1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
6 <title>Kaleidoscope: Adding JIT and Optimizer Support
</title>
7 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
8 <meta name=
"author" content=
"Chris Lattner">
9 <meta name=
"author" content=
"Erick Tryzelaar">
10 <link rel=
"stylesheet" href=
"../llvm.css" type=
"text/css">
15 <div class=
"doc_title">Kaleidoscope: Adding JIT and Optimizer Support
</div>
18 <li><a href=
"index.html">Up to Tutorial Index
</a></li>
21 <li><a href=
"#intro">Chapter
4 Introduction
</a></li>
22 <li><a href=
"#trivialconstfold">Trivial Constant Folding
</a></li>
23 <li><a href=
"#optimizerpasses">LLVM Optimization Passes
</a></li>
24 <li><a href=
"#jit">Adding a JIT Compiler
</a></li>
25 <li><a href=
"#code">Full Code Listing
</a></li>
28 <li><a href=
"OCamlLangImpl5.html">Chapter
5</a>: Extending the Language: Control
32 <div class=
"doc_author">
34 Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
35 and
<a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a>
39 <!-- *********************************************************************** -->
40 <div class=
"doc_section"><a name=
"intro">Chapter
4 Introduction
</a></div>
41 <!-- *********************************************************************** -->
43 <div class=
"doc_text">
45 <p>Welcome to Chapter
4 of the
"<a href="index.html
">Implementing a language
46 with LLVM</a>" tutorial. Chapters
1-
3 described the implementation of a simple
47 language and added support for generating LLVM IR. This chapter describes
48 two new techniques: adding optimizer support to your language, and adding JIT
49 compiler support. These additions will demonstrate how to get nice, efficient code
50 for the Kaleidoscope language.
</p>
54 <!-- *********************************************************************** -->
55 <div class=
"doc_section"><a name=
"trivialconstfold">Trivial Constant
57 <!-- *********************************************************************** -->
59 <div class=
"doc_text">
61 <p><b>Note:
</b> the default
<tt>IRBuilder
</tt> now always includes the constant
62 folding optimisations below.
<p>
65 Our demonstration for Chapter
3 is elegant and easy to extend. Unfortunately,
66 it does not produce wonderful code. For example, when compiling simple code,
67 we don't get obvious optimizations:
</p>
69 <div class=
"doc_code">
71 ready
> <b>def test(x)
1+
2+x;
</b>
72 Read function definition:
73 define double @test(double %x) {
75 %addtmp = fadd double
1.000000e+00,
2.000000e+00
76 %addtmp1 = fadd double %addtmp, %x
82 <p>This code is a very, very literal transcription of the AST built by parsing
83 the input. As such, this transcription lacks optimizations like constant folding
84 (we'd like to get
"<tt>add x, 3.0</tt>" in the example above) as well as other
85 more important optimizations. Constant folding, in particular, is a very common
86 and very important optimization: so much so that many language implementors
87 implement constant folding support in their AST representation.
</p>
89 <p>With LLVM, you don't need this support in the AST. Since all calls to build
90 LLVM IR go through the LLVM builder, it would be nice if the builder itself
91 checked to see if there was a constant folding opportunity when you call it.
92 If so, it could just do the constant fold and return the constant instead of
93 creating an instruction. This is exactly what the
<tt>LLVMFoldingBuilder
</tt>
96 <p>All we did was switch from
<tt>LLVMBuilder
</tt> to
97 <tt>LLVMFoldingBuilder
</tt>. Though we change no other code, we now have all of our
98 instructions implicitly constant folded without us having to do anything
99 about it. For example, the input above now compiles to:
</p>
101 <div class=
"doc_code">
103 ready
> <b>def test(x)
1+
2+x;
</b>
104 Read function definition:
105 define double @test(double %x) {
107 %addtmp = fadd double
3.000000e+00, %x
113 <p>Well, that was easy :). In practice, we recommend always using
114 <tt>LLVMFoldingBuilder
</tt> when generating code like this. It has no
115 "syntactic overhead" for its use (you don't have to uglify your compiler with
116 constant checks everywhere) and it can dramatically reduce the amount of
117 LLVM IR that is generated in some cases (particular for languages with a macro
118 preprocessor or that use a lot of constants).
</p>
120 <p>On the other hand, the
<tt>LLVMFoldingBuilder
</tt> is limited by the fact
121 that it does all of its analysis inline with the code as it is built. If you
122 take a slightly more complex example:
</p>
124 <div class=
"doc_code">
126 ready
> <b>def test(x) (
1+
2+x)*(x+(
1+
2));
</b>
127 ready
> Read function definition:
128 define double @test(double %x) {
130 %addtmp = fadd double
3.000000e+00, %x
131 %addtmp1 = fadd double %x,
3.000000e+00
132 %multmp = fmul double %addtmp, %addtmp1
138 <p>In this case, the LHS and RHS of the multiplication are the same value. We'd
139 really like to see this generate
"<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
140 of computing
"<tt>x*3</tt>" twice.
</p>
142 <p>Unfortunately, no amount of local analysis will be able to detect and correct
143 this. This requires two transformations: reassociation of expressions (to
144 make the add's lexically identical) and Common Subexpression Elimination (CSE)
145 to delete the redundant add instruction. Fortunately, LLVM provides a broad
146 range of optimizations that you can use, in the form of
"passes".
</p>
150 <!-- *********************************************************************** -->
151 <div class=
"doc_section"><a name=
"optimizerpasses">LLVM Optimization
153 <!-- *********************************************************************** -->
155 <div class=
"doc_text">
157 <p>LLVM provides many optimization passes, which do many different sorts of
158 things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
159 to the mistaken notion that one set of optimizations is right for all languages
160 and for all situations. LLVM allows a compiler implementor to make complete
161 decisions about what optimizations to use, in which order, and in what
164 <p>As a concrete example, LLVM supports both
"whole module" passes, which look
165 across as large of body of code as they can (often a whole file, but if run
166 at link time, this can be a substantial portion of the whole program). It also
167 supports and includes
"per-function" passes which just operate on a single
168 function at a time, without looking at other functions. For more information
169 on passes and how they are run, see the
<a href=
"../WritingAnLLVMPass.html">How
170 to Write a Pass
</a> document and the
<a href=
"../Passes.html">List of LLVM
173 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
174 a time, as the user types them in. We aren't shooting for the ultimate
175 optimization experience in this setting, but we also want to catch the easy and
176 quick stuff where possible. As such, we will choose to run a few per-function
177 optimizations as the user types the function in. If we wanted to make a
"static
178 Kaleidoscope compiler", we would use exactly the code we have now, except that
179 we would defer running the optimizer until the entire file has been parsed.
</p>
181 <p>In order to get per-function optimizations going, we need to set up a
182 <a href=
"../WritingAnLLVMPass.html#passmanager">Llvm.PassManager
</a> to hold and
183 organize the LLVM optimizations that we want to run. Once we have that, we can
184 add a set of optimizations to run. The code looks like this:
</p>
186 <div class=
"doc_code">
188 (* Create the JIT. *)
189 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
190 let the_fpm = PassManager.create_function Codegen.the_module in
192 (* Set up the optimizer pipeline. Start with registering info about how the
193 * target lays out data structures. *)
194 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
196 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
197 add_instruction_combining the_fpm;
199 (* reassociate expressions. *)
200 add_reassociation the_fpm;
202 (* Eliminate Common SubExpressions. *)
205 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
206 add_cfg_simplification the_fpm;
208 ignore (PassManager.initialize the_fpm);
210 (* Run the main
"interpreter loop" now. *)
211 Toplevel.main_loop the_fpm the_execution_engine stream;
215 <p>The meat of the matter here, is the definition of
"<tt>the_fpm</tt>". It
216 requires a pointer to the
<tt>the_module
</tt> to construct itself. Once it is
217 set up, we use a series of
"add" calls to add a bunch of LLVM passes. The
218 first pass is basically boilerplate, it adds a pass so that later optimizations
219 know how the data structures in the program are laid out. The
220 "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
221 get to in the next section.
</p>
223 <p>In this case, we choose to add
4 optimization passes. The passes we chose
224 here are a pretty standard set of
"cleanup" optimizations that are useful for
225 a wide variety of code. I won't delve into what they do but, believe me,
226 they are a good starting place :).
</p>
228 <p>Once the
<tt>Llvm.PassManager.
</tt> is set up, we need to make use of it.
229 We do this by running it after our newly created function is constructed (in
230 <tt>Codegen.codegen_func
</tt>), but before it is returned to the client:
</p>
232 <div class=
"doc_code">
234 let codegen_func the_fpm = function
237 let ret_val = codegen_expr body in
239 (* Finish off the function. *)
240 let _ = build_ret ret_val builder in
242 (* Validate the generated code, checking for consistency. *)
243 Llvm_analysis.assert_valid_function the_function;
245 (* Optimize the function. *)
246 let _ = PassManager.run_function the_function the_fpm in
252 <p>As you can see, this is pretty straightforward. The
<tt>the_fpm
</tt>
253 optimizes and updates the LLVM Function* in place, improving (hopefully) its
254 body. With this in place, we can try our test above again:
</p>
256 <div class=
"doc_code">
258 ready
> <b>def test(x) (
1+
2+x)*(x+(
1+
2));
</b>
259 ready
> Read function definition:
260 define double @test(double %x) {
262 %addtmp = fadd double %x,
3.000000e+00
263 %multmp = fmul double %addtmp, %addtmp
269 <p>As expected, we now get our nicely optimized code, saving a floating point
270 add instruction from every execution of this function.
</p>
272 <p>LLVM provides a wide variety of optimizations that can be used in certain
273 circumstances. Some
<a href=
"../Passes.html">documentation about the various
274 passes
</a> is available, but it isn't very complete. Another good source of
275 ideas can come from looking at the passes that
<tt>llvm-gcc
</tt> or
276 <tt>llvm-ld
</tt> run to get started. The
"<tt>opt</tt>" tool allows you to
277 experiment with passes from the command line, so you can see if they do
280 <p>Now that we have reasonable code coming out of our front-end, lets talk about
285 <!-- *********************************************************************** -->
286 <div class=
"doc_section"><a name=
"jit">Adding a JIT Compiler
</a></div>
287 <!-- *********************************************************************** -->
289 <div class=
"doc_text">
291 <p>Code that is available in LLVM IR can have a wide variety of tools
292 applied to it. For example, you can run optimizations on it (as we did above),
293 you can dump it out in textual or binary forms, you can compile the code to an
294 assembly file (.s) for some target, or you can JIT compile it. The nice thing
295 about the LLVM IR representation is that it is the
"common currency" between
296 many different parts of the compiler.
299 <p>In this section, we'll add JIT compiler support to our interpreter. The
300 basic idea that we want for Kaleidoscope is to have the user enter function
301 bodies as they do now, but immediately evaluate the top-level expressions they
302 type in. For example, if they type in
"1 + 2;", we should evaluate and print
303 out
3. If they define a function, they should be able to call it from the
306 <p>In order to do this, we first declare and initialize the JIT. This is done
307 by adding a global variable and a call in
<tt>main
</tt>:
</p>
309 <div class=
"doc_code">
314 <b>(* Create the JIT. *)
315 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
</b>
320 <p>This creates an abstract
"Execution Engine" which can be either a JIT
321 compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
322 for you if one is available for your platform, otherwise it will fall back to
325 <p>Once the
<tt>Llvm_executionengine.ExecutionEngine.t
</tt> is created, the JIT
326 is ready to be used. There are a variety of APIs that are useful, but the
327 simplest one is the
"<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
328 function. This method JIT compiles the specified LLVM Function and returns a
329 function pointer to the generated machine code. In our case, this means that we
330 can change the code that parses a top-level expression to look like this:
</p>
332 <div class=
"doc_code">
334 (* Evaluate a top-level expression into an anonymous function. *)
335 let e = Parser.parse_toplevel stream in
336 print_endline
"parsed a top-level expr";
337 let the_function = Codegen.codegen_func the_fpm e in
338 dump_value the_function;
340 (* JIT the function, returning a function pointer. *)
341 let result = ExecutionEngine.run_function the_function [||]
342 the_execution_engine in
344 print_string
"Evaluated to ";
345 print_float (GenericValue.as_float Codegen.double_type result);
350 <p>Recall that we compile top-level expressions into a self-contained LLVM
351 function that takes no arguments and returns the computed double. Because the
352 LLVM JIT compiler matches the native platform ABI, this means that you can just
353 cast the result pointer to a function pointer of that type and call it directly.
354 This means, there is no difference between JIT compiled code and native machine
355 code that is statically linked into your application.
</p>
357 <p>With just these two changes, lets see how Kaleidoscope works now!
</p>
359 <div class=
"doc_code">
361 ready
> <b>4+
5;
</b>
362 define double @
""() {
364 ret double
9.000000e+00
367 <em>Evaluated to
9.000000</em>
371 <p>Well this looks like it is basically working. The dump of the function
372 shows the
"no argument function that always returns double" that we synthesize
373 for each top level expression that is typed in. This demonstrates very basic
374 functionality, but can we do more?
</p>
376 <div class=
"doc_code">
378 ready
> <b>def testfunc(x y) x + y*
2;
</b>
379 Read function definition:
380 define double @testfunc(double %x, double %y) {
382 %multmp = fmul double %y,
2.000000e+00
383 %addtmp = fadd double %multmp, %x
387 ready
> <b>testfunc(
4,
10);
</b>
388 define double @
""() {
390 %calltmp = call double @testfunc(double
4.000000e+00, double
1.000000e+01)
394 <em>Evaluated to
24.000000</em>
398 <p>This illustrates that we can now call user code, but there is something a bit
399 subtle going on here. Note that we only invoke the JIT on the anonymous
400 functions that
<em>call testfunc
</em>, but we never invoked it
401 on
<em>testfunc
</em> itself. What actually happened here is that the JIT
402 scanned for all non-JIT'd functions transitively called from the anonymous
403 function and compiled all of them before returning
404 from
<tt>run_function
</tt>.
</p>
406 <p>The JIT provides a number of other more advanced interfaces for things like
407 freeing allocated machine code, rejit'ing functions to update them, etc.
408 However, even with this simple code, we get some surprisingly powerful
409 capabilities - check this out (I removed the dump of the anonymous functions,
410 you should get the idea by now :) :
</p>
412 <div class=
"doc_code">
414 ready
> <b>extern sin(x);
</b>
416 declare double @sin(double)
418 ready
> <b>extern cos(x);
</b>
420 declare double @cos(double)
422 ready
> <b>sin(
1.0);
</b>
423 <em>Evaluated to
0.841471</em>
425 ready
> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
</b>
426 Read function definition:
427 define double @foo(double %x) {
429 %calltmp = call double @sin(double %x)
430 %multmp = fmul double %calltmp, %calltmp
431 %calltmp2 = call double @cos(double %x)
432 %multmp4 = fmul double %calltmp2, %calltmp2
433 %addtmp = fadd double %multmp, %multmp4
437 ready
> <b>foo(
4.0);
</b>
438 <em>Evaluated to
1.000000</em>
442 <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
443 simple: in this example, the JIT started execution of a function and got to a
444 function call. It realized that the function was not yet JIT compiled and
445 invoked the standard set of routines to resolve the function. In this case,
446 there is no body defined for the function, so the JIT ended up calling
447 "<tt>dlsym("sin
")</tt>" on the Kaleidoscope process itself. Since
448 "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
449 calls in the module to call the libm version of
<tt>sin
</tt> directly.
</p>
451 <p>The LLVM JIT provides a number of interfaces (look in the
452 <tt>llvm_executionengine.mli
</tt> file) for controlling how unknown functions
453 get resolved. It allows you to establish explicit mappings between IR objects
454 and addresses (useful for LLVM global variables that you want to map to static
455 tables, for example), allows you to dynamically decide on the fly based on the
456 function name, and even allows you to have the JIT compile functions lazily the
457 first time they're called.
</p>
459 <p>One interesting application of this is that we can now extend the language
460 by writing arbitrary C code to implement operations. For example, if we add:
463 <div class=
"doc_code">
465 /* putchard - putchar that takes a double and returns
0. */
467 double putchard(double X) {
474 <p>Now we can produce simple output to the console by using things like:
475 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
476 the console (
120 is the ASCII code for 'x'). Similar code could be used to
477 implement file I/O, console input, and many other capabilities in
480 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
481 this point, we can compile a non-Turing-complete programming language, optimize
482 and JIT compile it in a user-driven way. Next up we'll look into
<a
483 href=
"OCamlLangImpl5.html">extending the language with control flow
484 constructs
</a>, tackling some interesting LLVM IR issues along the way.
</p>
488 <!-- *********************************************************************** -->
489 <div class=
"doc_section"><a name=
"code">Full Code Listing
</a></div>
490 <!-- *********************************************************************** -->
492 <div class=
"doc_text">
495 Here is the complete code listing for our running example, enhanced with the
496 LLVM JIT and optimizer. To build this example, use:
499 <div class=
"doc_code">
508 <p>Here is the code:
</p>
512 <dd class=
"doc_code">
514 <{lexer,parser}.ml
>: use_camlp4, pp(camlp4of)
515 <*.{byte,native}
>: g++, use_llvm, use_llvm_analysis
516 <*.{byte,native}
>: use_llvm_executionengine, use_llvm_target
517 <*.{byte,native}
>: use_llvm_scalar_opts, use_bindings
521 <dt>myocamlbuild.ml:
</dt>
522 <dd class=
"doc_code">
524 open Ocamlbuild_plugin;;
526 ocaml_lib ~extern:true
"llvm";;
527 ocaml_lib ~extern:true
"llvm_analysis";;
528 ocaml_lib ~extern:true
"llvm_executionengine";;
529 ocaml_lib ~extern:true
"llvm_target";;
530 ocaml_lib ~extern:true
"llvm_scalar_opts";;
532 flag [
"link";
"ocaml";
"g++"] (S[A
"-cc"; A
"g++"]);;
533 dep [
"link";
"ocaml";
"use_bindings"] [
"bindings.o"];;
538 <dd class=
"doc_code">
540 (*===----------------------------------------------------------------------===
542 *===----------------------------------------------------------------------===*)
544 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
545 * these others for known things. *)
551 | Ident of string | Number of float
559 <dd class=
"doc_code">
561 (*===----------------------------------------------------------------------===
563 *===----------------------------------------------------------------------===*)
566 (* Skip any whitespace. *)
567 | [
< ' (' ' | '\n' | '\r' | '\t'); stream
>] -
> lex stream
569 (* identifier: [a-zA-Z][a-zA-Z0-
9] *)
570 | [
< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream
>] -
>
571 let buffer = Buffer.create
1 in
572 Buffer.add_char buffer c;
573 lex_ident buffer stream
575 (* number: [
0-
9.]+ *)
576 | [
< ' ('
0' .. '
9' as c); stream
>] -
>
577 let buffer = Buffer.create
1 in
578 Buffer.add_char buffer c;
579 lex_number buffer stream
581 (* Comment until end of line. *)
582 | [
< ' ('#'); stream
>] -
>
585 (* Otherwise, just return the character as its ascii value. *)
586 | [
< 'c; stream
>] -
>
587 [
< 'Token.Kwd c; lex stream
>]
590 | [
< >] -
> [
< >]
592 and lex_number buffer = parser
593 | [
< ' ('
0' .. '
9' | '.' as c); stream
>] -
>
594 Buffer.add_char buffer c;
595 lex_number buffer stream
596 | [
< stream=lex
>] -
>
597 [
< 'Token.Number (float_of_string (Buffer.contents buffer)); stream
>]
599 and lex_ident buffer = parser
600 | [
< ' ('A' .. 'Z' | 'a' .. 'z' | '
0' .. '
9' as c); stream
>] -
>
601 Buffer.add_char buffer c;
602 lex_ident buffer stream
603 | [
< stream=lex
>] -
>
604 match Buffer.contents buffer with
605 |
"def" -
> [
< 'Token.Def; stream
>]
606 |
"extern" -
> [
< 'Token.Extern; stream
>]
607 | id -
> [
< 'Token.Ident id; stream
>]
609 and lex_comment = parser
610 | [
< ' ('\n'); stream=lex
>] -
> stream
611 | [
< 'c; e=lex_comment
>] -
> e
612 | [
< >] -
> [
< >]
617 <dd class=
"doc_code">
619 (*===----------------------------------------------------------------------===
620 * Abstract Syntax Tree (aka Parse Tree)
621 *===----------------------------------------------------------------------===*)
623 (* expr - Base type for all expression nodes. *)
625 (* variant for numeric literals like
"1.0". *)
628 (* variant for referencing a variable, like
"a". *)
631 (* variant for a binary operator. *)
632 | Binary of char * expr * expr
634 (* variant for function calls. *)
635 | Call of string * expr array
637 (* proto - This type represents the
"prototype" for a function, which captures
638 * its name, and its argument names (thus implicitly the number of arguments the
639 * function takes). *)
640 type proto = Prototype of string * string array
642 (* func - This type represents a function definition itself. *)
643 type func = Function of proto * expr
648 <dd class=
"doc_code">
650 (*===---------------------------------------------------------------------===
652 *===---------------------------------------------------------------------===*)
654 (* binop_precedence - This holds the precedence for each binary operator that is
656 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create
10
658 (* precedence - Get the precedence of the pending binary operator token. *)
659 let precedence c = try Hashtbl.find binop_precedence c with Not_found -
> -
1
665 let rec parse_primary = parser
666 (* numberexpr ::= number *)
667 | [
< 'Token.Number n
>] -
> Ast.Number n
669 (* parenexpr ::= '(' expression ')' *)
670 | [
< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ??
"expected ')'" >] -
> e
674 * ::= identifier '(' argumentexpr ')' *)
675 | [
< 'Token.Ident id; stream
>] -
>
676 let rec parse_args accumulator = parser
677 | [
< e=parse_expr; stream
>] -
>
679 | [
< 'Token.Kwd ','; e=parse_args (e :: accumulator)
>] -
> e
680 | [
< >] -
> e :: accumulator
682 | [
< >] -
> accumulator
684 let rec parse_ident id = parser
686 | [
< 'Token.Kwd '(';
688 'Token.Kwd ')' ??
"expected ')'">] -
>
689 Ast.Call (id, Array.of_list (List.rev args))
691 (* Simple variable ref. *)
692 | [
< >] -
> Ast.Variable id
694 parse_ident id stream
696 | [
< >] -
> raise (Stream.Error
"unknown token when expecting an expression.")
699 * ::= ('+' primary)* *)
700 and parse_bin_rhs expr_prec lhs stream =
701 match Stream.peek stream with
702 (* If this is a binop, find its precedence. *)
703 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -
>
704 let token_prec = precedence c in
706 (* If this is a binop that binds at least as tightly as the current binop,
707 * consume it, otherwise we are done. *)
708 if token_prec
< expr_prec then lhs else begin
712 (* Parse the primary expression after the binary operator. *)
713 let rhs = parse_primary stream in
715 (* Okay, we know this is a binop. *)
717 match Stream.peek stream with
718 | Some (Token.Kwd c2) -
>
719 (* If BinOp binds less tightly with rhs than the operator after
720 * rhs, let the pending operator take rhs as its lhs. *)
721 let next_prec = precedence c2 in
722 if token_prec
< next_prec
723 then parse_bin_rhs (token_prec +
1) rhs stream
729 let lhs = Ast.Binary (c, lhs, rhs) in
730 parse_bin_rhs expr_prec lhs stream
735 * ::= primary binoprhs *)
736 and parse_expr = parser
737 | [
< lhs=parse_primary; stream
>] -
> parse_bin_rhs
0 lhs stream
740 * ::= id '(' id* ')' *)
741 let parse_prototype =
742 let rec parse_args accumulator = parser
743 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
744 | [
< >] -
> accumulator
748 | [
< 'Token.Ident id;
749 'Token.Kwd '(' ??
"expected '(' in prototype";
751 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
753 Ast.Prototype (id, Array.of_list (List.rev args))
756 raise (Stream.Error
"expected function name in prototype")
758 (* definition ::= 'def' prototype expression *)
759 let parse_definition = parser
760 | [
< 'Token.Def; p=parse_prototype; e=parse_expr
>] -
>
763 (* toplevelexpr ::= expression *)
764 let parse_toplevel = parser
765 | [
< e=parse_expr
>] -
>
766 (* Make an anonymous proto. *)
767 Ast.Function (Ast.Prototype (
"", [||]), e)
769 (* external ::= 'extern' prototype *)
770 let parse_extern = parser
771 | [
< 'Token.Extern; e=parse_prototype
>] -
> e
776 <dd class=
"doc_code">
778 (*===----------------------------------------------------------------------===
780 *===----------------------------------------------------------------------===*)
784 exception Error of string
786 let context = global_context ()
787 let the_module = create_module context
"my cool jit"
788 let builder = builder context
789 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create
10
790 let double_type = double_type context
792 let rec codegen_expr = function
793 | Ast.Number n -
> const_float double_type n
794 | Ast.Variable name -
>
795 (try Hashtbl.find named_values name with
796 | Not_found -
> raise (Error
"unknown variable name"))
797 | Ast.Binary (op, lhs, rhs) -
>
798 let lhs_val = codegen_expr lhs in
799 let rhs_val = codegen_expr rhs in
802 | '+' -
> build_add lhs_val rhs_val
"addtmp" builder
803 | '-' -
> build_sub lhs_val rhs_val
"subtmp" builder
804 | '*' -
> build_mul lhs_val rhs_val
"multmp" builder
806 (* Convert bool
0/
1 to double
0.0 or
1.0 *)
807 let i = build_fcmp Fcmp.Ult lhs_val rhs_val
"cmptmp" builder in
808 build_uitofp i double_type
"booltmp" builder
809 | _ -
> raise (Error
"invalid binary operator")
811 | Ast.Call (callee, args) -
>
812 (* Look up the name in the module table. *)
814 match lookup_function callee the_module with
815 | Some callee -
> callee
816 | None -
> raise (Error
"unknown function referenced")
818 let params = params callee in
820 (* If argument mismatch error. *)
821 if Array.length params == Array.length args then () else
822 raise (Error
"incorrect # arguments passed");
823 let args = Array.map codegen_expr args in
824 build_call callee args
"calltmp" builder
826 let codegen_proto = function
827 | Ast.Prototype (name, args) -
>
828 (* Make the function type: double(double,double) etc. *)
829 let doubles = Array.make (Array.length args) double_type in
830 let ft = function_type double_type doubles in
832 match lookup_function name the_module with
833 | None -
> declare_function name ft the_module
835 (* If 'f' conflicted, there was already something named 'name'. If it
836 * has a body, don't allow redefinition or reextern. *)
838 (* If 'f' already has a body, reject this. *)
839 if block_begin f
<> At_end f then
840 raise (Error
"redefinition of function");
842 (* If 'f' took a different number of arguments, reject. *)
843 if element_type (type_of f)
<> ft then
844 raise (Error
"redefinition of function with different # args");
848 (* Set names for all arguments. *)
849 Array.iteri (fun i a -
>
852 Hashtbl.add named_values n a;
856 let codegen_func the_fpm = function
857 | Ast.Function (proto, body) -
>
858 Hashtbl.clear named_values;
859 let the_function = codegen_proto proto in
861 (* Create a new basic block to start insertion into. *)
862 let bb = append_block context
"entry" the_function in
863 position_at_end bb builder;
866 let ret_val = codegen_expr body in
868 (* Finish off the function. *)
869 let _ = build_ret ret_val builder in
871 (* Validate the generated code, checking for consistency. *)
872 Llvm_analysis.assert_valid_function the_function;
874 (* Optimize the function. *)
875 let _ = PassManager.run_function the_function the_fpm in
879 delete_function the_function;
884 <dt>toplevel.ml:
</dt>
885 <dd class=
"doc_code">
887 (*===----------------------------------------------------------------------===
888 * Top-Level parsing and JIT Driver
889 *===----------------------------------------------------------------------===*)
892 open Llvm_executionengine
894 (* top ::= definition | external | expression | ';' *)
895 let rec main_loop the_fpm the_execution_engine stream =
896 match Stream.peek stream with
899 (* ignore top-level semicolons. *)
900 | Some (Token.Kwd ';') -
>
902 main_loop the_fpm the_execution_engine stream
908 let e = Parser.parse_definition stream in
909 print_endline
"parsed a function definition.";
910 dump_value (Codegen.codegen_func the_fpm e);
912 let e = Parser.parse_extern stream in
913 print_endline
"parsed an extern.";
914 dump_value (Codegen.codegen_proto e);
916 (* Evaluate a top-level expression into an anonymous function. *)
917 let e = Parser.parse_toplevel stream in
918 print_endline
"parsed a top-level expr";
919 let the_function = Codegen.codegen_func the_fpm e in
920 dump_value the_function;
922 (* JIT the function, returning a function pointer. *)
923 let result = ExecutionEngine.run_function the_function [||]
924 the_execution_engine in
926 print_string
"Evaluated to ";
927 print_float (GenericValue.as_float Codegen.double_type result);
929 with Stream.Error s | Codegen.Error s -
>
930 (* Skip token for error recovery. *)
934 print_string
"ready> "; flush stdout;
935 main_loop the_fpm the_execution_engine stream
940 <dd class=
"doc_code">
942 (*===----------------------------------------------------------------------===
944 *===----------------------------------------------------------------------===*)
947 open Llvm_executionengine
949 open Llvm_scalar_opts
952 ignore (initialize_native_target ());
954 (* Install standard binary operators.
955 *
1 is the lowest precedence. *)
956 Hashtbl.add Parser.binop_precedence '
<'
10;
957 Hashtbl.add Parser.binop_precedence '+'
20;
958 Hashtbl.add Parser.binop_precedence '-'
20;
959 Hashtbl.add Parser.binop_precedence '*'
40; (* highest. *)
961 (* Prime the first token. *)
962 print_string
"ready> "; flush stdout;
963 let stream = Lexer.lex (Stream.of_channel stdin) in
965 (* Create the JIT. *)
966 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
967 let the_fpm = PassManager.create_function Codegen.the_module in
969 (* Set up the optimizer pipeline. Start with registering info about how the
970 * target lays out data structures. *)
971 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
973 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
974 add_instruction_combination the_fpm;
976 (* reassociate expressions. *)
977 add_reassociation the_fpm;
979 (* Eliminate Common SubExpressions. *)
982 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
983 add_cfg_simplification the_fpm;
985 ignore (PassManager.initialize the_fpm);
987 (* Run the main
"interpreter loop" now. *)
988 Toplevel.main_loop the_fpm the_execution_engine stream;
990 (* Print out all the generated code. *)
991 dump_module Codegen.the_module
999 <dd class=
"doc_code">
1001 #include
<stdio.h
>
1003 /* putchard - putchar that takes a double and returns
0. */
1004 extern double putchard(double X) {
1012 <a href=
"OCamlLangImpl5.html">Next: Extending the language: control flow
</a>
1015 <!-- *********************************************************************** -->
1018 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1019 src=
"http://jigsaw.w3.org/css-validator/images/vcss" alt=
"Valid CSS!"></a>
1020 <a href=
"http://validator.w3.org/check/referer"><img
1021 src=
"http://www.w3.org/Icons/valid-html401" alt=
"Valid HTML 4.01!"></a>
1023 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1024 <a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a><br>
1025 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a><br>
1026 Last modified: $Date$