zpu: wip on DAG to DAG
[llvm/zpu.git] / docs / tutorial / LangImpl7.html
blobfa5afeec9d2872899f22341cb93a54ec01df7f23
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
4 <html>
5 <head>
6 <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
7 construction</title>
8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
9 <meta name="author" content="Chris Lattner">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
17 <ul>
18 <li><a href="index.html">Up to Tutorial Index</a></li>
19 <li>Chapter 7
20 <ol>
21 <li><a href="#intro">Chapter 7 Introduction</a></li>
22 <li><a href="#why">Why is this a hard problem?</a></li>
23 <li><a href="#memory">Memory in LLVM</a></li>
24 <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
25 <li><a href="#adjustments">Adjusting Existing Variables for
26 Mutation</a></li>
27 <li><a href="#assignment">New Assignment Operator</a></li>
28 <li><a href="#localvars">User-defined Local Variables</a></li>
29 <li><a href="#code">Full Code Listing</a></li>
30 </ol>
31 </li>
32 <li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
33 tidbits</li>
34 </ul>
36 <div class="doc_author">
37 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
38 </div>
40 <!-- *********************************************************************** -->
41 <div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
42 <!-- *********************************************************************** -->
44 <div class="doc_text">
46 <p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
47 with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
48 respectable, albeit simple, <a
49 href="http://en.wikipedia.org/wiki/Functional_programming">functional
50 programming language</a>. In our journey, we learned some parsing techniques,
51 how to build and represent an AST, how to build LLVM IR, and how to optimize
52 the resultant code as well as JIT compile it.</p>
54 <p>While Kaleidoscope is interesting as a functional language, the fact that it
55 is functional makes it "too easy" to generate LLVM IR for it. In particular, a
56 functional language makes it very easy to build LLVM IR directly in <a
57 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
58 Since LLVM requires that the input code be in SSA form, this is a very nice
59 property and it is often unclear to newcomers how to generate code for an
60 imperative language with mutable variables.</p>
62 <p>The short (and happy) summary of this chapter is that there is no need for
63 your front-end to build SSA form: LLVM provides highly tuned and well tested
64 support for this, though the way it works is a bit unexpected for some.</p>
66 </div>
68 <!-- *********************************************************************** -->
69 <div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
70 <!-- *********************************************************************** -->
72 <div class="doc_text">
74 <p>
75 To understand why mutable variables cause complexities in SSA construction,
76 consider this extremely simple C example:
77 </p>
79 <div class="doc_code">
80 <pre>
81 int G, H;
82 int test(_Bool Condition) {
83 int X;
84 if (Condition)
85 X = G;
86 else
87 X = H;
88 return X;
90 </pre>
91 </div>
93 <p>In this case, we have the variable "X", whose value depends on the path
94 executed in the program. Because there are two different possible values for X
95 before the return instruction, a PHI node is inserted to merge the two values.
96 The LLVM IR that we want for this example looks like this:</p>
98 <div class="doc_code">
99 <pre>
100 @G = weak global i32 0 ; type of @G is i32*
101 @H = weak global i32 0 ; type of @H is i32*
103 define i32 @test(i1 %Condition) {
104 entry:
105 br i1 %Condition, label %cond_true, label %cond_false
107 cond_true:
108 %X.0 = load i32* @G
109 br label %cond_next
111 cond_false:
112 %X.1 = load i32* @H
113 br label %cond_next
115 cond_next:
116 %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
117 ret i32 %X.2
119 </pre>
120 </div>
122 <p>In this example, the loads from the G and H global variables are explicit in
123 the LLVM IR, and they live in the then/else branches of the if statement
124 (cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
125 in the cond_next block selects the right value to use based on where control
126 flow is coming from: if control flow comes from the cond_false block, X.2 gets
127 the value of X.1. Alternatively, if control flow comes from cond_true, it gets
128 the value of X.0. The intent of this chapter is not to explain the details of
129 SSA form. For more information, see one of the many <a
130 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
131 references</a>.</p>
133 <p>The question for this article is "who places the phi nodes when lowering
134 assignments to mutable variables?". The issue here is that LLVM
135 <em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
136 However, SSA construction requires non-trivial algorithms and data structures,
137 so it is inconvenient and wasteful for every front-end to have to reproduce this
138 logic.</p>
140 </div>
142 <!-- *********************************************************************** -->
143 <div class="doc_section"><a name="memory">Memory in LLVM</a></div>
144 <!-- *********************************************************************** -->
146 <div class="doc_text">
148 <p>The 'trick' here is that while LLVM does require all register values to be
149 in SSA form, it does not require (or permit) memory objects to be in SSA form.
150 In the example above, note that the loads from G and H are direct accesses to
151 G and H: they are not renamed or versioned. This differs from some other
152 compiler systems, which do try to version memory objects. In LLVM, instead of
153 encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
154 href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
155 demand.</p>
158 With this in mind, the high-level idea is that we want to make a stack variable
159 (which lives in memory, because it is on the stack) for each mutable object in
160 a function. To take advantage of this trick, we need to talk about how LLVM
161 represents stack variables.
162 </p>
164 <p>In LLVM, all memory accesses are explicit with load/store instructions, and
165 it is carefully designed not to have (or need) an "address-of" operator. Notice
166 how the type of the @G/@H global variables is actually "i32*" even though the
167 variable is defined as "i32". What this means is that @G defines <em>space</em>
168 for an i32 in the global data area, but its <em>name</em> actually refers to the
169 address for that space. Stack variables work the same way, except that instead of
170 being declared with global variable definitions, they are declared with the
171 <a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
173 <div class="doc_code">
174 <pre>
175 define i32 @example() {
176 entry:
177 %X = alloca i32 ; type of %X is i32*.
179 %tmp = load i32* %X ; load the stack value %X from the stack.
180 %tmp2 = add i32 %tmp, 1 ; increment it
181 store i32 %tmp2, i32* %X ; store it back
183 </pre>
184 </div>
186 <p>This code shows an example of how you can declare and manipulate a stack
187 variable in the LLVM IR. Stack memory allocated with the alloca instruction is
188 fully general: you can pass the address of the stack slot to functions, you can
189 store it in other variables, etc. In our example above, we could rewrite the
190 example to use the alloca technique to avoid using a PHI node:</p>
192 <div class="doc_code">
193 <pre>
194 @G = weak global i32 0 ; type of @G is i32*
195 @H = weak global i32 0 ; type of @H is i32*
197 define i32 @test(i1 %Condition) {
198 entry:
199 %X = alloca i32 ; type of %X is i32*.
200 br i1 %Condition, label %cond_true, label %cond_false
202 cond_true:
203 %X.0 = load i32* @G
204 store i32 %X.0, i32* %X ; Update X
205 br label %cond_next
207 cond_false:
208 %X.1 = load i32* @H
209 store i32 %X.1, i32* %X ; Update X
210 br label %cond_next
212 cond_next:
213 %X.2 = load i32* %X ; Read X
214 ret i32 %X.2
216 </pre>
217 </div>
219 <p>With this, we have discovered a way to handle arbitrary mutable variables
220 without the need to create Phi nodes at all:</p>
222 <ol>
223 <li>Each mutable variable becomes a stack allocation.</li>
224 <li>Each read of the variable becomes a load from the stack.</li>
225 <li>Each update of the variable becomes a store to the stack.</li>
226 <li>Taking the address of a variable just uses the stack address directly.</li>
227 </ol>
229 <p>While this solution has solved our immediate problem, it introduced another
230 one: we have now apparently introduced a lot of stack traffic for very simple
231 and common operations, a major performance problem. Fortunately for us, the
232 LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
233 this case, promoting allocas like this into SSA registers, inserting Phi nodes
234 as appropriate. If you run this example through the pass, for example, you'll
235 get:</p>
237 <div class="doc_code">
238 <pre>
239 $ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
240 @G = weak global i32 0
241 @H = weak global i32 0
243 define i32 @test(i1 %Condition) {
244 entry:
245 br i1 %Condition, label %cond_true, label %cond_false
247 cond_true:
248 %X.0 = load i32* @G
249 br label %cond_next
251 cond_false:
252 %X.1 = load i32* @H
253 br label %cond_next
255 cond_next:
256 %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
257 ret i32 %X.01
259 </pre>
260 </div>
262 <p>The mem2reg pass implements the standard "iterated dominance frontier"
263 algorithm for constructing SSA form and has a number of optimizations that speed
264 up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing
265 with mutable variables, and we highly recommend that you depend on it. Note that
266 mem2reg only works on variables in certain circumstances:</p>
268 <ol>
269 <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
270 promotes them. It does not apply to global variables or heap allocations.</li>
272 <li>mem2reg only looks for alloca instructions in the entry block of the
273 function. Being in the entry block guarantees that the alloca is only executed
274 once, which makes analysis simpler.</li>
276 <li>mem2reg only promotes allocas whose uses are direct loads and stores. If
277 the address of the stack object is passed to a function, or if any funny pointer
278 arithmetic is involved, the alloca will not be promoted.</li>
280 <li>mem2reg only works on allocas of <a
281 href="../LangRef.html#t_classifications">first class</a>
282 values (such as pointers, scalars and vectors), and only if the array size
283 of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
284 promoting structs or arrays to registers. Note that the "scalarrepl" pass is
285 more powerful and can promote structs, "unions", and arrays in many cases.</li>
287 </ol>
290 All of these properties are easy to satisfy for most imperative languages, and
291 we'll illustrate it below with Kaleidoscope. The final question you may be
292 asking is: should I bother with this nonsense for my front-end? Wouldn't it be
293 better if I just did SSA construction directly, avoiding use of the mem2reg
294 optimization pass? In short, we strongly recommend that you use this technique
295 for building SSA form, unless there is an extremely good reason not to. Using
296 this technique is:</p>
298 <ul>
299 <li>Proven and well tested: llvm-gcc and clang both use this technique for local
300 mutable variables. As such, the most common clients of LLVM are using this to
301 handle a bulk of their variables. You can be sure that bugs are found fast and
302 fixed early.</li>
304 <li>Extremely Fast: mem2reg has a number of special cases that make it fast in
305 common cases as well as fully general. For example, it has fast-paths for
306 variables that are only used in a single block, variables that only have one
307 assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
308 </li>
310 <li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
311 Debug information in LLVM</a> relies on having the address of the variable
312 exposed so that debug info can be attached to it. This technique dovetails
313 very naturally with this style of debug info.</li>
314 </ul>
316 <p>If nothing else, this makes it much easier to get your front-end up and
317 running, and is very simple to implement. Lets extend Kaleidoscope with mutable
318 variables now!
319 </p>
321 </div>
323 <!-- *********************************************************************** -->
324 <div class="doc_section"><a name="kalvars">Mutable Variables in
325 Kaleidoscope</a></div>
326 <!-- *********************************************************************** -->
328 <div class="doc_text">
330 <p>Now that we know the sort of problem we want to tackle, lets see what this
331 looks like in the context of our little Kaleidoscope language. We're going to
332 add two features:</p>
334 <ol>
335 <li>The ability to mutate variables with the '=' operator.</li>
336 <li>The ability to define new variables.</li>
337 </ol>
339 <p>While the first item is really what this is about, we only have variables
340 for incoming arguments as well as for induction variables, and redefining those only
341 goes so far :). Also, the ability to define new variables is a
342 useful thing regardless of whether you will be mutating them. Here's a
343 motivating example that shows how we could use these:</p>
345 <div class="doc_code">
346 <pre>
347 # Define ':' for sequencing: as a low-precedence operator that ignores operands
348 # and just returns the RHS.
349 def binary : 1 (x y) y;
351 # Recursive fib, we could do this before.
352 def fib(x)
353 if (x &lt; 3) then
355 else
356 fib(x-1)+fib(x-2);
358 # Iterative fib.
359 def fibi(x)
360 <b>var a = 1, b = 1, c in</b>
361 (for i = 3, i &lt; x in
362 <b>c = a + b</b> :
363 <b>a = b</b> :
364 <b>b = c</b>) :
367 # Call it.
368 fibi(10);
369 </pre>
370 </div>
373 In order to mutate variables, we have to change our existing variables to use
374 the "alloca trick". Once we have that, we'll add our new operator, then extend
375 Kaleidoscope to support new variable definitions.
376 </p>
378 </div>
380 <!-- *********************************************************************** -->
381 <div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
382 Mutation</a></div>
383 <!-- *********************************************************************** -->
385 <div class="doc_text">
388 The symbol table in Kaleidoscope is managed at code generation time by the
389 '<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*"
390 that holds the double value for the named variable. In order to support
391 mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
392 the <em>memory location</em> of the variable in question. Note that this
393 change is a refactoring: it changes the structure of the code, but does not
394 (by itself) change the behavior of the compiler. All of these changes are
395 isolated in the Kaleidoscope code generator.</p>
398 At this point in Kaleidoscope's development, it only supports variables for two
399 things: incoming arguments to functions and the induction variable of 'for'
400 loops. For consistency, we'll allow mutation of these variables in addition to
401 other user-defined variables. This means that these will both need memory
402 locations.
403 </p>
405 <p>To start our transformation of Kaleidoscope, we'll change the NamedValues
406 map so that it maps to AllocaInst* instead of Value*. Once we do this, the C++
407 compiler will tell us what parts of the code we need to update:</p>
409 <div class="doc_code">
410 <pre>
411 static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
412 </pre>
413 </div>
415 <p>Also, since we will need to create these alloca's, we'll use a helper
416 function that ensures that the allocas are created in the entry block of the
417 function:</p>
419 <div class="doc_code">
420 <pre>
421 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
422 /// the function. This is used for mutable variables etc.
423 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
424 const std::string &amp;VarName) {
425 IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
426 TheFunction-&gt;getEntryBlock().begin());
427 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
428 VarName.c_str());
430 </pre>
431 </div>
433 <p>This funny looking code creates an IRBuilder object that is pointing at
434 the first instruction (.begin()) of the entry block. It then creates an alloca
435 with the expected name and returns it. Because all values in Kaleidoscope are
436 doubles, there is no need to pass in a type to use.</p>
438 <p>With this in place, the first functionality change we want to make is to
439 variable references. In our new scheme, variables live on the stack, so code
440 generating a reference to them actually needs to produce a load from the stack
441 slot:</p>
443 <div class="doc_code">
444 <pre>
445 Value *VariableExprAST::Codegen() {
446 // Look this variable up in the function.
447 Value *V = NamedValues[Name];
448 if (V == 0) return ErrorV("Unknown variable name");
450 <b>// Load the value.
451 return Builder.CreateLoad(V, Name.c_str());</b>
453 </pre>
454 </div>
456 <p>As you can see, this is pretty straightforward. Now we need to update the
457 things that define the variables to set up the alloca. We'll start with
458 <tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
459 the unabridged code):</p>
461 <div class="doc_code">
462 <pre>
463 Function *TheFunction = Builder.GetInsertBlock()->getParent();
465 <b>// Create an alloca for the variable in the entry block.
466 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
468 // Emit the start code first, without 'variable' in scope.
469 Value *StartVal = Start-&gt;Codegen();
470 if (StartVal == 0) return 0;
472 <b>// Store the value into the alloca.
473 Builder.CreateStore(StartVal, Alloca);</b>
476 // Compute the end condition.
477 Value *EndCond = End-&gt;Codegen();
478 if (EndCond == 0) return EndCond;
480 <b>// Reload, increment, and restore the alloca. This handles the case where
481 // the body of the loop mutates the variable.
482 Value *CurVar = Builder.CreateLoad(Alloca);
483 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
484 Builder.CreateStore(NextVar, Alloca);</b>
486 </pre>
487 </div>
489 <p>This code is virtually identical to the code <a
490 href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The
491 big difference is that we no longer have to construct a PHI node, and we use
492 load/store to access the variable as needed.</p>
494 <p>To support mutable argument variables, we need to also make allocas for them.
495 The code for this is also pretty simple:</p>
497 <div class="doc_code">
498 <pre>
499 /// CreateArgumentAllocas - Create an alloca for each argument and register the
500 /// argument in the symbol table so that references to it will succeed.
501 void PrototypeAST::CreateArgumentAllocas(Function *F) {
502 Function::arg_iterator AI = F-&gt;arg_begin();
503 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
504 // Create an alloca for this variable.
505 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
507 // Store the initial value into the alloca.
508 Builder.CreateStore(AI, Alloca);
510 // Add arguments to variable symbol table.
511 NamedValues[Args[Idx]] = Alloca;
514 </pre>
515 </div>
517 <p>For each argument, we make an alloca, store the input value to the function
518 into the alloca, and register the alloca as the memory location for the
519 argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
520 it sets up the entry block for the function.</p>
522 <p>The final missing piece is adding the mem2reg pass, which allows us to get
523 good codegen once again:</p>
525 <div class="doc_code">
526 <pre>
527 // Set up the optimizer pipeline. Start with registering info about how the
528 // target lays out data structures.
529 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
530 <b>// Promote allocas to registers.
531 OurFPM.add(createPromoteMemoryToRegisterPass());</b>
532 // Do simple "peephole" optimizations and bit-twiddling optzns.
533 OurFPM.add(createInstructionCombiningPass());
534 // Reassociate expressions.
535 OurFPM.add(createReassociatePass());
536 </pre>
537 </div>
539 <p>It is interesting to see what the code looks like before and after the
540 mem2reg optimization runs. For example, this is the before/after code for our
541 recursive fib function. Before the optimization:</p>
543 <div class="doc_code">
544 <pre>
545 define double @fib(double %x) {
546 entry:
547 <b>%x1 = alloca double
548 store double %x, double* %x1
549 %x2 = load double* %x1</b>
550 %cmptmp = fcmp ult double %x2, 3.000000e+00
551 %booltmp = uitofp i1 %cmptmp to double
552 %ifcond = fcmp one double %booltmp, 0.000000e+00
553 br i1 %ifcond, label %then, label %else
555 then: ; preds = %entry
556 br label %ifcont
558 else: ; preds = %entry
559 <b>%x3 = load double* %x1</b>
560 %subtmp = fsub double %x3, 1.000000e+00
561 %calltmp = call double @fib(double %subtmp)
562 <b>%x4 = load double* %x1</b>
563 %subtmp5 = fsub double %x4, 2.000000e+00
564 %calltmp6 = call double @fib(double %subtmp5)
565 %addtmp = fadd double %calltmp, %calltmp6
566 br label %ifcont
568 ifcont: ; preds = %else, %then
569 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
570 ret double %iftmp
572 </pre>
573 </div>
575 <p>Here there is only one variable (x, the input argument) but you can still
576 see the extremely simple-minded code generation strategy we are using. In the
577 entry block, an alloca is created, and the initial input value is stored into
578 it. Each reference to the variable does a reload from the stack. Also, note
579 that we didn't modify the if/then/else expression, so it still inserts a PHI
580 node. While we could make an alloca for it, it is actually easier to create a
581 PHI node for it, so we still just make the PHI.</p>
583 <p>Here is the code after the mem2reg pass runs:</p>
585 <div class="doc_code">
586 <pre>
587 define double @fib(double %x) {
588 entry:
589 %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
590 %booltmp = uitofp i1 %cmptmp to double
591 %ifcond = fcmp one double %booltmp, 0.000000e+00
592 br i1 %ifcond, label %then, label %else
594 then:
595 br label %ifcont
597 else:
598 %subtmp = fsub double <b>%x</b>, 1.000000e+00
599 %calltmp = call double @fib(double %subtmp)
600 %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
601 %calltmp6 = call double @fib(double %subtmp5)
602 %addtmp = fadd double %calltmp, %calltmp6
603 br label %ifcont
605 ifcont: ; preds = %else, %then
606 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
607 ret double %iftmp
609 </pre>
610 </div>
612 <p>This is a trivial case for mem2reg, since there are no redefinitions of the
613 variable. The point of showing this is to calm your tension about inserting
614 such blatent inefficiencies :).</p>
616 <p>After the rest of the optimizers run, we get:</p>
618 <div class="doc_code">
619 <pre>
620 define double @fib(double %x) {
621 entry:
622 %cmptmp = fcmp ult double %x, 3.000000e+00
623 %booltmp = uitofp i1 %cmptmp to double
624 %ifcond = fcmp ueq double %booltmp, 0.000000e+00
625 br i1 %ifcond, label %else, label %ifcont
627 else:
628 %subtmp = fsub double %x, 1.000000e+00
629 %calltmp = call double @fib(double %subtmp)
630 %subtmp5 = fsub double %x, 2.000000e+00
631 %calltmp6 = call double @fib(double %subtmp5)
632 %addtmp = fadd double %calltmp, %calltmp6
633 ret double %addtmp
635 ifcont:
636 ret double 1.000000e+00
638 </pre>
639 </div>
641 <p>Here we see that the simplifycfg pass decided to clone the return instruction
642 into the end of the 'else' block. This allowed it to eliminate some branches
643 and the PHI node.</p>
645 <p>Now that all symbol table references are updated to use stack variables,
646 we'll add the assignment operator.</p>
648 </div>
650 <!-- *********************************************************************** -->
651 <div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
652 <!-- *********************************************************************** -->
654 <div class="doc_text">
656 <p>With our current framework, adding a new assignment operator is really
657 simple. We will parse it just like any other binary operator, but handle it
658 internally (instead of allowing the user to define it). The first step is to
659 set a precedence:</p>
661 <div class="doc_code">
662 <pre>
663 int main() {
664 // Install standard binary operators.
665 // 1 is lowest precedence.
666 <b>BinopPrecedence['='] = 2;</b>
667 BinopPrecedence['&lt;'] = 10;
668 BinopPrecedence['+'] = 20;
669 BinopPrecedence['-'] = 20;
670 </pre>
671 </div>
673 <p>Now that the parser knows the precedence of the binary operator, it takes
674 care of all the parsing and AST generation. We just need to implement codegen
675 for the assignment operator. This looks like:</p>
677 <div class="doc_code">
678 <pre>
679 Value *BinaryExprAST::Codegen() {
680 // Special case '=' because we don't want to emit the LHS as an expression.
681 if (Op == '=') {
682 // Assignment requires the LHS to be an identifier.
683 VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
684 if (!LHSE)
685 return ErrorV("destination of '=' must be a variable");
686 </pre>
687 </div>
689 <p>Unlike the rest of the binary operators, our assignment operator doesn't
690 follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
691 as a special case before the other binary operators are handled. The other
692 strange thing is that it requires the LHS to be a variable. It is invalid to
693 have "(x+1) = expr" - only things like "x = expr" are allowed.
694 </p>
696 <div class="doc_code">
697 <pre>
698 // Codegen the RHS.
699 Value *Val = RHS-&gt;Codegen();
700 if (Val == 0) return 0;
702 // Look up the name.
703 Value *Variable = NamedValues[LHSE-&gt;getName()];
704 if (Variable == 0) return ErrorV("Unknown variable name");
706 Builder.CreateStore(Val, Variable);
707 return Val;
709 ...
710 </pre>
711 </div>
713 <p>Once we have the variable, codegen'ing the assignment is straightforward:
714 we emit the RHS of the assignment, create a store, and return the computed
715 value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
717 <p>Now that we have an assignment operator, we can mutate loop variables and
718 arguments. For example, we can now run code like this:</p>
720 <div class="doc_code">
721 <pre>
722 # Function to print a double.
723 extern printd(x);
725 # Define ':' for sequencing: as a low-precedence operator that ignores operands
726 # and just returns the RHS.
727 def binary : 1 (x y) y;
729 def test(x)
730 printd(x) :
731 x = 4 :
732 printd(x);
734 test(123);
735 </pre>
736 </div>
738 <p>When run, this example prints "123" and then "4", showing that we did
739 actually mutate the value! Okay, we have now officially implemented our goal:
740 getting this to work requires SSA construction in the general case. However,
741 to be really useful, we want the ability to define our own local variables, lets
742 add this next!
743 </p>
745 </div>
747 <!-- *********************************************************************** -->
748 <div class="doc_section"><a name="localvars">User-defined Local
749 Variables</a></div>
750 <!-- *********************************************************************** -->
752 <div class="doc_text">
754 <p>Adding var/in is just like any other other extensions we made to
755 Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
756 The first step for adding our new 'var/in' construct is to extend the lexer.
757 As before, this is pretty trivial, the code looks like this:</p>
759 <div class="doc_code">
760 <pre>
761 enum Token {
763 <b>// var definition
764 tok_var = -13</b>
768 static int gettok() {
770 if (IdentifierStr == "in") return tok_in;
771 if (IdentifierStr == "binary") return tok_binary;
772 if (IdentifierStr == "unary") return tok_unary;
773 <b>if (IdentifierStr == "var") return tok_var;</b>
774 return tok_identifier;
776 </pre>
777 </div>
779 <p>The next step is to define the AST node that we will construct. For var/in,
780 it looks like this:</p>
782 <div class="doc_code">
783 <pre>
784 /// VarExprAST - Expression class for var/in
785 class VarExprAST : public ExprAST {
786 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
787 ExprAST *Body;
788 public:
789 VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
790 ExprAST *body)
791 : VarNames(varnames), Body(body) {}
793 virtual Value *Codegen();
795 </pre>
796 </div>
798 <p>var/in allows a list of names to be defined all at once, and each name can
799 optionally have an initializer value. As such, we capture this information in
800 the VarNames vector. Also, var/in has a body, this body is allowed to access
801 the variables defined by the var/in.</p>
803 <p>With this in place, we can define the parser pieces. The first thing we do is add
804 it as a primary expression:</p>
806 <div class="doc_code">
807 <pre>
808 /// primary
809 /// ::= identifierexpr
810 /// ::= numberexpr
811 /// ::= parenexpr
812 /// ::= ifexpr
813 /// ::= forexpr
814 <b>/// ::= varexpr</b>
815 static ExprAST *ParsePrimary() {
816 switch (CurTok) {
817 default: return Error("unknown token when expecting an expression");
818 case tok_identifier: return ParseIdentifierExpr();
819 case tok_number: return ParseNumberExpr();
820 case '(': return ParseParenExpr();
821 case tok_if: return ParseIfExpr();
822 case tok_for: return ParseForExpr();
823 <b>case tok_var: return ParseVarExpr();</b>
826 </pre>
827 </div>
829 <p>Next we define ParseVarExpr:</p>
831 <div class="doc_code">
832 <pre>
833 /// varexpr ::= 'var' identifier ('=' expression)?
834 // (',' identifier ('=' expression)?)* 'in' expression
835 static ExprAST *ParseVarExpr() {
836 getNextToken(); // eat the var.
838 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
840 // At least one variable name is required.
841 if (CurTok != tok_identifier)
842 return Error("expected identifier after var");
843 </pre>
844 </div>
846 <p>The first part of this code parses the list of identifier/expr pairs into the
847 local <tt>VarNames</tt> vector.
849 <div class="doc_code">
850 <pre>
851 while (1) {
852 std::string Name = IdentifierStr;
853 getNextToken(); // eat identifier.
855 // Read the optional initializer.
856 ExprAST *Init = 0;
857 if (CurTok == '=') {
858 getNextToken(); // eat the '='.
860 Init = ParseExpression();
861 if (Init == 0) return 0;
864 VarNames.push_back(std::make_pair(Name, Init));
866 // End of var list, exit loop.
867 if (CurTok != ',') break;
868 getNextToken(); // eat the ','.
870 if (CurTok != tok_identifier)
871 return Error("expected identifier list after var");
873 </pre>
874 </div>
876 <p>Once all the variables are parsed, we then parse the body and create the
877 AST node:</p>
879 <div class="doc_code">
880 <pre>
881 // At this point, we have to have 'in'.
882 if (CurTok != tok_in)
883 return Error("expected 'in' keyword after 'var'");
884 getNextToken(); // eat 'in'.
886 ExprAST *Body = ParseExpression();
887 if (Body == 0) return 0;
889 return new VarExprAST(VarNames, Body);
891 </pre>
892 </div>
894 <p>Now that we can parse and represent the code, we need to support emission of
895 LLVM IR for it. This code starts out with:</p>
897 <div class="doc_code">
898 <pre>
899 Value *VarExprAST::Codegen() {
900 std::vector&lt;AllocaInst *&gt; OldBindings;
902 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
904 // Register all variables and emit their initializer.
905 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
906 const std::string &amp;VarName = VarNames[i].first;
907 ExprAST *Init = VarNames[i].second;
908 </pre>
909 </div>
911 <p>Basically it loops over all the variables, installing them one at a time.
912 For each variable we put into the symbol table, we remember the previous value
913 that we replace in OldBindings.</p>
915 <div class="doc_code">
916 <pre>
917 // Emit the initializer before adding the variable to scope, this prevents
918 // the initializer from referencing the variable itself, and permits stuff
919 // like this:
920 // var a = 1 in
921 // var a = a in ... # refers to outer 'a'.
922 Value *InitVal;
923 if (Init) {
924 InitVal = Init-&gt;Codegen();
925 if (InitVal == 0) return 0;
926 } else { // If not specified, use 0.0.
927 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
930 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
931 Builder.CreateStore(InitVal, Alloca);
933 // Remember the old variable binding so that we can restore the binding when
934 // we unrecurse.
935 OldBindings.push_back(NamedValues[VarName]);
937 // Remember this binding.
938 NamedValues[VarName] = Alloca;
940 </pre>
941 </div>
943 <p>There are more comments here than code. The basic idea is that we emit the
944 initializer, create the alloca, then update the symbol table to point to it.
945 Once all the variables are installed in the symbol table, we evaluate the body
946 of the var/in expression:</p>
948 <div class="doc_code">
949 <pre>
950 // Codegen the body, now that all vars are in scope.
951 Value *BodyVal = Body-&gt;Codegen();
952 if (BodyVal == 0) return 0;
953 </pre>
954 </div>
956 <p>Finally, before returning, we restore the previous variable bindings:</p>
958 <div class="doc_code">
959 <pre>
960 // Pop all our variables from scope.
961 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
962 NamedValues[VarNames[i].first] = OldBindings[i];
964 // Return the body computation.
965 return BodyVal;
967 </pre>
968 </div>
970 <p>The end result of all of this is that we get properly scoped variable
971 definitions, and we even (trivially) allow mutation of them :).</p>
973 <p>With this, we completed what we set out to do. Our nice iterative fib
974 example from the intro compiles and runs just fine. The mem2reg pass optimizes
975 all of our stack variables into SSA registers, inserting PHI nodes where needed,
976 and our front-end remains simple: no "iterated dominance frontier" computation
977 anywhere in sight.</p>
979 </div>
981 <!-- *********************************************************************** -->
982 <div class="doc_section"><a name="code">Full Code Listing</a></div>
983 <!-- *********************************************************************** -->
985 <div class="doc_text">
988 Here is the complete code listing for our running example, enhanced with mutable
989 variables and var/in support. To build this example, use:
990 </p>
992 <div class="doc_code">
993 <pre>
994 # Compile
995 g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
996 # Run
997 ./toy
998 </pre>
999 </div>
1001 <p>Here is the code:</p>
1003 <div class="doc_code">
1004 <pre>
1005 #include "llvm/DerivedTypes.h"
1006 #include "llvm/ExecutionEngine/ExecutionEngine.h"
1007 #include "llvm/ExecutionEngine/JIT.h"
1008 #include "llvm/LLVMContext.h"
1009 #include "llvm/Module.h"
1010 #include "llvm/PassManager.h"
1011 #include "llvm/Analysis/Verifier.h"
1012 #include "llvm/Target/TargetData.h"
1013 #include "llvm/Target/TargetSelect.h"
1014 #include "llvm/Transforms/Scalar.h"
1015 #include "llvm/Support/IRBuilder.h"
1016 #include &lt;cstdio&gt;
1017 #include &lt;string&gt;
1018 #include &lt;map&gt;
1019 #include &lt;vector&gt;
1020 using namespace llvm;
1022 //===----------------------------------------------------------------------===//
1023 // Lexer
1024 //===----------------------------------------------------------------------===//
1026 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
1027 // of these for known things.
1028 enum Token {
1029 tok_eof = -1,
1031 // commands
1032 tok_def = -2, tok_extern = -3,
1034 // primary
1035 tok_identifier = -4, tok_number = -5,
1037 // control
1038 tok_if = -6, tok_then = -7, tok_else = -8,
1039 tok_for = -9, tok_in = -10,
1041 // operators
1042 tok_binary = -11, tok_unary = -12,
1044 // var definition
1045 tok_var = -13
1048 static std::string IdentifierStr; // Filled in if tok_identifier
1049 static double NumVal; // Filled in if tok_number
1051 /// gettok - Return the next token from standard input.
1052 static int gettok() {
1053 static int LastChar = ' ';
1055 // Skip any whitespace.
1056 while (isspace(LastChar))
1057 LastChar = getchar();
1059 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
1060 IdentifierStr = LastChar;
1061 while (isalnum((LastChar = getchar())))
1062 IdentifierStr += LastChar;
1064 if (IdentifierStr == "def") return tok_def;
1065 if (IdentifierStr == "extern") return tok_extern;
1066 if (IdentifierStr == "if") return tok_if;
1067 if (IdentifierStr == "then") return tok_then;
1068 if (IdentifierStr == "else") return tok_else;
1069 if (IdentifierStr == "for") return tok_for;
1070 if (IdentifierStr == "in") return tok_in;
1071 if (IdentifierStr == "binary") return tok_binary;
1072 if (IdentifierStr == "unary") return tok_unary;
1073 if (IdentifierStr == "var") return tok_var;
1074 return tok_identifier;
1077 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
1078 std::string NumStr;
1079 do {
1080 NumStr += LastChar;
1081 LastChar = getchar();
1082 } while (isdigit(LastChar) || LastChar == '.');
1084 NumVal = strtod(NumStr.c_str(), 0);
1085 return tok_number;
1088 if (LastChar == '#') {
1089 // Comment until end of line.
1090 do LastChar = getchar();
1091 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
1093 if (LastChar != EOF)
1094 return gettok();
1097 // Check for end of file. Don't eat the EOF.
1098 if (LastChar == EOF)
1099 return tok_eof;
1101 // Otherwise, just return the character as its ascii value.
1102 int ThisChar = LastChar;
1103 LastChar = getchar();
1104 return ThisChar;
1107 //===----------------------------------------------------------------------===//
1108 // Abstract Syntax Tree (aka Parse Tree)
1109 //===----------------------------------------------------------------------===//
1111 /// ExprAST - Base class for all expression nodes.
1112 class ExprAST {
1113 public:
1114 virtual ~ExprAST() {}
1115 virtual Value *Codegen() = 0;
1118 /// NumberExprAST - Expression class for numeric literals like "1.0".
1119 class NumberExprAST : public ExprAST {
1120 double Val;
1121 public:
1122 NumberExprAST(double val) : Val(val) {}
1123 virtual Value *Codegen();
1126 /// VariableExprAST - Expression class for referencing a variable, like "a".
1127 class VariableExprAST : public ExprAST {
1128 std::string Name;
1129 public:
1130 VariableExprAST(const std::string &amp;name) : Name(name) {}
1131 const std::string &amp;getName() const { return Name; }
1132 virtual Value *Codegen();
1135 /// UnaryExprAST - Expression class for a unary operator.
1136 class UnaryExprAST : public ExprAST {
1137 char Opcode;
1138 ExprAST *Operand;
1139 public:
1140 UnaryExprAST(char opcode, ExprAST *operand)
1141 : Opcode(opcode), Operand(operand) {}
1142 virtual Value *Codegen();
1145 /// BinaryExprAST - Expression class for a binary operator.
1146 class BinaryExprAST : public ExprAST {
1147 char Op;
1148 ExprAST *LHS, *RHS;
1149 public:
1150 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
1151 : Op(op), LHS(lhs), RHS(rhs) {}
1152 virtual Value *Codegen();
1155 /// CallExprAST - Expression class for function calls.
1156 class CallExprAST : public ExprAST {
1157 std::string Callee;
1158 std::vector&lt;ExprAST*&gt; Args;
1159 public:
1160 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
1161 : Callee(callee), Args(args) {}
1162 virtual Value *Codegen();
1165 /// IfExprAST - Expression class for if/then/else.
1166 class IfExprAST : public ExprAST {
1167 ExprAST *Cond, *Then, *Else;
1168 public:
1169 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
1170 : Cond(cond), Then(then), Else(_else) {}
1171 virtual Value *Codegen();
1174 /// ForExprAST - Expression class for for/in.
1175 class ForExprAST : public ExprAST {
1176 std::string VarName;
1177 ExprAST *Start, *End, *Step, *Body;
1178 public:
1179 ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
1180 ExprAST *step, ExprAST *body)
1181 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
1182 virtual Value *Codegen();
1185 /// VarExprAST - Expression class for var/in
1186 class VarExprAST : public ExprAST {
1187 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
1188 ExprAST *Body;
1189 public:
1190 VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
1191 ExprAST *body)
1192 : VarNames(varnames), Body(body) {}
1194 virtual Value *Codegen();
1197 /// PrototypeAST - This class represents the "prototype" for a function,
1198 /// which captures its name, and its argument names (thus implicitly the number
1199 /// of arguments the function takes), as well as if it is an operator.
1200 class PrototypeAST {
1201 std::string Name;
1202 std::vector&lt;std::string&gt; Args;
1203 bool isOperator;
1204 unsigned Precedence; // Precedence if a binary op.
1205 public:
1206 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
1207 bool isoperator = false, unsigned prec = 0)
1208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
1210 bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
1211 bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
1213 char getOperatorName() const {
1214 assert(isUnaryOp() || isBinaryOp());
1215 return Name[Name.size()-1];
1218 unsigned getBinaryPrecedence() const { return Precedence; }
1220 Function *Codegen();
1222 void CreateArgumentAllocas(Function *F);
1225 /// FunctionAST - This class represents a function definition itself.
1226 class FunctionAST {
1227 PrototypeAST *Proto;
1228 ExprAST *Body;
1229 public:
1230 FunctionAST(PrototypeAST *proto, ExprAST *body)
1231 : Proto(proto), Body(body) {}
1233 Function *Codegen();
1236 //===----------------------------------------------------------------------===//
1237 // Parser
1238 //===----------------------------------------------------------------------===//
1240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
1241 /// token the parser is looking at. getNextToken reads another token from the
1242 /// lexer and updates CurTok with its results.
1243 static int CurTok;
1244 static int getNextToken() {
1245 return CurTok = gettok();
1248 /// BinopPrecedence - This holds the precedence for each binary operator that is
1249 /// defined.
1250 static std::map&lt;char, int&gt; BinopPrecedence;
1252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
1253 static int GetTokPrecedence() {
1254 if (!isascii(CurTok))
1255 return -1;
1257 // Make sure it's a declared binop.
1258 int TokPrec = BinopPrecedence[CurTok];
1259 if (TokPrec &lt;= 0) return -1;
1260 return TokPrec;
1263 /// Error* - These are little helper functions for error handling.
1264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
1265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
1266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
1268 static ExprAST *ParseExpression();
1270 /// identifierexpr
1271 /// ::= identifier
1272 /// ::= identifier '(' expression* ')'
1273 static ExprAST *ParseIdentifierExpr() {
1274 std::string IdName = IdentifierStr;
1276 getNextToken(); // eat identifier.
1278 if (CurTok != '(') // Simple variable ref.
1279 return new VariableExprAST(IdName);
1281 // Call.
1282 getNextToken(); // eat (
1283 std::vector&lt;ExprAST*&gt; Args;
1284 if (CurTok != ')') {
1285 while (1) {
1286 ExprAST *Arg = ParseExpression();
1287 if (!Arg) return 0;
1288 Args.push_back(Arg);
1290 if (CurTok == ')') break;
1292 if (CurTok != ',')
1293 return Error("Expected ')' or ',' in argument list");
1294 getNextToken();
1298 // Eat the ')'.
1299 getNextToken();
1301 return new CallExprAST(IdName, Args);
1304 /// numberexpr ::= number
1305 static ExprAST *ParseNumberExpr() {
1306 ExprAST *Result = new NumberExprAST(NumVal);
1307 getNextToken(); // consume the number
1308 return Result;
1311 /// parenexpr ::= '(' expression ')'
1312 static ExprAST *ParseParenExpr() {
1313 getNextToken(); // eat (.
1314 ExprAST *V = ParseExpression();
1315 if (!V) return 0;
1317 if (CurTok != ')')
1318 return Error("expected ')'");
1319 getNextToken(); // eat ).
1320 return V;
1323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
1324 static ExprAST *ParseIfExpr() {
1325 getNextToken(); // eat the if.
1327 // condition.
1328 ExprAST *Cond = ParseExpression();
1329 if (!Cond) return 0;
1331 if (CurTok != tok_then)
1332 return Error("expected then");
1333 getNextToken(); // eat the then
1335 ExprAST *Then = ParseExpression();
1336 if (Then == 0) return 0;
1338 if (CurTok != tok_else)
1339 return Error("expected else");
1341 getNextToken();
1343 ExprAST *Else = ParseExpression();
1344 if (!Else) return 0;
1346 return new IfExprAST(Cond, Then, Else);
1349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
1350 static ExprAST *ParseForExpr() {
1351 getNextToken(); // eat the for.
1353 if (CurTok != tok_identifier)
1354 return Error("expected identifier after for");
1356 std::string IdName = IdentifierStr;
1357 getNextToken(); // eat identifier.
1359 if (CurTok != '=')
1360 return Error("expected '=' after for");
1361 getNextToken(); // eat '='.
1364 ExprAST *Start = ParseExpression();
1365 if (Start == 0) return 0;
1366 if (CurTok != ',')
1367 return Error("expected ',' after for start value");
1368 getNextToken();
1370 ExprAST *End = ParseExpression();
1371 if (End == 0) return 0;
1373 // The step value is optional.
1374 ExprAST *Step = 0;
1375 if (CurTok == ',') {
1376 getNextToken();
1377 Step = ParseExpression();
1378 if (Step == 0) return 0;
1381 if (CurTok != tok_in)
1382 return Error("expected 'in' after for");
1383 getNextToken(); // eat 'in'.
1385 ExprAST *Body = ParseExpression();
1386 if (Body == 0) return 0;
1388 return new ForExprAST(IdName, Start, End, Step, Body);
1391 /// varexpr ::= 'var' identifier ('=' expression)?
1392 // (',' identifier ('=' expression)?)* 'in' expression
1393 static ExprAST *ParseVarExpr() {
1394 getNextToken(); // eat the var.
1396 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
1398 // At least one variable name is required.
1399 if (CurTok != tok_identifier)
1400 return Error("expected identifier after var");
1402 while (1) {
1403 std::string Name = IdentifierStr;
1404 getNextToken(); // eat identifier.
1406 // Read the optional initializer.
1407 ExprAST *Init = 0;
1408 if (CurTok == '=') {
1409 getNextToken(); // eat the '='.
1411 Init = ParseExpression();
1412 if (Init == 0) return 0;
1415 VarNames.push_back(std::make_pair(Name, Init));
1417 // End of var list, exit loop.
1418 if (CurTok != ',') break;
1419 getNextToken(); // eat the ','.
1421 if (CurTok != tok_identifier)
1422 return Error("expected identifier list after var");
1425 // At this point, we have to have 'in'.
1426 if (CurTok != tok_in)
1427 return Error("expected 'in' keyword after 'var'");
1428 getNextToken(); // eat 'in'.
1430 ExprAST *Body = ParseExpression();
1431 if (Body == 0) return 0;
1433 return new VarExprAST(VarNames, Body);
1436 /// primary
1437 /// ::= identifierexpr
1438 /// ::= numberexpr
1439 /// ::= parenexpr
1440 /// ::= ifexpr
1441 /// ::= forexpr
1442 /// ::= varexpr
1443 static ExprAST *ParsePrimary() {
1444 switch (CurTok) {
1445 default: return Error("unknown token when expecting an expression");
1446 case tok_identifier: return ParseIdentifierExpr();
1447 case tok_number: return ParseNumberExpr();
1448 case '(': return ParseParenExpr();
1449 case tok_if: return ParseIfExpr();
1450 case tok_for: return ParseForExpr();
1451 case tok_var: return ParseVarExpr();
1455 /// unary
1456 /// ::= primary
1457 /// ::= '!' unary
1458 static ExprAST *ParseUnary() {
1459 // If the current token is not an operator, it must be a primary expr.
1460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
1461 return ParsePrimary();
1463 // If this is a unary operator, read it.
1464 int Opc = CurTok;
1465 getNextToken();
1466 if (ExprAST *Operand = ParseUnary())
1467 return new UnaryExprAST(Opc, Operand);
1468 return 0;
1471 /// binoprhs
1472 /// ::= ('+' unary)*
1473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
1474 // If this is a binop, find its precedence.
1475 while (1) {
1476 int TokPrec = GetTokPrecedence();
1478 // If this is a binop that binds at least as tightly as the current binop,
1479 // consume it, otherwise we are done.
1480 if (TokPrec &lt; ExprPrec)
1481 return LHS;
1483 // Okay, we know this is a binop.
1484 int BinOp = CurTok;
1485 getNextToken(); // eat binop
1487 // Parse the unary expression after the binary operator.
1488 ExprAST *RHS = ParseUnary();
1489 if (!RHS) return 0;
1491 // If BinOp binds less tightly with RHS than the operator after RHS, let
1492 // the pending operator take RHS as its LHS.
1493 int NextPrec = GetTokPrecedence();
1494 if (TokPrec &lt; NextPrec) {
1495 RHS = ParseBinOpRHS(TokPrec+1, RHS);
1496 if (RHS == 0) return 0;
1499 // Merge LHS/RHS.
1500 LHS = new BinaryExprAST(BinOp, LHS, RHS);
1504 /// expression
1505 /// ::= unary binoprhs
1507 static ExprAST *ParseExpression() {
1508 ExprAST *LHS = ParseUnary();
1509 if (!LHS) return 0;
1511 return ParseBinOpRHS(0, LHS);
1514 /// prototype
1515 /// ::= id '(' id* ')'
1516 /// ::= binary LETTER number? (id, id)
1517 /// ::= unary LETTER (id)
1518 static PrototypeAST *ParsePrototype() {
1519 std::string FnName;
1521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
1522 unsigned BinaryPrecedence = 30;
1524 switch (CurTok) {
1525 default:
1526 return ErrorP("Expected function name in prototype");
1527 case tok_identifier:
1528 FnName = IdentifierStr;
1529 Kind = 0;
1530 getNextToken();
1531 break;
1532 case tok_unary:
1533 getNextToken();
1534 if (!isascii(CurTok))
1535 return ErrorP("Expected unary operator");
1536 FnName = "unary";
1537 FnName += (char)CurTok;
1538 Kind = 1;
1539 getNextToken();
1540 break;
1541 case tok_binary:
1542 getNextToken();
1543 if (!isascii(CurTok))
1544 return ErrorP("Expected binary operator");
1545 FnName = "binary";
1546 FnName += (char)CurTok;
1547 Kind = 2;
1548 getNextToken();
1550 // Read the precedence if present.
1551 if (CurTok == tok_number) {
1552 if (NumVal &lt; 1 || NumVal &gt; 100)
1553 return ErrorP("Invalid precedecnce: must be 1..100");
1554 BinaryPrecedence = (unsigned)NumVal;
1555 getNextToken();
1557 break;
1560 if (CurTok != '(')
1561 return ErrorP("Expected '(' in prototype");
1563 std::vector&lt;std::string&gt; ArgNames;
1564 while (getNextToken() == tok_identifier)
1565 ArgNames.push_back(IdentifierStr);
1566 if (CurTok != ')')
1567 return ErrorP("Expected ')' in prototype");
1569 // success.
1570 getNextToken(); // eat ')'.
1572 // Verify right number of names for operator.
1573 if (Kind &amp;&amp; ArgNames.size() != Kind)
1574 return ErrorP("Invalid number of operands for operator");
1576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
1579 /// definition ::= 'def' prototype expression
1580 static FunctionAST *ParseDefinition() {
1581 getNextToken(); // eat def.
1582 PrototypeAST *Proto = ParsePrototype();
1583 if (Proto == 0) return 0;
1585 if (ExprAST *E = ParseExpression())
1586 return new FunctionAST(Proto, E);
1587 return 0;
1590 /// toplevelexpr ::= expression
1591 static FunctionAST *ParseTopLevelExpr() {
1592 if (ExprAST *E = ParseExpression()) {
1593 // Make an anonymous proto.
1594 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1595 return new FunctionAST(Proto, E);
1597 return 0;
1600 /// external ::= 'extern' prototype
1601 static PrototypeAST *ParseExtern() {
1602 getNextToken(); // eat extern.
1603 return ParsePrototype();
1606 //===----------------------------------------------------------------------===//
1607 // Code Generation
1608 //===----------------------------------------------------------------------===//
1610 static Module *TheModule;
1611 static IRBuilder&lt;&gt; Builder(getGlobalContext());
1612 static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
1613 static FunctionPassManager *TheFPM;
1615 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1618 /// the function. This is used for mutable variables etc.
1619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
1620 const std::string &amp;VarName) {
1621 IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
1622 TheFunction-&gt;getEntryBlock().begin());
1623 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
1624 VarName.c_str());
1627 Value *NumberExprAST::Codegen() {
1628 return ConstantFP::get(getGlobalContext(), APFloat(Val));
1631 Value *VariableExprAST::Codegen() {
1632 // Look this variable up in the function.
1633 Value *V = NamedValues[Name];
1634 if (V == 0) return ErrorV("Unknown variable name");
1636 // Load the value.
1637 return Builder.CreateLoad(V, Name.c_str());
1640 Value *UnaryExprAST::Codegen() {
1641 Value *OperandV = Operand-&gt;Codegen();
1642 if (OperandV == 0) return 0;
1644 Function *F = TheModule-&gt;getFunction(std::string("unary")+Opcode);
1645 if (F == 0)
1646 return ErrorV("Unknown unary operator");
1648 return Builder.CreateCall(F, OperandV, "unop");
1651 Value *BinaryExprAST::Codegen() {
1652 // Special case '=' because we don't want to emit the LHS as an expression.
1653 if (Op == '=') {
1654 // Assignment requires the LHS to be an identifier.
1655 VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
1656 if (!LHSE)
1657 return ErrorV("destination of '=' must be a variable");
1658 // Codegen the RHS.
1659 Value *Val = RHS-&gt;Codegen();
1660 if (Val == 0) return 0;
1662 // Look up the name.
1663 Value *Variable = NamedValues[LHSE-&gt;getName()];
1664 if (Variable == 0) return ErrorV("Unknown variable name");
1666 Builder.CreateStore(Val, Variable);
1667 return Val;
1670 Value *L = LHS-&gt;Codegen();
1671 Value *R = RHS-&gt;Codegen();
1672 if (L == 0 || R == 0) return 0;
1674 switch (Op) {
1675 case '+': return Builder.CreateFAdd(L, R, "addtmp");
1676 case '-': return Builder.CreateFSub(L, R, "subtmp");
1677 case '*': return Builder.CreateFMul(L, R, "multmp");
1678 case '&lt;':
1679 L = Builder.CreateFCmpULT(L, R, "cmptmp");
1680 // Convert bool 0/1 to double 0.0 or 1.0
1681 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1682 "booltmp");
1683 default: break;
1686 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1687 // a call to it.
1688 Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
1689 assert(F &amp;&amp; "binary operator not found!");
1691 Value *Ops[] = { L, R };
1692 return Builder.CreateCall(F, Ops, Ops+2, "binop");
1695 Value *CallExprAST::Codegen() {
1696 // Look up the name in the global module table.
1697 Function *CalleeF = TheModule-&gt;getFunction(Callee);
1698 if (CalleeF == 0)
1699 return ErrorV("Unknown function referenced");
1701 // If argument mismatch error.
1702 if (CalleeF-&gt;arg_size() != Args.size())
1703 return ErrorV("Incorrect # arguments passed");
1705 std::vector&lt;Value*&gt; ArgsV;
1706 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1707 ArgsV.push_back(Args[i]-&gt;Codegen());
1708 if (ArgsV.back() == 0) return 0;
1711 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1714 Value *IfExprAST::Codegen() {
1715 Value *CondV = Cond-&gt;Codegen();
1716 if (CondV == 0) return 0;
1718 // Convert condition to a bool by comparing equal to 0.0.
1719 CondV = Builder.CreateFCmpONE(CondV,
1720 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1721 "ifcond");
1723 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1725 // Create blocks for the then and else cases. Insert the 'then' block at the
1726 // end of the function.
1727 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1728 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1729 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1731 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1733 // Emit then value.
1734 Builder.SetInsertPoint(ThenBB);
1736 Value *ThenV = Then-&gt;Codegen();
1737 if (ThenV == 0) return 0;
1739 Builder.CreateBr(MergeBB);
1740 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1741 ThenBB = Builder.GetInsertBlock();
1743 // Emit else block.
1744 TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
1745 Builder.SetInsertPoint(ElseBB);
1747 Value *ElseV = Else-&gt;Codegen();
1748 if (ElseV == 0) return 0;
1750 Builder.CreateBr(MergeBB);
1751 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1752 ElseBB = Builder.GetInsertBlock();
1754 // Emit merge block.
1755 TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
1756 Builder.SetInsertPoint(MergeBB);
1757 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
1758 "iftmp");
1760 PN-&gt;addIncoming(ThenV, ThenBB);
1761 PN-&gt;addIncoming(ElseV, ElseBB);
1762 return PN;
1765 Value *ForExprAST::Codegen() {
1766 // Output this as:
1767 // var = alloca double
1768 // ...
1769 // start = startexpr
1770 // store start -&gt; var
1771 // goto loop
1772 // loop:
1773 // ...
1774 // bodyexpr
1775 // ...
1776 // loopend:
1777 // step = stepexpr
1778 // endcond = endexpr
1780 // curvar = load var
1781 // nextvar = curvar + step
1782 // store nextvar -&gt; var
1783 // br endcond, loop, endloop
1784 // outloop:
1786 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1788 // Create an alloca for the variable in the entry block.
1789 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1791 // Emit the start code first, without 'variable' in scope.
1792 Value *StartVal = Start-&gt;Codegen();
1793 if (StartVal == 0) return 0;
1795 // Store the value into the alloca.
1796 Builder.CreateStore(StartVal, Alloca);
1798 // Make the new basic block for the loop header, inserting after current
1799 // block.
1800 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1802 // Insert an explicit fall through from the current block to the LoopBB.
1803 Builder.CreateBr(LoopBB);
1805 // Start insertion in LoopBB.
1806 Builder.SetInsertPoint(LoopBB);
1808 // Within the loop, the variable is defined equal to the PHI node. If it
1809 // shadows an existing variable, we have to restore it, so save it now.
1810 AllocaInst *OldVal = NamedValues[VarName];
1811 NamedValues[VarName] = Alloca;
1813 // Emit the body of the loop. This, like any other expr, can change the
1814 // current BB. Note that we ignore the value computed by the body, but don't
1815 // allow an error.
1816 if (Body-&gt;Codegen() == 0)
1817 return 0;
1819 // Emit the step value.
1820 Value *StepVal;
1821 if (Step) {
1822 StepVal = Step-&gt;Codegen();
1823 if (StepVal == 0) return 0;
1824 } else {
1825 // If not specified, use 1.0.
1826 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1829 // Compute the end condition.
1830 Value *EndCond = End-&gt;Codegen();
1831 if (EndCond == 0) return EndCond;
1833 // Reload, increment, and restore the alloca. This handles the case where
1834 // the body of the loop mutates the variable.
1835 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1836 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1837 Builder.CreateStore(NextVar, Alloca);
1839 // Convert condition to a bool by comparing equal to 0.0.
1840 EndCond = Builder.CreateFCmpONE(EndCond,
1841 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1842 "loopcond");
1844 // Create the "after loop" block and insert it.
1845 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1847 // Insert the conditional branch into the end of LoopEndBB.
1848 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1850 // Any new code will be inserted in AfterBB.
1851 Builder.SetInsertPoint(AfterBB);
1853 // Restore the unshadowed variable.
1854 if (OldVal)
1855 NamedValues[VarName] = OldVal;
1856 else
1857 NamedValues.erase(VarName);
1860 // for expr always returns 0.0.
1861 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1864 Value *VarExprAST::Codegen() {
1865 std::vector&lt;AllocaInst *&gt; OldBindings;
1867 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1869 // Register all variables and emit their initializer.
1870 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1871 const std::string &amp;VarName = VarNames[i].first;
1872 ExprAST *Init = VarNames[i].second;
1874 // Emit the initializer before adding the variable to scope, this prevents
1875 // the initializer from referencing the variable itself, and permits stuff
1876 // like this:
1877 // var a = 1 in
1878 // var a = a in ... # refers to outer 'a'.
1879 Value *InitVal;
1880 if (Init) {
1881 InitVal = Init-&gt;Codegen();
1882 if (InitVal == 0) return 0;
1883 } else { // If not specified, use 0.0.
1884 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1887 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1888 Builder.CreateStore(InitVal, Alloca);
1890 // Remember the old variable binding so that we can restore the binding when
1891 // we unrecurse.
1892 OldBindings.push_back(NamedValues[VarName]);
1894 // Remember this binding.
1895 NamedValues[VarName] = Alloca;
1898 // Codegen the body, now that all vars are in scope.
1899 Value *BodyVal = Body-&gt;Codegen();
1900 if (BodyVal == 0) return 0;
1902 // Pop all our variables from scope.
1903 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1904 NamedValues[VarNames[i].first] = OldBindings[i];
1906 // Return the body computation.
1907 return BodyVal;
1910 Function *PrototypeAST::Codegen() {
1911 // Make the function type: double(double,double) etc.
1912 std::vector&lt;const Type*&gt; Doubles(Args.size(),
1913 Type::getDoubleTy(getGlobalContext()));
1914 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1915 Doubles, false);
1917 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1919 // If F conflicted, there was already something named 'Name'. If it has a
1920 // body, don't allow redefinition or reextern.
1921 if (F-&gt;getName() != Name) {
1922 // Delete the one we just made and get the existing one.
1923 F-&gt;eraseFromParent();
1924 F = TheModule-&gt;getFunction(Name);
1926 // If F already has a body, reject this.
1927 if (!F-&gt;empty()) {
1928 ErrorF("redefinition of function");
1929 return 0;
1932 // If F took a different number of args, reject.
1933 if (F-&gt;arg_size() != Args.size()) {
1934 ErrorF("redefinition of function with different # args");
1935 return 0;
1939 // Set names for all arguments.
1940 unsigned Idx = 0;
1941 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1942 ++AI, ++Idx)
1943 AI-&gt;setName(Args[Idx]);
1945 return F;
1948 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1949 /// argument in the symbol table so that references to it will succeed.
1950 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1951 Function::arg_iterator AI = F-&gt;arg_begin();
1952 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1953 // Create an alloca for this variable.
1954 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1956 // Store the initial value into the alloca.
1957 Builder.CreateStore(AI, Alloca);
1959 // Add arguments to variable symbol table.
1960 NamedValues[Args[Idx]] = Alloca;
1964 Function *FunctionAST::Codegen() {
1965 NamedValues.clear();
1967 Function *TheFunction = Proto-&gt;Codegen();
1968 if (TheFunction == 0)
1969 return 0;
1971 // If this is an operator, install it.
1972 if (Proto-&gt;isBinaryOp())
1973 BinopPrecedence[Proto-&gt;getOperatorName()] = Proto-&gt;getBinaryPrecedence();
1975 // Create a new basic block to start insertion into.
1976 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1977 Builder.SetInsertPoint(BB);
1979 // Add all arguments to the symbol table and create their allocas.
1980 Proto-&gt;CreateArgumentAllocas(TheFunction);
1982 if (Value *RetVal = Body-&gt;Codegen()) {
1983 // Finish off the function.
1984 Builder.CreateRet(RetVal);
1986 // Validate the generated code, checking for consistency.
1987 verifyFunction(*TheFunction);
1989 // Optimize the function.
1990 TheFPM-&gt;run(*TheFunction);
1992 return TheFunction;
1995 // Error reading body, remove function.
1996 TheFunction-&gt;eraseFromParent();
1998 if (Proto-&gt;isBinaryOp())
1999 BinopPrecedence.erase(Proto-&gt;getOperatorName());
2000 return 0;
2003 //===----------------------------------------------------------------------===//
2004 // Top-Level parsing and JIT Driver
2005 //===----------------------------------------------------------------------===//
2007 static ExecutionEngine *TheExecutionEngine;
2009 static void HandleDefinition() {
2010 if (FunctionAST *F = ParseDefinition()) {
2011 if (Function *LF = F-&gt;Codegen()) {
2012 fprintf(stderr, "Read function definition:");
2013 LF-&gt;dump();
2015 } else {
2016 // Skip token for error recovery.
2017 getNextToken();
2021 static void HandleExtern() {
2022 if (PrototypeAST *P = ParseExtern()) {
2023 if (Function *F = P-&gt;Codegen()) {
2024 fprintf(stderr, "Read extern: ");
2025 F-&gt;dump();
2027 } else {
2028 // Skip token for error recovery.
2029 getNextToken();
2033 static void HandleTopLevelExpression() {
2034 // Evaluate a top-level expression into an anonymous function.
2035 if (FunctionAST *F = ParseTopLevelExpr()) {
2036 if (Function *LF = F-&gt;Codegen()) {
2037 // JIT the function, returning a function pointer.
2038 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
2040 // Cast it to the right type (takes no arguments, returns a double) so we
2041 // can call it as a native function.
2042 double (*FP)() = (double (*)())(intptr_t)FPtr;
2043 fprintf(stderr, "Evaluated to %f\n", FP());
2045 } else {
2046 // Skip token for error recovery.
2047 getNextToken();
2051 /// top ::= definition | external | expression | ';'
2052 static void MainLoop() {
2053 while (1) {
2054 fprintf(stderr, "ready&gt; ");
2055 switch (CurTok) {
2056 case tok_eof: return;
2057 case ';': getNextToken(); break; // ignore top-level semicolons.
2058 case tok_def: HandleDefinition(); break;
2059 case tok_extern: HandleExtern(); break;
2060 default: HandleTopLevelExpression(); break;
2065 //===----------------------------------------------------------------------===//
2066 // "Library" functions that can be "extern'd" from user code.
2067 //===----------------------------------------------------------------------===//
2069 /// putchard - putchar that takes a double and returns 0.
2070 extern "C"
2071 double putchard(double X) {
2072 putchar((char)X);
2073 return 0;
2076 /// printd - printf that takes a double prints it as "%f\n", returning 0.
2077 extern "C"
2078 double printd(double X) {
2079 printf("%f\n", X);
2080 return 0;
2083 //===----------------------------------------------------------------------===//
2084 // Main driver code.
2085 //===----------------------------------------------------------------------===//
2087 int main() {
2088 InitializeNativeTarget();
2089 LLVMContext &amp;Context = getGlobalContext();
2091 // Install standard binary operators.
2092 // 1 is lowest precedence.
2093 BinopPrecedence['='] = 2;
2094 BinopPrecedence['&lt;'] = 10;
2095 BinopPrecedence['+'] = 20;
2096 BinopPrecedence['-'] = 20;
2097 BinopPrecedence['*'] = 40; // highest.
2099 // Prime the first token.
2100 fprintf(stderr, "ready&gt; ");
2101 getNextToken();
2103 // Make the module, which holds all the code.
2104 TheModule = new Module("my cool jit", Context);
2106 // Create the JIT. This takes ownership of the module.
2107 std::string ErrStr;
2108 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
2109 if (!TheExecutionEngine) {
2110 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
2111 exit(1);
2114 FunctionPassManager OurFPM(TheModule);
2116 // Set up the optimizer pipeline. Start with registering info about how the
2117 // target lays out data structures.
2118 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
2119 // Promote allocas to registers.
2120 OurFPM.add(createPromoteMemoryToRegisterPass());
2121 // Do simple "peephole" optimizations and bit-twiddling optzns.
2122 OurFPM.add(createInstructionCombiningPass());
2123 // Reassociate expressions.
2124 OurFPM.add(createReassociatePass());
2125 // Eliminate Common SubExpressions.
2126 OurFPM.add(createGVNPass());
2127 // Simplify the control flow graph (deleting unreachable blocks, etc).
2128 OurFPM.add(createCFGSimplificationPass());
2130 OurFPM.doInitialization();
2132 // Set the global so the code gen can use this.
2133 TheFPM = &amp;OurFPM;
2135 // Run the main "interpreter loop" now.
2136 MainLoop();
2138 TheFPM = 0;
2140 // Print out all of the generated code.
2141 TheModule-&gt;dump();
2143 return 0;
2145 </pre>
2146 </div>
2148 <a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
2149 </div>
2151 <!-- *********************************************************************** -->
2152 <hr>
2153 <address>
2154 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2155 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2156 <a href="http://validator.w3.org/check/referer"><img
2157 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
2159 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2160 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
2161 Last modified: $Date$
2162 </address>
2163 </body>
2164 </html>