1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
24 //===----------------------------------------------------------------------===//
26 #define DEBUG_TYPE "x86-codegen"
28 #include "X86InstrInfo.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
47 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
48 STATISTIC(NumFP
, "Number of floating point instructions");
51 struct FPS
: public MachineFunctionPass
{
53 FPS() : MachineFunctionPass(ID
) {
54 // This is really only to keep valgrind quiet.
55 // The logic in isLive() is too much for it.
56 memset(Stack
, 0, sizeof(Stack
));
57 memset(RegMap
, 0, sizeof(RegMap
));
60 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
62 AU
.addPreservedID(MachineLoopInfoID
);
63 AU
.addPreservedID(MachineDominatorsID
);
64 MachineFunctionPass::getAnalysisUsage(AU
);
67 virtual bool runOnMachineFunction(MachineFunction
&MF
);
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
72 const TargetInstrInfo
*TII
; // Machine instruction info.
74 // Two CFG edges are related if they leave the same block, or enter the same
75 // block. The transitive closure of an edge under this relation is a
76 // LiveBundle. It represents a set of CFG edges where the live FP stack
77 // registers must be allocated identically in the x87 stack.
79 // A LiveBundle is usually all the edges leaving a block, or all the edges
80 // entering a block, but it can contain more edges if critical edges are
83 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84 // but the exact mapping of FP registers to stack slots is fixed later.
86 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
89 // Number of pre-assigned live registers in FixStack. This is 0 when the
90 // stack order has not yet been fixed.
93 // Assigned stack order for live-in registers.
94 // FixStack[i] == getStackEntry(i) for all i < FixCount.
95 unsigned char FixStack
[8];
97 LiveBundle(unsigned m
= 0) : Mask(m
), FixCount(0) {}
99 // Have the live registers been assigned a stack order yet?
100 bool isFixed() const { return !Mask
|| FixCount
; }
103 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104 // with no live FP registers.
105 SmallVector
<LiveBundle
, 8> LiveBundles
;
107 // Map each MBB in the current function to an (ingoing, outgoing) index into
108 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109 // and are not actually stored in the map.
110 DenseMap
<MachineBasicBlock
*, std::pair
<unsigned, unsigned> > BlockBundle
;
112 // Return a bitmask of FP registers in block's live-in list.
113 unsigned calcLiveInMask(MachineBasicBlock
*MBB
) {
115 for (MachineBasicBlock::livein_iterator I
= MBB
->livein_begin(),
116 E
= MBB
->livein_end(); I
!= E
; ++I
) {
117 unsigned Reg
= *I
- X86::FP0
;
124 // Partition all the CFG edges into LiveBundles.
125 void bundleCFG(MachineFunction
&MF
);
127 MachineBasicBlock
*MBB
; // Current basic block
128 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
129 unsigned RegMap
[8]; // Track which stack slot contains each register
130 unsigned StackTop
; // The current top of the FP stack.
132 // Set up our stack model to match the incoming registers to MBB.
133 void setupBlockStack();
135 // Shuffle live registers to match the expectations of successor blocks.
136 void finishBlockStack();
138 void dumpStack() const {
139 dbgs() << "Stack contents:";
140 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
141 dbgs() << " FP" << Stack
[i
];
142 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
147 /// getSlot - Return the stack slot number a particular register number is
149 unsigned getSlot(unsigned RegNo
) const {
150 assert(RegNo
< 8 && "Regno out of range!");
151 return RegMap
[RegNo
];
154 /// isLive - Is RegNo currently live in the stack?
155 bool isLive(unsigned RegNo
) const {
156 unsigned Slot
= getSlot(RegNo
);
157 return Slot
< StackTop
&& Stack
[Slot
] == RegNo
;
160 /// getScratchReg - Return an FP register that is not currently in use.
161 unsigned getScratchReg() {
162 for (int i
= 7; i
>= 0; --i
)
165 llvm_unreachable("Ran out of scratch FP registers");
168 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
169 unsigned getStackEntry(unsigned STi
) const {
171 report_fatal_error("Access past stack top!");
172 return Stack
[StackTop
-1-STi
];
175 /// getSTReg - Return the X86::ST(i) register which contains the specified
176 /// FP<RegNo> register.
177 unsigned getSTReg(unsigned RegNo
) const {
178 return StackTop
- 1 - getSlot(RegNo
) + llvm::X86::ST0
;
181 // pushReg - Push the specified FP<n> register onto the stack.
182 void pushReg(unsigned Reg
) {
183 assert(Reg
< 8 && "Register number out of range!");
185 report_fatal_error("Stack overflow!");
186 Stack
[StackTop
] = Reg
;
187 RegMap
[Reg
] = StackTop
++;
190 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
191 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
192 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
193 if (isAtTop(RegNo
)) return;
195 unsigned STReg
= getSTReg(RegNo
);
196 unsigned RegOnTop
= getStackEntry(0);
198 // Swap the slots the regs are in.
199 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
201 // Swap stack slot contents.
202 if (RegMap
[RegOnTop
] >= StackTop
)
203 report_fatal_error("Access past stack top!");
204 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
206 // Emit an fxch to update the runtime processors version of the state.
207 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
211 void duplicateToTop(unsigned RegNo
, unsigned AsReg
, MachineInstr
*I
) {
212 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
213 unsigned STReg
= getSTReg(RegNo
);
214 pushReg(AsReg
); // New register on top of stack
216 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
219 /// popStackAfter - Pop the current value off of the top of the FP stack
220 /// after the specified instruction.
221 void popStackAfter(MachineBasicBlock::iterator
&I
);
223 /// freeStackSlotAfter - Free the specified register from the register
224 /// stack, so that it is no longer in a register. If the register is
225 /// currently at the top of the stack, we just pop the current instruction,
226 /// otherwise we store the current top-of-stack into the specified slot,
227 /// then pop the top of stack.
228 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
230 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
232 MachineBasicBlock::iterator
233 freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
);
235 /// Adjust the live registers to be the set in Mask.
236 void adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
);
238 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
239 /// st(0), FP reg FixStack[1] is st(1) etc.
240 void shuffleStackTop(const unsigned char *FixStack
, unsigned FixCount
,
241 MachineBasicBlock::iterator I
);
243 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
245 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
246 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
247 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
248 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
249 void handleCompareFP(MachineBasicBlock::iterator
&I
);
250 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
251 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
253 bool translateCopy(MachineInstr
*);
258 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
260 /// getFPReg - Return the X86::FPx register number for the specified operand.
261 /// For example, this returns 3 for X86::FP3.
262 static unsigned getFPReg(const MachineOperand
&MO
) {
263 assert(MO
.isReg() && "Expected an FP register!");
264 unsigned Reg
= MO
.getReg();
265 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
266 return Reg
- X86::FP0
;
269 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
270 /// register references into FP stack references.
272 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
273 // We only need to run this pass if there are any FP registers used in this
274 // function. If it is all integer, there is nothing for us to do!
275 bool FPIsUsed
= false;
277 assert(X86::FP6
== X86::FP0
+6 && "Register enums aren't sorted right!");
278 for (unsigned i
= 0; i
<= 6; ++i
)
279 if (MF
.getRegInfo().isPhysRegUsed(X86::FP0
+i
)) {
285 if (!FPIsUsed
) return false;
287 TII
= MF
.getTarget().getInstrInfo();
289 // Prepare cross-MBB liveness.
294 // Process the function in depth first order so that we process at least one
295 // of the predecessors for every reachable block in the function.
296 SmallPtrSet
<MachineBasicBlock
*, 8> Processed
;
297 MachineBasicBlock
*Entry
= MF
.begin();
299 bool Changed
= false;
300 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*, 8> >
301 I
= df_ext_begin(Entry
, Processed
), E
= df_ext_end(Entry
, Processed
);
303 Changed
|= processBasicBlock(MF
, **I
);
305 // Process any unreachable blocks in arbitrary order now.
306 if (MF
.size() != Processed
.size())
307 for (MachineFunction::iterator BB
= MF
.begin(), E
= MF
.end(); BB
!= E
; ++BB
)
308 if (Processed
.insert(BB
))
309 Changed
|= processBasicBlock(MF
, *BB
);
317 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
318 /// live-out sets for the FP registers. Consistent means that the set of
319 /// registers live-out from a block is identical to the live-in set of all
320 /// successors. This is not enforced by the normal live-in lists since
321 /// registers may be implicitly defined, or not used by all successors.
322 void FPS::bundleCFG(MachineFunction
&MF
) {
323 assert(LiveBundles
.empty() && "Stale data in LiveBundles");
324 assert(BlockBundle
.empty() && "Stale data in BlockBundle");
325 SmallPtrSet
<MachineBasicBlock
*, 8> PropDown
, PropUp
;
327 // LiveBundle[0] is the empty live-in set.
328 LiveBundles
.resize(1);
330 // First gather the actual live-in masks for all MBBs.
331 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
) {
332 MachineBasicBlock
*MBB
= I
;
333 const unsigned Mask
= calcLiveInMask(MBB
);
336 // Ingoing bundle index.
337 unsigned &Idx
= BlockBundle
[MBB
].first
;
338 // Already assigned an ingoing bundle?
341 // Allocate a new LiveBundle struct for this block's live-ins.
342 const unsigned BundleIdx
= Idx
= LiveBundles
.size();
343 DEBUG(dbgs() << "Creating LB#" << BundleIdx
<< ": in:BB#"
344 << MBB
->getNumber());
345 LiveBundles
.push_back(Mask
);
346 LiveBundle
&Bundle
= LiveBundles
.back();
348 // Make sure all predecessors have the same live-out set.
351 // Keep pushing liveness up and down the CFG until convergence.
352 // Only critical edges cause iteration here, but when they do, multiple
353 // blocks can be assigned to the same LiveBundle index.
355 // Assign BundleIdx as liveout from predecessors in PropUp.
356 for (SmallPtrSet
<MachineBasicBlock
*, 16>::iterator I
= PropUp
.begin(),
357 E
= PropUp
.end(); I
!= E
; ++I
) {
358 MachineBasicBlock
*MBB
= *I
;
359 for (MachineBasicBlock::const_pred_iterator LinkI
= MBB
->pred_begin(),
360 LinkE
= MBB
->pred_end(); LinkI
!= LinkE
; ++LinkI
) {
361 MachineBasicBlock
*PredMBB
= *LinkI
;
362 // PredMBB's liveout bundle should be set to LIIdx.
363 unsigned &Idx
= BlockBundle
[PredMBB
].second
;
365 assert(Idx
== BundleIdx
&& "Inconsistent CFG");
369 DEBUG(dbgs() << " out:BB#" << PredMBB
->getNumber());
370 // Propagate to siblings.
371 if (PredMBB
->succ_size() > 1)
372 PropDown
.insert(PredMBB
);
377 // Assign BundleIdx as livein to successors in PropDown.
378 for (SmallPtrSet
<MachineBasicBlock
*, 16>::iterator I
= PropDown
.begin(),
379 E
= PropDown
.end(); I
!= E
; ++I
) {
380 MachineBasicBlock
*MBB
= *I
;
381 for (MachineBasicBlock::const_succ_iterator LinkI
= MBB
->succ_begin(),
382 LinkE
= MBB
->succ_end(); LinkI
!= LinkE
; ++LinkI
) {
383 MachineBasicBlock
*SuccMBB
= *LinkI
;
384 // LinkMBB's livein bundle should be set to BundleIdx.
385 unsigned &Idx
= BlockBundle
[SuccMBB
].first
;
387 assert(Idx
== BundleIdx
&& "Inconsistent CFG");
391 DEBUG(dbgs() << " in:BB#" << SuccMBB
->getNumber());
392 // Propagate to siblings.
393 if (SuccMBB
->pred_size() > 1)
394 PropUp
.insert(SuccMBB
);
395 // Also accumulate the bundle liveness mask from the liveins here.
396 Bundle
.Mask
|= calcLiveInMask(SuccMBB
);
400 } while (!PropUp
.empty());
403 for (unsigned i
= 0; i
< 8; ++i
)
404 if (Bundle
.Mask
& (1<<i
))
405 dbgs() << " %FP" << i
;
411 /// processBasicBlock - Loop over all of the instructions in the basic block,
412 /// transforming FP instructions into their stack form.
414 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
415 bool Changed
= false;
420 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
421 MachineInstr
*MI
= I
;
422 uint64_t Flags
= MI
->getDesc().TSFlags
;
424 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
425 if (MI
->isInlineAsm())
426 FPInstClass
= X86II::SpecialFP
;
428 if (MI
->isCopy() && translateCopy(MI
))
429 FPInstClass
= X86II::SpecialFP
;
431 if (FPInstClass
== X86II::NotFP
)
432 continue; // Efficiently ignore non-fp insts!
434 MachineInstr
*PrevMI
= 0;
438 ++NumFP
; // Keep track of # of pseudo instrs
439 DEBUG(dbgs() << "\nFPInst:\t" << *MI
);
441 // Get dead variables list now because the MI pointer may be deleted as part
443 SmallVector
<unsigned, 8> DeadRegs
;
444 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
445 const MachineOperand
&MO
= MI
->getOperand(i
);
446 if (MO
.isReg() && MO
.isDead())
447 DeadRegs
.push_back(MO
.getReg());
450 switch (FPInstClass
) {
451 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
452 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
453 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
454 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
455 case X86II::CompareFP
: handleCompareFP(I
); break;
456 case X86II::CondMovFP
: handleCondMovFP(I
); break;
457 case X86II::SpecialFP
: handleSpecialFP(I
); break;
458 default: llvm_unreachable("Unknown FP Type!");
461 // Check to see if any of the values defined by this instruction are dead
462 // after definition. If so, pop them.
463 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
464 unsigned Reg
= DeadRegs
[i
];
465 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
466 DEBUG(dbgs() << "Register FP#" << Reg
-X86::FP0
<< " is dead!\n");
467 freeStackSlotAfter(I
, Reg
-X86::FP0
);
471 // Print out all of the instructions expanded to if -debug
473 MachineBasicBlock::iterator
PrevI(PrevMI
);
475 dbgs() << "Just deleted pseudo instruction\n";
477 MachineBasicBlock::iterator Start
= I
;
478 // Rewind to first instruction newly inserted.
479 while (Start
!= BB
.begin() && prior(Start
) != PrevI
) --Start
;
480 dbgs() << "Inserted instructions:\n\t";
481 Start
->print(dbgs(), &MF
.getTarget());
482 while (++Start
!= llvm::next(I
)) {}
495 /// setupBlockStack - Use the BlockBundle map to set up our model of the stack
496 /// to match predecessors' live out stack.
497 void FPS::setupBlockStack() {
498 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB
->getNumber()
499 << " derived from " << MBB
->getName() << ".\n");
501 const LiveBundle
&Bundle
= LiveBundles
[BlockBundle
.lookup(MBB
).first
];
504 DEBUG(dbgs() << "Block has no FP live-ins.\n");
508 // Depth-first iteration should ensure that we always have an assigned stack.
509 assert(Bundle
.isFixed() && "Reached block before any predecessors");
511 // Push the fixed live-in registers.
512 for (unsigned i
= Bundle
.FixCount
; i
> 0; --i
) {
513 MBB
->addLiveIn(X86::ST0
+i
-1);
514 DEBUG(dbgs() << "Live-in st(" << (i
-1) << "): %FP"
515 << unsigned(Bundle
.FixStack
[i
-1]) << '\n');
516 pushReg(Bundle
.FixStack
[i
-1]);
519 // Kill off unwanted live-ins. This can happen with a critical edge.
520 // FIXME: We could keep these live registers around as zombies. They may need
521 // to be revived at the end of a short block. It might save a few instrs.
522 adjustLiveRegs(calcLiveInMask(MBB
), MBB
->begin());
526 /// finishBlockStack - Revive live-outs that are implicitly defined out of
527 /// MBB. Shuffle live registers to match the expected fixed stack of any
528 /// predecessors, and ensure that all predecessors are expecting the same
530 void FPS::finishBlockStack() {
531 // The RET handling below takes care of return blocks for us.
532 if (MBB
->succ_empty())
535 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB
->getNumber()
536 << " derived from " << MBB
->getName() << ".\n");
538 unsigned BundleIdx
= BlockBundle
.lookup(MBB
).second
;
539 LiveBundle
&Bundle
= LiveBundles
[BundleIdx
];
541 // We may need to kill and define some registers to match successors.
542 // FIXME: This can probably be combined with the shuffle below.
543 MachineBasicBlock::iterator Term
= MBB
->getFirstTerminator();
544 adjustLiveRegs(Bundle
.Mask
, Term
);
547 DEBUG(dbgs() << "No live-outs.\n");
551 // Has the stack order been fixed yet?
552 DEBUG(dbgs() << "LB#" << BundleIdx
<< ": ");
553 if (Bundle
.isFixed()) {
554 DEBUG(dbgs() << "Shuffling stack to match.\n");
555 shuffleStackTop(Bundle
.FixStack
, Bundle
.FixCount
, Term
);
557 // Not fixed yet, we get to choose.
558 DEBUG(dbgs() << "Fixing stack order now.\n");
559 Bundle
.FixCount
= StackTop
;
560 for (unsigned i
= 0; i
< StackTop
; ++i
)
561 Bundle
.FixStack
[i
] = getStackEntry(i
);
566 //===----------------------------------------------------------------------===//
567 // Efficient Lookup Table Support
568 //===----------------------------------------------------------------------===//
574 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
575 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
578 friend bool LLVM_ATTRIBUTE_USED
operator<(unsigned V
,
579 const TableEntry
&TE
) {
586 static bool TableIsSorted(const TableEntry
*Table
, unsigned NumEntries
) {
587 for (unsigned i
= 0; i
!= NumEntries
-1; ++i
)
588 if (!(Table
[i
] < Table
[i
+1])) return false;
593 static int Lookup(const TableEntry
*Table
, unsigned N
, unsigned Opcode
) {
594 const TableEntry
*I
= std::lower_bound(Table
, Table
+N
, Opcode
);
595 if (I
!= Table
+N
&& I
->from
== Opcode
)
601 #define ASSERT_SORTED(TABLE)
603 #define ASSERT_SORTED(TABLE) \
604 { static bool TABLE##Checked = false; \
605 if (!TABLE##Checked) { \
606 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
607 "All lookup tables must be sorted for efficient access!"); \
608 TABLE##Checked = true; \
613 //===----------------------------------------------------------------------===//
614 // Register File -> Register Stack Mapping Methods
615 //===----------------------------------------------------------------------===//
617 // OpcodeTable - Sorted map of register instructions to their stack version.
618 // The first element is an register file pseudo instruction, the second is the
619 // concrete X86 instruction which uses the register stack.
621 static const TableEntry OpcodeTable
[] = {
622 { X86::ABS_Fp32
, X86::ABS_F
},
623 { X86::ABS_Fp64
, X86::ABS_F
},
624 { X86::ABS_Fp80
, X86::ABS_F
},
625 { X86::ADD_Fp32m
, X86::ADD_F32m
},
626 { X86::ADD_Fp64m
, X86::ADD_F64m
},
627 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
628 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
629 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
630 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
631 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
632 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
633 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
634 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
635 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
636 { X86::CHS_Fp32
, X86::CHS_F
},
637 { X86::CHS_Fp64
, X86::CHS_F
},
638 { X86::CHS_Fp80
, X86::CHS_F
},
639 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
640 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
641 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
642 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
643 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
644 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
645 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
646 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
647 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
648 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
649 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
650 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
651 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
652 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
653 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
654 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
655 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
656 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
657 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
658 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
659 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
660 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
661 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
662 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
663 { X86::COS_Fp32
, X86::COS_F
},
664 { X86::COS_Fp64
, X86::COS_F
},
665 { X86::COS_Fp80
, X86::COS_F
},
666 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
667 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
668 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
669 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
670 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
671 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
672 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
673 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
674 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
675 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
676 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
677 { X86::DIV_Fp32m
, X86::DIV_F32m
},
678 { X86::DIV_Fp64m
, X86::DIV_F64m
},
679 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
680 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
681 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
682 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
683 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
684 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
685 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
686 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
687 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
688 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
689 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
690 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
691 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
692 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
693 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
694 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
695 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
696 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
697 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
698 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
699 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
700 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
701 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
702 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
703 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
704 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
705 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
706 { X86::IST_Fp16m32
, X86::IST_F16m
},
707 { X86::IST_Fp16m64
, X86::IST_F16m
},
708 { X86::IST_Fp16m80
, X86::IST_F16m
},
709 { X86::IST_Fp32m32
, X86::IST_F32m
},
710 { X86::IST_Fp32m64
, X86::IST_F32m
},
711 { X86::IST_Fp32m80
, X86::IST_F32m
},
712 { X86::IST_Fp64m32
, X86::IST_FP64m
},
713 { X86::IST_Fp64m64
, X86::IST_FP64m
},
714 { X86::IST_Fp64m80
, X86::IST_FP64m
},
715 { X86::LD_Fp032
, X86::LD_F0
},
716 { X86::LD_Fp064
, X86::LD_F0
},
717 { X86::LD_Fp080
, X86::LD_F0
},
718 { X86::LD_Fp132
, X86::LD_F1
},
719 { X86::LD_Fp164
, X86::LD_F1
},
720 { X86::LD_Fp180
, X86::LD_F1
},
721 { X86::LD_Fp32m
, X86::LD_F32m
},
722 { X86::LD_Fp32m64
, X86::LD_F32m
},
723 { X86::LD_Fp32m80
, X86::LD_F32m
},
724 { X86::LD_Fp64m
, X86::LD_F64m
},
725 { X86::LD_Fp64m80
, X86::LD_F64m
},
726 { X86::LD_Fp80m
, X86::LD_F80m
},
727 { X86::MUL_Fp32m
, X86::MUL_F32m
},
728 { X86::MUL_Fp64m
, X86::MUL_F64m
},
729 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
730 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
731 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
732 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
733 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
734 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
735 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
736 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
737 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
738 { X86::SIN_Fp32
, X86::SIN_F
},
739 { X86::SIN_Fp64
, X86::SIN_F
},
740 { X86::SIN_Fp80
, X86::SIN_F
},
741 { X86::SQRT_Fp32
, X86::SQRT_F
},
742 { X86::SQRT_Fp64
, X86::SQRT_F
},
743 { X86::SQRT_Fp80
, X86::SQRT_F
},
744 { X86::ST_Fp32m
, X86::ST_F32m
},
745 { X86::ST_Fp64m
, X86::ST_F64m
},
746 { X86::ST_Fp64m32
, X86::ST_F32m
},
747 { X86::ST_Fp80m32
, X86::ST_F32m
},
748 { X86::ST_Fp80m64
, X86::ST_F64m
},
749 { X86::ST_FpP80m
, X86::ST_FP80m
},
750 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
751 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
752 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
753 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
754 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
755 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
756 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
757 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
758 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
759 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
760 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
761 { X86::SUB_Fp32m
, X86::SUB_F32m
},
762 { X86::SUB_Fp64m
, X86::SUB_F64m
},
763 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
764 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
765 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
766 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
767 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
768 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
769 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
770 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
771 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
772 { X86::TST_Fp32
, X86::TST_F
},
773 { X86::TST_Fp64
, X86::TST_F
},
774 { X86::TST_Fp80
, X86::TST_F
},
775 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
776 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
777 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
778 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
779 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
780 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
783 static unsigned getConcreteOpcode(unsigned Opcode
) {
784 ASSERT_SORTED(OpcodeTable
);
785 int Opc
= Lookup(OpcodeTable
, array_lengthof(OpcodeTable
), Opcode
);
786 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
790 //===----------------------------------------------------------------------===//
792 //===----------------------------------------------------------------------===//
794 // PopTable - Sorted map of instructions to their popping version. The first
795 // element is an instruction, the second is the version which pops.
797 static const TableEntry PopTable
[] = {
798 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
800 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
801 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
803 { X86::IST_F16m
, X86::IST_FP16m
},
804 { X86::IST_F32m
, X86::IST_FP32m
},
806 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
808 { X86::ST_F32m
, X86::ST_FP32m
},
809 { X86::ST_F64m
, X86::ST_FP64m
},
810 { X86::ST_Frr
, X86::ST_FPrr
},
812 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
813 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
815 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
817 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
818 { X86::UCOM_Fr
, X86::UCOM_FPr
},
821 /// popStackAfter - Pop the current value off of the top of the FP stack after
822 /// the specified instruction. This attempts to be sneaky and combine the pop
823 /// into the instruction itself if possible. The iterator is left pointing to
824 /// the last instruction, be it a new pop instruction inserted, or the old
825 /// instruction if it was modified in place.
827 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
828 MachineInstr
* MI
= I
;
829 DebugLoc dl
= MI
->getDebugLoc();
830 ASSERT_SORTED(PopTable
);
832 report_fatal_error("Cannot pop empty stack!");
833 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
835 // Check to see if there is a popping version of this instruction...
836 int Opcode
= Lookup(PopTable
, array_lengthof(PopTable
), I
->getOpcode());
838 I
->setDesc(TII
->get(Opcode
));
839 if (Opcode
== X86::UCOM_FPPr
)
841 } else { // Insert an explicit pop
842 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
846 /// freeStackSlotAfter - Free the specified register from the register stack, so
847 /// that it is no longer in a register. If the register is currently at the top
848 /// of the stack, we just pop the current instruction, otherwise we store the
849 /// current top-of-stack into the specified slot, then pop the top of stack.
850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
851 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
856 // Otherwise, store the top of stack into the dead slot, killing the operand
857 // without having to add in an explicit xchg then pop.
859 I
= freeStackSlotBefore(++I
, FPRegNo
);
862 /// freeStackSlotBefore - Free the specified register without trying any
864 MachineBasicBlock::iterator
865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
) {
866 unsigned STReg
= getSTReg(FPRegNo
);
867 unsigned OldSlot
= getSlot(FPRegNo
);
868 unsigned TopReg
= Stack
[StackTop
-1];
869 Stack
[OldSlot
] = TopReg
;
870 RegMap
[TopReg
] = OldSlot
;
871 RegMap
[FPRegNo
] = ~0;
872 Stack
[--StackTop
] = ~0;
873 return BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::ST_FPrr
)).addReg(STReg
);
876 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
877 /// registers with a bit in Mask are live.
878 void FPS::adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
) {
879 unsigned Defs
= Mask
;
881 for (unsigned i
= 0; i
< StackTop
; ++i
) {
882 unsigned RegNo
= Stack
[i
];
883 if (!(Defs
& (1 << RegNo
)))
884 // This register is live, but we don't want it.
885 Kills
|= (1 << RegNo
);
887 // We don't need to imp-def this live register.
888 Defs
&= ~(1 << RegNo
);
890 assert((Kills
& Defs
) == 0 && "Register needs killing and def'ing?");
892 // Produce implicit-defs for free by using killed registers.
893 while (Kills
&& Defs
) {
894 unsigned KReg
= CountTrailingZeros_32(Kills
);
895 unsigned DReg
= CountTrailingZeros_32(Defs
);
896 DEBUG(dbgs() << "Renaming %FP" << KReg
<< " as imp %FP" << DReg
<< "\n");
897 std::swap(Stack
[getSlot(KReg
)], Stack
[getSlot(DReg
)]);
898 std::swap(RegMap
[KReg
], RegMap
[DReg
]);
899 Kills
&= ~(1 << KReg
);
900 Defs
&= ~(1 << DReg
);
903 // Kill registers by popping.
904 if (Kills
&& I
!= MBB
->begin()) {
905 MachineBasicBlock::iterator I2
= llvm::prior(I
);
907 unsigned KReg
= getStackEntry(0);
908 if (!(Kills
& (1 << KReg
)))
910 DEBUG(dbgs() << "Popping %FP" << KReg
<< "\n");
912 Kills
&= ~(1 << KReg
);
916 // Manually kill the rest.
918 unsigned KReg
= CountTrailingZeros_32(Kills
);
919 DEBUG(dbgs() << "Killing %FP" << KReg
<< "\n");
920 freeStackSlotBefore(I
, KReg
);
921 Kills
&= ~(1 << KReg
);
924 // Load zeros for all the imp-defs.
926 unsigned DReg
= CountTrailingZeros_32(Defs
);
927 DEBUG(dbgs() << "Defining %FP" << DReg
<< " as 0\n");
928 BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::LD_F0
));
930 Defs
&= ~(1 << DReg
);
933 // Now we should have the correct registers live.
935 assert(StackTop
== CountPopulation_32(Mask
) && "Live count mismatch");
938 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
939 /// FixCount entries into the order given by FixStack.
940 /// FIXME: Is there a better algorithm than insertion sort?
941 void FPS::shuffleStackTop(const unsigned char *FixStack
,
943 MachineBasicBlock::iterator I
) {
944 // Move items into place, starting from the desired stack bottom.
946 // Old register at position FixCount.
947 unsigned OldReg
= getStackEntry(FixCount
);
948 // Desired register at position FixCount.
949 unsigned Reg
= FixStack
[FixCount
];
952 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
954 moveToTop(OldReg
, I
);
960 //===----------------------------------------------------------------------===//
961 // Instruction transformation implementation
962 //===----------------------------------------------------------------------===//
964 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
966 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
967 MachineInstr
*MI
= I
;
968 unsigned DestReg
= getFPReg(MI
->getOperand(0));
970 // Change from the pseudo instruction to the concrete instruction.
971 MI
->RemoveOperand(0); // Remove the explicit ST(0) operand
972 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
974 // Result gets pushed on the stack.
978 /// handleOneArgFP - fst <mem>, ST(0)
980 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
981 MachineInstr
*MI
= I
;
982 unsigned NumOps
= MI
->getDesc().getNumOperands();
983 assert((NumOps
== X86::AddrNumOperands
+ 1 || NumOps
== 1) &&
984 "Can only handle fst* & ftst instructions!");
986 // Is this the last use of the source register?
987 unsigned Reg
= getFPReg(MI
->getOperand(NumOps
-1));
988 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
990 // FISTP64m is strange because there isn't a non-popping versions.
991 // If we have one _and_ we don't want to pop the operand, duplicate the value
992 // on the stack instead of moving it. This ensure that popping the value is
994 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
997 (MI
->getOpcode() == X86::IST_Fp64m32
||
998 MI
->getOpcode() == X86::ISTT_Fp16m32
||
999 MI
->getOpcode() == X86::ISTT_Fp32m32
||
1000 MI
->getOpcode() == X86::ISTT_Fp64m32
||
1001 MI
->getOpcode() == X86::IST_Fp64m64
||
1002 MI
->getOpcode() == X86::ISTT_Fp16m64
||
1003 MI
->getOpcode() == X86::ISTT_Fp32m64
||
1004 MI
->getOpcode() == X86::ISTT_Fp64m64
||
1005 MI
->getOpcode() == X86::IST_Fp64m80
||
1006 MI
->getOpcode() == X86::ISTT_Fp16m80
||
1007 MI
->getOpcode() == X86::ISTT_Fp32m80
||
1008 MI
->getOpcode() == X86::ISTT_Fp64m80
||
1009 MI
->getOpcode() == X86::ST_FpP80m
)) {
1010 duplicateToTop(Reg
, getScratchReg(), I
);
1012 moveToTop(Reg
, I
); // Move to the top of the stack...
1015 // Convert from the pseudo instruction to the concrete instruction.
1016 MI
->RemoveOperand(NumOps
-1); // Remove explicit ST(0) operand
1017 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
1019 if (MI
->getOpcode() == X86::IST_FP64m
||
1020 MI
->getOpcode() == X86::ISTT_FP16m
||
1021 MI
->getOpcode() == X86::ISTT_FP32m
||
1022 MI
->getOpcode() == X86::ISTT_FP64m
||
1023 MI
->getOpcode() == X86::ST_FP80m
) {
1025 report_fatal_error("Stack empty??");
1027 } else if (KillsSrc
) { // Last use of operand?
1033 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1034 /// replace the value with a newly computed value. These instructions may have
1035 /// non-fp operands after their FP operands.
1039 /// R1 = fadd R2, [mem]
1041 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
1042 MachineInstr
*MI
= I
;
1044 unsigned NumOps
= MI
->getDesc().getNumOperands();
1045 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
1048 // Is this the last use of the source register?
1049 unsigned Reg
= getFPReg(MI
->getOperand(1));
1050 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
1053 // If this is the last use of the source register, just make sure it's on
1054 // the top of the stack.
1057 report_fatal_error("Stack cannot be empty!");
1059 pushReg(getFPReg(MI
->getOperand(0)));
1061 // If this is not the last use of the source register, _copy_ it to the top
1063 duplicateToTop(Reg
, getFPReg(MI
->getOperand(0)), I
);
1066 // Change from the pseudo instruction to the concrete instruction.
1067 MI
->RemoveOperand(1); // Drop the source operand.
1068 MI
->RemoveOperand(0); // Drop the destination operand.
1069 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
1073 //===----------------------------------------------------------------------===//
1074 // Define tables of various ways to map pseudo instructions
1077 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1078 static const TableEntry ForwardST0Table
[] = {
1079 { X86::ADD_Fp32
, X86::ADD_FST0r
},
1080 { X86::ADD_Fp64
, X86::ADD_FST0r
},
1081 { X86::ADD_Fp80
, X86::ADD_FST0r
},
1082 { X86::DIV_Fp32
, X86::DIV_FST0r
},
1083 { X86::DIV_Fp64
, X86::DIV_FST0r
},
1084 { X86::DIV_Fp80
, X86::DIV_FST0r
},
1085 { X86::MUL_Fp32
, X86::MUL_FST0r
},
1086 { X86::MUL_Fp64
, X86::MUL_FST0r
},
1087 { X86::MUL_Fp80
, X86::MUL_FST0r
},
1088 { X86::SUB_Fp32
, X86::SUB_FST0r
},
1089 { X86::SUB_Fp64
, X86::SUB_FST0r
},
1090 { X86::SUB_Fp80
, X86::SUB_FST0r
},
1093 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1094 static const TableEntry ReverseST0Table
[] = {
1095 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
1096 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
1097 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
1098 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
1099 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
1100 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
1101 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
1102 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
1103 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
1104 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
1105 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
1106 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
1109 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1110 static const TableEntry ForwardSTiTable
[] = {
1111 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
1112 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
1113 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
1114 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
1115 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
1116 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
1117 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
1118 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
1119 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
1120 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
1121 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
1122 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
1125 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1126 static const TableEntry ReverseSTiTable
[] = {
1127 { X86::ADD_Fp32
, X86::ADD_FrST0
},
1128 { X86::ADD_Fp64
, X86::ADD_FrST0
},
1129 { X86::ADD_Fp80
, X86::ADD_FrST0
},
1130 { X86::DIV_Fp32
, X86::DIV_FrST0
},
1131 { X86::DIV_Fp64
, X86::DIV_FrST0
},
1132 { X86::DIV_Fp80
, X86::DIV_FrST0
},
1133 { X86::MUL_Fp32
, X86::MUL_FrST0
},
1134 { X86::MUL_Fp64
, X86::MUL_FrST0
},
1135 { X86::MUL_Fp80
, X86::MUL_FrST0
},
1136 { X86::SUB_Fp32
, X86::SUB_FrST0
},
1137 { X86::SUB_Fp64
, X86::SUB_FrST0
},
1138 { X86::SUB_Fp80
, X86::SUB_FrST0
},
1142 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1143 /// instructions which need to be simplified and possibly transformed.
1145 /// Result: ST(0) = fsub ST(0), ST(i)
1146 /// ST(i) = fsub ST(0), ST(i)
1147 /// ST(0) = fsubr ST(0), ST(i)
1148 /// ST(i) = fsubr ST(0), ST(i)
1150 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
1151 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
1152 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
1153 MachineInstr
*MI
= I
;
1155 unsigned NumOperands
= MI
->getDesc().getNumOperands();
1156 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
1157 unsigned Dest
= getFPReg(MI
->getOperand(0));
1158 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
1159 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
1160 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
1161 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
1162 DebugLoc dl
= MI
->getDebugLoc();
1164 unsigned TOS
= getStackEntry(0);
1166 // One of our operands must be on the top of the stack. If neither is yet, we
1167 // need to move one.
1168 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
1169 // We can choose to move either operand to the top of the stack. If one of
1170 // the operands is killed by this instruction, we want that one so that we
1171 // can update right on top of the old version.
1173 moveToTop(Op0
, I
); // Move dead operand to TOS.
1175 } else if (KillsOp1
) {
1179 // All of the operands are live after this instruction executes, so we
1180 // cannot update on top of any operand. Because of this, we must
1181 // duplicate one of the stack elements to the top. It doesn't matter
1182 // which one we pick.
1184 duplicateToTop(Op0
, Dest
, I
);
1188 } else if (!KillsOp0
&& !KillsOp1
) {
1189 // If we DO have one of our operands at the top of the stack, but we don't
1190 // have a dead operand, we must duplicate one of the operands to a new slot
1192 duplicateToTop(Op0
, Dest
, I
);
1197 // Now we know that one of our operands is on the top of the stack, and at
1198 // least one of our operands is killed by this instruction.
1199 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
1200 "Stack conditions not set up right!");
1202 // We decide which form to use based on what is on the top of the stack, and
1203 // which operand is killed by this instruction.
1204 const TableEntry
*InstTable
;
1205 bool isForward
= TOS
== Op0
;
1206 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
1209 InstTable
= ForwardST0Table
;
1211 InstTable
= ReverseST0Table
;
1214 InstTable
= ForwardSTiTable
;
1216 InstTable
= ReverseSTiTable
;
1219 int Opcode
= Lookup(InstTable
, array_lengthof(ForwardST0Table
),
1221 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
1223 // NotTOS - The register which is not on the top of stack...
1224 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
1226 // Replace the old instruction with a new instruction
1228 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
1230 // If both operands are killed, pop one off of the stack in addition to
1231 // overwriting the other one.
1232 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
1233 assert(!updateST0
&& "Should have updated other operand!");
1234 popStackAfter(I
); // Pop the top of stack
1237 // Update stack information so that we know the destination register is now on
1239 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
1240 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
1241 Stack
[UpdatedSlot
] = Dest
;
1242 RegMap
[Dest
] = UpdatedSlot
;
1243 MBB
->getParent()->DeleteMachineInstr(MI
); // Remove the old instruction
1246 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1247 /// register arguments and no explicit destinations.
1249 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
1250 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
1251 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
1252 MachineInstr
*MI
= I
;
1254 unsigned NumOperands
= MI
->getDesc().getNumOperands();
1255 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
1256 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
1257 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
1258 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
1259 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
1261 // Make sure the first operand is on the top of stack, the other one can be
1265 // Change from the pseudo instruction to the concrete instruction.
1266 MI
->getOperand(0).setReg(getSTReg(Op1
));
1267 MI
->RemoveOperand(1);
1268 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
1270 // If any of the operands are killed by this instruction, free them.
1271 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
1272 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
1275 /// handleCondMovFP - Handle two address conditional move instructions. These
1276 /// instructions move a st(i) register to st(0) iff a condition is true. These
1277 /// instructions require that the first operand is at the top of the stack, but
1278 /// otherwise don't modify the stack at all.
1279 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
1280 MachineInstr
*MI
= I
;
1282 unsigned Op0
= getFPReg(MI
->getOperand(0));
1283 unsigned Op1
= getFPReg(MI
->getOperand(2));
1284 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
1286 // The first operand *must* be on the top of the stack.
1289 // Change the second operand to the stack register that the operand is in.
1290 // Change from the pseudo instruction to the concrete instruction.
1291 MI
->RemoveOperand(0);
1292 MI
->RemoveOperand(1);
1293 MI
->getOperand(0).setReg(getSTReg(Op1
));
1294 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
1296 // If we kill the second operand, make sure to pop it from the stack.
1297 if (Op0
!= Op1
&& KillsOp1
) {
1298 // Get this value off of the register stack.
1299 freeStackSlotAfter(I
, Op1
);
1304 /// handleSpecialFP - Handle special instructions which behave unlike other
1305 /// floating point instructions. This is primarily intended for use by pseudo
1308 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&I
) {
1309 MachineInstr
*MI
= I
;
1310 switch (MI
->getOpcode()) {
1311 default: llvm_unreachable("Unknown SpecialFP instruction!");
1312 case X86::FpGET_ST0_32
:// Appears immediately after a call returning FP type!
1313 case X86::FpGET_ST0_64
:// Appears immediately after a call returning FP type!
1314 case X86::FpGET_ST0_80
:// Appears immediately after a call returning FP type!
1315 assert(StackTop
== 0 && "Stack should be empty after a call!");
1316 pushReg(getFPReg(MI
->getOperand(0)));
1318 case X86::FpGET_ST1_32
:// Appears immediately after a call returning FP type!
1319 case X86::FpGET_ST1_64
:// Appears immediately after a call returning FP type!
1320 case X86::FpGET_ST1_80
:{// Appears immediately after a call returning FP type!
1321 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1322 // The pattern we expect is:
1327 // At this point, we've pushed FP1 on the top of stack, so it should be
1328 // present if it isn't dead. If it was dead, we already emitted a pop to
1329 // remove it from the stack and StackTop = 0.
1331 // Push FP4 as top of stack next.
1332 pushReg(getFPReg(MI
->getOperand(0)));
1334 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1335 // dead. In this case, the ST(1) value is the only thing that is live, so
1336 // it should be on the TOS (after the pop that was emitted) and is. Just
1337 // continue in this case.
1341 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1342 // elements so that our accounting is correct.
1343 unsigned RegOnTop
= getStackEntry(0);
1344 unsigned RegNo
= getStackEntry(1);
1346 // Swap the slots the regs are in.
1347 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
1349 // Swap stack slot contents.
1350 if (RegMap
[RegOnTop
] >= StackTop
)
1351 report_fatal_error("Access past stack top!");
1352 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
1355 case X86::FpSET_ST0_32
:
1356 case X86::FpSET_ST0_64
:
1357 case X86::FpSET_ST0_80
: {
1358 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1359 // arguments that use an st constraint. We expect a sequence of
1360 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1361 unsigned Op0
= getFPReg(MI
->getOperand(0));
1363 if (!MI
->killsRegister(X86::FP0
+ Op0
)) {
1364 // Duplicate Op0 into a temporary on the stack top.
1365 duplicateToTop(Op0
, getScratchReg(), I
);
1367 // Op0 is killed, so just swap it into position.
1370 --StackTop
; // "Forget" we have something on the top of stack!
1373 case X86::FpSET_ST1_32
:
1374 case X86::FpSET_ST1_64
:
1375 case X86::FpSET_ST1_80
: {
1376 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1377 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1378 unsigned Op0
= getFPReg(MI
->getOperand(0));
1379 // Restore the actual StackTop from before Fp_SET_ST0.
1380 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1381 // are not enforcing the constraint.
1383 unsigned RegOnTop
= getStackEntry(0); // This reg must remain in st(0).
1384 if (!MI
->killsRegister(X86::FP0
+ Op0
)) {
1385 duplicateToTop(Op0
, getScratchReg(), I
);
1386 moveToTop(RegOnTop
, I
);
1387 } else if (getSTReg(Op0
) != X86::ST1
) {
1388 // We have the wrong value at st(1). Shuffle! Untested!
1389 moveToTop(getStackEntry(1), I
);
1391 moveToTop(RegOnTop
, I
);
1393 assert(StackTop
>= 2 && "Too few live registers");
1394 StackTop
-= 2; // "Forget" both st(0) and st(1).
1397 case X86::MOV_Fp3232
:
1398 case X86::MOV_Fp3264
:
1399 case X86::MOV_Fp6432
:
1400 case X86::MOV_Fp6464
:
1401 case X86::MOV_Fp3280
:
1402 case X86::MOV_Fp6480
:
1403 case X86::MOV_Fp8032
:
1404 case X86::MOV_Fp8064
:
1405 case X86::MOV_Fp8080
: {
1406 const MachineOperand
&MO1
= MI
->getOperand(1);
1407 unsigned SrcReg
= getFPReg(MO1
);
1409 const MachineOperand
&MO0
= MI
->getOperand(0);
1410 unsigned DestReg
= getFPReg(MO0
);
1411 if (MI
->killsRegister(X86::FP0
+SrcReg
)) {
1412 // If the input operand is killed, we can just change the owner of the
1413 // incoming stack slot into the result.
1414 unsigned Slot
= getSlot(SrcReg
);
1415 assert(Slot
< 7 && DestReg
< 7 && "FpMOV operands invalid!");
1416 Stack
[Slot
] = DestReg
;
1417 RegMap
[DestReg
] = Slot
;
1420 // For FMOV we just duplicate the specified value to a new stack slot.
1421 // This could be made better, but would require substantial changes.
1422 duplicateToTop(SrcReg
, DestReg
, I
);
1426 case TargetOpcode::INLINEASM
: {
1427 // The inline asm MachineInstr currently only *uses* FP registers for the
1428 // 'f' constraint. These should be turned into the current ST(x) register
1429 // in the machine instr. Also, any kills should be explicitly popped after
1432 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1433 MachineOperand
&Op
= MI
->getOperand(i
);
1434 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1436 assert(Op
.isUse() && "Only handle inline asm uses right now");
1438 unsigned FPReg
= getFPReg(Op
);
1439 Op
.setReg(getSTReg(FPReg
));
1441 // If we kill this operand, make sure to pop it from the stack after the
1442 // asm. We just remember it for now, and pop them all off at the end in
1445 Kills
|= 1U << FPReg
;
1448 // If this asm kills any FP registers (is the last use of them) we must
1449 // explicitly emit pop instructions for them. Do this now after the asm has
1450 // executed so that the ST(x) numbers are not off (which would happen if we
1451 // did this inline with operand rewriting).
1453 // Note: this might be a non-optimal pop sequence. We might be able to do
1454 // better by trying to pop in stack order or something.
1455 MachineBasicBlock::iterator InsertPt
= MI
;
1457 unsigned FPReg
= CountTrailingZeros_32(Kills
);
1458 freeStackSlotAfter(InsertPt
, FPReg
);
1459 Kills
&= ~(1U << FPReg
);
1461 // Don't delete the inline asm!
1467 // If RET has an FP register use operand, pass the first one in ST(0) and
1468 // the second one in ST(1).
1470 // Find the register operands.
1471 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1472 unsigned LiveMask
= 0;
1474 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1475 MachineOperand
&Op
= MI
->getOperand(i
);
1476 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1478 // FP Register uses must be kills unless there are two uses of the same
1479 // register, in which case only one will be a kill.
1480 assert(Op
.isUse() &&
1481 (Op
.isKill() || // Marked kill.
1482 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1483 MI
->killsRegister(Op
.getReg())) && // Later use is marked kill.
1484 "Ret only defs operands, and values aren't live beyond it");
1486 if (FirstFPRegOp
== ~0U)
1487 FirstFPRegOp
= getFPReg(Op
);
1489 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1490 SecondFPRegOp
= getFPReg(Op
);
1492 LiveMask
|= (1 << getFPReg(Op
));
1494 // Remove the operand so that later passes don't see it.
1495 MI
->RemoveOperand(i
);
1499 // We may have been carrying spurious live-ins, so make sure only the returned
1500 // registers are left live.
1501 adjustLiveRegs(LiveMask
, MI
);
1502 if (!LiveMask
) return; // Quick check to see if any are possible.
1504 // There are only four possibilities here:
1505 // 1) we are returning a single FP value. In this case, it has to be in
1506 // ST(0) already, so just declare success by removing the value from the
1508 if (SecondFPRegOp
== ~0U) {
1509 // Assert that the top of stack contains the right FP register.
1510 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1511 "Top of stack not the right register for RET!");
1513 // Ok, everything is good, mark the value as not being on the stack
1514 // anymore so that our assertion about the stack being empty at end of
1515 // block doesn't fire.
1520 // Otherwise, we are returning two values:
1521 // 2) If returning the same value for both, we only have one thing in the FP
1522 // stack. Consider: RET FP1, FP1
1523 if (StackTop
== 1) {
1524 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1525 "Stack misconfiguration for RET!");
1527 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1528 // register to hold it.
1529 unsigned NewReg
= getScratchReg();
1530 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1531 FirstFPRegOp
= NewReg
;
1534 /// Okay we know we have two different FPx operands now:
1535 assert(StackTop
== 2 && "Must have two values live!");
1537 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1538 /// in ST(1). In this case, emit an fxch.
1539 if (getStackEntry(0) == SecondFPRegOp
) {
1540 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1541 moveToTop(FirstFPRegOp
, MI
);
1544 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1545 /// ST(1). Just remove both from our understanding of the stack and return.
1546 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1547 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1552 I
= MBB
->erase(I
); // Remove the pseudo instruction
1554 // We want to leave I pointing to the previous instruction, but what if we
1555 // just erased the first instruction?
1556 if (I
== MBB
->begin()) {
1557 DEBUG(dbgs() << "Inserting dummy KILL\n");
1558 I
= BuildMI(*MBB
, I
, DebugLoc(), TII
->get(TargetOpcode::KILL
));
1563 // Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1564 bool FPS::translateCopy(MachineInstr
*MI
) {
1565 unsigned DstReg
= MI
->getOperand(0).getReg();
1566 unsigned SrcReg
= MI
->getOperand(1).getReg();
1568 if (DstReg
== X86::ST0
) {
1569 MI
->setDesc(TII
->get(X86::FpSET_ST0_80
));
1570 MI
->RemoveOperand(0);
1573 if (DstReg
== X86::ST1
) {
1574 MI
->setDesc(TII
->get(X86::FpSET_ST1_80
));
1575 MI
->RemoveOperand(0);
1578 if (SrcReg
== X86::ST0
) {
1579 MI
->setDesc(TII
->get(X86::FpGET_ST0_80
));
1582 if (SrcReg
== X86::ST1
) {
1583 MI
->setDesc(TII
->get(X86::FpGET_ST1_80
));
1586 if (X86::RFP80RegClass
.contains(DstReg
, SrcReg
)) {
1587 MI
->setDesc(TII
->get(X86::MOV_Fp8080
));