
574 return IntegerType::get(C
, getPointerSizeInBits());
578 uint64_t TargetData::getIndexedOffset(const Type
*ptrTy
, Value
* const* Indices
,
579 unsigned NumIndices
) const {
580 const Type
*Ty
= ptrTy
;
581 assert(Ty
->isPointerTy() && "Illegal argument for getIndexedOffset()");
584 generic_gep_type_iterator
<Value
* const*>
585 TI
= gep_type_begin(ptrTy
, Indices
, Indices
+NumIndices
);
586 for (unsigned CurIDX
= 0; CurIDX
!= NumIndices
; ++CurIDX
, ++TI
) {
587 if (const StructType
*STy
= dyn_cast
<StructType
>(*TI
)) {
588 assert(Indices
[CurIDX
]->getType() ==
589 Type::getInt32Ty(ptrTy
->getContext()) &&
590 "Illegal struct idx");
591 unsigned FieldNo
= cast
<ConstantInt
>(Indices
[CurIDX
])->getZExtValue();
593 // Get structure layout information...
594 const StructLayout
*Layout
= getStructLayout(STy
);
596 // Add in the offset, as calculated by the structure layout info...
597 Result
+= Layout
->getElementOffset(FieldNo
);
599 // Update Ty to refer to current element
600 Ty
= STy
->getElementType(FieldNo
);
602 // Update Ty to refer to current element
603 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
605 // Get the array index and the size of each array element.
606 if (int64_t arrayIdx
= cast
<ConstantInt
>(Indices
[CurIDX
])->getSExtValue())
607 Result
+= (uint64_t)arrayIdx
* getTypeAllocSize(Ty
);
614 /// getPreferredAlignment - Return the preferred alignment of the specified
615 /// global. This includes an explicitly requested alignment (if the global
617 unsigned TargetData::getPreferredAlignment(const GlobalVariable
*GV
) const {
618 const Type
*ElemType
= GV
->getType()->getElementType();
619 unsigned Alignment
= getPrefTypeAlignment(ElemType
);
620 if (GV
->getAlignment() > Alignment
)
621 Alignment
= GV
->getAlignment();
623 if (GV
->hasInitializer()) {
624 if (Alignment
< 16) {
625 // If the global is not external, see if it is large. If so, give it a
627 if (getTypeSizeInBits(ElemType
) > 128)
628 Alignment
= 16; // 16-byte alignment.
634 /// getPreferredAlignmentLog - Return the preferred alignment of the
635 /// specified global, returned in log form. This includes an explicitly
636 /// requested alignment (if the global has one).
637 unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable
*GV
) const {
638 return Log2_32(getPreferredAlignment(GV
));