Fixed some bugs in register stack pass.
[llvm/zpu.git] / lib / Target / X86 / X86FloatingPoint.cpp
blob5da6d3ae5cba67c4e2f9747c153c050838f8f1f4
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
24 //===----------------------------------------------------------------------===//
26 #define DEBUG_TYPE "x86-codegen"
27 #include "X86.h"
28 #include "X86InstrInfo.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include <algorithm>
45 using namespace llvm;
47 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48 STATISTIC(NumFP , "Number of floating point instructions");
50 namespace {
51 struct FPS : public MachineFunctionPass {
52 static char ID;
53 FPS() : MachineFunctionPass(ID) {
54 // This is really only to keep valgrind quiet.
55 // The logic in isLive() is too much for it.
56 memset(Stack, 0, sizeof(Stack));
57 memset(RegMap, 0, sizeof(RegMap));
60 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61 AU.setPreservesCFG();
62 AU.addPreservedID(MachineLoopInfoID);
63 AU.addPreservedID(MachineDominatorsID);
64 MachineFunctionPass::getAnalysisUsage(AU);
67 virtual bool runOnMachineFunction(MachineFunction &MF);
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
71 private:
72 const TargetInstrInfo *TII; // Machine instruction info.
74 // Two CFG edges are related if they leave the same block, or enter the same
75 // block. The transitive closure of an edge under this relation is a
76 // LiveBundle. It represents a set of CFG edges where the live FP stack
77 // registers must be allocated identically in the x87 stack.
79 // A LiveBundle is usually all the edges leaving a block, or all the edges
80 // entering a block, but it can contain more edges if critical edges are
81 // present.
83 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84 // but the exact mapping of FP registers to stack slots is fixed later.
85 struct LiveBundle {
86 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87 unsigned Mask;
89 // Number of pre-assigned live registers in FixStack. This is 0 when the
90 // stack order has not yet been fixed.
91 unsigned FixCount;
93 // Assigned stack order for live-in registers.
94 // FixStack[i] == getStackEntry(i) for all i < FixCount.
95 unsigned char FixStack[8];
97 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
99 // Have the live registers been assigned a stack order yet?
100 bool isFixed() const { return !Mask || FixCount; }
103 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104 // with no live FP registers.
105 SmallVector<LiveBundle, 8> LiveBundles;
107 // Map each MBB in the current function to an (ingoing, outgoing) index into
108 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109 // and are not actually stored in the map.
110 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
112 // Return a bitmask of FP registers in block's live-in list.
113 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114 unsigned Mask = 0;
115 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116 E = MBB->livein_end(); I != E; ++I) {
117 unsigned Reg = *I - X86::FP0;
118 if (Reg < 8)
119 Mask |= 1 << Reg;
121 return Mask;
124 // Partition all the CFG edges into LiveBundles.
125 void bundleCFG(MachineFunction &MF);
127 MachineBasicBlock *MBB; // Current basic block
128 unsigned Stack[8]; // FP<n> Registers in each stack slot...
129 unsigned RegMap[8]; // Track which stack slot contains each register
130 unsigned StackTop; // The current top of the FP stack.
132 // Set up our stack model to match the incoming registers to MBB.
133 void setupBlockStack();
135 // Shuffle live registers to match the expectations of successor blocks.
136 void finishBlockStack();
138 void dumpStack() const {
139 dbgs() << "Stack contents:";
140 for (unsigned i = 0; i != StackTop; ++i) {
141 dbgs() << " FP" << Stack[i];
142 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
144 dbgs() << "\n";
147 /// getSlot - Return the stack slot number a particular register number is
148 /// in.
149 unsigned getSlot(unsigned RegNo) const {
150 assert(RegNo < 8 && "Regno out of range!");
151 return RegMap[RegNo];
154 /// isLive - Is RegNo currently live in the stack?
155 bool isLive(unsigned RegNo) const {
156 unsigned Slot = getSlot(RegNo);
157 return Slot < StackTop && Stack[Slot] == RegNo;
160 /// getScratchReg - Return an FP register that is not currently in use.
161 unsigned getScratchReg() {
162 for (int i = 7; i >= 0; --i)
163 if (!isLive(i))
164 return i;
165 llvm_unreachable("Ran out of scratch FP registers");
168 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
169 unsigned getStackEntry(unsigned STi) const {
170 if (STi >= StackTop)
171 report_fatal_error("Access past stack top!");
172 return Stack[StackTop-1-STi];
175 /// getSTReg - Return the X86::ST(i) register which contains the specified
176 /// FP<RegNo> register.
177 unsigned getSTReg(unsigned RegNo) const {
178 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
181 // pushReg - Push the specified FP<n> register onto the stack.
182 void pushReg(unsigned Reg) {
183 assert(Reg < 8 && "Register number out of range!");
184 if (StackTop >= 8)
185 report_fatal_error("Stack overflow!");
186 Stack[StackTop] = Reg;
187 RegMap[Reg] = StackTop++;
190 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
191 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
192 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
193 if (isAtTop(RegNo)) return;
195 unsigned STReg = getSTReg(RegNo);
196 unsigned RegOnTop = getStackEntry(0);
198 // Swap the slots the regs are in.
199 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
201 // Swap stack slot contents.
202 if (RegMap[RegOnTop] >= StackTop)
203 report_fatal_error("Access past stack top!");
204 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
206 // Emit an fxch to update the runtime processors version of the state.
207 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
208 ++NumFXCH;
211 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
212 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
213 unsigned STReg = getSTReg(RegNo);
214 pushReg(AsReg); // New register on top of stack
216 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
219 /// popStackAfter - Pop the current value off of the top of the FP stack
220 /// after the specified instruction.
221 void popStackAfter(MachineBasicBlock::iterator &I);
223 /// freeStackSlotAfter - Free the specified register from the register
224 /// stack, so that it is no longer in a register. If the register is
225 /// currently at the top of the stack, we just pop the current instruction,
226 /// otherwise we store the current top-of-stack into the specified slot,
227 /// then pop the top of stack.
228 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
230 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
231 /// instruction.
232 MachineBasicBlock::iterator
233 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
235 /// Adjust the live registers to be the set in Mask.
236 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
238 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
239 /// st(0), FP reg FixStack[1] is st(1) etc.
240 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
241 MachineBasicBlock::iterator I);
243 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
245 void handleZeroArgFP(MachineBasicBlock::iterator &I);
246 void handleOneArgFP(MachineBasicBlock::iterator &I);
247 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
248 void handleTwoArgFP(MachineBasicBlock::iterator &I);
249 void handleCompareFP(MachineBasicBlock::iterator &I);
250 void handleCondMovFP(MachineBasicBlock::iterator &I);
251 void handleSpecialFP(MachineBasicBlock::iterator &I);
253 bool translateCopy(MachineInstr*);
255 char FPS::ID = 0;
258 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
260 /// getFPReg - Return the X86::FPx register number for the specified operand.
261 /// For example, this returns 3 for X86::FP3.
262 static unsigned getFPReg(const MachineOperand &MO) {
263 assert(MO.isReg() && "Expected an FP register!");
264 unsigned Reg = MO.getReg();
265 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
266 return Reg - X86::FP0;
269 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
270 /// register references into FP stack references.
272 bool FPS::runOnMachineFunction(MachineFunction &MF) {
273 // We only need to run this pass if there are any FP registers used in this
274 // function. If it is all integer, there is nothing for us to do!
275 bool FPIsUsed = false;
277 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
278 for (unsigned i = 0; i <= 6; ++i)
279 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
280 FPIsUsed = true;
281 break;
284 // Early exit.
285 if (!FPIsUsed) return false;
287 TII = MF.getTarget().getInstrInfo();
289 // Prepare cross-MBB liveness.
290 bundleCFG(MF);
292 StackTop = 0;
294 // Process the function in depth first order so that we process at least one
295 // of the predecessors for every reachable block in the function.
296 SmallPtrSet<MachineBasicBlock*, 8> Processed;
297 MachineBasicBlock *Entry = MF.begin();
299 bool Changed = false;
300 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
301 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
302 I != E; ++I)
303 Changed |= processBasicBlock(MF, **I);
305 // Process any unreachable blocks in arbitrary order now.
306 if (MF.size() != Processed.size())
307 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
308 if (Processed.insert(BB))
309 Changed |= processBasicBlock(MF, *BB);
311 BlockBundle.clear();
312 LiveBundles.clear();
314 return Changed;
317 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
318 /// live-out sets for the FP registers. Consistent means that the set of
319 /// registers live-out from a block is identical to the live-in set of all
320 /// successors. This is not enforced by the normal live-in lists since
321 /// registers may be implicitly defined, or not used by all successors.
322 void FPS::bundleCFG(MachineFunction &MF) {
323 assert(LiveBundles.empty() && "Stale data in LiveBundles");
324 assert(BlockBundle.empty() && "Stale data in BlockBundle");
325 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
327 // LiveBundle[0] is the empty live-in set.
328 LiveBundles.resize(1);
330 // First gather the actual live-in masks for all MBBs.
331 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
332 MachineBasicBlock *MBB = I;
333 const unsigned Mask = calcLiveInMask(MBB);
334 if (!Mask)
335 continue;
336 // Ingoing bundle index.
337 unsigned &Idx = BlockBundle[MBB].first;
338 // Already assigned an ingoing bundle?
339 if (Idx)
340 continue;
341 // Allocate a new LiveBundle struct for this block's live-ins.
342 const unsigned BundleIdx = Idx = LiveBundles.size();
343 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
344 << MBB->getNumber());
345 LiveBundles.push_back(Mask);
346 LiveBundle &Bundle = LiveBundles.back();
348 // Make sure all predecessors have the same live-out set.
349 PropUp.insert(MBB);
351 // Keep pushing liveness up and down the CFG until convergence.
352 // Only critical edges cause iteration here, but when they do, multiple
353 // blocks can be assigned to the same LiveBundle index.
354 do {
355 // Assign BundleIdx as liveout from predecessors in PropUp.
356 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
357 E = PropUp.end(); I != E; ++I) {
358 MachineBasicBlock *MBB = *I;
359 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
360 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
361 MachineBasicBlock *PredMBB = *LinkI;
362 // PredMBB's liveout bundle should be set to LIIdx.
363 unsigned &Idx = BlockBundle[PredMBB].second;
364 if (Idx) {
365 assert(Idx == BundleIdx && "Inconsistent CFG");
366 continue;
368 Idx = BundleIdx;
369 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
370 // Propagate to siblings.
371 if (PredMBB->succ_size() > 1)
372 PropDown.insert(PredMBB);
375 PropUp.clear();
377 // Assign BundleIdx as livein to successors in PropDown.
378 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
379 E = PropDown.end(); I != E; ++I) {
380 MachineBasicBlock *MBB = *I;
381 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
382 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
383 MachineBasicBlock *SuccMBB = *LinkI;
384 // LinkMBB's livein bundle should be set to BundleIdx.
385 unsigned &Idx = BlockBundle[SuccMBB].first;
386 if (Idx) {
387 assert(Idx == BundleIdx && "Inconsistent CFG");
388 continue;
390 Idx = BundleIdx;
391 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
392 // Propagate to siblings.
393 if (SuccMBB->pred_size() > 1)
394 PropUp.insert(SuccMBB);
395 // Also accumulate the bundle liveness mask from the liveins here.
396 Bundle.Mask |= calcLiveInMask(SuccMBB);
399 PropDown.clear();
400 } while (!PropUp.empty());
401 DEBUG({
402 dbgs() << " live:";
403 for (unsigned i = 0; i < 8; ++i)
404 if (Bundle.Mask & (1<<i))
405 dbgs() << " %FP" << i;
406 dbgs() << '\n';
411 /// processBasicBlock - Loop over all of the instructions in the basic block,
412 /// transforming FP instructions into their stack form.
414 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
415 bool Changed = false;
416 MBB = &BB;
418 setupBlockStack();
420 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
421 MachineInstr *MI = I;
422 uint64_t Flags = MI->getDesc().TSFlags;
424 unsigned FPInstClass = Flags & X86II::FPTypeMask;
425 if (MI->isInlineAsm())
426 FPInstClass = X86II::SpecialFP;
428 if (MI->isCopy() && translateCopy(MI))
429 FPInstClass = X86II::SpecialFP;
431 if (FPInstClass == X86II::NotFP)
432 continue; // Efficiently ignore non-fp insts!
434 MachineInstr *PrevMI = 0;
435 if (I != BB.begin())
436 PrevMI = prior(I);
438 ++NumFP; // Keep track of # of pseudo instrs
439 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
441 // Get dead variables list now because the MI pointer may be deleted as part
442 // of processing!
443 SmallVector<unsigned, 8> DeadRegs;
444 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
445 const MachineOperand &MO = MI->getOperand(i);
446 if (MO.isReg() && MO.isDead())
447 DeadRegs.push_back(MO.getReg());
450 switch (FPInstClass) {
451 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
452 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
453 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
454 case X86II::TwoArgFP: handleTwoArgFP(I); break;
455 case X86II::CompareFP: handleCompareFP(I); break;
456 case X86II::CondMovFP: handleCondMovFP(I); break;
457 case X86II::SpecialFP: handleSpecialFP(I); break;
458 default: llvm_unreachable("Unknown FP Type!");
461 // Check to see if any of the values defined by this instruction are dead
462 // after definition. If so, pop them.
463 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
464 unsigned Reg = DeadRegs[i];
465 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
466 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
467 freeStackSlotAfter(I, Reg-X86::FP0);
471 // Print out all of the instructions expanded to if -debug
472 DEBUG(
473 MachineBasicBlock::iterator PrevI(PrevMI);
474 if (I == PrevI) {
475 dbgs() << "Just deleted pseudo instruction\n";
476 } else {
477 MachineBasicBlock::iterator Start = I;
478 // Rewind to first instruction newly inserted.
479 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
480 dbgs() << "Inserted instructions:\n\t";
481 Start->print(dbgs(), &MF.getTarget());
482 while (++Start != llvm::next(I)) {}
484 dumpStack();
487 Changed = true;
490 finishBlockStack();
492 return Changed;
495 /// setupBlockStack - Use the BlockBundle map to set up our model of the stack
496 /// to match predecessors' live out stack.
497 void FPS::setupBlockStack() {
498 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
499 << " derived from " << MBB->getName() << ".\n");
500 StackTop = 0;
501 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
503 if (!Bundle.Mask) {
504 DEBUG(dbgs() << "Block has no FP live-ins.\n");
505 return;
508 // Depth-first iteration should ensure that we always have an assigned stack.
509 assert(Bundle.isFixed() && "Reached block before any predecessors");
511 // Push the fixed live-in registers.
512 for (unsigned i = Bundle.FixCount; i > 0; --i) {
513 MBB->addLiveIn(X86::ST0+i-1);
514 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
515 << unsigned(Bundle.FixStack[i-1]) << '\n');
516 pushReg(Bundle.FixStack[i-1]);
519 // Kill off unwanted live-ins. This can happen with a critical edge.
520 // FIXME: We could keep these live registers around as zombies. They may need
521 // to be revived at the end of a short block. It might save a few instrs.
522 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
523 DEBUG(MBB->dump());
526 /// finishBlockStack - Revive live-outs that are implicitly defined out of
527 /// MBB. Shuffle live registers to match the expected fixed stack of any
528 /// predecessors, and ensure that all predecessors are expecting the same
529 /// stack.
530 void FPS::finishBlockStack() {
531 // The RET handling below takes care of return blocks for us.
532 if (MBB->succ_empty())
533 return;
535 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
536 << " derived from " << MBB->getName() << ".\n");
538 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
539 LiveBundle &Bundle = LiveBundles[BundleIdx];
541 // We may need to kill and define some registers to match successors.
542 // FIXME: This can probably be combined with the shuffle below.
543 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
544 adjustLiveRegs(Bundle.Mask, Term);
546 if (!Bundle.Mask) {
547 DEBUG(dbgs() << "No live-outs.\n");
548 return;
551 // Has the stack order been fixed yet?
552 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
553 if (Bundle.isFixed()) {
554 DEBUG(dbgs() << "Shuffling stack to match.\n");
555 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
556 } else {
557 // Not fixed yet, we get to choose.
558 DEBUG(dbgs() << "Fixing stack order now.\n");
559 Bundle.FixCount = StackTop;
560 for (unsigned i = 0; i < StackTop; ++i)
561 Bundle.FixStack[i] = getStackEntry(i);
566 //===----------------------------------------------------------------------===//
567 // Efficient Lookup Table Support
568 //===----------------------------------------------------------------------===//
570 namespace {
571 struct TableEntry {
572 unsigned from;
573 unsigned to;
574 bool operator<(const TableEntry &TE) const { return from < TE.from; }
575 friend bool operator<(const TableEntry &TE, unsigned V) {
576 return TE.from < V;
578 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
579 const TableEntry &TE) {
580 return V < TE.from;
585 #ifndef NDEBUG
586 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
587 for (unsigned i = 0; i != NumEntries-1; ++i)
588 if (!(Table[i] < Table[i+1])) return false;
589 return true;
591 #endif
593 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
594 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
595 if (I != Table+N && I->from == Opcode)
596 return I->to;
597 return -1;
600 #ifdef NDEBUG
601 #define ASSERT_SORTED(TABLE)
602 #else
603 #define ASSERT_SORTED(TABLE) \
604 { static bool TABLE##Checked = false; \
605 if (!TABLE##Checked) { \
606 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
607 "All lookup tables must be sorted for efficient access!"); \
608 TABLE##Checked = true; \
611 #endif
613 //===----------------------------------------------------------------------===//
614 // Register File -> Register Stack Mapping Methods
615 //===----------------------------------------------------------------------===//
617 // OpcodeTable - Sorted map of register instructions to their stack version.
618 // The first element is an register file pseudo instruction, the second is the
619 // concrete X86 instruction which uses the register stack.
621 static const TableEntry OpcodeTable[] = {
622 { X86::ABS_Fp32 , X86::ABS_F },
623 { X86::ABS_Fp64 , X86::ABS_F },
624 { X86::ABS_Fp80 , X86::ABS_F },
625 { X86::ADD_Fp32m , X86::ADD_F32m },
626 { X86::ADD_Fp64m , X86::ADD_F64m },
627 { X86::ADD_Fp64m32 , X86::ADD_F32m },
628 { X86::ADD_Fp80m32 , X86::ADD_F32m },
629 { X86::ADD_Fp80m64 , X86::ADD_F64m },
630 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
631 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
632 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
633 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
634 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
635 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
636 { X86::CHS_Fp32 , X86::CHS_F },
637 { X86::CHS_Fp64 , X86::CHS_F },
638 { X86::CHS_Fp80 , X86::CHS_F },
639 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
640 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
641 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
642 { X86::CMOVB_Fp32 , X86::CMOVB_F },
643 { X86::CMOVB_Fp64 , X86::CMOVB_F },
644 { X86::CMOVB_Fp80 , X86::CMOVB_F },
645 { X86::CMOVE_Fp32 , X86::CMOVE_F },
646 { X86::CMOVE_Fp64 , X86::CMOVE_F },
647 { X86::CMOVE_Fp80 , X86::CMOVE_F },
648 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
649 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
650 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
651 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
652 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
653 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
654 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
655 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
656 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
657 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
658 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
659 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
660 { X86::CMOVP_Fp32 , X86::CMOVP_F },
661 { X86::CMOVP_Fp64 , X86::CMOVP_F },
662 { X86::CMOVP_Fp80 , X86::CMOVP_F },
663 { X86::COS_Fp32 , X86::COS_F },
664 { X86::COS_Fp64 , X86::COS_F },
665 { X86::COS_Fp80 , X86::COS_F },
666 { X86::DIVR_Fp32m , X86::DIVR_F32m },
667 { X86::DIVR_Fp64m , X86::DIVR_F64m },
668 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
669 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
670 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
671 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
672 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
673 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
674 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
675 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
676 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
677 { X86::DIV_Fp32m , X86::DIV_F32m },
678 { X86::DIV_Fp64m , X86::DIV_F64m },
679 { X86::DIV_Fp64m32 , X86::DIV_F32m },
680 { X86::DIV_Fp80m32 , X86::DIV_F32m },
681 { X86::DIV_Fp80m64 , X86::DIV_F64m },
682 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
683 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
684 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
685 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
686 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
687 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
688 { X86::ILD_Fp16m32 , X86::ILD_F16m },
689 { X86::ILD_Fp16m64 , X86::ILD_F16m },
690 { X86::ILD_Fp16m80 , X86::ILD_F16m },
691 { X86::ILD_Fp32m32 , X86::ILD_F32m },
692 { X86::ILD_Fp32m64 , X86::ILD_F32m },
693 { X86::ILD_Fp32m80 , X86::ILD_F32m },
694 { X86::ILD_Fp64m32 , X86::ILD_F64m },
695 { X86::ILD_Fp64m64 , X86::ILD_F64m },
696 { X86::ILD_Fp64m80 , X86::ILD_F64m },
697 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
698 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
699 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
700 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
701 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
702 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
703 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
704 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
705 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
706 { X86::IST_Fp16m32 , X86::IST_F16m },
707 { X86::IST_Fp16m64 , X86::IST_F16m },
708 { X86::IST_Fp16m80 , X86::IST_F16m },
709 { X86::IST_Fp32m32 , X86::IST_F32m },
710 { X86::IST_Fp32m64 , X86::IST_F32m },
711 { X86::IST_Fp32m80 , X86::IST_F32m },
712 { X86::IST_Fp64m32 , X86::IST_FP64m },
713 { X86::IST_Fp64m64 , X86::IST_FP64m },
714 { X86::IST_Fp64m80 , X86::IST_FP64m },
715 { X86::LD_Fp032 , X86::LD_F0 },
716 { X86::LD_Fp064 , X86::LD_F0 },
717 { X86::LD_Fp080 , X86::LD_F0 },
718 { X86::LD_Fp132 , X86::LD_F1 },
719 { X86::LD_Fp164 , X86::LD_F1 },
720 { X86::LD_Fp180 , X86::LD_F1 },
721 { X86::LD_Fp32m , X86::LD_F32m },
722 { X86::LD_Fp32m64 , X86::LD_F32m },
723 { X86::LD_Fp32m80 , X86::LD_F32m },
724 { X86::LD_Fp64m , X86::LD_F64m },
725 { X86::LD_Fp64m80 , X86::LD_F64m },
726 { X86::LD_Fp80m , X86::LD_F80m },
727 { X86::MUL_Fp32m , X86::MUL_F32m },
728 { X86::MUL_Fp64m , X86::MUL_F64m },
729 { X86::MUL_Fp64m32 , X86::MUL_F32m },
730 { X86::MUL_Fp80m32 , X86::MUL_F32m },
731 { X86::MUL_Fp80m64 , X86::MUL_F64m },
732 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
733 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
734 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
735 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
736 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
737 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
738 { X86::SIN_Fp32 , X86::SIN_F },
739 { X86::SIN_Fp64 , X86::SIN_F },
740 { X86::SIN_Fp80 , X86::SIN_F },
741 { X86::SQRT_Fp32 , X86::SQRT_F },
742 { X86::SQRT_Fp64 , X86::SQRT_F },
743 { X86::SQRT_Fp80 , X86::SQRT_F },
744 { X86::ST_Fp32m , X86::ST_F32m },
745 { X86::ST_Fp64m , X86::ST_F64m },
746 { X86::ST_Fp64m32 , X86::ST_F32m },
747 { X86::ST_Fp80m32 , X86::ST_F32m },
748 { X86::ST_Fp80m64 , X86::ST_F64m },
749 { X86::ST_FpP80m , X86::ST_FP80m },
750 { X86::SUBR_Fp32m , X86::SUBR_F32m },
751 { X86::SUBR_Fp64m , X86::SUBR_F64m },
752 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
753 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
754 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
755 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
756 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
757 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
758 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
759 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
760 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
761 { X86::SUB_Fp32m , X86::SUB_F32m },
762 { X86::SUB_Fp64m , X86::SUB_F64m },
763 { X86::SUB_Fp64m32 , X86::SUB_F32m },
764 { X86::SUB_Fp80m32 , X86::SUB_F32m },
765 { X86::SUB_Fp80m64 , X86::SUB_F64m },
766 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
767 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
768 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
769 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
770 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
771 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
772 { X86::TST_Fp32 , X86::TST_F },
773 { X86::TST_Fp64 , X86::TST_F },
774 { X86::TST_Fp80 , X86::TST_F },
775 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
776 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
777 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
778 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
779 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
780 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
783 static unsigned getConcreteOpcode(unsigned Opcode) {
784 ASSERT_SORTED(OpcodeTable);
785 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
786 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
787 return Opc;
790 //===----------------------------------------------------------------------===//
791 // Helper Methods
792 //===----------------------------------------------------------------------===//
794 // PopTable - Sorted map of instructions to their popping version. The first
795 // element is an instruction, the second is the version which pops.
797 static const TableEntry PopTable[] = {
798 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
800 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
801 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
803 { X86::IST_F16m , X86::IST_FP16m },
804 { X86::IST_F32m , X86::IST_FP32m },
806 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
808 { X86::ST_F32m , X86::ST_FP32m },
809 { X86::ST_F64m , X86::ST_FP64m },
810 { X86::ST_Frr , X86::ST_FPrr },
812 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
813 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
815 { X86::UCOM_FIr , X86::UCOM_FIPr },
817 { X86::UCOM_FPr , X86::UCOM_FPPr },
818 { X86::UCOM_Fr , X86::UCOM_FPr },
821 /// popStackAfter - Pop the current value off of the top of the FP stack after
822 /// the specified instruction. This attempts to be sneaky and combine the pop
823 /// into the instruction itself if possible. The iterator is left pointing to
824 /// the last instruction, be it a new pop instruction inserted, or the old
825 /// instruction if it was modified in place.
827 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
828 MachineInstr* MI = I;
829 DebugLoc dl = MI->getDebugLoc();
830 ASSERT_SORTED(PopTable);
831 if (StackTop == 0)
832 report_fatal_error("Cannot pop empty stack!");
833 RegMap[Stack[--StackTop]] = ~0; // Update state
835 // Check to see if there is a popping version of this instruction...
836 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
837 if (Opcode != -1) {
838 I->setDesc(TII->get(Opcode));
839 if (Opcode == X86::UCOM_FPPr)
840 I->RemoveOperand(0);
841 } else { // Insert an explicit pop
842 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
846 /// freeStackSlotAfter - Free the specified register from the register stack, so
847 /// that it is no longer in a register. If the register is currently at the top
848 /// of the stack, we just pop the current instruction, otherwise we store the
849 /// current top-of-stack into the specified slot, then pop the top of stack.
850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
852 popStackAfter(I);
853 return;
856 // Otherwise, store the top of stack into the dead slot, killing the operand
857 // without having to add in an explicit xchg then pop.
859 I = freeStackSlotBefore(++I, FPRegNo);
862 /// freeStackSlotBefore - Free the specified register without trying any
863 /// folding.
864 MachineBasicBlock::iterator
865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866 unsigned STReg = getSTReg(FPRegNo);
867 unsigned OldSlot = getSlot(FPRegNo);
868 unsigned TopReg = Stack[StackTop-1];
869 Stack[OldSlot] = TopReg;
870 RegMap[TopReg] = OldSlot;
871 RegMap[FPRegNo] = ~0;
872 Stack[--StackTop] = ~0;
873 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
876 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
877 /// registers with a bit in Mask are live.
878 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
879 unsigned Defs = Mask;
880 unsigned Kills = 0;
881 for (unsigned i = 0; i < StackTop; ++i) {
882 unsigned RegNo = Stack[i];
883 if (!(Defs & (1 << RegNo)))
884 // This register is live, but we don't want it.
885 Kills |= (1 << RegNo);
886 else
887 // We don't need to imp-def this live register.
888 Defs &= ~(1 << RegNo);
890 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
892 // Produce implicit-defs for free by using killed registers.
893 while (Kills && Defs) {
894 unsigned KReg = CountTrailingZeros_32(Kills);
895 unsigned DReg = CountTrailingZeros_32(Defs);
896 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
897 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
898 std::swap(RegMap[KReg], RegMap[DReg]);
899 Kills &= ~(1 << KReg);
900 Defs &= ~(1 << DReg);
903 // Kill registers by popping.
904 if (Kills && I != MBB->begin()) {
905 MachineBasicBlock::iterator I2 = llvm::prior(I);
906 for (;;) {
907 unsigned KReg = getStackEntry(0);
908 if (!(Kills & (1 << KReg)))
909 break;
910 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
911 popStackAfter(I2);
912 Kills &= ~(1 << KReg);
916 // Manually kill the rest.
917 while (Kills) {
918 unsigned KReg = CountTrailingZeros_32(Kills);
919 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
920 freeStackSlotBefore(I, KReg);
921 Kills &= ~(1 << KReg);
924 // Load zeros for all the imp-defs.
925 while(Defs) {
926 unsigned DReg = CountTrailingZeros_32(Defs);
927 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
928 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
929 pushReg(DReg);
930 Defs &= ~(1 << DReg);
933 // Now we should have the correct registers live.
934 DEBUG(dumpStack());
935 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
938 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
939 /// FixCount entries into the order given by FixStack.
940 /// FIXME: Is there a better algorithm than insertion sort?
941 void FPS::shuffleStackTop(const unsigned char *FixStack,
942 unsigned FixCount,
943 MachineBasicBlock::iterator I) {
944 // Move items into place, starting from the desired stack bottom.
945 while (FixCount--) {
946 // Old register at position FixCount.
947 unsigned OldReg = getStackEntry(FixCount);
948 // Desired register at position FixCount.
949 unsigned Reg = FixStack[FixCount];
950 if (Reg == OldReg)
951 continue;
952 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
953 moveToTop(Reg, I);
954 moveToTop(OldReg, I);
956 DEBUG(dumpStack());
960 //===----------------------------------------------------------------------===//
961 // Instruction transformation implementation
962 //===----------------------------------------------------------------------===//
964 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
966 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
967 MachineInstr *MI = I;
968 unsigned DestReg = getFPReg(MI->getOperand(0));
970 // Change from the pseudo instruction to the concrete instruction.
971 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
972 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
974 // Result gets pushed on the stack.
975 pushReg(DestReg);
978 /// handleOneArgFP - fst <mem>, ST(0)
980 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
981 MachineInstr *MI = I;
982 unsigned NumOps = MI->getDesc().getNumOperands();
983 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
984 "Can only handle fst* & ftst instructions!");
986 // Is this the last use of the source register?
987 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
988 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
990 // FISTP64m is strange because there isn't a non-popping versions.
991 // If we have one _and_ we don't want to pop the operand, duplicate the value
992 // on the stack instead of moving it. This ensure that popping the value is
993 // always ok.
994 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
996 if (!KillsSrc &&
997 (MI->getOpcode() == X86::IST_Fp64m32 ||
998 MI->getOpcode() == X86::ISTT_Fp16m32 ||
999 MI->getOpcode() == X86::ISTT_Fp32m32 ||
1000 MI->getOpcode() == X86::ISTT_Fp64m32 ||
1001 MI->getOpcode() == X86::IST_Fp64m64 ||
1002 MI->getOpcode() == X86::ISTT_Fp16m64 ||
1003 MI->getOpcode() == X86::ISTT_Fp32m64 ||
1004 MI->getOpcode() == X86::ISTT_Fp64m64 ||
1005 MI->getOpcode() == X86::IST_Fp64m80 ||
1006 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1007 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1008 MI->getOpcode() == X86::ISTT_Fp64m80 ||
1009 MI->getOpcode() == X86::ST_FpP80m)) {
1010 duplicateToTop(Reg, getScratchReg(), I);
1011 } else {
1012 moveToTop(Reg, I); // Move to the top of the stack...
1015 // Convert from the pseudo instruction to the concrete instruction.
1016 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
1017 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1019 if (MI->getOpcode() == X86::IST_FP64m ||
1020 MI->getOpcode() == X86::ISTT_FP16m ||
1021 MI->getOpcode() == X86::ISTT_FP32m ||
1022 MI->getOpcode() == X86::ISTT_FP64m ||
1023 MI->getOpcode() == X86::ST_FP80m) {
1024 if (StackTop == 0)
1025 report_fatal_error("Stack empty??");
1026 --StackTop;
1027 } else if (KillsSrc) { // Last use of operand?
1028 popStackAfter(I);
1033 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1034 /// replace the value with a newly computed value. These instructions may have
1035 /// non-fp operands after their FP operands.
1037 /// Examples:
1038 /// R1 = fchs R2
1039 /// R1 = fadd R2, [mem]
1041 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1042 MachineInstr *MI = I;
1043 #ifndef NDEBUG
1044 unsigned NumOps = MI->getDesc().getNumOperands();
1045 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1046 #endif
1048 // Is this the last use of the source register?
1049 unsigned Reg = getFPReg(MI->getOperand(1));
1050 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1052 if (KillsSrc) {
1053 // If this is the last use of the source register, just make sure it's on
1054 // the top of the stack.
1055 moveToTop(Reg, I);
1056 if (StackTop == 0)
1057 report_fatal_error("Stack cannot be empty!");
1058 --StackTop;
1059 pushReg(getFPReg(MI->getOperand(0)));
1060 } else {
1061 // If this is not the last use of the source register, _copy_ it to the top
1062 // of the stack.
1063 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1066 // Change from the pseudo instruction to the concrete instruction.
1067 MI->RemoveOperand(1); // Drop the source operand.
1068 MI->RemoveOperand(0); // Drop the destination operand.
1069 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1073 //===----------------------------------------------------------------------===//
1074 // Define tables of various ways to map pseudo instructions
1077 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1078 static const TableEntry ForwardST0Table[] = {
1079 { X86::ADD_Fp32 , X86::ADD_FST0r },
1080 { X86::ADD_Fp64 , X86::ADD_FST0r },
1081 { X86::ADD_Fp80 , X86::ADD_FST0r },
1082 { X86::DIV_Fp32 , X86::DIV_FST0r },
1083 { X86::DIV_Fp64 , X86::DIV_FST0r },
1084 { X86::DIV_Fp80 , X86::DIV_FST0r },
1085 { X86::MUL_Fp32 , X86::MUL_FST0r },
1086 { X86::MUL_Fp64 , X86::MUL_FST0r },
1087 { X86::MUL_Fp80 , X86::MUL_FST0r },
1088 { X86::SUB_Fp32 , X86::SUB_FST0r },
1089 { X86::SUB_Fp64 , X86::SUB_FST0r },
1090 { X86::SUB_Fp80 , X86::SUB_FST0r },
1093 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1094 static const TableEntry ReverseST0Table[] = {
1095 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1096 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1097 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1098 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1099 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1100 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1101 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1102 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1103 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1104 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1105 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1106 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1109 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1110 static const TableEntry ForwardSTiTable[] = {
1111 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1112 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1113 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1114 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1115 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1116 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1117 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1118 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1119 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1120 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1121 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1122 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1125 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1126 static const TableEntry ReverseSTiTable[] = {
1127 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1128 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1129 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1130 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1131 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1132 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1133 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1134 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1135 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1136 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1137 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1138 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1142 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1143 /// instructions which need to be simplified and possibly transformed.
1145 /// Result: ST(0) = fsub ST(0), ST(i)
1146 /// ST(i) = fsub ST(0), ST(i)
1147 /// ST(0) = fsubr ST(0), ST(i)
1148 /// ST(i) = fsubr ST(0), ST(i)
1150 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1151 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1152 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1153 MachineInstr *MI = I;
1155 unsigned NumOperands = MI->getDesc().getNumOperands();
1156 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1157 unsigned Dest = getFPReg(MI->getOperand(0));
1158 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1159 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1160 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1161 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1162 DebugLoc dl = MI->getDebugLoc();
1164 unsigned TOS = getStackEntry(0);
1166 // One of our operands must be on the top of the stack. If neither is yet, we
1167 // need to move one.
1168 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1169 // We can choose to move either operand to the top of the stack. If one of
1170 // the operands is killed by this instruction, we want that one so that we
1171 // can update right on top of the old version.
1172 if (KillsOp0) {
1173 moveToTop(Op0, I); // Move dead operand to TOS.
1174 TOS = Op0;
1175 } else if (KillsOp1) {
1176 moveToTop(Op1, I);
1177 TOS = Op1;
1178 } else {
1179 // All of the operands are live after this instruction executes, so we
1180 // cannot update on top of any operand. Because of this, we must
1181 // duplicate one of the stack elements to the top. It doesn't matter
1182 // which one we pick.
1184 duplicateToTop(Op0, Dest, I);
1185 Op0 = TOS = Dest;
1186 KillsOp0 = true;
1188 } else if (!KillsOp0 && !KillsOp1) {
1189 // If we DO have one of our operands at the top of the stack, but we don't
1190 // have a dead operand, we must duplicate one of the operands to a new slot
1191 // on the stack.
1192 duplicateToTop(Op0, Dest, I);
1193 Op0 = TOS = Dest;
1194 KillsOp0 = true;
1197 // Now we know that one of our operands is on the top of the stack, and at
1198 // least one of our operands is killed by this instruction.
1199 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1200 "Stack conditions not set up right!");
1202 // We decide which form to use based on what is on the top of the stack, and
1203 // which operand is killed by this instruction.
1204 const TableEntry *InstTable;
1205 bool isForward = TOS == Op0;
1206 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1207 if (updateST0) {
1208 if (isForward)
1209 InstTable = ForwardST0Table;
1210 else
1211 InstTable = ReverseST0Table;
1212 } else {
1213 if (isForward)
1214 InstTable = ForwardSTiTable;
1215 else
1216 InstTable = ReverseSTiTable;
1219 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1220 MI->getOpcode());
1221 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1223 // NotTOS - The register which is not on the top of stack...
1224 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1226 // Replace the old instruction with a new instruction
1227 MBB->remove(I++);
1228 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1230 // If both operands are killed, pop one off of the stack in addition to
1231 // overwriting the other one.
1232 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1233 assert(!updateST0 && "Should have updated other operand!");
1234 popStackAfter(I); // Pop the top of stack
1237 // Update stack information so that we know the destination register is now on
1238 // the stack.
1239 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1240 assert(UpdatedSlot < StackTop && Dest < 7);
1241 Stack[UpdatedSlot] = Dest;
1242 RegMap[Dest] = UpdatedSlot;
1243 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1246 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1247 /// register arguments and no explicit destinations.
1249 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1250 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1251 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1252 MachineInstr *MI = I;
1254 unsigned NumOperands = MI->getDesc().getNumOperands();
1255 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1256 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1257 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1258 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1259 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1261 // Make sure the first operand is on the top of stack, the other one can be
1262 // anywhere.
1263 moveToTop(Op0, I);
1265 // Change from the pseudo instruction to the concrete instruction.
1266 MI->getOperand(0).setReg(getSTReg(Op1));
1267 MI->RemoveOperand(1);
1268 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1270 // If any of the operands are killed by this instruction, free them.
1271 if (KillsOp0) freeStackSlotAfter(I, Op0);
1272 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1275 /// handleCondMovFP - Handle two address conditional move instructions. These
1276 /// instructions move a st(i) register to st(0) iff a condition is true. These
1277 /// instructions require that the first operand is at the top of the stack, but
1278 /// otherwise don't modify the stack at all.
1279 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1280 MachineInstr *MI = I;
1282 unsigned Op0 = getFPReg(MI->getOperand(0));
1283 unsigned Op1 = getFPReg(MI->getOperand(2));
1284 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1286 // The first operand *must* be on the top of the stack.
1287 moveToTop(Op0, I);
1289 // Change the second operand to the stack register that the operand is in.
1290 // Change from the pseudo instruction to the concrete instruction.
1291 MI->RemoveOperand(0);
1292 MI->RemoveOperand(1);
1293 MI->getOperand(0).setReg(getSTReg(Op1));
1294 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1296 // If we kill the second operand, make sure to pop it from the stack.
1297 if (Op0 != Op1 && KillsOp1) {
1298 // Get this value off of the register stack.
1299 freeStackSlotAfter(I, Op1);
1304 /// handleSpecialFP - Handle special instructions which behave unlike other
1305 /// floating point instructions. This is primarily intended for use by pseudo
1306 /// instructions.
1308 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1309 MachineInstr *MI = I;
1310 switch (MI->getOpcode()) {
1311 default: llvm_unreachable("Unknown SpecialFP instruction!");
1312 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1313 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1314 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
1315 assert(StackTop == 0 && "Stack should be empty after a call!");
1316 pushReg(getFPReg(MI->getOperand(0)));
1317 break;
1318 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1319 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1320 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1321 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1322 // The pattern we expect is:
1323 // CALL
1324 // FP1 = FpGET_ST0
1325 // FP4 = FpGET_ST1
1327 // At this point, we've pushed FP1 on the top of stack, so it should be
1328 // present if it isn't dead. If it was dead, we already emitted a pop to
1329 // remove it from the stack and StackTop = 0.
1331 // Push FP4 as top of stack next.
1332 pushReg(getFPReg(MI->getOperand(0)));
1334 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1335 // dead. In this case, the ST(1) value is the only thing that is live, so
1336 // it should be on the TOS (after the pop that was emitted) and is. Just
1337 // continue in this case.
1338 if (StackTop == 1)
1339 break;
1341 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1342 // elements so that our accounting is correct.
1343 unsigned RegOnTop = getStackEntry(0);
1344 unsigned RegNo = getStackEntry(1);
1346 // Swap the slots the regs are in.
1347 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1349 // Swap stack slot contents.
1350 if (RegMap[RegOnTop] >= StackTop)
1351 report_fatal_error("Access past stack top!");
1352 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1353 break;
1355 case X86::FpSET_ST0_32:
1356 case X86::FpSET_ST0_64:
1357 case X86::FpSET_ST0_80: {
1358 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1359 // arguments that use an st constraint. We expect a sequence of
1360 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1361 unsigned Op0 = getFPReg(MI->getOperand(0));
1363 if (!MI->killsRegister(X86::FP0 + Op0)) {
1364 // Duplicate Op0 into a temporary on the stack top.
1365 duplicateToTop(Op0, getScratchReg(), I);
1366 } else {
1367 // Op0 is killed, so just swap it into position.
1368 moveToTop(Op0, I);
1370 --StackTop; // "Forget" we have something on the top of stack!
1371 break;
1373 case X86::FpSET_ST1_32:
1374 case X86::FpSET_ST1_64:
1375 case X86::FpSET_ST1_80: {
1376 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1377 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1378 unsigned Op0 = getFPReg(MI->getOperand(0));
1379 // Restore the actual StackTop from before Fp_SET_ST0.
1380 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1381 // are not enforcing the constraint.
1382 ++StackTop;
1383 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1384 if (!MI->killsRegister(X86::FP0 + Op0)) {
1385 duplicateToTop(Op0, getScratchReg(), I);
1386 moveToTop(RegOnTop, I);
1387 } else if (getSTReg(Op0) != X86::ST1) {
1388 // We have the wrong value at st(1). Shuffle! Untested!
1389 moveToTop(getStackEntry(1), I);
1390 moveToTop(Op0, I);
1391 moveToTop(RegOnTop, I);
1393 assert(StackTop >= 2 && "Too few live registers");
1394 StackTop -= 2; // "Forget" both st(0) and st(1).
1395 break;
1397 case X86::MOV_Fp3232:
1398 case X86::MOV_Fp3264:
1399 case X86::MOV_Fp6432:
1400 case X86::MOV_Fp6464:
1401 case X86::MOV_Fp3280:
1402 case X86::MOV_Fp6480:
1403 case X86::MOV_Fp8032:
1404 case X86::MOV_Fp8064:
1405 case X86::MOV_Fp8080: {
1406 const MachineOperand &MO1 = MI->getOperand(1);
1407 unsigned SrcReg = getFPReg(MO1);
1409 const MachineOperand &MO0 = MI->getOperand(0);
1410 unsigned DestReg = getFPReg(MO0);
1411 if (MI->killsRegister(X86::FP0+SrcReg)) {
1412 // If the input operand is killed, we can just change the owner of the
1413 // incoming stack slot into the result.
1414 unsigned Slot = getSlot(SrcReg);
1415 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1416 Stack[Slot] = DestReg;
1417 RegMap[DestReg] = Slot;
1419 } else {
1420 // For FMOV we just duplicate the specified value to a new stack slot.
1421 // This could be made better, but would require substantial changes.
1422 duplicateToTop(SrcReg, DestReg, I);
1425 break;
1426 case TargetOpcode::INLINEASM: {
1427 // The inline asm MachineInstr currently only *uses* FP registers for the
1428 // 'f' constraint. These should be turned into the current ST(x) register
1429 // in the machine instr. Also, any kills should be explicitly popped after
1430 // the inline asm.
1431 unsigned Kills = 0;
1432 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1433 MachineOperand &Op = MI->getOperand(i);
1434 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1435 continue;
1436 assert(Op.isUse() && "Only handle inline asm uses right now");
1438 unsigned FPReg = getFPReg(Op);
1439 Op.setReg(getSTReg(FPReg));
1441 // If we kill this operand, make sure to pop it from the stack after the
1442 // asm. We just remember it for now, and pop them all off at the end in
1443 // a batch.
1444 if (Op.isKill())
1445 Kills |= 1U << FPReg;
1448 // If this asm kills any FP registers (is the last use of them) we must
1449 // explicitly emit pop instructions for them. Do this now after the asm has
1450 // executed so that the ST(x) numbers are not off (which would happen if we
1451 // did this inline with operand rewriting).
1453 // Note: this might be a non-optimal pop sequence. We might be able to do
1454 // better by trying to pop in stack order or something.
1455 MachineBasicBlock::iterator InsertPt = MI;
1456 while (Kills) {
1457 unsigned FPReg = CountTrailingZeros_32(Kills);
1458 freeStackSlotAfter(InsertPt, FPReg);
1459 Kills &= ~(1U << FPReg);
1461 // Don't delete the inline asm!
1462 return;
1465 case X86::RET:
1466 case X86::RETI:
1467 // If RET has an FP register use operand, pass the first one in ST(0) and
1468 // the second one in ST(1).
1470 // Find the register operands.
1471 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1472 unsigned LiveMask = 0;
1474 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1475 MachineOperand &Op = MI->getOperand(i);
1476 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1477 continue;
1478 // FP Register uses must be kills unless there are two uses of the same
1479 // register, in which case only one will be a kill.
1480 assert(Op.isUse() &&
1481 (Op.isKill() || // Marked kill.
1482 getFPReg(Op) == FirstFPRegOp || // Second instance.
1483 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1484 "Ret only defs operands, and values aren't live beyond it");
1486 if (FirstFPRegOp == ~0U)
1487 FirstFPRegOp = getFPReg(Op);
1488 else {
1489 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1490 SecondFPRegOp = getFPReg(Op);
1492 LiveMask |= (1 << getFPReg(Op));
1494 // Remove the operand so that later passes don't see it.
1495 MI->RemoveOperand(i);
1496 --i, --e;
1499 // We may have been carrying spurious live-ins, so make sure only the returned
1500 // registers are left live.
1501 adjustLiveRegs(LiveMask, MI);
1502 if (!LiveMask) return; // Quick check to see if any are possible.
1504 // There are only four possibilities here:
1505 // 1) we are returning a single FP value. In this case, it has to be in
1506 // ST(0) already, so just declare success by removing the value from the
1507 // FP Stack.
1508 if (SecondFPRegOp == ~0U) {
1509 // Assert that the top of stack contains the right FP register.
1510 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1511 "Top of stack not the right register for RET!");
1513 // Ok, everything is good, mark the value as not being on the stack
1514 // anymore so that our assertion about the stack being empty at end of
1515 // block doesn't fire.
1516 StackTop = 0;
1517 return;
1520 // Otherwise, we are returning two values:
1521 // 2) If returning the same value for both, we only have one thing in the FP
1522 // stack. Consider: RET FP1, FP1
1523 if (StackTop == 1) {
1524 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1525 "Stack misconfiguration for RET!");
1527 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1528 // register to hold it.
1529 unsigned NewReg = getScratchReg();
1530 duplicateToTop(FirstFPRegOp, NewReg, MI);
1531 FirstFPRegOp = NewReg;
1534 /// Okay we know we have two different FPx operands now:
1535 assert(StackTop == 2 && "Must have two values live!");
1537 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1538 /// in ST(1). In this case, emit an fxch.
1539 if (getStackEntry(0) == SecondFPRegOp) {
1540 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1541 moveToTop(FirstFPRegOp, MI);
1544 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1545 /// ST(1). Just remove both from our understanding of the stack and return.
1546 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1547 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1548 StackTop = 0;
1549 return;
1552 I = MBB->erase(I); // Remove the pseudo instruction
1554 // We want to leave I pointing to the previous instruction, but what if we
1555 // just erased the first instruction?
1556 if (I == MBB->begin()) {
1557 DEBUG(dbgs() << "Inserting dummy KILL\n");
1558 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1559 } else
1560 --I;
1563 // Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1564 bool FPS::translateCopy(MachineInstr *MI) {
1565 unsigned DstReg = MI->getOperand(0).getReg();
1566 unsigned SrcReg = MI->getOperand(1).getReg();
1568 if (DstReg == X86::ST0) {
1569 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1570 MI->RemoveOperand(0);
1571 return true;
1573 if (DstReg == X86::ST1) {
1574 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1575 MI->RemoveOperand(0);
1576 return true;
1578 if (SrcReg == X86::ST0) {
1579 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1580 return true;
1582 if (SrcReg == X86::ST1) {
1583 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1584 return true;
1586 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1587 MI->setDesc(TII->get(X86::MOV_Fp8080));
1588 return true;
1590 return false;