Fixed some bugs in register stack pass.
[llvm/zpu.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob0226278327c1e9b7c6689f717be3d5fb9ec97c9c
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Type.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 using namespace llvm;
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44 //===----------------------------------------------------------------------===//
45 // Pattern Matcher Implementation
46 //===----------------------------------------------------------------------===//
48 namespace {
49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50 /// SDValue's instead of register numbers for the leaves of the matched
51 /// tree.
52 struct X86ISelAddressMode {
53 enum {
54 RegBase,
55 FrameIndexBase
56 } BaseType;
58 // This is really a union, discriminated by BaseType!
59 SDValue Base_Reg;
60 int Base_FrameIndex;
62 unsigned Scale;
63 SDValue IndexReg;
64 int32_t Disp;
65 SDValue Segment;
66 const GlobalValue *GV;
67 const Constant *CP;
68 const BlockAddress *BlockAddr;
69 const char *ES;
70 int JT;
71 unsigned Align; // CP alignment.
72 unsigned char SymbolFlags; // X86II::MO_*
74 X86ISelAddressMode()
75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77 SymbolFlags(X86II::MO_NO_FLAG) {
80 bool hasSymbolicDisplacement() const {
81 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
84 bool hasBaseOrIndexReg() const {
85 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
88 /// isRIPRelative - Return true if this addressing mode is already RIP
89 /// relative.
90 bool isRIPRelative() const {
91 if (BaseType != RegBase) return false;
92 if (RegisterSDNode *RegNode =
93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94 return RegNode->getReg() == X86::RIP;
95 return false;
98 void setBaseReg(SDValue Reg) {
99 BaseType = RegBase;
100 Base_Reg = Reg;
103 void dump() {
104 dbgs() << "X86ISelAddressMode " << this << '\n';
105 dbgs() << "Base_Reg ";
106 if (Base_Reg.getNode() != 0)
107 Base_Reg.getNode()->dump();
108 else
109 dbgs() << "nul";
110 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111 << " Scale" << Scale << '\n'
112 << "IndexReg ";
113 if (IndexReg.getNode() != 0)
114 IndexReg.getNode()->dump();
115 else
116 dbgs() << "nul";
117 dbgs() << " Disp " << Disp << '\n'
118 << "GV ";
119 if (GV)
120 GV->dump();
121 else
122 dbgs() << "nul";
123 dbgs() << " CP ";
124 if (CP)
125 CP->dump();
126 else
127 dbgs() << "nul";
128 dbgs() << '\n'
129 << "ES ";
130 if (ES)
131 dbgs() << ES;
132 else
133 dbgs() << "nul";
134 dbgs() << " JT" << JT << " Align" << Align << '\n';
139 namespace {
140 //===--------------------------------------------------------------------===//
141 /// ISel - X86 specific code to select X86 machine instructions for
142 /// SelectionDAG operations.
144 class X86DAGToDAGISel : public SelectionDAGISel {
145 /// X86Lowering - This object fully describes how to lower LLVM code to an
146 /// X86-specific SelectionDAG.
147 const X86TargetLowering &X86Lowering;
149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150 /// make the right decision when generating code for different targets.
151 const X86Subtarget *Subtarget;
153 /// OptForSize - If true, selector should try to optimize for code size
154 /// instead of performance.
155 bool OptForSize;
157 public:
158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159 : SelectionDAGISel(tm, OptLevel),
160 X86Lowering(*tm.getTargetLowering()),
161 Subtarget(&tm.getSubtarget<X86Subtarget>()),
162 OptForSize(false) {}
164 virtual const char *getPassName() const {
165 return "X86 DAG->DAG Instruction Selection";
168 virtual void EmitFunctionEntryCode();
170 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172 virtual void PreprocessISelDAG();
174 inline bool immSext8(SDNode *N) const {
175 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
178 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179 // sign extended field.
180 inline bool i64immSExt32(SDNode *N) const {
181 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182 return (int64_t)v == (int32_t)v;
185 // Include the pieces autogenerated from the target description.
186 #include "X86GenDAGISel.inc"
188 private:
189 SDNode *Select(SDNode *N);
190 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
194 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
195 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
196 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
197 unsigned Depth);
198 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
199 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
200 SDValue &Scale, SDValue &Index, SDValue &Disp,
201 SDValue &Segment);
202 bool SelectLEAAddr(SDValue N, SDValue &Base,
203 SDValue &Scale, SDValue &Index, SDValue &Disp,
204 SDValue &Segment);
205 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
206 SDValue &Scale, SDValue &Index, SDValue &Disp,
207 SDValue &Segment);
208 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
209 SDValue &Base, SDValue &Scale,
210 SDValue &Index, SDValue &Disp,
211 SDValue &Segment,
212 SDValue &NodeWithChain);
214 bool TryFoldLoad(SDNode *P, SDValue N,
215 SDValue &Base, SDValue &Scale,
216 SDValue &Index, SDValue &Disp,
217 SDValue &Segment);
219 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
220 /// inline asm expressions.
221 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
222 char ConstraintCode,
223 std::vector<SDValue> &OutOps);
225 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
228 SDValue &Scale, SDValue &Index,
229 SDValue &Disp, SDValue &Segment) {
230 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
231 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
232 AM.Base_Reg;
233 Scale = getI8Imm(AM.Scale);
234 Index = AM.IndexReg;
235 // These are 32-bit even in 64-bit mode since RIP relative offset
236 // is 32-bit.
237 if (AM.GV)
238 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
239 MVT::i32, AM.Disp,
240 AM.SymbolFlags);
241 else if (AM.CP)
242 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
243 AM.Align, AM.Disp, AM.SymbolFlags);
244 else if (AM.ES)
245 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
246 else if (AM.JT != -1)
247 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
248 else if (AM.BlockAddr)
249 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
250 true, AM.SymbolFlags);
251 else
252 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
254 if (AM.Segment.getNode())
255 Segment = AM.Segment;
256 else
257 Segment = CurDAG->getRegister(0, MVT::i32);
260 /// getI8Imm - Return a target constant with the specified value, of type
261 /// i8.
262 inline SDValue getI8Imm(unsigned Imm) {
263 return CurDAG->getTargetConstant(Imm, MVT::i8);
266 /// getI32Imm - Return a target constant with the specified value, of type
267 /// i32.
268 inline SDValue getI32Imm(unsigned Imm) {
269 return CurDAG->getTargetConstant(Imm, MVT::i32);
272 /// getGlobalBaseReg - Return an SDNode that returns the value of
273 /// the global base register. Output instructions required to
274 /// initialize the global base register, if necessary.
276 SDNode *getGlobalBaseReg();
278 /// getTargetMachine - Return a reference to the TargetMachine, casted
279 /// to the target-specific type.
280 const X86TargetMachine &getTargetMachine() {
281 return static_cast<const X86TargetMachine &>(TM);
284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285 /// to the target-specific type.
286 const X86InstrInfo *getInstrInfo() {
287 return getTargetMachine().getInstrInfo();
293 bool
294 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
295 if (OptLevel == CodeGenOpt::None) return false;
297 if (!N.hasOneUse())
298 return false;
300 if (N.getOpcode() != ISD::LOAD)
301 return true;
303 // If N is a load, do additional profitability checks.
304 if (U == Root) {
305 switch (U->getOpcode()) {
306 default: break;
307 case X86ISD::ADD:
308 case X86ISD::SUB:
309 case X86ISD::AND:
310 case X86ISD::XOR:
311 case X86ISD::OR:
312 case ISD::ADD:
313 case ISD::ADDC:
314 case ISD::ADDE:
315 case ISD::AND:
316 case ISD::OR:
317 case ISD::XOR: {
318 SDValue Op1 = U->getOperand(1);
320 // If the other operand is a 8-bit immediate we should fold the immediate
321 // instead. This reduces code size.
322 // e.g.
323 // movl 4(%esp), %eax
324 // addl $4, %eax
325 // vs.
326 // movl $4, %eax
327 // addl 4(%esp), %eax
328 // The former is 2 bytes shorter. In case where the increment is 1, then
329 // the saving can be 4 bytes (by using incl %eax).
330 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
331 if (Imm->getAPIntValue().isSignedIntN(8))
332 return false;
334 // If the other operand is a TLS address, we should fold it instead.
335 // This produces
336 // movl %gs:0, %eax
337 // leal i@NTPOFF(%eax), %eax
338 // instead of
339 // movl $i@NTPOFF, %eax
340 // addl %gs:0, %eax
341 // if the block also has an access to a second TLS address this will save
342 // a load.
343 // FIXME: This is probably also true for non TLS addresses.
344 if (Op1.getOpcode() == X86ISD::Wrapper) {
345 SDValue Val = Op1.getOperand(0);
346 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
347 return false;
353 return true;
356 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
357 /// load's chain operand and move load below the call's chain operand.
358 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
359 SDValue Call, SDValue OrigChain) {
360 SmallVector<SDValue, 8> Ops;
361 SDValue Chain = OrigChain.getOperand(0);
362 if (Chain.getNode() == Load.getNode())
363 Ops.push_back(Load.getOperand(0));
364 else {
365 assert(Chain.getOpcode() == ISD::TokenFactor &&
366 "Unexpected chain operand");
367 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
368 if (Chain.getOperand(i).getNode() == Load.getNode())
369 Ops.push_back(Load.getOperand(0));
370 else
371 Ops.push_back(Chain.getOperand(i));
372 SDValue NewChain =
373 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
374 MVT::Other, &Ops[0], Ops.size());
375 Ops.clear();
376 Ops.push_back(NewChain);
378 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
379 Ops.push_back(OrigChain.getOperand(i));
380 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
381 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
382 Load.getOperand(1), Load.getOperand(2));
383 Ops.clear();
384 Ops.push_back(SDValue(Load.getNode(), 1));
385 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
386 Ops.push_back(Call.getOperand(i));
387 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
390 /// isCalleeLoad - Return true if call address is a load and it can be
391 /// moved below CALLSEQ_START and the chains leading up to the call.
392 /// Return the CALLSEQ_START by reference as a second output.
393 /// In the case of a tail call, there isn't a callseq node between the call
394 /// chain and the load.
395 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
396 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
397 return false;
398 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
399 if (!LD ||
400 LD->isVolatile() ||
401 LD->getAddressingMode() != ISD::UNINDEXED ||
402 LD->getExtensionType() != ISD::NON_EXTLOAD)
403 return false;
405 // Now let's find the callseq_start.
406 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
407 if (!Chain.hasOneUse())
408 return false;
409 Chain = Chain.getOperand(0);
412 if (!Chain.getNumOperands())
413 return false;
414 if (Chain.getOperand(0).getNode() == Callee.getNode())
415 return true;
416 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
417 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
418 Callee.getValue(1).hasOneUse())
419 return true;
420 return false;
423 void X86DAGToDAGISel::PreprocessISelDAG() {
424 // OptForSize is used in pattern predicates that isel is matching.
425 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
427 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
428 E = CurDAG->allnodes_end(); I != E; ) {
429 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
431 if (OptLevel != CodeGenOpt::None &&
432 (N->getOpcode() == X86ISD::CALL ||
433 N->getOpcode() == X86ISD::TC_RETURN)) {
434 /// Also try moving call address load from outside callseq_start to just
435 /// before the call to allow it to be folded.
437 /// [Load chain]
438 /// ^
439 /// |
440 /// [Load]
441 /// ^ ^
442 /// | |
443 /// / \--
444 /// / |
445 ///[CALLSEQ_START] |
446 /// ^ |
447 /// | |
448 /// [LOAD/C2Reg] |
449 /// | |
450 /// \ /
451 /// \ /
452 /// [CALL]
453 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
454 SDValue Chain = N->getOperand(0);
455 SDValue Load = N->getOperand(1);
456 if (!isCalleeLoad(Load, Chain, HasCallSeq))
457 continue;
458 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
459 ++NumLoadMoved;
460 continue;
463 // Lower fpround and fpextend nodes that target the FP stack to be store and
464 // load to the stack. This is a gross hack. We would like to simply mark
465 // these as being illegal, but when we do that, legalize produces these when
466 // it expands calls, then expands these in the same legalize pass. We would
467 // like dag combine to be able to hack on these between the call expansion
468 // and the node legalization. As such this pass basically does "really
469 // late" legalization of these inline with the X86 isel pass.
470 // FIXME: This should only happen when not compiled with -O0.
471 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
472 continue;
474 // If the source and destination are SSE registers, then this is a legal
475 // conversion that should not be lowered.
476 EVT SrcVT = N->getOperand(0).getValueType();
477 EVT DstVT = N->getValueType(0);
478 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
479 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
480 if (SrcIsSSE && DstIsSSE)
481 continue;
483 if (!SrcIsSSE && !DstIsSSE) {
484 // If this is an FPStack extension, it is a noop.
485 if (N->getOpcode() == ISD::FP_EXTEND)
486 continue;
487 // If this is a value-preserving FPStack truncation, it is a noop.
488 if (N->getConstantOperandVal(1))
489 continue;
492 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
493 // FPStack has extload and truncstore. SSE can fold direct loads into other
494 // operations. Based on this, decide what we want to do.
495 EVT MemVT;
496 if (N->getOpcode() == ISD::FP_ROUND)
497 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
498 else
499 MemVT = SrcIsSSE ? SrcVT : DstVT;
501 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
502 DebugLoc dl = N->getDebugLoc();
504 // FIXME: optimize the case where the src/dest is a load or store?
505 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
506 N->getOperand(0),
507 MemTmp, MachinePointerInfo(), MemVT,
508 false, false, 0);
509 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp,
510 MachinePointerInfo(),
511 MemVT, false, false, 0);
513 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
514 // extload we created. This will cause general havok on the dag because
515 // anything below the conversion could be folded into other existing nodes.
516 // To avoid invalidating 'I', back it up to the convert node.
517 --I;
518 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
520 // Now that we did that, the node is dead. Increment the iterator to the
521 // next node to process, then delete N.
522 ++I;
523 CurDAG->DeleteNode(N);
528 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
529 /// the main function.
530 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
531 MachineFrameInfo *MFI) {
532 const TargetInstrInfo *TII = TM.getInstrInfo();
533 if (Subtarget->isTargetCygMing())
534 BuildMI(BB, DebugLoc(),
535 TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
538 void X86DAGToDAGISel::EmitFunctionEntryCode() {
539 // If this is main, emit special code for main.
540 if (const Function *Fn = MF->getFunction())
541 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
542 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
546 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
547 SDValue Address = N->getOperand(1);
549 // load gs:0 -> GS segment register.
550 // load fs:0 -> FS segment register.
552 // This optimization is valid because the GNU TLS model defines that
553 // gs:0 (or fs:0 on X86-64) contains its own address.
554 // For more information see http://people.redhat.com/drepper/tls.pdf
555 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
556 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
557 Subtarget->isTargetELF())
558 switch (N->getPointerInfo().getAddrSpace()) {
559 case 256:
560 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
561 return false;
562 case 257:
563 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
564 return false;
567 return true;
570 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
571 /// into an addressing mode. These wrap things that will resolve down into a
572 /// symbol reference. If no match is possible, this returns true, otherwise it
573 /// returns false.
574 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
575 // If the addressing mode already has a symbol as the displacement, we can
576 // never match another symbol.
577 if (AM.hasSymbolicDisplacement())
578 return true;
580 SDValue N0 = N.getOperand(0);
581 CodeModel::Model M = TM.getCodeModel();
583 // Handle X86-64 rip-relative addresses. We check this before checking direct
584 // folding because RIP is preferable to non-RIP accesses.
585 if (Subtarget->is64Bit() &&
586 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
587 // they cannot be folded into immediate fields.
588 // FIXME: This can be improved for kernel and other models?
589 (M == CodeModel::Small || M == CodeModel::Kernel) &&
590 // Base and index reg must be 0 in order to use %rip as base and lowering
591 // must allow RIP.
592 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
593 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
594 int64_t Offset = AM.Disp + G->getOffset();
595 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
596 AM.GV = G->getGlobal();
597 AM.Disp = Offset;
598 AM.SymbolFlags = G->getTargetFlags();
599 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
600 int64_t Offset = AM.Disp + CP->getOffset();
601 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
602 AM.CP = CP->getConstVal();
603 AM.Align = CP->getAlignment();
604 AM.Disp = Offset;
605 AM.SymbolFlags = CP->getTargetFlags();
606 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
607 AM.ES = S->getSymbol();
608 AM.SymbolFlags = S->getTargetFlags();
609 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
610 AM.JT = J->getIndex();
611 AM.SymbolFlags = J->getTargetFlags();
612 } else {
613 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
614 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
617 if (N.getOpcode() == X86ISD::WrapperRIP)
618 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
619 return false;
622 // Handle the case when globals fit in our immediate field: This is true for
623 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
624 // mode, this results in a non-RIP-relative computation.
625 if (!Subtarget->is64Bit() ||
626 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
627 TM.getRelocationModel() == Reloc::Static)) {
628 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
629 AM.GV = G->getGlobal();
630 AM.Disp += G->getOffset();
631 AM.SymbolFlags = G->getTargetFlags();
632 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
633 AM.CP = CP->getConstVal();
634 AM.Align = CP->getAlignment();
635 AM.Disp += CP->getOffset();
636 AM.SymbolFlags = CP->getTargetFlags();
637 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
638 AM.ES = S->getSymbol();
639 AM.SymbolFlags = S->getTargetFlags();
640 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
641 AM.JT = J->getIndex();
642 AM.SymbolFlags = J->getTargetFlags();
643 } else {
644 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
645 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
647 return false;
650 return true;
653 /// MatchAddress - Add the specified node to the specified addressing mode,
654 /// returning true if it cannot be done. This just pattern matches for the
655 /// addressing mode.
656 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
657 if (MatchAddressRecursively(N, AM, 0))
658 return true;
660 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
661 // a smaller encoding and avoids a scaled-index.
662 if (AM.Scale == 2 &&
663 AM.BaseType == X86ISelAddressMode::RegBase &&
664 AM.Base_Reg.getNode() == 0) {
665 AM.Base_Reg = AM.IndexReg;
666 AM.Scale = 1;
669 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
670 // because it has a smaller encoding.
671 // TODO: Which other code models can use this?
672 if (TM.getCodeModel() == CodeModel::Small &&
673 Subtarget->is64Bit() &&
674 AM.Scale == 1 &&
675 AM.BaseType == X86ISelAddressMode::RegBase &&
676 AM.Base_Reg.getNode() == 0 &&
677 AM.IndexReg.getNode() == 0 &&
678 AM.SymbolFlags == X86II::MO_NO_FLAG &&
679 AM.hasSymbolicDisplacement())
680 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
682 return false;
685 /// isLogicallyAddWithConstant - Return true if this node is semantically an
686 /// add of a value with a constantint.
687 static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) {
688 // Check for (add x, Cst)
689 if (V->getOpcode() == ISD::ADD)
690 return isa<ConstantSDNode>(V->getOperand(1));
692 // Check for (or x, Cst), where Cst & x == 0.
693 if (V->getOpcode() != ISD::OR ||
694 !isa<ConstantSDNode>(V->getOperand(1)))
695 return false;
697 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
698 ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1));
700 // Check to see if the LHS & C is zero.
701 return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue());
704 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
705 unsigned Depth) {
706 bool is64Bit = Subtarget->is64Bit();
707 DebugLoc dl = N.getDebugLoc();
708 DEBUG({
709 dbgs() << "MatchAddress: ";
710 AM.dump();
712 // Limit recursion.
713 if (Depth > 5)
714 return MatchAddressBase(N, AM);
716 CodeModel::Model M = TM.getCodeModel();
718 // If this is already a %rip relative address, we can only merge immediates
719 // into it. Instead of handling this in every case, we handle it here.
720 // RIP relative addressing: %rip + 32-bit displacement!
721 if (AM.isRIPRelative()) {
722 // FIXME: JumpTable and ExternalSymbol address currently don't like
723 // displacements. It isn't very important, but this should be fixed for
724 // consistency.
725 if (!AM.ES && AM.JT != -1) return true;
727 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
728 int64_t Val = AM.Disp + Cst->getSExtValue();
729 if (X86::isOffsetSuitableForCodeModel(Val, M,
730 AM.hasSymbolicDisplacement())) {
731 AM.Disp = Val;
732 return false;
735 return true;
738 switch (N.getOpcode()) {
739 default: break;
740 case ISD::Constant: {
741 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
742 if (!is64Bit ||
743 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
744 AM.hasSymbolicDisplacement())) {
745 AM.Disp += Val;
746 return false;
748 break;
751 case X86ISD::Wrapper:
752 case X86ISD::WrapperRIP:
753 if (!MatchWrapper(N, AM))
754 return false;
755 break;
757 case ISD::LOAD:
758 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
759 return false;
760 break;
762 case ISD::FrameIndex:
763 if (AM.BaseType == X86ISelAddressMode::RegBase
764 && AM.Base_Reg.getNode() == 0) {
765 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
766 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
767 return false;
769 break;
771 case ISD::SHL:
772 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
773 break;
775 if (ConstantSDNode
776 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
777 unsigned Val = CN->getZExtValue();
778 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
779 // that the base operand remains free for further matching. If
780 // the base doesn't end up getting used, a post-processing step
781 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
782 if (Val == 1 || Val == 2 || Val == 3) {
783 AM.Scale = 1 << Val;
784 SDValue ShVal = N.getNode()->getOperand(0);
786 // Okay, we know that we have a scale by now. However, if the scaled
787 // value is an add of something and a constant, we can fold the
788 // constant into the disp field here.
789 if (isLogicallyAddWithConstant(ShVal, CurDAG)) {
790 AM.IndexReg = ShVal.getNode()->getOperand(0);
791 ConstantSDNode *AddVal =
792 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
793 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
794 if (!is64Bit ||
795 X86::isOffsetSuitableForCodeModel(Disp, M,
796 AM.hasSymbolicDisplacement()))
797 AM.Disp = Disp;
798 else
799 AM.IndexReg = ShVal;
800 } else {
801 AM.IndexReg = ShVal;
803 return false;
805 break;
808 case ISD::SMUL_LOHI:
809 case ISD::UMUL_LOHI:
810 // A mul_lohi where we need the low part can be folded as a plain multiply.
811 if (N.getResNo() != 0) break;
812 // FALL THROUGH
813 case ISD::MUL:
814 case X86ISD::MUL_IMM:
815 // X*[3,5,9] -> X+X*[2,4,8]
816 if (AM.BaseType == X86ISelAddressMode::RegBase &&
817 AM.Base_Reg.getNode() == 0 &&
818 AM.IndexReg.getNode() == 0) {
819 if (ConstantSDNode
820 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
821 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
822 CN->getZExtValue() == 9) {
823 AM.Scale = unsigned(CN->getZExtValue())-1;
825 SDValue MulVal = N.getNode()->getOperand(0);
826 SDValue Reg;
828 // Okay, we know that we have a scale by now. However, if the scaled
829 // value is an add of something and a constant, we can fold the
830 // constant into the disp field here.
831 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
832 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
833 Reg = MulVal.getNode()->getOperand(0);
834 ConstantSDNode *AddVal =
835 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
836 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
837 CN->getZExtValue();
838 if (!is64Bit ||
839 X86::isOffsetSuitableForCodeModel(Disp, M,
840 AM.hasSymbolicDisplacement()))
841 AM.Disp = Disp;
842 else
843 Reg = N.getNode()->getOperand(0);
844 } else {
845 Reg = N.getNode()->getOperand(0);
848 AM.IndexReg = AM.Base_Reg = Reg;
849 return false;
852 break;
854 case ISD::SUB: {
855 // Given A-B, if A can be completely folded into the address and
856 // the index field with the index field unused, use -B as the index.
857 // This is a win if a has multiple parts that can be folded into
858 // the address. Also, this saves a mov if the base register has
859 // other uses, since it avoids a two-address sub instruction, however
860 // it costs an additional mov if the index register has other uses.
862 // Add an artificial use to this node so that we can keep track of
863 // it if it gets CSE'd with a different node.
864 HandleSDNode Handle(N);
866 // Test if the LHS of the sub can be folded.
867 X86ISelAddressMode Backup = AM;
868 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
869 AM = Backup;
870 break;
872 // Test if the index field is free for use.
873 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
874 AM = Backup;
875 break;
878 int Cost = 0;
879 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
880 // If the RHS involves a register with multiple uses, this
881 // transformation incurs an extra mov, due to the neg instruction
882 // clobbering its operand.
883 if (!RHS.getNode()->hasOneUse() ||
884 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
885 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
886 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
887 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
888 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
889 ++Cost;
890 // If the base is a register with multiple uses, this
891 // transformation may save a mov.
892 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
893 AM.Base_Reg.getNode() &&
894 !AM.Base_Reg.getNode()->hasOneUse()) ||
895 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
896 --Cost;
897 // If the folded LHS was interesting, this transformation saves
898 // address arithmetic.
899 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
900 ((AM.Disp != 0) && (Backup.Disp == 0)) +
901 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
902 --Cost;
903 // If it doesn't look like it may be an overall win, don't do it.
904 if (Cost >= 0) {
905 AM = Backup;
906 break;
909 // Ok, the transformation is legal and appears profitable. Go for it.
910 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
911 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
912 AM.IndexReg = Neg;
913 AM.Scale = 1;
915 // Insert the new nodes into the topological ordering.
916 if (Zero.getNode()->getNodeId() == -1 ||
917 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
918 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
919 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
921 if (Neg.getNode()->getNodeId() == -1 ||
922 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
923 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
924 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
926 return false;
929 case ISD::ADD: {
930 // Add an artificial use to this node so that we can keep track of
931 // it if it gets CSE'd with a different node.
932 HandleSDNode Handle(N);
933 SDValue LHS = Handle.getValue().getNode()->getOperand(0);
934 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
936 X86ISelAddressMode Backup = AM;
937 if (!MatchAddressRecursively(LHS, AM, Depth+1) &&
938 !MatchAddressRecursively(RHS, AM, Depth+1))
939 return false;
940 AM = Backup;
941 LHS = Handle.getValue().getNode()->getOperand(0);
942 RHS = Handle.getValue().getNode()->getOperand(1);
944 // Try again after commuting the operands.
945 if (!MatchAddressRecursively(RHS, AM, Depth+1) &&
946 !MatchAddressRecursively(LHS, AM, Depth+1))
947 return false;
948 AM = Backup;
949 LHS = Handle.getValue().getNode()->getOperand(0);
950 RHS = Handle.getValue().getNode()->getOperand(1);
952 // If we couldn't fold both operands into the address at the same time,
953 // see if we can just put each operand into a register and fold at least
954 // the add.
955 if (AM.BaseType == X86ISelAddressMode::RegBase &&
956 !AM.Base_Reg.getNode() &&
957 !AM.IndexReg.getNode()) {
958 AM.Base_Reg = LHS;
959 AM.IndexReg = RHS;
960 AM.Scale = 1;
961 return false;
963 break;
966 case ISD::OR:
967 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
968 if (isLogicallyAddWithConstant(N, CurDAG)) {
969 X86ISelAddressMode Backup = AM;
970 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
971 uint64_t Offset = CN->getSExtValue();
973 // Start with the LHS as an addr mode.
974 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
975 // Address could not have picked a GV address for the displacement.
976 AM.GV == NULL &&
977 // On x86-64, the resultant disp must fit in 32-bits.
978 (!is64Bit ||
979 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
980 AM.hasSymbolicDisplacement()))) {
981 AM.Disp += Offset;
982 return false;
984 AM = Backup;
986 break;
988 case ISD::AND: {
989 // Perform some heroic transforms on an and of a constant-count shift
990 // with a constant to enable use of the scaled offset field.
992 SDValue Shift = N.getOperand(0);
993 if (Shift.getNumOperands() != 2) break;
995 // Scale must not be used already.
996 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
998 SDValue X = Shift.getOperand(0);
999 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1000 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1001 if (!C1 || !C2) break;
1003 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1004 // allows us to convert the shift and and into an h-register extract and
1005 // a scaled index.
1006 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1007 unsigned ScaleLog = 8 - C1->getZExtValue();
1008 if (ScaleLog > 0 && ScaleLog < 4 &&
1009 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1010 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1011 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1012 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1013 X, Eight);
1014 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1015 Srl, Mask);
1016 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1017 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1018 And, ShlCount);
1020 // Insert the new nodes into the topological ordering.
1021 if (Eight.getNode()->getNodeId() == -1 ||
1022 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1023 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1024 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1026 if (Mask.getNode()->getNodeId() == -1 ||
1027 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1028 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1029 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1031 if (Srl.getNode()->getNodeId() == -1 ||
1032 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1033 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1034 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1036 if (And.getNode()->getNodeId() == -1 ||
1037 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1038 CurDAG->RepositionNode(N.getNode(), And.getNode());
1039 And.getNode()->setNodeId(N.getNode()->getNodeId());
1041 if (ShlCount.getNode()->getNodeId() == -1 ||
1042 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1043 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1044 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1046 if (Shl.getNode()->getNodeId() == -1 ||
1047 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1048 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1049 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1051 CurDAG->ReplaceAllUsesWith(N, Shl);
1052 AM.IndexReg = And;
1053 AM.Scale = (1 << ScaleLog);
1054 return false;
1058 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1059 // allows us to fold the shift into this addressing mode.
1060 if (Shift.getOpcode() != ISD::SHL) break;
1062 // Not likely to be profitable if either the AND or SHIFT node has more
1063 // than one use (unless all uses are for address computation). Besides,
1064 // isel mechanism requires their node ids to be reused.
1065 if (!N.hasOneUse() || !Shift.hasOneUse())
1066 break;
1068 // Verify that the shift amount is something we can fold.
1069 unsigned ShiftCst = C1->getZExtValue();
1070 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1071 break;
1073 // Get the new AND mask, this folds to a constant.
1074 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1075 SDValue(C2, 0), SDValue(C1, 0));
1076 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1077 NewANDMask);
1078 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1079 NewAND, SDValue(C1, 0));
1081 // Insert the new nodes into the topological ordering.
1082 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1083 CurDAG->RepositionNode(X.getNode(), C1);
1084 C1->setNodeId(X.getNode()->getNodeId());
1086 if (NewANDMask.getNode()->getNodeId() == -1 ||
1087 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1088 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1089 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1091 if (NewAND.getNode()->getNodeId() == -1 ||
1092 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1093 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1094 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1096 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1097 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1098 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1099 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1102 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1104 AM.Scale = 1 << ShiftCst;
1105 AM.IndexReg = NewAND;
1106 return false;
1110 return MatchAddressBase(N, AM);
1113 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1114 /// specified addressing mode without any further recursion.
1115 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1116 // Is the base register already occupied?
1117 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1118 // If so, check to see if the scale index register is set.
1119 if (AM.IndexReg.getNode() == 0) {
1120 AM.IndexReg = N;
1121 AM.Scale = 1;
1122 return false;
1125 // Otherwise, we cannot select it.
1126 return true;
1129 // Default, generate it as a register.
1130 AM.BaseType = X86ISelAddressMode::RegBase;
1131 AM.Base_Reg = N;
1132 return false;
1135 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1136 /// It returns the operands which make up the maximal addressing mode it can
1137 /// match by reference.
1139 /// Parent is the parent node of the addr operand that is being matched. It
1140 /// is always a load, store, atomic node, or null. It is only null when
1141 /// checking memory operands for inline asm nodes.
1142 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1143 SDValue &Scale, SDValue &Index,
1144 SDValue &Disp, SDValue &Segment) {
1145 X86ISelAddressMode AM;
1147 if (Parent &&
1148 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1149 // that are not a MemSDNode, and thus don't have proper addrspace info.
1150 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1151 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1152 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1153 unsigned AddrSpace =
1154 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1155 // AddrSpace 256 -> GS, 257 -> FS.
1156 if (AddrSpace == 256)
1157 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1158 if (AddrSpace == 257)
1159 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1162 if (MatchAddress(N, AM))
1163 return false;
1165 EVT VT = N.getValueType();
1166 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1167 if (!AM.Base_Reg.getNode())
1168 AM.Base_Reg = CurDAG->getRegister(0, VT);
1171 if (!AM.IndexReg.getNode())
1172 AM.IndexReg = CurDAG->getRegister(0, VT);
1174 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1175 return true;
1178 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1179 /// match a load whose top elements are either undef or zeros. The load flavor
1180 /// is derived from the type of N, which is either v4f32 or v2f64.
1182 /// We also return:
1183 /// PatternChainNode: this is the matched node that has a chain input and
1184 /// output.
1185 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1186 SDValue N, SDValue &Base,
1187 SDValue &Scale, SDValue &Index,
1188 SDValue &Disp, SDValue &Segment,
1189 SDValue &PatternNodeWithChain) {
1190 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1191 PatternNodeWithChain = N.getOperand(0);
1192 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1193 PatternNodeWithChain.hasOneUse() &&
1194 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1195 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1196 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1197 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1198 return false;
1199 return true;
1203 // Also handle the case where we explicitly require zeros in the top
1204 // elements. This is a vector shuffle from the zero vector.
1205 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1206 // Check to see if the top elements are all zeros (or bitcast of zeros).
1207 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1208 N.getOperand(0).getNode()->hasOneUse() &&
1209 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1210 N.getOperand(0).getOperand(0).hasOneUse() &&
1211 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1212 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1213 // Okay, this is a zero extending load. Fold it.
1214 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1215 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1216 return false;
1217 PatternNodeWithChain = SDValue(LD, 0);
1218 return true;
1220 return false;
1224 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1225 /// mode it matches can be cost effectively emitted as an LEA instruction.
1226 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1227 SDValue &Base, SDValue &Scale,
1228 SDValue &Index, SDValue &Disp,
1229 SDValue &Segment) {
1230 X86ISelAddressMode AM;
1232 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1233 // segments.
1234 SDValue Copy = AM.Segment;
1235 SDValue T = CurDAG->getRegister(0, MVT::i32);
1236 AM.Segment = T;
1237 if (MatchAddress(N, AM))
1238 return false;
1239 assert (T == AM.Segment);
1240 AM.Segment = Copy;
1242 EVT VT = N.getValueType();
1243 unsigned Complexity = 0;
1244 if (AM.BaseType == X86ISelAddressMode::RegBase)
1245 if (AM.Base_Reg.getNode())
1246 Complexity = 1;
1247 else
1248 AM.Base_Reg = CurDAG->getRegister(0, VT);
1249 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1250 Complexity = 4;
1252 if (AM.IndexReg.getNode())
1253 Complexity++;
1254 else
1255 AM.IndexReg = CurDAG->getRegister(0, VT);
1257 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1258 // a simple shift.
1259 if (AM.Scale > 1)
1260 Complexity++;
1262 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1263 // to a LEA. This is determined with some expermentation but is by no means
1264 // optimal (especially for code size consideration). LEA is nice because of
1265 // its three-address nature. Tweak the cost function again when we can run
1266 // convertToThreeAddress() at register allocation time.
1267 if (AM.hasSymbolicDisplacement()) {
1268 // For X86-64, we should always use lea to materialize RIP relative
1269 // addresses.
1270 if (Subtarget->is64Bit())
1271 Complexity = 4;
1272 else
1273 Complexity += 2;
1276 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1277 Complexity++;
1279 // If it isn't worth using an LEA, reject it.
1280 if (Complexity <= 2)
1281 return false;
1283 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1284 return true;
1287 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1288 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1289 SDValue &Scale, SDValue &Index,
1290 SDValue &Disp, SDValue &Segment) {
1291 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1292 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1294 X86ISelAddressMode AM;
1295 AM.GV = GA->getGlobal();
1296 AM.Disp += GA->getOffset();
1297 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1298 AM.SymbolFlags = GA->getTargetFlags();
1300 if (N.getValueType() == MVT::i32) {
1301 AM.Scale = 1;
1302 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1303 } else {
1304 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1307 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1308 return true;
1312 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1313 SDValue &Base, SDValue &Scale,
1314 SDValue &Index, SDValue &Disp,
1315 SDValue &Segment) {
1316 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1317 !IsProfitableToFold(N, P, P) ||
1318 !IsLegalToFold(N, P, P, OptLevel))
1319 return false;
1321 return SelectAddr(N.getNode(),
1322 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1325 /// getGlobalBaseReg - Return an SDNode that returns the value of
1326 /// the global base register. Output instructions required to
1327 /// initialize the global base register, if necessary.
1329 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1330 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1331 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1334 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1335 SDValue Chain = Node->getOperand(0);
1336 SDValue In1 = Node->getOperand(1);
1337 SDValue In2L = Node->getOperand(2);
1338 SDValue In2H = Node->getOperand(3);
1339 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1340 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1341 return NULL;
1342 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1343 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1344 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1345 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1346 MVT::i32, MVT::i32, MVT::Other, Ops,
1347 array_lengthof(Ops));
1348 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1349 return ResNode;
1352 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1353 if (Node->hasAnyUseOfValue(0))
1354 return 0;
1356 // Optimize common patterns for __sync_add_and_fetch and
1357 // __sync_sub_and_fetch where the result is not used. This allows us
1358 // to use "lock" version of add, sub, inc, dec instructions.
1359 // FIXME: Do not use special instructions but instead add the "lock"
1360 // prefix to the target node somehow. The extra information will then be
1361 // transferred to machine instruction and it denotes the prefix.
1362 SDValue Chain = Node->getOperand(0);
1363 SDValue Ptr = Node->getOperand(1);
1364 SDValue Val = Node->getOperand(2);
1365 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1366 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1367 return 0;
1369 bool isInc = false, isDec = false, isSub = false, isCN = false;
1370 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1371 if (CN) {
1372 isCN = true;
1373 int64_t CNVal = CN->getSExtValue();
1374 if (CNVal == 1)
1375 isInc = true;
1376 else if (CNVal == -1)
1377 isDec = true;
1378 else if (CNVal >= 0)
1379 Val = CurDAG->getTargetConstant(CNVal, NVT);
1380 else {
1381 isSub = true;
1382 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1384 } else if (Val.hasOneUse() &&
1385 Val.getOpcode() == ISD::SUB &&
1386 X86::isZeroNode(Val.getOperand(0))) {
1387 isSub = true;
1388 Val = Val.getOperand(1);
1391 unsigned Opc = 0;
1392 switch (NVT.getSimpleVT().SimpleTy) {
1393 default: return 0;
1394 case MVT::i8:
1395 if (isInc)
1396 Opc = X86::LOCK_INC8m;
1397 else if (isDec)
1398 Opc = X86::LOCK_DEC8m;
1399 else if (isSub) {
1400 if (isCN)
1401 Opc = X86::LOCK_SUB8mi;
1402 else
1403 Opc = X86::LOCK_SUB8mr;
1404 } else {
1405 if (isCN)
1406 Opc = X86::LOCK_ADD8mi;
1407 else
1408 Opc = X86::LOCK_ADD8mr;
1410 break;
1411 case MVT::i16:
1412 if (isInc)
1413 Opc = X86::LOCK_INC16m;
1414 else if (isDec)
1415 Opc = X86::LOCK_DEC16m;
1416 else if (isSub) {
1417 if (isCN) {
1418 if (immSext8(Val.getNode()))
1419 Opc = X86::LOCK_SUB16mi8;
1420 else
1421 Opc = X86::LOCK_SUB16mi;
1422 } else
1423 Opc = X86::LOCK_SUB16mr;
1424 } else {
1425 if (isCN) {
1426 if (immSext8(Val.getNode()))
1427 Opc = X86::LOCK_ADD16mi8;
1428 else
1429 Opc = X86::LOCK_ADD16mi;
1430 } else
1431 Opc = X86::LOCK_ADD16mr;
1433 break;
1434 case MVT::i32:
1435 if (isInc)
1436 Opc = X86::LOCK_INC32m;
1437 else if (isDec)
1438 Opc = X86::LOCK_DEC32m;
1439 else if (isSub) {
1440 if (isCN) {
1441 if (immSext8(Val.getNode()))
1442 Opc = X86::LOCK_SUB32mi8;
1443 else
1444 Opc = X86::LOCK_SUB32mi;
1445 } else
1446 Opc = X86::LOCK_SUB32mr;
1447 } else {
1448 if (isCN) {
1449 if (immSext8(Val.getNode()))
1450 Opc = X86::LOCK_ADD32mi8;
1451 else
1452 Opc = X86::LOCK_ADD32mi;
1453 } else
1454 Opc = X86::LOCK_ADD32mr;
1456 break;
1457 case MVT::i64:
1458 if (isInc)
1459 Opc = X86::LOCK_INC64m;
1460 else if (isDec)
1461 Opc = X86::LOCK_DEC64m;
1462 else if (isSub) {
1463 Opc = X86::LOCK_SUB64mr;
1464 if (isCN) {
1465 if (immSext8(Val.getNode()))
1466 Opc = X86::LOCK_SUB64mi8;
1467 else if (i64immSExt32(Val.getNode()))
1468 Opc = X86::LOCK_SUB64mi32;
1470 } else {
1471 Opc = X86::LOCK_ADD64mr;
1472 if (isCN) {
1473 if (immSext8(Val.getNode()))
1474 Opc = X86::LOCK_ADD64mi8;
1475 else if (i64immSExt32(Val.getNode()))
1476 Opc = X86::LOCK_ADD64mi32;
1479 break;
1482 DebugLoc dl = Node->getDebugLoc();
1483 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1484 dl, NVT), 0);
1485 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1486 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1487 if (isInc || isDec) {
1488 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1489 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1490 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1491 SDValue RetVals[] = { Undef, Ret };
1492 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1493 } else {
1494 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1495 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1496 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1497 SDValue RetVals[] = { Undef, Ret };
1498 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1502 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1503 /// any uses which require the SF or OF bits to be accurate.
1504 static bool HasNoSignedComparisonUses(SDNode *N) {
1505 // Examine each user of the node.
1506 for (SDNode::use_iterator UI = N->use_begin(),
1507 UE = N->use_end(); UI != UE; ++UI) {
1508 // Only examine CopyToReg uses.
1509 if (UI->getOpcode() != ISD::CopyToReg)
1510 return false;
1511 // Only examine CopyToReg uses that copy to EFLAGS.
1512 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1513 X86::EFLAGS)
1514 return false;
1515 // Examine each user of the CopyToReg use.
1516 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1517 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1518 // Only examine the Flag result.
1519 if (FlagUI.getUse().getResNo() != 1) continue;
1520 // Anything unusual: assume conservatively.
1521 if (!FlagUI->isMachineOpcode()) return false;
1522 // Examine the opcode of the user.
1523 switch (FlagUI->getMachineOpcode()) {
1524 // These comparisons don't treat the most significant bit specially.
1525 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1526 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1527 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1528 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1529 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1530 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1531 case X86::CMOVA16rr: case X86::CMOVA16rm:
1532 case X86::CMOVA32rr: case X86::CMOVA32rm:
1533 case X86::CMOVA64rr: case X86::CMOVA64rm:
1534 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1535 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1536 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1537 case X86::CMOVB16rr: case X86::CMOVB16rm:
1538 case X86::CMOVB32rr: case X86::CMOVB32rm:
1539 case X86::CMOVB64rr: case X86::CMOVB64rm:
1540 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1541 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1542 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1543 case X86::CMOVE16rr: case X86::CMOVE16rm:
1544 case X86::CMOVE32rr: case X86::CMOVE32rm:
1545 case X86::CMOVE64rr: case X86::CMOVE64rm:
1546 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1547 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1548 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1549 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1550 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1551 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1552 case X86::CMOVP16rr: case X86::CMOVP16rm:
1553 case X86::CMOVP32rr: case X86::CMOVP32rm:
1554 case X86::CMOVP64rr: case X86::CMOVP64rm:
1555 continue;
1556 // Anything else: assume conservatively.
1557 default: return false;
1561 return true;
1564 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1565 EVT NVT = Node->getValueType(0);
1566 unsigned Opc, MOpc;
1567 unsigned Opcode = Node->getOpcode();
1568 DebugLoc dl = Node->getDebugLoc();
1570 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1572 if (Node->isMachineOpcode()) {
1573 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
1574 return NULL; // Already selected.
1577 switch (Opcode) {
1578 default: break;
1579 case X86ISD::GlobalBaseReg:
1580 return getGlobalBaseReg();
1582 case X86ISD::ATOMOR64_DAG:
1583 return SelectAtomic64(Node, X86::ATOMOR6432);
1584 case X86ISD::ATOMXOR64_DAG:
1585 return SelectAtomic64(Node, X86::ATOMXOR6432);
1586 case X86ISD::ATOMADD64_DAG:
1587 return SelectAtomic64(Node, X86::ATOMADD6432);
1588 case X86ISD::ATOMSUB64_DAG:
1589 return SelectAtomic64(Node, X86::ATOMSUB6432);
1590 case X86ISD::ATOMNAND64_DAG:
1591 return SelectAtomic64(Node, X86::ATOMNAND6432);
1592 case X86ISD::ATOMAND64_DAG:
1593 return SelectAtomic64(Node, X86::ATOMAND6432);
1594 case X86ISD::ATOMSWAP64_DAG:
1595 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1597 case ISD::ATOMIC_LOAD_ADD: {
1598 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1599 if (RetVal)
1600 return RetVal;
1601 break;
1604 case ISD::SMUL_LOHI:
1605 case ISD::UMUL_LOHI: {
1606 SDValue N0 = Node->getOperand(0);
1607 SDValue N1 = Node->getOperand(1);
1609 bool isSigned = Opcode == ISD::SMUL_LOHI;
1610 if (!isSigned) {
1611 switch (NVT.getSimpleVT().SimpleTy) {
1612 default: llvm_unreachable("Unsupported VT!");
1613 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1614 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1615 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1616 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1618 } else {
1619 switch (NVT.getSimpleVT().SimpleTy) {
1620 default: llvm_unreachable("Unsupported VT!");
1621 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1622 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1623 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1624 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1628 unsigned LoReg, HiReg;
1629 switch (NVT.getSimpleVT().SimpleTy) {
1630 default: llvm_unreachable("Unsupported VT!");
1631 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1632 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1633 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1634 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1637 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1638 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1639 // Multiply is commmutative.
1640 if (!foldedLoad) {
1641 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1642 if (foldedLoad)
1643 std::swap(N0, N1);
1646 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1647 N0, SDValue()).getValue(1);
1649 if (foldedLoad) {
1650 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1651 InFlag };
1652 SDNode *CNode =
1653 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1654 array_lengthof(Ops));
1655 InFlag = SDValue(CNode, 1);
1656 // Update the chain.
1657 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1658 } else {
1659 InFlag =
1660 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1663 // Prevent use of AH in a REX instruction by referencing AX instead.
1664 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1665 !SDValue(Node, 1).use_empty()) {
1666 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1667 X86::AX, MVT::i16, InFlag);
1668 InFlag = Result.getValue(2);
1669 // Get the low part if needed. Don't use getCopyFromReg for aliasing
1670 // registers.
1671 if (!SDValue(Node, 0).use_empty())
1672 ReplaceUses(SDValue(Node, 1),
1673 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1675 // Shift AX down 8 bits.
1676 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1677 Result,
1678 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1679 // Then truncate it down to i8.
1680 ReplaceUses(SDValue(Node, 1),
1681 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1683 // Copy the low half of the result, if it is needed.
1684 if (!SDValue(Node, 0).use_empty()) {
1685 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1686 LoReg, NVT, InFlag);
1687 InFlag = Result.getValue(2);
1688 ReplaceUses(SDValue(Node, 0), Result);
1689 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1691 // Copy the high half of the result, if it is needed.
1692 if (!SDValue(Node, 1).use_empty()) {
1693 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1694 HiReg, NVT, InFlag);
1695 InFlag = Result.getValue(2);
1696 ReplaceUses(SDValue(Node, 1), Result);
1697 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1700 return NULL;
1703 case ISD::SDIVREM:
1704 case ISD::UDIVREM: {
1705 SDValue N0 = Node->getOperand(0);
1706 SDValue N1 = Node->getOperand(1);
1708 bool isSigned = Opcode == ISD::SDIVREM;
1709 if (!isSigned) {
1710 switch (NVT.getSimpleVT().SimpleTy) {
1711 default: llvm_unreachable("Unsupported VT!");
1712 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1713 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1714 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1715 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1717 } else {
1718 switch (NVT.getSimpleVT().SimpleTy) {
1719 default: llvm_unreachable("Unsupported VT!");
1720 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1721 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1722 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1723 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1727 unsigned LoReg, HiReg, ClrReg;
1728 unsigned ClrOpcode, SExtOpcode;
1729 switch (NVT.getSimpleVT().SimpleTy) {
1730 default: llvm_unreachable("Unsupported VT!");
1731 case MVT::i8:
1732 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
1733 ClrOpcode = 0;
1734 SExtOpcode = X86::CBW;
1735 break;
1736 case MVT::i16:
1737 LoReg = X86::AX; HiReg = X86::DX;
1738 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX;
1739 SExtOpcode = X86::CWD;
1740 break;
1741 case MVT::i32:
1742 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1743 ClrOpcode = X86::MOV32r0;
1744 SExtOpcode = X86::CDQ;
1745 break;
1746 case MVT::i64:
1747 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1748 ClrOpcode = X86::MOV64r0;
1749 SExtOpcode = X86::CQO;
1750 break;
1753 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1754 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1755 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1757 SDValue InFlag;
1758 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1759 // Special case for div8, just use a move with zero extension to AX to
1760 // clear the upper 8 bits (AH).
1761 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1762 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1763 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1764 Move =
1765 SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1766 MVT::Other, Ops,
1767 array_lengthof(Ops)), 0);
1768 Chain = Move.getValue(1);
1769 ReplaceUses(N0.getValue(1), Chain);
1770 } else {
1771 Move =
1772 SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1773 Chain = CurDAG->getEntryNode();
1775 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1776 InFlag = Chain.getValue(1);
1777 } else {
1778 InFlag =
1779 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1780 LoReg, N0, SDValue()).getValue(1);
1781 if (isSigned && !signBitIsZero) {
1782 // Sign extend the low part into the high part.
1783 InFlag =
1784 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1785 } else {
1786 // Zero out the high part, effectively zero extending the input.
1787 SDValue ClrNode =
1788 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1789 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1790 ClrNode, InFlag).getValue(1);
1794 if (foldedLoad) {
1795 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1796 InFlag };
1797 SDNode *CNode =
1798 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1799 array_lengthof(Ops));
1800 InFlag = SDValue(CNode, 1);
1801 // Update the chain.
1802 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1803 } else {
1804 InFlag =
1805 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1808 // Prevent use of AH in a REX instruction by referencing AX instead.
1809 // Shift it down 8 bits.
1810 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1811 !SDValue(Node, 1).use_empty()) {
1812 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1813 X86::AX, MVT::i16, InFlag);
1814 InFlag = Result.getValue(2);
1816 // If we also need AL (the quotient), get it by extracting a subreg from
1817 // Result. The fast register allocator does not like multiple CopyFromReg
1818 // nodes using aliasing registers.
1819 if (!SDValue(Node, 0).use_empty())
1820 ReplaceUses(SDValue(Node, 0),
1821 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1823 // Shift AX right by 8 bits instead of using AH.
1824 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1825 Result,
1826 CurDAG->getTargetConstant(8, MVT::i8)),
1828 ReplaceUses(SDValue(Node, 1),
1829 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1831 // Copy the division (low) result, if it is needed.
1832 if (!SDValue(Node, 0).use_empty()) {
1833 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1834 LoReg, NVT, InFlag);
1835 InFlag = Result.getValue(2);
1836 ReplaceUses(SDValue(Node, 0), Result);
1837 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1839 // Copy the remainder (high) result, if it is needed.
1840 if (!SDValue(Node, 1).use_empty()) {
1841 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1842 HiReg, NVT, InFlag);
1843 InFlag = Result.getValue(2);
1844 ReplaceUses(SDValue(Node, 1), Result);
1845 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1847 return NULL;
1850 case X86ISD::CMP: {
1851 SDValue N0 = Node->getOperand(0);
1852 SDValue N1 = Node->getOperand(1);
1854 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1855 // use a smaller encoding.
1856 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
1857 HasNoSignedComparisonUses(Node))
1858 // Look past the truncate if CMP is the only use of it.
1859 N0 = N0.getOperand(0);
1860 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1861 N0.getValueType() != MVT::i8 &&
1862 X86::isZeroNode(N1)) {
1863 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1864 if (!C) break;
1866 // For example, convert "testl %eax, $8" to "testb %al, $8"
1867 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
1868 (!(C->getZExtValue() & 0x80) ||
1869 HasNoSignedComparisonUses(Node))) {
1870 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1871 SDValue Reg = N0.getNode()->getOperand(0);
1873 // On x86-32, only the ABCD registers have 8-bit subregisters.
1874 if (!Subtarget->is64Bit()) {
1875 TargetRegisterClass *TRC = 0;
1876 switch (N0.getValueType().getSimpleVT().SimpleTy) {
1877 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1878 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1879 default: llvm_unreachable("Unsupported TEST operand type!");
1881 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1882 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1883 Reg.getValueType(), Reg, RC), 0);
1886 // Extract the l-register.
1887 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
1888 MVT::i8, Reg);
1890 // Emit a testb.
1891 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
1894 // For example, "testl %eax, $2048" to "testb %ah, $8".
1895 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
1896 (!(C->getZExtValue() & 0x8000) ||
1897 HasNoSignedComparisonUses(Node))) {
1898 // Shift the immediate right by 8 bits.
1899 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
1900 MVT::i8);
1901 SDValue Reg = N0.getNode()->getOperand(0);
1903 // Put the value in an ABCD register.
1904 TargetRegisterClass *TRC = 0;
1905 switch (N0.getValueType().getSimpleVT().SimpleTy) {
1906 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
1907 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1908 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1909 default: llvm_unreachable("Unsupported TEST operand type!");
1911 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1912 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1913 Reg.getValueType(), Reg, RC), 0);
1915 // Extract the h-register.
1916 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
1917 MVT::i8, Reg);
1919 // Emit a testb. No special NOREX tricks are needed since there's
1920 // only one GPR operand!
1921 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
1922 Subreg, ShiftedImm);
1925 // For example, "testl %eax, $32776" to "testw %ax, $32776".
1926 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
1927 N0.getValueType() != MVT::i16 &&
1928 (!(C->getZExtValue() & 0x8000) ||
1929 HasNoSignedComparisonUses(Node))) {
1930 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
1931 SDValue Reg = N0.getNode()->getOperand(0);
1933 // Extract the 16-bit subregister.
1934 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
1935 MVT::i16, Reg);
1937 // Emit a testw.
1938 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
1941 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
1942 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
1943 N0.getValueType() == MVT::i64 &&
1944 (!(C->getZExtValue() & 0x80000000) ||
1945 HasNoSignedComparisonUses(Node))) {
1946 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
1947 SDValue Reg = N0.getNode()->getOperand(0);
1949 // Extract the 32-bit subregister.
1950 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
1951 MVT::i32, Reg);
1953 // Emit a testl.
1954 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
1957 break;
1961 SDNode *ResNode = SelectCode(Node);
1963 DEBUG(dbgs() << "=> ";
1964 if (ResNode == NULL || ResNode == Node)
1965 Node->dump(CurDAG);
1966 else
1967 ResNode->dump(CurDAG);
1968 dbgs() << '\n');
1970 return ResNode;
1973 bool X86DAGToDAGISel::
1974 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1975 std::vector<SDValue> &OutOps) {
1976 SDValue Op0, Op1, Op2, Op3, Op4;
1977 switch (ConstraintCode) {
1978 case 'o': // offsetable ??
1979 case 'v': // not offsetable ??
1980 default: return true;
1981 case 'm': // memory
1982 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
1983 return true;
1984 break;
1987 OutOps.push_back(Op0);
1988 OutOps.push_back(Op1);
1989 OutOps.push_back(Op2);
1990 OutOps.push_back(Op3);
1991 OutOps.push_back(Op4);
1992 return false;
1995 /// createX86ISelDag - This pass converts a legalized DAG into a
1996 /// X86-specific DAG, ready for instruction scheduling.
1998 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
1999 llvm::CodeGenOpt::Level OptLevel) {
2000 return new X86DAGToDAGISel(TM, OptLevel);