Fixed some bugs in register stack pass.
[llvm/zpu.git] / lib / Target / X86 / AsmParser / X86AsmParser.cpp
blobe57e34fb4574e8cec690ba3d5e189d1c6e125ca0
1 //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmParser.h"
11 #include "X86.h"
12 #include "X86Subtarget.h"
13 #include "llvm/Target/TargetRegistry.h"
14 #include "llvm/Target/TargetAsmParser.h"
15 #include "llvm/MC/MCStreamer.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCParser/MCAsmLexer.h"
19 #include "llvm/MC/MCParser/MCAsmParser.h"
20 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/SourceMgr.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
30 namespace {
31 struct X86Operand;
33 class X86ATTAsmParser : public TargetAsmParser {
34 MCAsmParser &Parser;
35 TargetMachine &TM;
37 protected:
38 unsigned Is64Bit : 1;
40 private:
41 MCAsmParser &getParser() const { return Parser; }
43 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
45 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
47 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
49 X86Operand *ParseOperand();
50 X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
52 bool ParseDirectiveWord(unsigned Size, SMLoc L);
54 bool MatchAndEmitInstruction(SMLoc IDLoc,
55 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
56 MCStreamer &Out);
58 /// @name Auto-generated Matcher Functions
59 /// {
61 #define GET_ASSEMBLER_HEADER
62 #include "X86GenAsmMatcher.inc"
64 /// }
66 public:
67 X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM)
68 : TargetAsmParser(T), Parser(parser), TM(TM) {
70 // Initialize the set of available features.
71 setAvailableFeatures(ComputeAvailableFeatures(
72 &TM.getSubtarget<X86Subtarget>()));
75 virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
76 SmallVectorImpl<MCParsedAsmOperand*> &Operands);
78 virtual bool ParseDirective(AsmToken DirectiveID);
81 class X86_32ATTAsmParser : public X86ATTAsmParser {
82 public:
83 X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
84 : X86ATTAsmParser(T, Parser, TM) {
85 Is64Bit = false;
89 class X86_64ATTAsmParser : public X86ATTAsmParser {
90 public:
91 X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM)
92 : X86ATTAsmParser(T, Parser, TM) {
93 Is64Bit = true;
97 } // end anonymous namespace
99 /// @name Auto-generated Match Functions
100 /// {
102 static unsigned MatchRegisterName(StringRef Name);
104 /// }
106 namespace {
108 /// X86Operand - Instances of this class represent a parsed X86 machine
109 /// instruction.
110 struct X86Operand : public MCParsedAsmOperand {
111 enum KindTy {
112 Token,
113 Register,
114 Immediate,
115 Memory
116 } Kind;
118 SMLoc StartLoc, EndLoc;
120 union {
121 struct {
122 const char *Data;
123 unsigned Length;
124 } Tok;
126 struct {
127 unsigned RegNo;
128 } Reg;
130 struct {
131 const MCExpr *Val;
132 } Imm;
134 struct {
135 unsigned SegReg;
136 const MCExpr *Disp;
137 unsigned BaseReg;
138 unsigned IndexReg;
139 unsigned Scale;
140 } Mem;
143 X86Operand(KindTy K, SMLoc Start, SMLoc End)
144 : Kind(K), StartLoc(Start), EndLoc(End) {}
146 /// getStartLoc - Get the location of the first token of this operand.
147 SMLoc getStartLoc() const { return StartLoc; }
148 /// getEndLoc - Get the location of the last token of this operand.
149 SMLoc getEndLoc() const { return EndLoc; }
151 virtual void dump(raw_ostream &OS) const {}
153 StringRef getToken() const {
154 assert(Kind == Token && "Invalid access!");
155 return StringRef(Tok.Data, Tok.Length);
157 void setTokenValue(StringRef Value) {
158 assert(Kind == Token && "Invalid access!");
159 Tok.Data = Value.data();
160 Tok.Length = Value.size();
163 unsigned getReg() const {
164 assert(Kind == Register && "Invalid access!");
165 return Reg.RegNo;
168 const MCExpr *getImm() const {
169 assert(Kind == Immediate && "Invalid access!");
170 return Imm.Val;
173 const MCExpr *getMemDisp() const {
174 assert(Kind == Memory && "Invalid access!");
175 return Mem.Disp;
177 unsigned getMemSegReg() const {
178 assert(Kind == Memory && "Invalid access!");
179 return Mem.SegReg;
181 unsigned getMemBaseReg() const {
182 assert(Kind == Memory && "Invalid access!");
183 return Mem.BaseReg;
185 unsigned getMemIndexReg() const {
186 assert(Kind == Memory && "Invalid access!");
187 return Mem.IndexReg;
189 unsigned getMemScale() const {
190 assert(Kind == Memory && "Invalid access!");
191 return Mem.Scale;
194 bool isToken() const {return Kind == Token; }
196 bool isImm() const { return Kind == Immediate; }
198 bool isImmSExti16i8() const {
199 if (!isImm())
200 return false;
202 // If this isn't a constant expr, just assume it fits and let relaxation
203 // handle it.
204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
205 if (!CE)
206 return true;
208 // Otherwise, check the value is in a range that makes sense for this
209 // extension.
210 uint64_t Value = CE->getValue();
211 return (( Value <= 0x000000000000007FULL)||
212 (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
213 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
215 bool isImmSExti32i8() const {
216 if (!isImm())
217 return false;
219 // If this isn't a constant expr, just assume it fits and let relaxation
220 // handle it.
221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
222 if (!CE)
223 return true;
225 // Otherwise, check the value is in a range that makes sense for this
226 // extension.
227 uint64_t Value = CE->getValue();
228 return (( Value <= 0x000000000000007FULL)||
229 (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
230 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
232 bool isImmSExti64i8() const {
233 if (!isImm())
234 return false;
236 // If this isn't a constant expr, just assume it fits and let relaxation
237 // handle it.
238 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
239 if (!CE)
240 return true;
242 // Otherwise, check the value is in a range that makes sense for this
243 // extension.
244 uint64_t Value = CE->getValue();
245 return (( Value <= 0x000000000000007FULL)||
246 (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
248 bool isImmSExti64i32() const {
249 if (!isImm())
250 return false;
252 // If this isn't a constant expr, just assume it fits and let relaxation
253 // handle it.
254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
255 if (!CE)
256 return true;
258 // Otherwise, check the value is in a range that makes sense for this
259 // extension.
260 uint64_t Value = CE->getValue();
261 return (( Value <= 0x000000007FFFFFFFULL)||
262 (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
265 bool isMem() const { return Kind == Memory; }
267 bool isAbsMem() const {
268 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
269 !getMemIndexReg() && getMemScale() == 1;
272 bool isReg() const { return Kind == Register; }
274 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
275 // Add as immediates when possible.
276 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
277 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
278 else
279 Inst.addOperand(MCOperand::CreateExpr(Expr));
282 void addRegOperands(MCInst &Inst, unsigned N) const {
283 assert(N == 1 && "Invalid number of operands!");
284 Inst.addOperand(MCOperand::CreateReg(getReg()));
287 void addImmOperands(MCInst &Inst, unsigned N) const {
288 assert(N == 1 && "Invalid number of operands!");
289 addExpr(Inst, getImm());
292 void addMemOperands(MCInst &Inst, unsigned N) const {
293 assert((N == 5) && "Invalid number of operands!");
294 Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
295 Inst.addOperand(MCOperand::CreateImm(getMemScale()));
296 Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
297 addExpr(Inst, getMemDisp());
298 Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
301 void addAbsMemOperands(MCInst &Inst, unsigned N) const {
302 assert((N == 1) && "Invalid number of operands!");
303 Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
306 static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
307 X86Operand *Res = new X86Operand(Token, Loc, Loc);
308 Res->Tok.Data = Str.data();
309 Res->Tok.Length = Str.size();
310 return Res;
313 static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
314 X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
315 Res->Reg.RegNo = RegNo;
316 return Res;
319 static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
320 X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
321 Res->Imm.Val = Val;
322 return Res;
325 /// Create an absolute memory operand.
326 static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
327 SMLoc EndLoc) {
328 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
329 Res->Mem.SegReg = 0;
330 Res->Mem.Disp = Disp;
331 Res->Mem.BaseReg = 0;
332 Res->Mem.IndexReg = 0;
333 Res->Mem.Scale = 1;
334 return Res;
337 /// Create a generalized memory operand.
338 static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
339 unsigned BaseReg, unsigned IndexReg,
340 unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
341 // We should never just have a displacement, that should be parsed as an
342 // absolute memory operand.
343 assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
345 // The scale should always be one of {1,2,4,8}.
346 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
347 "Invalid scale!");
348 X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
349 Res->Mem.SegReg = SegReg;
350 Res->Mem.Disp = Disp;
351 Res->Mem.BaseReg = BaseReg;
352 Res->Mem.IndexReg = IndexReg;
353 Res->Mem.Scale = Scale;
354 return Res;
358 } // end anonymous namespace.
361 bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
362 SMLoc &StartLoc, SMLoc &EndLoc) {
363 RegNo = 0;
364 const AsmToken &TokPercent = Parser.getTok();
365 assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
366 StartLoc = TokPercent.getLoc();
367 Parser.Lex(); // Eat percent token.
369 const AsmToken &Tok = Parser.getTok();
370 if (Tok.isNot(AsmToken::Identifier))
371 return Error(Tok.getLoc(), "invalid register name");
373 // FIXME: Validate register for the current architecture; we have to do
374 // validation later, so maybe there is no need for this here.
375 RegNo = MatchRegisterName(Tok.getString());
377 // If the match failed, try the register name as lowercase.
378 if (RegNo == 0)
379 RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
381 // FIXME: This should be done using Requires<In32BitMode> and
382 // Requires<In64BitMode> so "eiz" usage in 64-bit instructions
383 // can be also checked.
384 if (RegNo == X86::RIZ && !Is64Bit)
385 return Error(Tok.getLoc(), "riz register in 64-bit mode only");
387 // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
388 if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
389 RegNo = X86::ST0;
390 EndLoc = Tok.getLoc();
391 Parser.Lex(); // Eat 'st'
393 // Check to see if we have '(4)' after %st.
394 if (getLexer().isNot(AsmToken::LParen))
395 return false;
396 // Lex the paren.
397 getParser().Lex();
399 const AsmToken &IntTok = Parser.getTok();
400 if (IntTok.isNot(AsmToken::Integer))
401 return Error(IntTok.getLoc(), "expected stack index");
402 switch (IntTok.getIntVal()) {
403 case 0: RegNo = X86::ST0; break;
404 case 1: RegNo = X86::ST1; break;
405 case 2: RegNo = X86::ST2; break;
406 case 3: RegNo = X86::ST3; break;
407 case 4: RegNo = X86::ST4; break;
408 case 5: RegNo = X86::ST5; break;
409 case 6: RegNo = X86::ST6; break;
410 case 7: RegNo = X86::ST7; break;
411 default: return Error(IntTok.getLoc(), "invalid stack index");
414 if (getParser().Lex().isNot(AsmToken::RParen))
415 return Error(Parser.getTok().getLoc(), "expected ')'");
417 EndLoc = Tok.getLoc();
418 Parser.Lex(); // Eat ')'
419 return false;
422 // If this is "db[0-7]", match it as an alias
423 // for dr[0-7].
424 if (RegNo == 0 && Tok.getString().size() == 3 &&
425 Tok.getString().startswith("db")) {
426 switch (Tok.getString()[2]) {
427 case '0': RegNo = X86::DR0; break;
428 case '1': RegNo = X86::DR1; break;
429 case '2': RegNo = X86::DR2; break;
430 case '3': RegNo = X86::DR3; break;
431 case '4': RegNo = X86::DR4; break;
432 case '5': RegNo = X86::DR5; break;
433 case '6': RegNo = X86::DR6; break;
434 case '7': RegNo = X86::DR7; break;
437 if (RegNo != 0) {
438 EndLoc = Tok.getLoc();
439 Parser.Lex(); // Eat it.
440 return false;
444 if (RegNo == 0)
445 return Error(Tok.getLoc(), "invalid register name");
447 EndLoc = Tok.getLoc();
448 Parser.Lex(); // Eat identifier token.
449 return false;
452 X86Operand *X86ATTAsmParser::ParseOperand() {
453 switch (getLexer().getKind()) {
454 default:
455 // Parse a memory operand with no segment register.
456 return ParseMemOperand(0, Parser.getTok().getLoc());
457 case AsmToken::Percent: {
458 // Read the register.
459 unsigned RegNo;
460 SMLoc Start, End;
461 if (ParseRegister(RegNo, Start, End)) return 0;
462 if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
463 Error(Start, "eiz and riz can only be used as index registers");
464 return 0;
467 // If this is a segment register followed by a ':', then this is the start
468 // of a memory reference, otherwise this is a normal register reference.
469 if (getLexer().isNot(AsmToken::Colon))
470 return X86Operand::CreateReg(RegNo, Start, End);
473 getParser().Lex(); // Eat the colon.
474 return ParseMemOperand(RegNo, Start);
476 case AsmToken::Dollar: {
477 // $42 -> immediate.
478 SMLoc Start = Parser.getTok().getLoc(), End;
479 Parser.Lex();
480 const MCExpr *Val;
481 if (getParser().ParseExpression(Val, End))
482 return 0;
483 return X86Operand::CreateImm(Val, Start, End);
488 /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
489 /// has already been parsed if present.
490 X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
492 // We have to disambiguate a parenthesized expression "(4+5)" from the start
493 // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
494 // only way to do this without lookahead is to eat the '(' and see what is
495 // after it.
496 const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
497 if (getLexer().isNot(AsmToken::LParen)) {
498 SMLoc ExprEnd;
499 if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
501 // After parsing the base expression we could either have a parenthesized
502 // memory address or not. If not, return now. If so, eat the (.
503 if (getLexer().isNot(AsmToken::LParen)) {
504 // Unless we have a segment register, treat this as an immediate.
505 if (SegReg == 0)
506 return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
507 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
510 // Eat the '('.
511 Parser.Lex();
512 } else {
513 // Okay, we have a '('. We don't know if this is an expression or not, but
514 // so we have to eat the ( to see beyond it.
515 SMLoc LParenLoc = Parser.getTok().getLoc();
516 Parser.Lex(); // Eat the '('.
518 if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
519 // Nothing to do here, fall into the code below with the '(' part of the
520 // memory operand consumed.
521 } else {
522 SMLoc ExprEnd;
524 // It must be an parenthesized expression, parse it now.
525 if (getParser().ParseParenExpression(Disp, ExprEnd))
526 return 0;
528 // After parsing the base expression we could either have a parenthesized
529 // memory address or not. If not, return now. If so, eat the (.
530 if (getLexer().isNot(AsmToken::LParen)) {
531 // Unless we have a segment register, treat this as an immediate.
532 if (SegReg == 0)
533 return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
534 return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
537 // Eat the '('.
538 Parser.Lex();
542 // If we reached here, then we just ate the ( of the memory operand. Process
543 // the rest of the memory operand.
544 unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
546 if (getLexer().is(AsmToken::Percent)) {
547 SMLoc L;
548 if (ParseRegister(BaseReg, L, L)) return 0;
549 if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
550 Error(L, "eiz and riz can only be used as index registers");
551 return 0;
555 if (getLexer().is(AsmToken::Comma)) {
556 Parser.Lex(); // Eat the comma.
558 // Following the comma we should have either an index register, or a scale
559 // value. We don't support the later form, but we want to parse it
560 // correctly.
562 // Not that even though it would be completely consistent to support syntax
563 // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
564 if (getLexer().is(AsmToken::Percent)) {
565 SMLoc L;
566 if (ParseRegister(IndexReg, L, L)) return 0;
568 if (getLexer().isNot(AsmToken::RParen)) {
569 // Parse the scale amount:
570 // ::= ',' [scale-expression]
571 if (getLexer().isNot(AsmToken::Comma)) {
572 Error(Parser.getTok().getLoc(),
573 "expected comma in scale expression");
574 return 0;
576 Parser.Lex(); // Eat the comma.
578 if (getLexer().isNot(AsmToken::RParen)) {
579 SMLoc Loc = Parser.getTok().getLoc();
581 int64_t ScaleVal;
582 if (getParser().ParseAbsoluteExpression(ScaleVal))
583 return 0;
585 // Validate the scale amount.
586 if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
587 Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
588 return 0;
590 Scale = (unsigned)ScaleVal;
593 } else if (getLexer().isNot(AsmToken::RParen)) {
594 // A scale amount without an index is ignored.
595 // index.
596 SMLoc Loc = Parser.getTok().getLoc();
598 int64_t Value;
599 if (getParser().ParseAbsoluteExpression(Value))
600 return 0;
602 if (Value != 1)
603 Warning(Loc, "scale factor without index register is ignored");
604 Scale = 1;
608 // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
609 if (getLexer().isNot(AsmToken::RParen)) {
610 Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
611 return 0;
613 SMLoc MemEnd = Parser.getTok().getLoc();
614 Parser.Lex(); // Eat the ')'.
616 return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
617 MemStart, MemEnd);
620 bool X86ATTAsmParser::
621 ParseInstruction(StringRef Name, SMLoc NameLoc,
622 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
623 StringRef PatchedName = Name;
625 // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
626 const MCExpr *ExtraImmOp = 0;
627 if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
628 (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
629 PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
630 bool IsVCMP = PatchedName.startswith("vcmp");
631 unsigned SSECCIdx = IsVCMP ? 4 : 3;
632 unsigned SSEComparisonCode = StringSwitch<unsigned>(
633 PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
634 .Case("eq", 0)
635 .Case("lt", 1)
636 .Case("le", 2)
637 .Case("unord", 3)
638 .Case("neq", 4)
639 .Case("nlt", 5)
640 .Case("nle", 6)
641 .Case("ord", 7)
642 .Case("eq_uq", 8)
643 .Case("nge", 9)
644 .Case("ngt", 0x0A)
645 .Case("false", 0x0B)
646 .Case("neq_oq", 0x0C)
647 .Case("ge", 0x0D)
648 .Case("gt", 0x0E)
649 .Case("true", 0x0F)
650 .Case("eq_os", 0x10)
651 .Case("lt_oq", 0x11)
652 .Case("le_oq", 0x12)
653 .Case("unord_s", 0x13)
654 .Case("neq_us", 0x14)
655 .Case("nlt_uq", 0x15)
656 .Case("nle_uq", 0x16)
657 .Case("ord_s", 0x17)
658 .Case("eq_us", 0x18)
659 .Case("nge_uq", 0x19)
660 .Case("ngt_uq", 0x1A)
661 .Case("false_os", 0x1B)
662 .Case("neq_os", 0x1C)
663 .Case("ge_oq", 0x1D)
664 .Case("gt_oq", 0x1E)
665 .Case("true_us", 0x1F)
666 .Default(~0U);
667 if (SSEComparisonCode != ~0U) {
668 ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
669 getParser().getContext());
670 if (PatchedName.endswith("ss")) {
671 PatchedName = IsVCMP ? "vcmpss" : "cmpss";
672 } else if (PatchedName.endswith("sd")) {
673 PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
674 } else if (PatchedName.endswith("ps")) {
675 PatchedName = IsVCMP ? "vcmpps" : "cmpps";
676 } else {
677 assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
678 PatchedName = IsVCMP ? "vcmppd" : "cmppd";
683 // FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq
684 if (PatchedName.startswith("vpclmul")) {
685 unsigned CLMULQuadWordSelect = StringSwitch<unsigned>(
686 PatchedName.slice(7, PatchedName.size() - 2))
687 .Case("lqlq", 0x00) // src1[63:0], src2[63:0]
688 .Case("hqlq", 0x01) // src1[127:64], src2[63:0]
689 .Case("lqhq", 0x10) // src1[63:0], src2[127:64]
690 .Case("hqhq", 0x11) // src1[127:64], src2[127:64]
691 .Default(~0U);
692 if (CLMULQuadWordSelect != ~0U) {
693 ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect,
694 getParser().getContext());
695 assert(PatchedName.endswith("dq") && "Unexpected mnemonic!");
696 PatchedName = "vpclmulqdq";
700 Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
702 if (ExtraImmOp)
703 Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
706 // Determine whether this is an instruction prefix.
707 bool isPrefix =
708 Name == "lock" || Name == "rep" ||
709 Name == "repe" || Name == "repz" ||
710 Name == "repne" || Name == "repnz";
713 // This does the actual operand parsing. Don't parse any more if we have a
714 // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
715 // just want to parse the "lock" as the first instruction and the "incl" as
716 // the next one.
717 if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
719 // Parse '*' modifier.
720 if (getLexer().is(AsmToken::Star)) {
721 SMLoc Loc = Parser.getTok().getLoc();
722 Operands.push_back(X86Operand::CreateToken("*", Loc));
723 Parser.Lex(); // Eat the star.
726 // Read the first operand.
727 if (X86Operand *Op = ParseOperand())
728 Operands.push_back(Op);
729 else {
730 Parser.EatToEndOfStatement();
731 return true;
734 while (getLexer().is(AsmToken::Comma)) {
735 Parser.Lex(); // Eat the comma.
737 // Parse and remember the operand.
738 if (X86Operand *Op = ParseOperand())
739 Operands.push_back(Op);
740 else {
741 Parser.EatToEndOfStatement();
742 return true;
746 if (getLexer().isNot(AsmToken::EndOfStatement)) {
747 Parser.EatToEndOfStatement();
748 return TokError("unexpected token in argument list");
752 if (getLexer().is(AsmToken::EndOfStatement))
753 Parser.Lex(); // Consume the EndOfStatement
755 // Hack to allow 'movq <largeimm>, <reg>' as an alias for movabsq.
756 if ((Name == "movq" || Name == "mov") && Operands.size() == 3 &&
757 static_cast<X86Operand*>(Operands[2])->isReg() &&
758 static_cast<X86Operand*>(Operands[1])->isImm() &&
759 !static_cast<X86Operand*>(Operands[1])->isImmSExti64i32()) {
760 delete Operands[0];
761 Operands[0] = X86Operand::CreateToken("movabsq", NameLoc);
764 // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
765 // "shift <op>".
766 if ((Name.startswith("shr") || Name.startswith("sar") ||
767 Name.startswith("shl") || Name.startswith("sal")) &&
768 Operands.size() == 3) {
769 X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
770 if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
771 cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
772 delete Operands[1];
773 Operands.erase(Operands.begin() + 1);
777 // FIXME: Hack to handle recognize "rc[lr] <op>" -> "rcl $1, <op>".
778 if ((Name.startswith("rcl") || Name.startswith("rcr")) &&
779 Operands.size() == 2) {
780 const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
781 Operands.push_back(X86Operand::CreateImm(One, NameLoc, NameLoc));
782 std::swap(Operands[1], Operands[2]);
785 // FIXME: Hack to handle recognize "sh[lr]d op,op" -> "shld $1, op,op".
786 if ((Name.startswith("shld") || Name.startswith("shrd")) &&
787 Operands.size() == 3) {
788 const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
789 Operands.insert(Operands.begin()+1,
790 X86Operand::CreateImm(One, NameLoc, NameLoc));
794 // FIXME: Hack to handle recognize "in[bwl] <op>". Canonicalize it to
795 // "inb <op>, %al".
796 if ((Name == "inb" || Name == "inw" || Name == "inl") &&
797 Operands.size() == 2) {
798 unsigned Reg;
799 if (Name[2] == 'b')
800 Reg = MatchRegisterName("al");
801 else if (Name[2] == 'w')
802 Reg = MatchRegisterName("ax");
803 else
804 Reg = MatchRegisterName("eax");
805 SMLoc Loc = Operands.back()->getEndLoc();
806 Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
809 // FIXME: Hack to handle recognize "out[bwl] <op>". Canonicalize it to
810 // "outb %al, <op>".
811 if ((Name == "outb" || Name == "outw" || Name == "outl") &&
812 Operands.size() == 2) {
813 unsigned Reg;
814 if (Name[3] == 'b')
815 Reg = MatchRegisterName("al");
816 else if (Name[3] == 'w')
817 Reg = MatchRegisterName("ax");
818 else
819 Reg = MatchRegisterName("eax");
820 SMLoc Loc = Operands.back()->getEndLoc();
821 Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
822 std::swap(Operands[1], Operands[2]);
825 // FIXME: Hack to handle "out[bwl]? %al, (%dx)" -> "outb %al, %dx".
826 if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
827 Operands.size() == 3) {
828 X86Operand &Op = *(X86Operand*)Operands.back();
829 if (Op.isMem() && Op.Mem.SegReg == 0 &&
830 isa<MCConstantExpr>(Op.Mem.Disp) &&
831 cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
832 Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
833 SMLoc Loc = Op.getEndLoc();
834 Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
835 delete &Op;
839 // FIXME: Hack to handle "f{mul*,add*,sub*,div*} $op, st(0)" the same as
840 // "f{mul*,add*,sub*,div*} $op"
841 if ((Name.startswith("fmul") || Name.startswith("fadd") ||
842 Name.startswith("fsub") || Name.startswith("fdiv")) &&
843 Operands.size() == 3 &&
844 static_cast<X86Operand*>(Operands[2])->isReg() &&
845 static_cast<X86Operand*>(Operands[2])->getReg() == X86::ST0) {
846 delete Operands[2];
847 Operands.erase(Operands.begin() + 2);
850 // FIXME: Hack to handle "f{mulp,addp} st(0), $op" the same as
851 // "f{mulp,addp} $op", since they commute. We also allow fdivrp/fsubrp even
852 // though they don't commute, solely because gas does support this.
853 if ((Name=="fmulp" || Name=="faddp" || Name=="fsubrp" || Name=="fdivrp") &&
854 Operands.size() == 3 &&
855 static_cast<X86Operand*>(Operands[1])->isReg() &&
856 static_cast<X86Operand*>(Operands[1])->getReg() == X86::ST0) {
857 delete Operands[1];
858 Operands.erase(Operands.begin() + 1);
861 // FIXME: Hack to handle "imul <imm>, B" which is an alias for "imul <imm>, B,
862 // B".
863 if (Name.startswith("imul") && Operands.size() == 3 &&
864 static_cast<X86Operand*>(Operands[1])->isImm() &&
865 static_cast<X86Operand*>(Operands.back())->isReg()) {
866 X86Operand *Op = static_cast<X86Operand*>(Operands.back());
867 Operands.push_back(X86Operand::CreateReg(Op->getReg(), Op->getStartLoc(),
868 Op->getEndLoc()));
871 // 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
872 // effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity
873 // errors, since its encoding is the most compact.
874 if (Name == "sldt" && Operands.size() == 2 &&
875 static_cast<X86Operand*>(Operands[1])->isMem()) {
876 delete Operands[0];
877 Operands[0] = X86Operand::CreateToken("sldtw", NameLoc);
880 // The assembler accepts "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as
881 // synonyms. Our tables only have the "<reg>, <mem>" form, so if we see the
882 // other operand order, swap them.
883 if (Name == "xchgb" || Name == "xchgw" || Name == "xchgl" || Name == "xchgq"||
884 Name == "xchg")
885 if (Operands.size() == 3 &&
886 static_cast<X86Operand*>(Operands[1])->isMem() &&
887 static_cast<X86Operand*>(Operands[2])->isReg()) {
888 std::swap(Operands[1], Operands[2]);
891 // The assembler accepts "testX <reg>, <mem>" and "testX <mem>, <reg>" as
892 // synonyms. Our tables only have the "<mem>, <reg>" form, so if we see the
893 // other operand order, swap them.
894 if (Name == "testb" || Name == "testw" || Name == "testl" || Name == "testq"||
895 Name == "test")
896 if (Operands.size() == 3 &&
897 static_cast<X86Operand*>(Operands[1])->isReg() &&
898 static_cast<X86Operand*>(Operands[2])->isMem()) {
899 std::swap(Operands[1], Operands[2]);
902 // The assembler accepts these instructions with no operand as a synonym for
903 // an instruction acting on st(1). e.g. "fxch" -> "fxch %st(1)".
904 if ((Name == "fxch" || Name == "fucom" || Name == "fucomp" ||
905 Name == "faddp" || Name == "fsubp" || Name == "fsubrp" ||
906 Name == "fmulp" || Name == "fdivp" || Name == "fdivrp") &&
907 Operands.size() == 1) {
908 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
909 NameLoc, NameLoc));
912 // The assembler accepts these instructions with two few operands as a synonym
913 // for taking %st(1),%st(0) or X, %st(0).
914 if ((Name == "fcomi" || Name == "fucomi" || Name == "fucompi" ||
915 Name == "fcompi" ) &&
916 Operands.size() < 3) {
917 if (Operands.size() == 1)
918 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
919 NameLoc, NameLoc));
920 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"),
921 NameLoc, NameLoc));
924 // The assembler accepts various amounts of brokenness for fnstsw.
925 if (Name == "fnstsw" || Name == "fnstsww") {
926 if (Operands.size() == 2 &&
927 static_cast<X86Operand*>(Operands[1])->isReg()) {
928 // "fnstsw al" and "fnstsw eax" -> "fnstw"
929 unsigned Reg = static_cast<X86Operand*>(Operands[1])->Reg.RegNo;
930 if (Reg == MatchRegisterName("eax") ||
931 Reg == MatchRegisterName("al")) {
932 delete Operands[1];
933 Operands.pop_back();
937 // "fnstw" -> "fnstw %ax"
938 if (Operands.size() == 1)
939 Operands.push_back(X86Operand::CreateReg(MatchRegisterName("ax"),
940 NameLoc, NameLoc));
943 // jmp $42,$5 -> ljmp, similarly for call.
944 if ((Name.startswith("call") || Name.startswith("jmp")) &&
945 Operands.size() == 3 &&
946 static_cast<X86Operand*>(Operands[1])->isImm() &&
947 static_cast<X86Operand*>(Operands[2])->isImm()) {
948 const char *NewOpName = StringSwitch<const char *>(Name)
949 .Case("jmp", "ljmp")
950 .Case("jmpw", "ljmpw")
951 .Case("jmpl", "ljmpl")
952 .Case("jmpq", "ljmpq")
953 .Case("call", "lcall")
954 .Case("callw", "lcallw")
955 .Case("calll", "lcalll")
956 .Case("callq", "lcallq")
957 .Default(0);
958 if (NewOpName) {
959 delete Operands[0];
960 Operands[0] = X86Operand::CreateToken(NewOpName, NameLoc);
961 Name = NewOpName;
965 // lcall and ljmp -> lcalll and ljmpl
966 if ((Name == "lcall" || Name == "ljmp") && Operands.size() == 3) {
967 delete Operands[0];
968 Operands[0] = X86Operand::CreateToken(Name == "lcall" ? "lcalll" : "ljmpl",
969 NameLoc);
972 // movsd -> movsl (when no operands are specified).
973 if (Name == "movsd" && Operands.size() == 1) {
974 delete Operands[0];
975 Operands[0] = X86Operand::CreateToken("movsl", NameLoc);
978 // fstp <mem> -> fstps <mem>. Without this, we'll default to fstpl due to
979 // suffix searching.
980 if (Name == "fstp" && Operands.size() == 2 &&
981 static_cast<X86Operand*>(Operands[1])->isMem()) {
982 delete Operands[0];
983 Operands[0] = X86Operand::CreateToken("fstps", NameLoc);
987 // "clr <reg>" -> "xor <reg>, <reg>".
988 if ((Name == "clrb" || Name == "clrw" || Name == "clrl" || Name == "clrq" ||
989 Name == "clr") && Operands.size() == 2 &&
990 static_cast<X86Operand*>(Operands[1])->isReg()) {
991 unsigned RegNo = static_cast<X86Operand*>(Operands[1])->getReg();
992 Operands.push_back(X86Operand::CreateReg(RegNo, NameLoc, NameLoc));
993 delete Operands[0];
994 Operands[0] = X86Operand::CreateToken("xor", NameLoc);
997 // FIXME: Hack to handle recognize "aa[dm]" -> "aa[dm] $0xA".
998 if ((Name.startswith("aad") || Name.startswith("aam")) &&
999 Operands.size() == 1) {
1000 const MCExpr *A = MCConstantExpr::Create(0xA, getParser().getContext());
1001 Operands.push_back(X86Operand::CreateImm(A, NameLoc, NameLoc));
1004 return false;
1007 bool X86ATTAsmParser::
1008 MatchAndEmitInstruction(SMLoc IDLoc,
1009 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1010 MCStreamer &Out) {
1011 assert(!Operands.empty() && "Unexpect empty operand list!");
1012 X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
1013 assert(Op->isToken() && "Leading operand should always be a mnemonic!");
1015 // First, handle aliases that expand to multiple instructions.
1016 // FIXME: This should be replaced with a real .td file alias mechanism.
1017 if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
1018 Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
1019 Op->getToken() == "finit" || Op->getToken() == "fsave" ||
1020 Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
1021 MCInst Inst;
1022 Inst.setOpcode(X86::WAIT);
1023 Out.EmitInstruction(Inst);
1025 const char *Repl =
1026 StringSwitch<const char*>(Op->getToken())
1027 .Case("finit", "fninit")
1028 .Case("fsave", "fnsave")
1029 .Case("fstcw", "fnstcw")
1030 .Case("fstcww", "fnstcw")
1031 .Case("fstenv", "fnstenv")
1032 .Case("fstsw", "fnstsw")
1033 .Case("fstsww", "fnstsw")
1034 .Case("fclex", "fnclex")
1035 .Default(0);
1036 assert(Repl && "Unknown wait-prefixed instruction");
1037 delete Operands[0];
1038 Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
1041 bool WasOriginallyInvalidOperand = false;
1042 unsigned OrigErrorInfo;
1043 MCInst Inst;
1045 // First, try a direct match.
1046 switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
1047 case Match_Success:
1048 Out.EmitInstruction(Inst);
1049 return false;
1050 case Match_MissingFeature:
1051 Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1052 return true;
1053 case Match_InvalidOperand:
1054 WasOriginallyInvalidOperand = true;
1055 break;
1056 case Match_MnemonicFail:
1057 break;
1060 // FIXME: Ideally, we would only attempt suffix matches for things which are
1061 // valid prefixes, and we could just infer the right unambiguous
1062 // type. However, that requires substantially more matcher support than the
1063 // following hack.
1065 // Change the operand to point to a temporary token.
1066 StringRef Base = Op->getToken();
1067 SmallString<16> Tmp;
1068 Tmp += Base;
1069 Tmp += ' ';
1070 Op->setTokenValue(Tmp.str());
1072 // Check for the various suffix matches.
1073 Tmp[Base.size()] = 'b';
1074 unsigned BErrorInfo, WErrorInfo, LErrorInfo, QErrorInfo;
1075 MatchResultTy MatchB = MatchInstructionImpl(Operands, Inst, BErrorInfo);
1076 Tmp[Base.size()] = 'w';
1077 MatchResultTy MatchW = MatchInstructionImpl(Operands, Inst, WErrorInfo);
1078 Tmp[Base.size()] = 'l';
1079 MatchResultTy MatchL = MatchInstructionImpl(Operands, Inst, LErrorInfo);
1080 Tmp[Base.size()] = 'q';
1081 MatchResultTy MatchQ = MatchInstructionImpl(Operands, Inst, QErrorInfo);
1083 // Restore the old token.
1084 Op->setTokenValue(Base);
1086 // If exactly one matched, then we treat that as a successful match (and the
1087 // instruction will already have been filled in correctly, since the failing
1088 // matches won't have modified it).
1089 unsigned NumSuccessfulMatches =
1090 (MatchB == Match_Success) + (MatchW == Match_Success) +
1091 (MatchL == Match_Success) + (MatchQ == Match_Success);
1092 if (NumSuccessfulMatches == 1) {
1093 Out.EmitInstruction(Inst);
1094 return false;
1097 // Otherwise, the match failed, try to produce a decent error message.
1099 // If we had multiple suffix matches, then identify this as an ambiguous
1100 // match.
1101 if (NumSuccessfulMatches > 1) {
1102 char MatchChars[4];
1103 unsigned NumMatches = 0;
1104 if (MatchB == Match_Success)
1105 MatchChars[NumMatches++] = 'b';
1106 if (MatchW == Match_Success)
1107 MatchChars[NumMatches++] = 'w';
1108 if (MatchL == Match_Success)
1109 MatchChars[NumMatches++] = 'l';
1110 if (MatchQ == Match_Success)
1111 MatchChars[NumMatches++] = 'q';
1113 SmallString<126> Msg;
1114 raw_svector_ostream OS(Msg);
1115 OS << "ambiguous instructions require an explicit suffix (could be ";
1116 for (unsigned i = 0; i != NumMatches; ++i) {
1117 if (i != 0)
1118 OS << ", ";
1119 if (i + 1 == NumMatches)
1120 OS << "or ";
1121 OS << "'" << Base << MatchChars[i] << "'";
1123 OS << ")";
1124 Error(IDLoc, OS.str());
1125 return true;
1128 // Okay, we know that none of the variants matched successfully.
1130 // If all of the instructions reported an invalid mnemonic, then the original
1131 // mnemonic was invalid.
1132 if ((MatchB == Match_MnemonicFail) && (MatchW == Match_MnemonicFail) &&
1133 (MatchL == Match_MnemonicFail) && (MatchQ == Match_MnemonicFail)) {
1134 if (!WasOriginallyInvalidOperand) {
1135 Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
1136 return true;
1139 // Recover location info for the operand if we know which was the problem.
1140 SMLoc ErrorLoc = IDLoc;
1141 if (OrigErrorInfo != ~0U) {
1142 if (OrigErrorInfo >= Operands.size())
1143 return Error(IDLoc, "too few operands for instruction");
1145 ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
1146 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1149 return Error(ErrorLoc, "invalid operand for instruction");
1152 // If one instruction matched with a missing feature, report this as a
1153 // missing feature.
1154 if ((MatchB == Match_MissingFeature) + (MatchW == Match_MissingFeature) +
1155 (MatchL == Match_MissingFeature) + (MatchQ == Match_MissingFeature) == 1){
1156 Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1157 return true;
1160 // If one instruction matched with an invalid operand, report this as an
1161 // operand failure.
1162 if ((MatchB == Match_InvalidOperand) + (MatchW == Match_InvalidOperand) +
1163 (MatchL == Match_InvalidOperand) + (MatchQ == Match_InvalidOperand) == 1){
1164 Error(IDLoc, "invalid operand for instruction");
1165 return true;
1168 // If all of these were an outright failure, report it in a useless way.
1169 // FIXME: We should give nicer diagnostics about the exact failure.
1170 Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
1171 return true;
1175 bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
1176 StringRef IDVal = DirectiveID.getIdentifier();
1177 if (IDVal == ".word")
1178 return ParseDirectiveWord(2, DirectiveID.getLoc());
1179 return true;
1182 /// ParseDirectiveWord
1183 /// ::= .word [ expression (, expression)* ]
1184 bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1185 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1186 for (;;) {
1187 const MCExpr *Value;
1188 if (getParser().ParseExpression(Value))
1189 return true;
1191 getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
1193 if (getLexer().is(AsmToken::EndOfStatement))
1194 break;
1196 // FIXME: Improve diagnostic.
1197 if (getLexer().isNot(AsmToken::Comma))
1198 return Error(L, "unexpected token in directive");
1199 Parser.Lex();
1203 Parser.Lex();
1204 return false;
1210 extern "C" void LLVMInitializeX86AsmLexer();
1212 // Force static initialization.
1213 extern "C" void LLVMInitializeX86AsmParser() {
1214 RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target);
1215 RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target);
1216 LLVMInitializeX86AsmLexer();
1219 #define GET_REGISTER_MATCHER
1220 #define GET_MATCHER_IMPLEMENTATION
1221 #include "X86GenAsmMatcher.inc"