1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Target/TargetData.h"
9 #include "llvm/Target/TargetSelect.h"
10 #include "llvm/Transforms/Scalar.h"
11 #include "llvm/Support/IRBuilder.h"
18 //===----------------------------------------------------------------------===//
20 //===----------------------------------------------------------------------===//
22 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
23 // of these for known things.
28 tok_def
= -2, tok_extern
= -3,
31 tok_identifier
= -4, tok_number
= -5,
34 tok_if
= -6, tok_then
= -7, tok_else
= -8,
35 tok_for
= -9, tok_in
= -10,
38 tok_binary
= -11, tok_unary
= -12,
44 static std::string IdentifierStr
; // Filled in if tok_identifier
45 static double NumVal
; // Filled in if tok_number
47 /// gettok - Return the next token from standard input.
49 static int LastChar
= ' ';
51 // Skip any whitespace.
52 while (isspace(LastChar
))
55 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
56 IdentifierStr
= LastChar
;
57 while (isalnum((LastChar
= getchar())))
58 IdentifierStr
+= LastChar
;
60 if (IdentifierStr
== "def") return tok_def
;
61 if (IdentifierStr
== "extern") return tok_extern
;
62 if (IdentifierStr
== "if") return tok_if
;
63 if (IdentifierStr
== "then") return tok_then
;
64 if (IdentifierStr
== "else") return tok_else
;
65 if (IdentifierStr
== "for") return tok_for
;
66 if (IdentifierStr
== "in") return tok_in
;
67 if (IdentifierStr
== "binary") return tok_binary
;
68 if (IdentifierStr
== "unary") return tok_unary
;
69 if (IdentifierStr
== "var") return tok_var
;
70 return tok_identifier
;
73 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
78 } while (isdigit(LastChar
) || LastChar
== '.');
80 NumVal
= strtod(NumStr
.c_str(), 0);
84 if (LastChar
== '#') {
85 // Comment until end of line.
86 do LastChar
= getchar();
87 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
93 // Check for end of file. Don't eat the EOF.
97 // Otherwise, just return the character as its ascii value.
98 int ThisChar
= LastChar
;
103 //===----------------------------------------------------------------------===//
104 // Abstract Syntax Tree (aka Parse Tree)
105 //===----------------------------------------------------------------------===//
107 /// ExprAST - Base class for all expression nodes.
110 virtual ~ExprAST() {}
111 virtual Value
*Codegen() = 0;
114 /// NumberExprAST - Expression class for numeric literals like "1.0".
115 class NumberExprAST
: public ExprAST
{
118 NumberExprAST(double val
) : Val(val
) {}
119 virtual Value
*Codegen();
122 /// VariableExprAST - Expression class for referencing a variable, like "a".
123 class VariableExprAST
: public ExprAST
{
126 VariableExprAST(const std::string
&name
) : Name(name
) {}
127 const std::string
&getName() const { return Name
; }
128 virtual Value
*Codegen();
131 /// UnaryExprAST - Expression class for a unary operator.
132 class UnaryExprAST
: public ExprAST
{
136 UnaryExprAST(char opcode
, ExprAST
*operand
)
137 : Opcode(opcode
), Operand(operand
) {}
138 virtual Value
*Codegen();
141 /// BinaryExprAST - Expression class for a binary operator.
142 class BinaryExprAST
: public ExprAST
{
146 BinaryExprAST(char op
, ExprAST
*lhs
, ExprAST
*rhs
)
147 : Op(op
), LHS(lhs
), RHS(rhs
) {}
148 virtual Value
*Codegen();
151 /// CallExprAST - Expression class for function calls.
152 class CallExprAST
: public ExprAST
{
154 std::vector
<ExprAST
*> Args
;
156 CallExprAST(const std::string
&callee
, std::vector
<ExprAST
*> &args
)
157 : Callee(callee
), Args(args
) {}
158 virtual Value
*Codegen();
161 /// IfExprAST - Expression class for if/then/else.
162 class IfExprAST
: public ExprAST
{
163 ExprAST
*Cond
, *Then
, *Else
;
165 IfExprAST(ExprAST
*cond
, ExprAST
*then
, ExprAST
*_else
)
166 : Cond(cond
), Then(then
), Else(_else
) {}
167 virtual Value
*Codegen();
170 /// ForExprAST - Expression class for for/in.
171 class ForExprAST
: public ExprAST
{
173 ExprAST
*Start
, *End
, *Step
, *Body
;
175 ForExprAST(const std::string
&varname
, ExprAST
*start
, ExprAST
*end
,
176 ExprAST
*step
, ExprAST
*body
)
177 : VarName(varname
), Start(start
), End(end
), Step(step
), Body(body
) {}
178 virtual Value
*Codegen();
181 /// VarExprAST - Expression class for var/in
182 class VarExprAST
: public ExprAST
{
183 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
186 VarExprAST(const std::vector
<std::pair
<std::string
, ExprAST
*> > &varnames
,
188 : VarNames(varnames
), Body(body
) {}
190 virtual Value
*Codegen();
193 /// PrototypeAST - This class represents the "prototype" for a function,
194 /// which captures its argument names as well as if it is an operator.
197 std::vector
<std::string
> Args
;
199 unsigned Precedence
; // Precedence if a binary op.
201 PrototypeAST(const std::string
&name
, const std::vector
<std::string
> &args
,
202 bool isoperator
= false, unsigned prec
= 0)
203 : Name(name
), Args(args
), isOperator(isoperator
), Precedence(prec
) {}
205 bool isUnaryOp() const { return isOperator
&& Args
.size() == 1; }
206 bool isBinaryOp() const { return isOperator
&& Args
.size() == 2; }
208 char getOperatorName() const {
209 assert(isUnaryOp() || isBinaryOp());
210 return Name
[Name
.size()-1];
213 unsigned getBinaryPrecedence() const { return Precedence
; }
217 void CreateArgumentAllocas(Function
*F
);
220 /// FunctionAST - This class represents a function definition itself.
225 FunctionAST(PrototypeAST
*proto
, ExprAST
*body
)
226 : Proto(proto
), Body(body
) {}
231 //===----------------------------------------------------------------------===//
233 //===----------------------------------------------------------------------===//
235 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
236 /// token the parser is looking at. getNextToken reads another token from the
237 /// lexer and updates CurTok with its results.
239 static int getNextToken() {
240 return CurTok
= gettok();
243 /// BinopPrecedence - This holds the precedence for each binary operator that is
245 static std::map
<char, int> BinopPrecedence
;
247 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
248 static int GetTokPrecedence() {
249 if (!isascii(CurTok
))
252 // Make sure it's a declared binop.
253 int TokPrec
= BinopPrecedence
[CurTok
];
254 if (TokPrec
<= 0) return -1;
258 /// Error* - These are little helper functions for error handling.
259 ExprAST
*Error(const char *Str
) { fprintf(stderr
, "Error: %s\n", Str
);return 0;}
260 PrototypeAST
*ErrorP(const char *Str
) { Error(Str
); return 0; }
261 FunctionAST
*ErrorF(const char *Str
) { Error(Str
); return 0; }
263 static ExprAST
*ParseExpression();
267 /// ::= identifier '(' expression* ')'
268 static ExprAST
*ParseIdentifierExpr() {
269 std::string IdName
= IdentifierStr
;
271 getNextToken(); // eat identifier.
273 if (CurTok
!= '(') // Simple variable ref.
274 return new VariableExprAST(IdName
);
277 getNextToken(); // eat (
278 std::vector
<ExprAST
*> Args
;
281 ExprAST
*Arg
= ParseExpression();
285 if (CurTok
== ')') break;
288 return Error("Expected ')' or ',' in argument list");
296 return new CallExprAST(IdName
, Args
);
299 /// numberexpr ::= number
300 static ExprAST
*ParseNumberExpr() {
301 ExprAST
*Result
= new NumberExprAST(NumVal
);
302 getNextToken(); // consume the number
306 /// parenexpr ::= '(' expression ')'
307 static ExprAST
*ParseParenExpr() {
308 getNextToken(); // eat (.
309 ExprAST
*V
= ParseExpression();
313 return Error("expected ')'");
314 getNextToken(); // eat ).
318 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
319 static ExprAST
*ParseIfExpr() {
320 getNextToken(); // eat the if.
323 ExprAST
*Cond
= ParseExpression();
326 if (CurTok
!= tok_then
)
327 return Error("expected then");
328 getNextToken(); // eat the then
330 ExprAST
*Then
= ParseExpression();
331 if (Then
== 0) return 0;
333 if (CurTok
!= tok_else
)
334 return Error("expected else");
338 ExprAST
*Else
= ParseExpression();
341 return new IfExprAST(Cond
, Then
, Else
);
344 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
345 static ExprAST
*ParseForExpr() {
346 getNextToken(); // eat the for.
348 if (CurTok
!= tok_identifier
)
349 return Error("expected identifier after for");
351 std::string IdName
= IdentifierStr
;
352 getNextToken(); // eat identifier.
355 return Error("expected '=' after for");
356 getNextToken(); // eat '='.
359 ExprAST
*Start
= ParseExpression();
360 if (Start
== 0) return 0;
362 return Error("expected ',' after for start value");
365 ExprAST
*End
= ParseExpression();
366 if (End
== 0) return 0;
368 // The step value is optional.
372 Step
= ParseExpression();
373 if (Step
== 0) return 0;
376 if (CurTok
!= tok_in
)
377 return Error("expected 'in' after for");
378 getNextToken(); // eat 'in'.
380 ExprAST
*Body
= ParseExpression();
381 if (Body
== 0) return 0;
383 return new ForExprAST(IdName
, Start
, End
, Step
, Body
);
386 /// varexpr ::= 'var' identifier ('=' expression)?
387 // (',' identifier ('=' expression)?)* 'in' expression
388 static ExprAST
*ParseVarExpr() {
389 getNextToken(); // eat the var.
391 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
393 // At least one variable name is required.
394 if (CurTok
!= tok_identifier
)
395 return Error("expected identifier after var");
398 std::string Name
= IdentifierStr
;
399 getNextToken(); // eat identifier.
401 // Read the optional initializer.
404 getNextToken(); // eat the '='.
406 Init
= ParseExpression();
407 if (Init
== 0) return 0;
410 VarNames
.push_back(std::make_pair(Name
, Init
));
412 // End of var list, exit loop.
413 if (CurTok
!= ',') break;
414 getNextToken(); // eat the ','.
416 if (CurTok
!= tok_identifier
)
417 return Error("expected identifier list after var");
420 // At this point, we have to have 'in'.
421 if (CurTok
!= tok_in
)
422 return Error("expected 'in' keyword after 'var'");
423 getNextToken(); // eat 'in'.
425 ExprAST
*Body
= ParseExpression();
426 if (Body
== 0) return 0;
428 return new VarExprAST(VarNames
, Body
);
432 /// ::= identifierexpr
438 static ExprAST
*ParsePrimary() {
440 default: return Error("unknown token when expecting an expression");
441 case tok_identifier
: return ParseIdentifierExpr();
442 case tok_number
: return ParseNumberExpr();
443 case '(': return ParseParenExpr();
444 case tok_if
: return ParseIfExpr();
445 case tok_for
: return ParseForExpr();
446 case tok_var
: return ParseVarExpr();
453 static ExprAST
*ParseUnary() {
454 // If the current token is not an operator, it must be a primary expr.
455 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
456 return ParsePrimary();
458 // If this is a unary operator, read it.
461 if (ExprAST
*Operand
= ParseUnary())
462 return new UnaryExprAST(Opc
, Operand
);
468 static ExprAST
*ParseBinOpRHS(int ExprPrec
, ExprAST
*LHS
) {
469 // If this is a binop, find its precedence.
471 int TokPrec
= GetTokPrecedence();
473 // If this is a binop that binds at least as tightly as the current binop,
474 // consume it, otherwise we are done.
475 if (TokPrec
< ExprPrec
)
478 // Okay, we know this is a binop.
480 getNextToken(); // eat binop
482 // Parse the unary expression after the binary operator.
483 ExprAST
*RHS
= ParseUnary();
486 // If BinOp binds less tightly with RHS than the operator after RHS, let
487 // the pending operator take RHS as its LHS.
488 int NextPrec
= GetTokPrecedence();
489 if (TokPrec
< NextPrec
) {
490 RHS
= ParseBinOpRHS(TokPrec
+1, RHS
);
491 if (RHS
== 0) return 0;
495 LHS
= new BinaryExprAST(BinOp
, LHS
, RHS
);
500 /// ::= unary binoprhs
502 static ExprAST
*ParseExpression() {
503 ExprAST
*LHS
= ParseUnary();
506 return ParseBinOpRHS(0, LHS
);
510 /// ::= id '(' id* ')'
511 /// ::= binary LETTER number? (id, id)
512 /// ::= unary LETTER (id)
513 static PrototypeAST
*ParsePrototype() {
516 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
517 unsigned BinaryPrecedence
= 30;
521 return ErrorP("Expected function name in prototype");
523 FnName
= IdentifierStr
;
529 if (!isascii(CurTok
))
530 return ErrorP("Expected unary operator");
532 FnName
+= (char)CurTok
;
538 if (!isascii(CurTok
))
539 return ErrorP("Expected binary operator");
541 FnName
+= (char)CurTok
;
545 // Read the precedence if present.
546 if (CurTok
== tok_number
) {
547 if (NumVal
< 1 || NumVal
> 100)
548 return ErrorP("Invalid precedecnce: must be 1..100");
549 BinaryPrecedence
= (unsigned)NumVal
;
556 return ErrorP("Expected '(' in prototype");
558 std::vector
<std::string
> ArgNames
;
559 while (getNextToken() == tok_identifier
)
560 ArgNames
.push_back(IdentifierStr
);
562 return ErrorP("Expected ')' in prototype");
565 getNextToken(); // eat ')'.
567 // Verify right number of names for operator.
568 if (Kind
&& ArgNames
.size() != Kind
)
569 return ErrorP("Invalid number of operands for operator");
571 return new PrototypeAST(FnName
, ArgNames
, Kind
!= 0, BinaryPrecedence
);
574 /// definition ::= 'def' prototype expression
575 static FunctionAST
*ParseDefinition() {
576 getNextToken(); // eat def.
577 PrototypeAST
*Proto
= ParsePrototype();
578 if (Proto
== 0) return 0;
580 if (ExprAST
*E
= ParseExpression())
581 return new FunctionAST(Proto
, E
);
585 /// toplevelexpr ::= expression
586 static FunctionAST
*ParseTopLevelExpr() {
587 if (ExprAST
*E
= ParseExpression()) {
588 // Make an anonymous proto.
589 PrototypeAST
*Proto
= new PrototypeAST("", std::vector
<std::string
>());
590 return new FunctionAST(Proto
, E
);
595 /// external ::= 'extern' prototype
596 static PrototypeAST
*ParseExtern() {
597 getNextToken(); // eat extern.
598 return ParsePrototype();
601 //===----------------------------------------------------------------------===//
603 //===----------------------------------------------------------------------===//
605 static Module
*TheModule
;
606 static IRBuilder
<> Builder(getGlobalContext());
607 static std::map
<std::string
, AllocaInst
*> NamedValues
;
608 static FunctionPassManager
*TheFPM
;
610 Value
*ErrorV(const char *Str
) { Error(Str
); return 0; }
612 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
613 /// the function. This is used for mutable variables etc.
614 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
615 const std::string
&VarName
) {
616 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
617 TheFunction
->getEntryBlock().begin());
618 return TmpB
.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
622 Value
*NumberExprAST::Codegen() {
623 return ConstantFP::get(getGlobalContext(), APFloat(Val
));
626 Value
*VariableExprAST::Codegen() {
627 // Look this variable up in the function.
628 Value
*V
= NamedValues
[Name
];
629 if (V
== 0) return ErrorV("Unknown variable name");
632 return Builder
.CreateLoad(V
, Name
.c_str());
635 Value
*UnaryExprAST::Codegen() {
636 Value
*OperandV
= Operand
->Codegen();
637 if (OperandV
== 0) return 0;
639 Function
*F
= TheModule
->getFunction(std::string("unary")+Opcode
);
641 return ErrorV("Unknown unary operator");
643 return Builder
.CreateCall(F
, OperandV
, "unop");
646 Value
*BinaryExprAST::Codegen() {
647 // Special case '=' because we don't want to emit the LHS as an expression.
649 // Assignment requires the LHS to be an identifier.
650 VariableExprAST
*LHSE
= dynamic_cast<VariableExprAST
*>(LHS
);
652 return ErrorV("destination of '=' must be a variable");
654 Value
*Val
= RHS
->Codegen();
655 if (Val
== 0) return 0;
658 Value
*Variable
= NamedValues
[LHSE
->getName()];
659 if (Variable
== 0) return ErrorV("Unknown variable name");
661 Builder
.CreateStore(Val
, Variable
);
665 Value
*L
= LHS
->Codegen();
666 Value
*R
= RHS
->Codegen();
667 if (L
== 0 || R
== 0) return 0;
670 case '+': return Builder
.CreateFAdd(L
, R
, "addtmp");
671 case '-': return Builder
.CreateFSub(L
, R
, "subtmp");
672 case '*': return Builder
.CreateFMul(L
, R
, "multmp");
674 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
675 // Convert bool 0/1 to double 0.0 or 1.0
676 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(getGlobalContext()),
681 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
683 Function
*F
= TheModule
->getFunction(std::string("binary")+Op
);
684 assert(F
&& "binary operator not found!");
686 Value
*Ops
[] = { L
, R
};
687 return Builder
.CreateCall(F
, Ops
, Ops
+2, "binop");
690 Value
*CallExprAST::Codegen() {
691 // Look up the name in the global module table.
692 Function
*CalleeF
= TheModule
->getFunction(Callee
);
694 return ErrorV("Unknown function referenced");
696 // If argument mismatch error.
697 if (CalleeF
->arg_size() != Args
.size())
698 return ErrorV("Incorrect # arguments passed");
700 std::vector
<Value
*> ArgsV
;
701 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
702 ArgsV
.push_back(Args
[i
]->Codegen());
703 if (ArgsV
.back() == 0) return 0;
706 return Builder
.CreateCall(CalleeF
, ArgsV
.begin(), ArgsV
.end(), "calltmp");
709 Value
*IfExprAST::Codegen() {
710 Value
*CondV
= Cond
->Codegen();
711 if (CondV
== 0) return 0;
713 // Convert condition to a bool by comparing equal to 0.0.
714 CondV
= Builder
.CreateFCmpONE(CondV
,
715 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
718 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
720 // Create blocks for the then and else cases. Insert the 'then' block at the
721 // end of the function.
722 BasicBlock
*ThenBB
= BasicBlock::Create(getGlobalContext(), "then", TheFunction
);
723 BasicBlock
*ElseBB
= BasicBlock::Create(getGlobalContext(), "else");
724 BasicBlock
*MergeBB
= BasicBlock::Create(getGlobalContext(), "ifcont");
726 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
729 Builder
.SetInsertPoint(ThenBB
);
731 Value
*ThenV
= Then
->Codegen();
732 if (ThenV
== 0) return 0;
734 Builder
.CreateBr(MergeBB
);
735 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
736 ThenBB
= Builder
.GetInsertBlock();
739 TheFunction
->getBasicBlockList().push_back(ElseBB
);
740 Builder
.SetInsertPoint(ElseBB
);
742 Value
*ElseV
= Else
->Codegen();
743 if (ElseV
== 0) return 0;
745 Builder
.CreateBr(MergeBB
);
746 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
747 ElseBB
= Builder
.GetInsertBlock();
750 TheFunction
->getBasicBlockList().push_back(MergeBB
);
751 Builder
.SetInsertPoint(MergeBB
);
752 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(getGlobalContext()),
755 PN
->addIncoming(ThenV
, ThenBB
);
756 PN
->addIncoming(ElseV
, ElseBB
);
760 Value
*ForExprAST::Codegen() {
762 // var = alloca double
765 // store start -> var
776 // nextvar = curvar + step
777 // store nextvar -> var
778 // br endcond, loop, endloop
781 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
783 // Create an alloca for the variable in the entry block.
784 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
786 // Emit the start code first, without 'variable' in scope.
787 Value
*StartVal
= Start
->Codegen();
788 if (StartVal
== 0) return 0;
790 // Store the value into the alloca.
791 Builder
.CreateStore(StartVal
, Alloca
);
793 // Make the new basic block for the loop header, inserting after current
795 BasicBlock
*LoopBB
= BasicBlock::Create(getGlobalContext(), "loop", TheFunction
);
797 // Insert an explicit fall through from the current block to the LoopBB.
798 Builder
.CreateBr(LoopBB
);
800 // Start insertion in LoopBB.
801 Builder
.SetInsertPoint(LoopBB
);
803 // Within the loop, the variable is defined equal to the PHI node. If it
804 // shadows an existing variable, we have to restore it, so save it now.
805 AllocaInst
*OldVal
= NamedValues
[VarName
];
806 NamedValues
[VarName
] = Alloca
;
808 // Emit the body of the loop. This, like any other expr, can change the
809 // current BB. Note that we ignore the value computed by the body, but don't
811 if (Body
->Codegen() == 0)
814 // Emit the step value.
817 StepVal
= Step
->Codegen();
818 if (StepVal
== 0) return 0;
820 // If not specified, use 1.0.
821 StepVal
= ConstantFP::get(getGlobalContext(), APFloat(1.0));
824 // Compute the end condition.
825 Value
*EndCond
= End
->Codegen();
826 if (EndCond
== 0) return EndCond
;
828 // Reload, increment, and restore the alloca. This handles the case where
829 // the body of the loop mutates the variable.
830 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
831 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
832 Builder
.CreateStore(NextVar
, Alloca
);
834 // Convert condition to a bool by comparing equal to 0.0.
835 EndCond
= Builder
.CreateFCmpONE(EndCond
,
836 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
839 // Create the "after loop" block and insert it.
840 BasicBlock
*AfterBB
= BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction
);
842 // Insert the conditional branch into the end of LoopEndBB.
843 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
845 // Any new code will be inserted in AfterBB.
846 Builder
.SetInsertPoint(AfterBB
);
848 // Restore the unshadowed variable.
850 NamedValues
[VarName
] = OldVal
;
852 NamedValues
.erase(VarName
);
855 // for expr always returns 0.0.
856 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
859 Value
*VarExprAST::Codegen() {
860 std::vector
<AllocaInst
*> OldBindings
;
862 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
864 // Register all variables and emit their initializer.
865 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
866 const std::string
&VarName
= VarNames
[i
].first
;
867 ExprAST
*Init
= VarNames
[i
].second
;
869 // Emit the initializer before adding the variable to scope, this prevents
870 // the initializer from referencing the variable itself, and permits stuff
873 // var a = a in ... # refers to outer 'a'.
876 InitVal
= Init
->Codegen();
877 if (InitVal
== 0) return 0;
878 } else { // If not specified, use 0.0.
879 InitVal
= ConstantFP::get(getGlobalContext(), APFloat(0.0));
882 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
883 Builder
.CreateStore(InitVal
, Alloca
);
885 // Remember the old variable binding so that we can restore the binding when
887 OldBindings
.push_back(NamedValues
[VarName
]);
889 // Remember this binding.
890 NamedValues
[VarName
] = Alloca
;
893 // Codegen the body, now that all vars are in scope.
894 Value
*BodyVal
= Body
->Codegen();
895 if (BodyVal
== 0) return 0;
897 // Pop all our variables from scope.
898 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
899 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
901 // Return the body computation.
905 Function
*PrototypeAST::Codegen() {
906 // Make the function type: double(double,double) etc.
907 std::vector
<const Type
*> Doubles(Args
.size(),
908 Type::getDoubleTy(getGlobalContext()));
909 FunctionType
*FT
= FunctionType::get(Type::getDoubleTy(getGlobalContext()),
912 Function
*F
= Function::Create(FT
, Function::ExternalLinkage
, Name
, TheModule
);
914 // If F conflicted, there was already something named 'Name'. If it has a
915 // body, don't allow redefinition or reextern.
916 if (F
->getName() != Name
) {
917 // Delete the one we just made and get the existing one.
918 F
->eraseFromParent();
919 F
= TheModule
->getFunction(Name
);
921 // If F already has a body, reject this.
923 ErrorF("redefinition of function");
927 // If F took a different number of args, reject.
928 if (F
->arg_size() != Args
.size()) {
929 ErrorF("redefinition of function with different # args");
934 // Set names for all arguments.
936 for (Function::arg_iterator AI
= F
->arg_begin(); Idx
!= Args
.size();
938 AI
->setName(Args
[Idx
]);
943 /// CreateArgumentAllocas - Create an alloca for each argument and register the
944 /// argument in the symbol table so that references to it will succeed.
945 void PrototypeAST::CreateArgumentAllocas(Function
*F
) {
946 Function::arg_iterator AI
= F
->arg_begin();
947 for (unsigned Idx
= 0, e
= Args
.size(); Idx
!= e
; ++Idx
, ++AI
) {
948 // Create an alloca for this variable.
949 AllocaInst
*Alloca
= CreateEntryBlockAlloca(F
, Args
[Idx
]);
951 // Store the initial value into the alloca.
952 Builder
.CreateStore(AI
, Alloca
);
954 // Add arguments to variable symbol table.
955 NamedValues
[Args
[Idx
]] = Alloca
;
959 Function
*FunctionAST::Codegen() {
962 Function
*TheFunction
= Proto
->Codegen();
963 if (TheFunction
== 0)
966 // If this is an operator, install it.
967 if (Proto
->isBinaryOp())
968 BinopPrecedence
[Proto
->getOperatorName()] = Proto
->getBinaryPrecedence();
970 // Create a new basic block to start insertion into.
971 BasicBlock
*BB
= BasicBlock::Create(getGlobalContext(), "entry", TheFunction
);
972 Builder
.SetInsertPoint(BB
);
974 // Add all arguments to the symbol table and create their allocas.
975 Proto
->CreateArgumentAllocas(TheFunction
);
977 if (Value
*RetVal
= Body
->Codegen()) {
978 // Finish off the function.
979 Builder
.CreateRet(RetVal
);
981 // Validate the generated code, checking for consistency.
982 verifyFunction(*TheFunction
);
984 // Optimize the function.
985 TheFPM
->run(*TheFunction
);
990 // Error reading body, remove function.
991 TheFunction
->eraseFromParent();
993 if (Proto
->isBinaryOp())
994 BinopPrecedence
.erase(Proto
->getOperatorName());
998 //===----------------------------------------------------------------------===//
999 // Top-Level parsing and JIT Driver
1000 //===----------------------------------------------------------------------===//
1002 static ExecutionEngine
*TheExecutionEngine
;
1004 static void HandleDefinition() {
1005 if (FunctionAST
*F
= ParseDefinition()) {
1006 if (Function
*LF
= F
->Codegen()) {
1007 fprintf(stderr
, "Read function definition:");
1011 // Skip token for error recovery.
1016 static void HandleExtern() {
1017 if (PrototypeAST
*P
= ParseExtern()) {
1018 if (Function
*F
= P
->Codegen()) {
1019 fprintf(stderr
, "Read extern: ");
1023 // Skip token for error recovery.
1028 static void HandleTopLevelExpression() {
1029 // Evaluate a top-level expression into an anonymous function.
1030 if (FunctionAST
*F
= ParseTopLevelExpr()) {
1031 if (Function
*LF
= F
->Codegen()) {
1032 // JIT the function, returning a function pointer.
1033 void *FPtr
= TheExecutionEngine
->getPointerToFunction(LF
);
1035 // Cast it to the right type (takes no arguments, returns a double) so we
1036 // can call it as a native function.
1037 double (*FP
)() = (double (*)())(intptr_t)FPtr
;
1038 fprintf(stderr
, "Evaluated to %f\n", FP());
1041 // Skip token for error recovery.
1046 /// top ::= definition | external | expression | ';'
1047 static void MainLoop() {
1049 fprintf(stderr
, "ready> ");
1051 case tok_eof
: return;
1052 case ';': getNextToken(); break; // ignore top-level semicolons.
1053 case tok_def
: HandleDefinition(); break;
1054 case tok_extern
: HandleExtern(); break;
1055 default: HandleTopLevelExpression(); break;
1060 //===----------------------------------------------------------------------===//
1061 // "Library" functions that can be "extern'd" from user code.
1062 //===----------------------------------------------------------------------===//
1064 /// putchard - putchar that takes a double and returns 0.
1066 double putchard(double X
) {
1071 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1073 double printd(double X
) {
1078 //===----------------------------------------------------------------------===//
1079 // Main driver code.
1080 //===----------------------------------------------------------------------===//
1083 InitializeNativeTarget();
1084 LLVMContext
&Context
= getGlobalContext();
1086 // Install standard binary operators.
1087 // 1 is lowest precedence.
1088 BinopPrecedence
['='] = 2;
1089 BinopPrecedence
['<'] = 10;
1090 BinopPrecedence
['+'] = 20;
1091 BinopPrecedence
['-'] = 20;
1092 BinopPrecedence
['*'] = 40; // highest.
1094 // Prime the first token.
1095 fprintf(stderr
, "ready> ");
1098 // Make the module, which holds all the code.
1099 TheModule
= new Module("my cool jit", Context
);
1101 // Create the JIT. This takes ownership of the module.
1103 TheExecutionEngine
= EngineBuilder(TheModule
).setErrorStr(&ErrStr
).create();
1104 if (!TheExecutionEngine
) {
1105 fprintf(stderr
, "Could not create ExecutionEngine: %s\n", ErrStr
.c_str());
1109 FunctionPassManager
OurFPM(TheModule
);
1111 // Set up the optimizer pipeline. Start with registering info about how the
1112 // target lays out data structures.
1113 OurFPM
.add(new TargetData(*TheExecutionEngine
->getTargetData()));
1114 // Promote allocas to registers.
1115 OurFPM
.add(createPromoteMemoryToRegisterPass());
1116 // Do simple "peephole" optimizations and bit-twiddling optzns.
1117 OurFPM
.add(createInstructionCombiningPass());
1118 // Reassociate expressions.
1119 OurFPM
.add(createReassociatePass());
1120 // Eliminate Common SubExpressions.
1121 OurFPM
.add(createGVNPass());
1122 // Simplify the control flow graph (deleting unreachable blocks, etc).
1123 OurFPM
.add(createCFGSimplificationPass());
1125 OurFPM
.doInitialization();
1127 // Set the global so the code gen can use this.
1130 // Run the main "interpreter loop" now.
1135 // Print out all of the generated code.