1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
19 /// getRegisterValueType - Look up and return the ValueType of the specified
20 /// register. If the register is a member of multiple register classes which
21 /// have different associated types, return MVT::Other.
22 static MVT::SimpleValueType
getRegisterValueType(Record
*R
,
23 const CodeGenTarget
&T
) {
25 MVT::SimpleValueType VT
= MVT::Other
;
26 const std::vector
<CodeGenRegisterClass
> &RCs
= T
.getRegisterClasses();
27 std::vector
<Record
*>::const_iterator Element
;
29 for (unsigned rc
= 0, e
= RCs
.size(); rc
!= e
; ++rc
) {
30 const CodeGenRegisterClass
&RC
= RCs
[rc
];
31 if (!std::count(RC
.Elements
.begin(), RC
.Elements
.end(), R
))
36 VT
= RC
.getValueTypeNum(0);
40 // If this occurs in multiple register classes, they all have to agree.
41 assert(VT
== RC
.getValueTypeNum(0));
49 const PatternToMatch
&Pattern
;
50 const CodeGenDAGPatterns
&CGP
;
52 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53 /// out with all of the types removed. This allows us to insert type checks
54 /// as we scan the tree.
55 TreePatternNode
*PatWithNoTypes
;
57 /// VariableMap - A map from variable names ('$dst') to the recorded operand
58 /// number that they were captured as. These are biased by 1 to make
60 StringMap
<unsigned> VariableMap
;
62 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63 /// the RecordedNodes array, this keeps track of which slot will be next to
65 unsigned NextRecordedOperandNo
;
67 /// MatchedChainNodes - This maintains the position in the recorded nodes
68 /// array of all of the recorded input nodes that have chains.
69 SmallVector
<unsigned, 2> MatchedChainNodes
;
71 /// MatchedFlagResultNodes - This maintains the position in the recorded
72 /// nodes array of all of the recorded input nodes that have flag results.
73 SmallVector
<unsigned, 2> MatchedFlagResultNodes
;
75 /// MatchedComplexPatterns - This maintains a list of all of the
76 /// ComplexPatterns that we need to check. The patterns are known to have
77 /// names which were recorded. The second element of each pair is the first
78 /// slot number that the OPC_CheckComplexPat opcode drops the matched
80 SmallVector
<std::pair
<const TreePatternNode
*,
81 unsigned>, 2> MatchedComplexPatterns
;
83 /// PhysRegInputs - List list has an entry for each explicitly specified
84 /// physreg input to the pattern. The first elt is the Register node, the
85 /// second is the recorded slot number the input pattern match saved it in.
86 SmallVector
<std::pair
<Record
*, unsigned>, 2> PhysRegInputs
;
88 /// Matcher - This is the top level of the generated matcher, the result.
91 /// CurPredicate - As we emit matcher nodes, this points to the latest check
92 /// which should have future checks stuck into its Next position.
93 Matcher
*CurPredicate
;
95 MatcherGen(const PatternToMatch
&pattern
, const CodeGenDAGPatterns
&cgp
);
98 delete PatWithNoTypes
;
101 bool EmitMatcherCode(unsigned Variant
);
102 void EmitResultCode();
104 Matcher
*GetMatcher() const { return TheMatcher
; }
106 void AddMatcher(Matcher
*NewNode
);
107 void InferPossibleTypes();
109 // Matcher Generation.
110 void EmitMatchCode(const TreePatternNode
*N
, TreePatternNode
*NodeNoTypes
);
111 void EmitLeafMatchCode(const TreePatternNode
*N
);
112 void EmitOperatorMatchCode(const TreePatternNode
*N
,
113 TreePatternNode
*NodeNoTypes
);
115 // Result Code Generation.
116 unsigned getNamedArgumentSlot(StringRef Name
) {
117 unsigned VarMapEntry
= VariableMap
[Name
];
118 assert(VarMapEntry
!= 0 &&
119 "Variable referenced but not defined and not caught earlier!");
120 return VarMapEntry
-1;
123 /// GetInstPatternNode - Get the pattern for an instruction.
124 const TreePatternNode
*GetInstPatternNode(const DAGInstruction
&Ins
,
125 const TreePatternNode
*N
);
127 void EmitResultOperand(const TreePatternNode
*N
,
128 SmallVectorImpl
<unsigned> &ResultOps
);
129 void EmitResultOfNamedOperand(const TreePatternNode
*N
,
130 SmallVectorImpl
<unsigned> &ResultOps
);
131 void EmitResultLeafAsOperand(const TreePatternNode
*N
,
132 SmallVectorImpl
<unsigned> &ResultOps
);
133 void EmitResultInstructionAsOperand(const TreePatternNode
*N
,
134 SmallVectorImpl
<unsigned> &ResultOps
);
135 void EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
136 SmallVectorImpl
<unsigned> &ResultOps
);
139 } // end anon namespace.
141 MatcherGen::MatcherGen(const PatternToMatch
&pattern
,
142 const CodeGenDAGPatterns
&cgp
)
143 : Pattern(pattern
), CGP(cgp
), NextRecordedOperandNo(0),
144 TheMatcher(0), CurPredicate(0) {
145 // We need to produce the matcher tree for the patterns source pattern. To do
146 // this we need to match the structure as well as the types. To do the type
147 // matching, we want to figure out the fewest number of type checks we need to
148 // emit. For example, if there is only one integer type supported by a
149 // target, there should be no type comparisons at all for integer patterns!
151 // To figure out the fewest number of type checks needed, clone the pattern,
152 // remove the types, then perform type inference on the pattern as a whole.
153 // If there are unresolved types, emit an explicit check for those types,
154 // apply the type to the tree, then rerun type inference. Iterate until all
155 // types are resolved.
157 PatWithNoTypes
= Pattern
.getSrcPattern()->clone();
158 PatWithNoTypes
->RemoveAllTypes();
160 // If there are types that are manifestly known, infer them.
161 InferPossibleTypes();
164 /// InferPossibleTypes - As we emit the pattern, we end up generating type
165 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
166 /// want to propagate implied types as far throughout the tree as possible so
167 /// that we avoid doing redundant type checks. This does the type propagation.
168 void MatcherGen::InferPossibleTypes() {
169 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
170 // diagnostics, which we know are impossible at this point.
171 TreePattern
&TP
= *CGP
.pf_begin()->second
;
174 bool MadeChange
= true;
176 MadeChange
= PatWithNoTypes
->ApplyTypeConstraints(TP
,
177 true/*Ignore reg constraints*/);
179 errs() << "Type constraint application shouldn't fail!";
185 /// AddMatcher - Add a matcher node to the current graph we're building.
186 void MatcherGen::AddMatcher(Matcher
*NewNode
) {
187 if (CurPredicate
!= 0)
188 CurPredicate
->setNext(NewNode
);
190 TheMatcher
= NewNode
;
191 CurPredicate
= NewNode
;
195 //===----------------------------------------------------------------------===//
196 // Pattern Match Generation
197 //===----------------------------------------------------------------------===//
199 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
200 void MatcherGen::EmitLeafMatchCode(const TreePatternNode
*N
) {
201 assert(N
->isLeaf() && "Not a leaf?");
203 // Direct match against an integer constant.
204 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getLeafValue())) {
205 // If this is the root of the dag we're matching, we emit a redundant opcode
206 // check to ensure that this gets folded into the normal top-level
208 if (N
== Pattern
.getSrcPattern()) {
209 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed("imm"));
210 AddMatcher(new CheckOpcodeMatcher(NI
));
213 return AddMatcher(new CheckIntegerMatcher(II
->getValue()));
216 DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue());
218 errs() << "Unknown leaf kind: " << *DI
<< "\n";
222 Record
*LeafRec
= DI
->getDef();
223 if (// Handle register references. Nothing to do here, they always match.
224 LeafRec
->isSubClassOf("RegisterClass") ||
225 LeafRec
->isSubClassOf("PointerLikeRegClass") ||
226 LeafRec
->isSubClassOf("SubRegIndex") ||
227 // Place holder for SRCVALUE nodes. Nothing to do here.
228 LeafRec
->getName() == "srcvalue")
231 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
232 // record the register
233 if (LeafRec
->isSubClassOf("Register")) {
234 AddMatcher(new RecordMatcher("physreg input "+LeafRec
->getName(),
235 NextRecordedOperandNo
));
236 PhysRegInputs
.push_back(std::make_pair(LeafRec
, NextRecordedOperandNo
++));
240 if (LeafRec
->isSubClassOf("ValueType"))
241 return AddMatcher(new CheckValueTypeMatcher(LeafRec
->getName()));
243 if (LeafRec
->isSubClassOf("CondCode"))
244 return AddMatcher(new CheckCondCodeMatcher(LeafRec
->getName()));
246 if (LeafRec
->isSubClassOf("ComplexPattern")) {
247 // We can't model ComplexPattern uses that don't have their name taken yet.
248 // The OPC_CheckComplexPattern operation implicitly records the results.
249 if (N
->getName().empty()) {
250 errs() << "We expect complex pattern uses to have names: " << *N
<< "\n";
254 // Remember this ComplexPattern so that we can emit it after all the other
255 // structural matches are done.
256 MatchedComplexPatterns
.push_back(std::make_pair(N
, 0));
260 errs() << "Unknown leaf kind: " << *N
<< "\n";
264 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode
*N
,
265 TreePatternNode
*NodeNoTypes
) {
266 assert(!N
->isLeaf() && "Not an operator?");
267 const SDNodeInfo
&CInfo
= CGP
.getSDNodeInfo(N
->getOperator());
269 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
270 // a constant without a predicate fn that has more that one bit set, handle
271 // this as a special case. This is usually for targets that have special
272 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
273 // handling stuff). Using these instructions is often far more efficient
274 // than materializing the constant. Unfortunately, both the instcombiner
275 // and the dag combiner can often infer that bits are dead, and thus drop
276 // them from the mask in the dag. For example, it might turn 'AND X, 255'
277 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
279 if ((N
->getOperator()->getName() == "and" ||
280 N
->getOperator()->getName() == "or") &&
281 N
->getChild(1)->isLeaf() && N
->getChild(1)->getPredicateFns().empty() &&
282 N
->getPredicateFns().empty()) {
283 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getChild(1)->getLeafValue())) {
284 if (!isPowerOf2_32(II
->getValue())) { // Don't bother with single bits.
285 // If this is at the root of the pattern, we emit a redundant
286 // CheckOpcode so that the following checks get factored properly under
287 // a single opcode check.
288 if (N
== Pattern
.getSrcPattern())
289 AddMatcher(new CheckOpcodeMatcher(CInfo
));
291 // Emit the CheckAndImm/CheckOrImm node.
292 if (N
->getOperator()->getName() == "and")
293 AddMatcher(new CheckAndImmMatcher(II
->getValue()));
295 AddMatcher(new CheckOrImmMatcher(II
->getValue()));
297 // Match the LHS of the AND as appropriate.
298 AddMatcher(new MoveChildMatcher(0));
299 EmitMatchCode(N
->getChild(0), NodeNoTypes
->getChild(0));
300 AddMatcher(new MoveParentMatcher());
306 // Check that the current opcode lines up.
307 AddMatcher(new CheckOpcodeMatcher(CInfo
));
309 // If this node has memory references (i.e. is a load or store), tell the
310 // interpreter to capture them in the memref array.
311 if (N
->NodeHasProperty(SDNPMemOperand
, CGP
))
312 AddMatcher(new RecordMemRefMatcher());
314 // If this node has a chain, then the chain is operand #0 is the SDNode, and
315 // the child numbers of the node are all offset by one.
317 if (N
->NodeHasProperty(SDNPHasChain
, CGP
)) {
318 // Record the node and remember it in our chained nodes list.
319 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName() +
321 NextRecordedOperandNo
));
322 // Remember all of the input chains our pattern will match.
323 MatchedChainNodes
.push_back(NextRecordedOperandNo
++);
325 // Don't look at the input chain when matching the tree pattern to the
329 // If this node is not the root and the subtree underneath it produces a
330 // chain, then the result of matching the node is also produce a chain.
331 // Beyond that, this means that we're also folding (at least) the root node
332 // into the node that produce the chain (for example, matching
333 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
334 // problematic, if the 'reg' node also uses the load (say, its chain).
339 // | \ DAG's like cheese.
345 // It would be invalid to fold XX and LD. In this case, folding the two
346 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
347 // To prevent this, we emit a dynamic check for legality before allowing
348 // this to be folded.
350 const TreePatternNode
*Root
= Pattern
.getSrcPattern();
351 if (N
!= Root
) { // Not the root of the pattern.
352 // If there is a node between the root and this node, then we definitely
353 // need to emit the check.
354 bool NeedCheck
= !Root
->hasChild(N
);
356 // If it *is* an immediate child of the root, we can still need a check if
357 // the root SDNode has multiple inputs. For us, this means that it is an
358 // intrinsic, has multiple operands, or has other inputs like chain or
361 const SDNodeInfo
&PInfo
= CGP
.getSDNodeInfo(Root
->getOperator());
363 Root
->getOperator() == CGP
.get_intrinsic_void_sdnode() ||
364 Root
->getOperator() == CGP
.get_intrinsic_w_chain_sdnode() ||
365 Root
->getOperator() == CGP
.get_intrinsic_wo_chain_sdnode() ||
366 PInfo
.getNumOperands() > 1 ||
367 PInfo
.hasProperty(SDNPHasChain
) ||
368 PInfo
.hasProperty(SDNPInFlag
) ||
369 PInfo
.hasProperty(SDNPOptInFlag
);
373 AddMatcher(new CheckFoldableChainNodeMatcher());
377 // If this node has an output flag and isn't the root, remember it.
378 if (N
->NodeHasProperty(SDNPOutFlag
, CGP
) &&
379 N
!= Pattern
.getSrcPattern()) {
380 // TODO: This redundantly records nodes with both flags and chains.
382 // Record the node and remember it in our chained nodes list.
383 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName() +
384 "' flag output node",
385 NextRecordedOperandNo
));
386 // Remember all of the nodes with output flags our pattern will match.
387 MatchedFlagResultNodes
.push_back(NextRecordedOperandNo
++);
390 // If this node is known to have an input flag or if it *might* have an input
391 // flag, capture it as the flag input of the pattern.
392 if (N
->NodeHasProperty(SDNPOptInFlag
, CGP
) ||
393 N
->NodeHasProperty(SDNPInFlag
, CGP
))
394 AddMatcher(new CaptureFlagInputMatcher());
396 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
, ++OpNo
) {
397 // Get the code suitable for matching this child. Move to the child, check
398 // it then move back to the parent.
399 AddMatcher(new MoveChildMatcher(OpNo
));
400 EmitMatchCode(N
->getChild(i
), NodeNoTypes
->getChild(i
));
401 AddMatcher(new MoveParentMatcher());
406 void MatcherGen::EmitMatchCode(const TreePatternNode
*N
,
407 TreePatternNode
*NodeNoTypes
) {
408 // If N and NodeNoTypes don't agree on a type, then this is a case where we
409 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
410 // reinfer any correlated types.
411 SmallVector
<unsigned, 2> ResultsToTypeCheck
;
413 for (unsigned i
= 0, e
= NodeNoTypes
->getNumTypes(); i
!= e
; ++i
) {
414 if (NodeNoTypes
->getExtType(i
) == N
->getExtType(i
)) continue;
415 NodeNoTypes
->setType(i
, N
->getExtType(i
));
416 InferPossibleTypes();
417 ResultsToTypeCheck
.push_back(i
);
420 // If this node has a name associated with it, capture it in VariableMap. If
421 // we already saw this in the pattern, emit code to verify dagness.
422 if (!N
->getName().empty()) {
423 unsigned &VarMapEntry
= VariableMap
[N
->getName()];
424 if (VarMapEntry
== 0) {
425 // If it is a named node, we must emit a 'Record' opcode.
426 AddMatcher(new RecordMatcher("$" + N
->getName(), NextRecordedOperandNo
));
427 VarMapEntry
= ++NextRecordedOperandNo
;
429 // If we get here, this is a second reference to a specific name. Since
430 // we already have checked that the first reference is valid, we don't
431 // have to recursively match it, just check that it's the same as the
432 // previously named thing.
433 AddMatcher(new CheckSameMatcher(VarMapEntry
-1));
439 EmitLeafMatchCode(N
);
441 EmitOperatorMatchCode(N
, NodeNoTypes
);
443 // If there are node predicates for this node, generate their checks.
444 for (unsigned i
= 0, e
= N
->getPredicateFns().size(); i
!= e
; ++i
)
445 AddMatcher(new CheckPredicateMatcher(N
->getPredicateFns()[i
]));
447 for (unsigned i
= 0, e
= ResultsToTypeCheck
.size(); i
!= e
; ++i
)
448 AddMatcher(new CheckTypeMatcher(N
->getType(ResultsToTypeCheck
[i
]),
449 ResultsToTypeCheck
[i
]));
452 /// EmitMatcherCode - Generate the code that matches the predicate of this
453 /// pattern for the specified Variant. If the variant is invalid this returns
454 /// true and does not generate code, if it is valid, it returns false.
455 bool MatcherGen::EmitMatcherCode(unsigned Variant
) {
456 // If the root of the pattern is a ComplexPattern and if it is specified to
457 // match some number of root opcodes, these are considered to be our variants.
458 // Depending on which variant we're generating code for, emit the root opcode
460 if (const ComplexPattern
*CP
=
461 Pattern
.getSrcPattern()->getComplexPatternInfo(CGP
)) {
462 const std::vector
<Record
*> &OpNodes
= CP
->getRootNodes();
463 assert(!OpNodes
.empty() &&"Complex Pattern must specify what it can match");
464 if (Variant
>= OpNodes
.size()) return true;
466 AddMatcher(new CheckOpcodeMatcher(CGP
.getSDNodeInfo(OpNodes
[Variant
])));
468 if (Variant
!= 0) return true;
471 // Emit the matcher for the pattern structure and types.
472 EmitMatchCode(Pattern
.getSrcPattern(), PatWithNoTypes
);
474 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
475 // feature is around, do the check).
476 if (!Pattern
.getPredicateCheck().empty())
477 AddMatcher(new CheckPatternPredicateMatcher(Pattern
.getPredicateCheck()));
479 // Now that we've completed the structural type match, emit any ComplexPattern
480 // checks (e.g. addrmode matches). We emit this after the structural match
481 // because they are generally more expensive to evaluate and more difficult to
483 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
) {
484 const TreePatternNode
*N
= MatchedComplexPatterns
[i
].first
;
486 // Remember where the results of this match get stuck.
487 MatchedComplexPatterns
[i
].second
= NextRecordedOperandNo
;
489 // Get the slot we recorded the value in from the name on the node.
490 unsigned RecNodeEntry
= VariableMap
[N
->getName()];
491 assert(!N
->getName().empty() && RecNodeEntry
&&
492 "Complex pattern should have a name and slot");
493 --RecNodeEntry
; // Entries in VariableMap are biased.
495 const ComplexPattern
&CP
=
496 CGP
.getComplexPattern(((DefInit
*)N
->getLeafValue())->getDef());
498 // Emit a CheckComplexPat operation, which does the match (aborting if it
499 // fails) and pushes the matched operands onto the recorded nodes list.
500 AddMatcher(new CheckComplexPatMatcher(CP
, RecNodeEntry
,
501 N
->getName(), NextRecordedOperandNo
));
503 // Record the right number of operands.
504 NextRecordedOperandNo
+= CP
.getNumOperands();
505 if (CP
.hasProperty(SDNPHasChain
)) {
506 // If the complex pattern has a chain, then we need to keep track of the
507 // fact that we just recorded a chain input. The chain input will be
508 // matched as the last operand of the predicate if it was successful.
509 ++NextRecordedOperandNo
; // Chained node operand.
511 // It is the last operand recorded.
512 assert(NextRecordedOperandNo
> 1 &&
513 "Should have recorded input/result chains at least!");
514 MatchedChainNodes
.push_back(NextRecordedOperandNo
-1);
517 // TODO: Complex patterns can't have output flags, if they did, we'd want
525 //===----------------------------------------------------------------------===//
526 // Node Result Generation
527 //===----------------------------------------------------------------------===//
529 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode
*N
,
530 SmallVectorImpl
<unsigned> &ResultOps
){
531 assert(!N
->getName().empty() && "Operand not named!");
533 // A reference to a complex pattern gets all of the results of the complex
535 if (const ComplexPattern
*CP
= N
->getComplexPatternInfo(CGP
)) {
537 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
)
538 if (MatchedComplexPatterns
[i
].first
->getName() == N
->getName()) {
539 SlotNo
= MatchedComplexPatterns
[i
].second
;
542 assert(SlotNo
!= 0 && "Didn't get a slot number assigned?");
544 // The first slot entry is the node itself, the subsequent entries are the
546 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
547 ResultOps
.push_back(SlotNo
+i
);
551 unsigned SlotNo
= getNamedArgumentSlot(N
->getName());
553 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
554 // version of the immediate so that it doesn't get selected due to some other
557 StringRef OperatorName
= N
->getOperator()->getName();
558 if (OperatorName
== "imm" || OperatorName
== "fpimm") {
559 AddMatcher(new EmitConvertToTargetMatcher(SlotNo
));
560 ResultOps
.push_back(NextRecordedOperandNo
++);
565 ResultOps
.push_back(SlotNo
);
568 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode
*N
,
569 SmallVectorImpl
<unsigned> &ResultOps
) {
570 assert(N
->isLeaf() && "Must be a leaf");
572 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getLeafValue())) {
573 AddMatcher(new EmitIntegerMatcher(II
->getValue(), N
->getType(0)));
574 ResultOps
.push_back(NextRecordedOperandNo
++);
578 // If this is an explicit register reference, handle it.
579 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
580 if (DI
->getDef()->isSubClassOf("Register")) {
581 AddMatcher(new EmitRegisterMatcher(DI
->getDef(), N
->getType(0)));
582 ResultOps
.push_back(NextRecordedOperandNo
++);
586 if (DI
->getDef()->getName() == "zero_reg") {
587 AddMatcher(new EmitRegisterMatcher(0, N
->getType(0)));
588 ResultOps
.push_back(NextRecordedOperandNo
++);
592 // Handle a reference to a register class. This is used
593 // in COPY_TO_SUBREG instructions.
594 if (DI
->getDef()->isSubClassOf("RegisterClass")) {
595 std::string Value
= getQualifiedName(DI
->getDef()) + "RegClassID";
596 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
597 ResultOps
.push_back(NextRecordedOperandNo
++);
601 // Handle a subregister index. This is used for INSERT_SUBREG etc.
602 if (DI
->getDef()->isSubClassOf("SubRegIndex")) {
603 std::string Value
= getQualifiedName(DI
->getDef());
604 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
605 ResultOps
.push_back(NextRecordedOperandNo
++);
610 errs() << "unhandled leaf node: \n";
614 /// GetInstPatternNode - Get the pattern for an instruction.
616 const TreePatternNode
*MatcherGen::
617 GetInstPatternNode(const DAGInstruction
&Inst
, const TreePatternNode
*N
) {
618 const TreePattern
*InstPat
= Inst
.getPattern();
620 // FIXME2?: Assume actual pattern comes before "implicit".
621 TreePatternNode
*InstPatNode
;
623 InstPatNode
= InstPat
->getTree(0);
624 else if (/*isRoot*/ N
== Pattern
.getDstPattern())
625 InstPatNode
= Pattern
.getSrcPattern();
629 if (InstPatNode
&& !InstPatNode
->isLeaf() &&
630 InstPatNode
->getOperator()->getName() == "set")
631 InstPatNode
= InstPatNode
->getChild(InstPatNode
->getNumChildren()-1);
637 EmitResultInstructionAsOperand(const TreePatternNode
*N
,
638 SmallVectorImpl
<unsigned> &OutputOps
) {
639 Record
*Op
= N
->getOperator();
640 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
641 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
642 const DAGInstruction
&Inst
= CGP
.getInstruction(Op
);
644 // If we can, get the pattern for the instruction we're generating. We derive
645 // a variety of information from this pattern, such as whether it has a chain.
647 // FIXME2: This is extremely dubious for several reasons, not the least of
648 // which it gives special status to instructions with patterns that Pat<>
649 // nodes can't duplicate.
650 const TreePatternNode
*InstPatNode
= GetInstPatternNode(Inst
, N
);
652 // NodeHasChain - Whether the instruction node we're creating takes chains.
653 bool NodeHasChain
= InstPatNode
&&
654 InstPatNode
->TreeHasProperty(SDNPHasChain
, CGP
);
656 bool isRoot
= N
== Pattern
.getDstPattern();
658 // TreeHasOutFlag - True if this tree has a flag.
659 bool TreeHasInFlag
= false, TreeHasOutFlag
= false;
661 const TreePatternNode
*SrcPat
= Pattern
.getSrcPattern();
662 TreeHasInFlag
= SrcPat
->TreeHasProperty(SDNPOptInFlag
, CGP
) ||
663 SrcPat
->TreeHasProperty(SDNPInFlag
, CGP
);
665 // FIXME2: this is checking the entire pattern, not just the node in
666 // question, doing this just for the root seems like a total hack.
667 TreeHasOutFlag
= SrcPat
->TreeHasProperty(SDNPOutFlag
, CGP
);
670 // NumResults - This is the number of results produced by the instruction in
672 unsigned NumResults
= Inst
.getNumResults();
674 // Loop over all of the operands of the instruction pattern, emitting code
675 // to fill them all in. The node 'N' usually has number children equal to
676 // the number of input operands of the instruction. However, in cases
677 // where there are predicate operands for an instruction, we need to fill
678 // in the 'execute always' values. Match up the node operands to the
679 // instruction operands to do this.
680 SmallVector
<unsigned, 8> InstOps
;
681 for (unsigned ChildNo
= 0, InstOpNo
= NumResults
, e
= II
.Operands
.size();
682 InstOpNo
!= e
; ++InstOpNo
) {
684 // Determine what to emit for this operand.
685 Record
*OperandNode
= II
.Operands
[InstOpNo
].Rec
;
686 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
687 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
688 !CGP
.getDefaultOperand(OperandNode
).DefaultOps
.empty()) {
689 // This is a predicate or optional def operand; emit the
690 // 'default ops' operands.
691 const DAGDefaultOperand
&DefaultOp
692 = CGP
.getDefaultOperand(OperandNode
);
693 for (unsigned i
= 0, e
= DefaultOp
.DefaultOps
.size(); i
!= e
; ++i
)
694 EmitResultOperand(DefaultOp
.DefaultOps
[i
], InstOps
);
698 const TreePatternNode
*Child
= N
->getChild(ChildNo
);
700 // Otherwise this is a normal operand or a predicate operand without
701 // 'execute always'; emit it.
702 unsigned BeforeAddingNumOps
= InstOps
.size();
703 EmitResultOperand(Child
, InstOps
);
704 assert(InstOps
.size() > BeforeAddingNumOps
&& "Didn't add any operands");
706 // If the operand is an instruction and it produced multiple results, just
707 // take the first one.
708 if (!Child
->isLeaf() && Child
->getOperator()->isSubClassOf("Instruction"))
709 InstOps
.resize(BeforeAddingNumOps
+1);
714 // If this node has an input flag or explicitly specified input physregs, we
715 // need to add chained and flagged copyfromreg nodes and materialize the flag
717 if (isRoot
&& !PhysRegInputs
.empty()) {
718 // Emit all of the CopyToReg nodes for the input physical registers. These
719 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
720 for (unsigned i
= 0, e
= PhysRegInputs
.size(); i
!= e
; ++i
)
721 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs
[i
].second
,
722 PhysRegInputs
[i
].first
));
723 // Even if the node has no other flag inputs, the resultant node must be
724 // flagged to the CopyFromReg nodes we just generated.
725 TreeHasInFlag
= true;
728 // Result order: node results, chain, flags
730 // Determine the result types.
731 SmallVector
<MVT::SimpleValueType
, 4> ResultVTs
;
732 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
)
733 ResultVTs
.push_back(N
->getType(i
));
735 // If this is the root instruction of a pattern that has physical registers in
736 // its result pattern, add output VTs for them. For example, X86 has:
737 // (set AL, (mul ...))
738 // This also handles implicit results like:
740 if (isRoot
&& !Pattern
.getDstRegs().empty()) {
741 // If the root came from an implicit def in the instruction handling stuff,
743 Record
*HandledReg
= 0;
744 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
745 HandledReg
= II
.ImplicitDefs
[0];
747 for (unsigned i
= 0; i
!= Pattern
.getDstRegs().size(); ++i
) {
748 Record
*Reg
= Pattern
.getDstRegs()[i
];
749 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
750 ResultVTs
.push_back(getRegisterValueType(Reg
, CGT
));
754 // If this is the root of the pattern and the pattern we're matching includes
755 // a node that is variadic, mark the generated node as variadic so that it
756 // gets the excess operands from the input DAG.
757 int NumFixedArityOperands
= -1;
759 (Pattern
.getSrcPattern()->NodeHasProperty(SDNPVariadic
, CGP
)))
760 NumFixedArityOperands
= Pattern
.getSrcPattern()->getNumChildren();
762 // If this is the root node and any of the nodes matched nodes in the input
763 // pattern have MemRefs in them, have the interpreter collect them and plop
764 // them onto this node.
766 // FIXME3: This is actively incorrect for result patterns where the root of
767 // the pattern is not the memory reference and is also incorrect when the
768 // result pattern has multiple memory-referencing instructions. For example,
769 // in the X86 backend, this pattern causes the memrefs to get attached to the
770 // CVTSS2SDrr instead of the MOVSSrm:
772 // def : Pat<(extloadf32 addr:$src),
773 // (CVTSS2SDrr (MOVSSrm addr:$src))>;
775 bool NodeHasMemRefs
=
776 isRoot
&& Pattern
.getSrcPattern()->TreeHasProperty(SDNPMemOperand
, CGP
);
778 assert((!ResultVTs
.empty() || TreeHasOutFlag
|| NodeHasChain
) &&
779 "Node has no result");
781 AddMatcher(new EmitNodeMatcher(II
.Namespace
+"::"+II
.TheDef
->getName(),
782 ResultVTs
.data(), ResultVTs
.size(),
783 InstOps
.data(), InstOps
.size(),
784 NodeHasChain
, TreeHasInFlag
, TreeHasOutFlag
,
785 NodeHasMemRefs
, NumFixedArityOperands
,
786 NextRecordedOperandNo
));
788 // The non-chain and non-flag results of the newly emitted node get recorded.
789 for (unsigned i
= 0, e
= ResultVTs
.size(); i
!= e
; ++i
) {
790 if (ResultVTs
[i
] == MVT::Other
|| ResultVTs
[i
] == MVT::Flag
) break;
791 OutputOps
.push_back(NextRecordedOperandNo
++);
796 EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
797 SmallVectorImpl
<unsigned> &ResultOps
) {
798 assert(N
->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
801 SmallVector
<unsigned, 8> InputOps
;
803 // FIXME2: Could easily generalize this to support multiple inputs and outputs
804 // to the SDNodeXForm. For now we just support one input and one output like
805 // the old instruction selector.
806 assert(N
->getNumChildren() == 1);
807 EmitResultOperand(N
->getChild(0), InputOps
);
809 // The input currently must have produced exactly one result.
810 assert(InputOps
.size() == 1 && "Unexpected input to SDNodeXForm");
812 AddMatcher(new EmitNodeXFormMatcher(InputOps
[0], N
->getOperator()));
813 ResultOps
.push_back(NextRecordedOperandNo
++);
816 void MatcherGen::EmitResultOperand(const TreePatternNode
*N
,
817 SmallVectorImpl
<unsigned> &ResultOps
) {
818 // This is something selected from the pattern we matched.
819 if (!N
->getName().empty())
820 return EmitResultOfNamedOperand(N
, ResultOps
);
823 return EmitResultLeafAsOperand(N
, ResultOps
);
825 Record
*OpRec
= N
->getOperator();
826 if (OpRec
->isSubClassOf("Instruction"))
827 return EmitResultInstructionAsOperand(N
, ResultOps
);
828 if (OpRec
->isSubClassOf("SDNodeXForm"))
829 return EmitResultSDNodeXFormAsOperand(N
, ResultOps
);
830 errs() << "Unknown result node to emit code for: " << *N
<< '\n';
831 throw std::string("Unknown node in result pattern!");
834 void MatcherGen::EmitResultCode() {
835 // Patterns that match nodes with (potentially multiple) chain inputs have to
836 // merge them together into a token factor. This informs the generated code
837 // what all the chained nodes are.
838 if (!MatchedChainNodes
.empty())
839 AddMatcher(new EmitMergeInputChainsMatcher
840 (MatchedChainNodes
.data(), MatchedChainNodes
.size()));
842 // Codegen the root of the result pattern, capturing the resulting values.
843 SmallVector
<unsigned, 8> Ops
;
844 EmitResultOperand(Pattern
.getDstPattern(), Ops
);
846 // At this point, we have however many values the result pattern produces.
847 // However, the input pattern might not need all of these. If there are
848 // excess values at the end (such as implicit defs of condition codes etc)
849 // just lop them off. This doesn't need to worry about flags or chains, just
852 unsigned NumSrcResults
= Pattern
.getSrcPattern()->getNumTypes();
854 // If the pattern also has (implicit) results, count them as well.
855 if (!Pattern
.getDstRegs().empty()) {
856 // If the root came from an implicit def in the instruction handling stuff,
858 Record
*HandledReg
= 0;
859 const TreePatternNode
*DstPat
= Pattern
.getDstPattern();
860 if (!DstPat
->isLeaf() &&DstPat
->getOperator()->isSubClassOf("Instruction")){
861 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
862 CodeGenInstruction
&II
= CGT
.getInstruction(DstPat
->getOperator());
864 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
865 HandledReg
= II
.ImplicitDefs
[0];
868 for (unsigned i
= 0; i
!= Pattern
.getDstRegs().size(); ++i
) {
869 Record
*Reg
= Pattern
.getDstRegs()[i
];
870 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
875 assert(Ops
.size() >= NumSrcResults
&& "Didn't provide enough results");
876 Ops
.resize(NumSrcResults
);
878 // If the matched pattern covers nodes which define a flag result, emit a node
879 // that tells the matcher about them so that it can update their results.
880 if (!MatchedFlagResultNodes
.empty())
881 AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes
.data(),
882 MatchedFlagResultNodes
.size()));
884 AddMatcher(new CompleteMatchMatcher(Ops
.data(), Ops
.size(), Pattern
));
888 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
889 /// the specified variant. If the variant number is invalid, this returns null.
890 Matcher
*llvm::ConvertPatternToMatcher(const PatternToMatch
&Pattern
,
892 const CodeGenDAGPatterns
&CGP
) {
893 MatcherGen
Gen(Pattern
, CGP
);
895 // Generate the code for the matcher.
896 if (Gen
.EmitMatcherCode(Variant
))
899 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
900 // FIXME2: Split result code out to another table, and make the matcher end
901 // with an "Emit <index>" command. This allows result generation stuff to be
902 // shared and factored?
904 // If the match succeeds, then we generate Pattern.
905 Gen
.EmitResultCode();
907 // Unconditional match.
908 return Gen
.GetMatcher();