zpu: first sign of being able to build a .S file
[llvm/zpu.git] / utils / TableGen / DAGISelMatcherGen.cpp
blobc1e3212e81c242e282d742e171ada20c5a8541aa
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "Record.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
15 #include <utility>
16 using namespace llvm;
19 /// getRegisterValueType - Look up and return the ValueType of the specified
20 /// register. If the register is a member of multiple register classes which
21 /// have different associated types, return MVT::Other.
22 static MVT::SimpleValueType getRegisterValueType(Record *R,
23 const CodeGenTarget &T) {
24 bool FoundRC = false;
25 MVT::SimpleValueType VT = MVT::Other;
26 const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
27 std::vector<Record*>::const_iterator Element;
29 for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
30 const CodeGenRegisterClass &RC = RCs[rc];
31 if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
32 continue;
34 if (!FoundRC) {
35 FoundRC = true;
36 VT = RC.getValueTypeNum(0);
37 continue;
40 // If this occurs in multiple register classes, they all have to agree.
41 assert(VT == RC.getValueTypeNum(0));
43 return VT;
47 namespace {
48 class MatcherGen {
49 const PatternToMatch &Pattern;
50 const CodeGenDAGPatterns &CGP;
52 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53 /// out with all of the types removed. This allows us to insert type checks
54 /// as we scan the tree.
55 TreePatternNode *PatWithNoTypes;
57 /// VariableMap - A map from variable names ('$dst') to the recorded operand
58 /// number that they were captured as. These are biased by 1 to make
59 /// insertion easier.
60 StringMap<unsigned> VariableMap;
62 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63 /// the RecordedNodes array, this keeps track of which slot will be next to
64 /// record into.
65 unsigned NextRecordedOperandNo;
67 /// MatchedChainNodes - This maintains the position in the recorded nodes
68 /// array of all of the recorded input nodes that have chains.
69 SmallVector<unsigned, 2> MatchedChainNodes;
71 /// MatchedFlagResultNodes - This maintains the position in the recorded
72 /// nodes array of all of the recorded input nodes that have flag results.
73 SmallVector<unsigned, 2> MatchedFlagResultNodes;
75 /// MatchedComplexPatterns - This maintains a list of all of the
76 /// ComplexPatterns that we need to check. The patterns are known to have
77 /// names which were recorded. The second element of each pair is the first
78 /// slot number that the OPC_CheckComplexPat opcode drops the matched
79 /// results into.
80 SmallVector<std::pair<const TreePatternNode*,
81 unsigned>, 2> MatchedComplexPatterns;
83 /// PhysRegInputs - List list has an entry for each explicitly specified
84 /// physreg input to the pattern. The first elt is the Register node, the
85 /// second is the recorded slot number the input pattern match saved it in.
86 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
88 /// Matcher - This is the top level of the generated matcher, the result.
89 Matcher *TheMatcher;
91 /// CurPredicate - As we emit matcher nodes, this points to the latest check
92 /// which should have future checks stuck into its Next position.
93 Matcher *CurPredicate;
94 public:
95 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
97 ~MatcherGen() {
98 delete PatWithNoTypes;
101 bool EmitMatcherCode(unsigned Variant);
102 void EmitResultCode();
104 Matcher *GetMatcher() const { return TheMatcher; }
105 private:
106 void AddMatcher(Matcher *NewNode);
107 void InferPossibleTypes();
109 // Matcher Generation.
110 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
111 void EmitLeafMatchCode(const TreePatternNode *N);
112 void EmitOperatorMatchCode(const TreePatternNode *N,
113 TreePatternNode *NodeNoTypes);
115 // Result Code Generation.
116 unsigned getNamedArgumentSlot(StringRef Name) {
117 unsigned VarMapEntry = VariableMap[Name];
118 assert(VarMapEntry != 0 &&
119 "Variable referenced but not defined and not caught earlier!");
120 return VarMapEntry-1;
123 /// GetInstPatternNode - Get the pattern for an instruction.
124 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
125 const TreePatternNode *N);
127 void EmitResultOperand(const TreePatternNode *N,
128 SmallVectorImpl<unsigned> &ResultOps);
129 void EmitResultOfNamedOperand(const TreePatternNode *N,
130 SmallVectorImpl<unsigned> &ResultOps);
131 void EmitResultLeafAsOperand(const TreePatternNode *N,
132 SmallVectorImpl<unsigned> &ResultOps);
133 void EmitResultInstructionAsOperand(const TreePatternNode *N,
134 SmallVectorImpl<unsigned> &ResultOps);
135 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
136 SmallVectorImpl<unsigned> &ResultOps);
139 } // end anon namespace.
141 MatcherGen::MatcherGen(const PatternToMatch &pattern,
142 const CodeGenDAGPatterns &cgp)
143 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
144 TheMatcher(0), CurPredicate(0) {
145 // We need to produce the matcher tree for the patterns source pattern. To do
146 // this we need to match the structure as well as the types. To do the type
147 // matching, we want to figure out the fewest number of type checks we need to
148 // emit. For example, if there is only one integer type supported by a
149 // target, there should be no type comparisons at all for integer patterns!
151 // To figure out the fewest number of type checks needed, clone the pattern,
152 // remove the types, then perform type inference on the pattern as a whole.
153 // If there are unresolved types, emit an explicit check for those types,
154 // apply the type to the tree, then rerun type inference. Iterate until all
155 // types are resolved.
157 PatWithNoTypes = Pattern.getSrcPattern()->clone();
158 PatWithNoTypes->RemoveAllTypes();
160 // If there are types that are manifestly known, infer them.
161 InferPossibleTypes();
164 /// InferPossibleTypes - As we emit the pattern, we end up generating type
165 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
166 /// want to propagate implied types as far throughout the tree as possible so
167 /// that we avoid doing redundant type checks. This does the type propagation.
168 void MatcherGen::InferPossibleTypes() {
169 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
170 // diagnostics, which we know are impossible at this point.
171 TreePattern &TP = *CGP.pf_begin()->second;
173 try {
174 bool MadeChange = true;
175 while (MadeChange)
176 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
177 true/*Ignore reg constraints*/);
178 } catch (...) {
179 errs() << "Type constraint application shouldn't fail!";
180 abort();
185 /// AddMatcher - Add a matcher node to the current graph we're building.
186 void MatcherGen::AddMatcher(Matcher *NewNode) {
187 if (CurPredicate != 0)
188 CurPredicate->setNext(NewNode);
189 else
190 TheMatcher = NewNode;
191 CurPredicate = NewNode;
195 //===----------------------------------------------------------------------===//
196 // Pattern Match Generation
197 //===----------------------------------------------------------------------===//
199 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
200 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
201 assert(N->isLeaf() && "Not a leaf?");
203 // Direct match against an integer constant.
204 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
205 // If this is the root of the dag we're matching, we emit a redundant opcode
206 // check to ensure that this gets folded into the normal top-level
207 // OpcodeSwitch.
208 if (N == Pattern.getSrcPattern()) {
209 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
210 AddMatcher(new CheckOpcodeMatcher(NI));
213 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
216 DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
217 if (DI == 0) {
218 errs() << "Unknown leaf kind: " << *DI << "\n";
219 abort();
222 Record *LeafRec = DI->getDef();
223 if (// Handle register references. Nothing to do here, they always match.
224 LeafRec->isSubClassOf("RegisterClass") ||
225 LeafRec->isSubClassOf("PointerLikeRegClass") ||
226 LeafRec->isSubClassOf("SubRegIndex") ||
227 // Place holder for SRCVALUE nodes. Nothing to do here.
228 LeafRec->getName() == "srcvalue")
229 return;
231 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
232 // record the register
233 if (LeafRec->isSubClassOf("Register")) {
234 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
235 NextRecordedOperandNo));
236 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
237 return;
240 if (LeafRec->isSubClassOf("ValueType"))
241 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
243 if (LeafRec->isSubClassOf("CondCode"))
244 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
246 if (LeafRec->isSubClassOf("ComplexPattern")) {
247 // We can't model ComplexPattern uses that don't have their name taken yet.
248 // The OPC_CheckComplexPattern operation implicitly records the results.
249 if (N->getName().empty()) {
250 errs() << "We expect complex pattern uses to have names: " << *N << "\n";
251 exit(1);
254 // Remember this ComplexPattern so that we can emit it after all the other
255 // structural matches are done.
256 MatchedComplexPatterns.push_back(std::make_pair(N, 0));
257 return;
260 errs() << "Unknown leaf kind: " << *N << "\n";
261 abort();
264 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
265 TreePatternNode *NodeNoTypes) {
266 assert(!N->isLeaf() && "Not an operator?");
267 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
269 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
270 // a constant without a predicate fn that has more that one bit set, handle
271 // this as a special case. This is usually for targets that have special
272 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
273 // handling stuff). Using these instructions is often far more efficient
274 // than materializing the constant. Unfortunately, both the instcombiner
275 // and the dag combiner can often infer that bits are dead, and thus drop
276 // them from the mask in the dag. For example, it might turn 'AND X, 255'
277 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
278 // to handle this.
279 if ((N->getOperator()->getName() == "and" ||
280 N->getOperator()->getName() == "or") &&
281 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
282 N->getPredicateFns().empty()) {
283 if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
284 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
285 // If this is at the root of the pattern, we emit a redundant
286 // CheckOpcode so that the following checks get factored properly under
287 // a single opcode check.
288 if (N == Pattern.getSrcPattern())
289 AddMatcher(new CheckOpcodeMatcher(CInfo));
291 // Emit the CheckAndImm/CheckOrImm node.
292 if (N->getOperator()->getName() == "and")
293 AddMatcher(new CheckAndImmMatcher(II->getValue()));
294 else
295 AddMatcher(new CheckOrImmMatcher(II->getValue()));
297 // Match the LHS of the AND as appropriate.
298 AddMatcher(new MoveChildMatcher(0));
299 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
300 AddMatcher(new MoveParentMatcher());
301 return;
306 // Check that the current opcode lines up.
307 AddMatcher(new CheckOpcodeMatcher(CInfo));
309 // If this node has memory references (i.e. is a load or store), tell the
310 // interpreter to capture them in the memref array.
311 if (N->NodeHasProperty(SDNPMemOperand, CGP))
312 AddMatcher(new RecordMemRefMatcher());
314 // If this node has a chain, then the chain is operand #0 is the SDNode, and
315 // the child numbers of the node are all offset by one.
316 unsigned OpNo = 0;
317 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
318 // Record the node and remember it in our chained nodes list.
319 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
320 "' chained node",
321 NextRecordedOperandNo));
322 // Remember all of the input chains our pattern will match.
323 MatchedChainNodes.push_back(NextRecordedOperandNo++);
325 // Don't look at the input chain when matching the tree pattern to the
326 // SDNode.
327 OpNo = 1;
329 // If this node is not the root and the subtree underneath it produces a
330 // chain, then the result of matching the node is also produce a chain.
331 // Beyond that, this means that we're also folding (at least) the root node
332 // into the node that produce the chain (for example, matching
333 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
334 // problematic, if the 'reg' node also uses the load (say, its chain).
335 // Graphically:
337 // [LD]
338 // ^ ^
339 // | \ DAG's like cheese.
340 // / |
341 // / [YY]
342 // | ^
343 // [XX]--/
345 // It would be invalid to fold XX and LD. In this case, folding the two
346 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
347 // To prevent this, we emit a dynamic check for legality before allowing
348 // this to be folded.
350 const TreePatternNode *Root = Pattern.getSrcPattern();
351 if (N != Root) { // Not the root of the pattern.
352 // If there is a node between the root and this node, then we definitely
353 // need to emit the check.
354 bool NeedCheck = !Root->hasChild(N);
356 // If it *is* an immediate child of the root, we can still need a check if
357 // the root SDNode has multiple inputs. For us, this means that it is an
358 // intrinsic, has multiple operands, or has other inputs like chain or
359 // flag).
360 if (!NeedCheck) {
361 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
362 NeedCheck =
363 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
364 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
365 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
366 PInfo.getNumOperands() > 1 ||
367 PInfo.hasProperty(SDNPHasChain) ||
368 PInfo.hasProperty(SDNPInFlag) ||
369 PInfo.hasProperty(SDNPOptInFlag);
372 if (NeedCheck)
373 AddMatcher(new CheckFoldableChainNodeMatcher());
377 // If this node has an output flag and isn't the root, remember it.
378 if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
379 N != Pattern.getSrcPattern()) {
380 // TODO: This redundantly records nodes with both flags and chains.
382 // Record the node and remember it in our chained nodes list.
383 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
384 "' flag output node",
385 NextRecordedOperandNo));
386 // Remember all of the nodes with output flags our pattern will match.
387 MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
390 // If this node is known to have an input flag or if it *might* have an input
391 // flag, capture it as the flag input of the pattern.
392 if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
393 N->NodeHasProperty(SDNPInFlag, CGP))
394 AddMatcher(new CaptureFlagInputMatcher());
396 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
397 // Get the code suitable for matching this child. Move to the child, check
398 // it then move back to the parent.
399 AddMatcher(new MoveChildMatcher(OpNo));
400 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
401 AddMatcher(new MoveParentMatcher());
406 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
407 TreePatternNode *NodeNoTypes) {
408 // If N and NodeNoTypes don't agree on a type, then this is a case where we
409 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
410 // reinfer any correlated types.
411 SmallVector<unsigned, 2> ResultsToTypeCheck;
413 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
414 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
415 NodeNoTypes->setType(i, N->getExtType(i));
416 InferPossibleTypes();
417 ResultsToTypeCheck.push_back(i);
420 // If this node has a name associated with it, capture it in VariableMap. If
421 // we already saw this in the pattern, emit code to verify dagness.
422 if (!N->getName().empty()) {
423 unsigned &VarMapEntry = VariableMap[N->getName()];
424 if (VarMapEntry == 0) {
425 // If it is a named node, we must emit a 'Record' opcode.
426 AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
427 VarMapEntry = ++NextRecordedOperandNo;
428 } else {
429 // If we get here, this is a second reference to a specific name. Since
430 // we already have checked that the first reference is valid, we don't
431 // have to recursively match it, just check that it's the same as the
432 // previously named thing.
433 AddMatcher(new CheckSameMatcher(VarMapEntry-1));
434 return;
438 if (N->isLeaf())
439 EmitLeafMatchCode(N);
440 else
441 EmitOperatorMatchCode(N, NodeNoTypes);
443 // If there are node predicates for this node, generate their checks.
444 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
445 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
447 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
448 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
449 ResultsToTypeCheck[i]));
452 /// EmitMatcherCode - Generate the code that matches the predicate of this
453 /// pattern for the specified Variant. If the variant is invalid this returns
454 /// true and does not generate code, if it is valid, it returns false.
455 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
456 // If the root of the pattern is a ComplexPattern and if it is specified to
457 // match some number of root opcodes, these are considered to be our variants.
458 // Depending on which variant we're generating code for, emit the root opcode
459 // check.
460 if (const ComplexPattern *CP =
461 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
462 const std::vector<Record*> &OpNodes = CP->getRootNodes();
463 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
464 if (Variant >= OpNodes.size()) return true;
466 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
467 } else {
468 if (Variant != 0) return true;
471 // Emit the matcher for the pattern structure and types.
472 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
474 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
475 // feature is around, do the check).
476 if (!Pattern.getPredicateCheck().empty())
477 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
479 // Now that we've completed the structural type match, emit any ComplexPattern
480 // checks (e.g. addrmode matches). We emit this after the structural match
481 // because they are generally more expensive to evaluate and more difficult to
482 // factor.
483 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
484 const TreePatternNode *N = MatchedComplexPatterns[i].first;
486 // Remember where the results of this match get stuck.
487 MatchedComplexPatterns[i].second = NextRecordedOperandNo;
489 // Get the slot we recorded the value in from the name on the node.
490 unsigned RecNodeEntry = VariableMap[N->getName()];
491 assert(!N->getName().empty() && RecNodeEntry &&
492 "Complex pattern should have a name and slot");
493 --RecNodeEntry; // Entries in VariableMap are biased.
495 const ComplexPattern &CP =
496 CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
498 // Emit a CheckComplexPat operation, which does the match (aborting if it
499 // fails) and pushes the matched operands onto the recorded nodes list.
500 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
501 N->getName(), NextRecordedOperandNo));
503 // Record the right number of operands.
504 NextRecordedOperandNo += CP.getNumOperands();
505 if (CP.hasProperty(SDNPHasChain)) {
506 // If the complex pattern has a chain, then we need to keep track of the
507 // fact that we just recorded a chain input. The chain input will be
508 // matched as the last operand of the predicate if it was successful.
509 ++NextRecordedOperandNo; // Chained node operand.
511 // It is the last operand recorded.
512 assert(NextRecordedOperandNo > 1 &&
513 "Should have recorded input/result chains at least!");
514 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
517 // TODO: Complex patterns can't have output flags, if they did, we'd want
518 // to record them.
521 return false;
525 //===----------------------------------------------------------------------===//
526 // Node Result Generation
527 //===----------------------------------------------------------------------===//
529 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
530 SmallVectorImpl<unsigned> &ResultOps){
531 assert(!N->getName().empty() && "Operand not named!");
533 // A reference to a complex pattern gets all of the results of the complex
534 // pattern's match.
535 if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
536 unsigned SlotNo = 0;
537 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
538 if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
539 SlotNo = MatchedComplexPatterns[i].second;
540 break;
542 assert(SlotNo != 0 && "Didn't get a slot number assigned?");
544 // The first slot entry is the node itself, the subsequent entries are the
545 // matched values.
546 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
547 ResultOps.push_back(SlotNo+i);
548 return;
551 unsigned SlotNo = getNamedArgumentSlot(N->getName());
553 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
554 // version of the immediate so that it doesn't get selected due to some other
555 // node use.
556 if (!N->isLeaf()) {
557 StringRef OperatorName = N->getOperator()->getName();
558 if (OperatorName == "imm" || OperatorName == "fpimm") {
559 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
560 ResultOps.push_back(NextRecordedOperandNo++);
561 return;
565 ResultOps.push_back(SlotNo);
568 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
569 SmallVectorImpl<unsigned> &ResultOps) {
570 assert(N->isLeaf() && "Must be a leaf");
572 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
573 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
574 ResultOps.push_back(NextRecordedOperandNo++);
575 return;
578 // If this is an explicit register reference, handle it.
579 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
580 if (DI->getDef()->isSubClassOf("Register")) {
581 AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0)));
582 ResultOps.push_back(NextRecordedOperandNo++);
583 return;
586 if (DI->getDef()->getName() == "zero_reg") {
587 AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
588 ResultOps.push_back(NextRecordedOperandNo++);
589 return;
592 // Handle a reference to a register class. This is used
593 // in COPY_TO_SUBREG instructions.
594 if (DI->getDef()->isSubClassOf("RegisterClass")) {
595 std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
596 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
597 ResultOps.push_back(NextRecordedOperandNo++);
598 return;
601 // Handle a subregister index. This is used for INSERT_SUBREG etc.
602 if (DI->getDef()->isSubClassOf("SubRegIndex")) {
603 std::string Value = getQualifiedName(DI->getDef());
604 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
605 ResultOps.push_back(NextRecordedOperandNo++);
606 return;
610 errs() << "unhandled leaf node: \n";
611 N->dump();
614 /// GetInstPatternNode - Get the pattern for an instruction.
615 ///
616 const TreePatternNode *MatcherGen::
617 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
618 const TreePattern *InstPat = Inst.getPattern();
620 // FIXME2?: Assume actual pattern comes before "implicit".
621 TreePatternNode *InstPatNode;
622 if (InstPat)
623 InstPatNode = InstPat->getTree(0);
624 else if (/*isRoot*/ N == Pattern.getDstPattern())
625 InstPatNode = Pattern.getSrcPattern();
626 else
627 return 0;
629 if (InstPatNode && !InstPatNode->isLeaf() &&
630 InstPatNode->getOperator()->getName() == "set")
631 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
633 return InstPatNode;
636 void MatcherGen::
637 EmitResultInstructionAsOperand(const TreePatternNode *N,
638 SmallVectorImpl<unsigned> &OutputOps) {
639 Record *Op = N->getOperator();
640 const CodeGenTarget &CGT = CGP.getTargetInfo();
641 CodeGenInstruction &II = CGT.getInstruction(Op);
642 const DAGInstruction &Inst = CGP.getInstruction(Op);
644 // If we can, get the pattern for the instruction we're generating. We derive
645 // a variety of information from this pattern, such as whether it has a chain.
647 // FIXME2: This is extremely dubious for several reasons, not the least of
648 // which it gives special status to instructions with patterns that Pat<>
649 // nodes can't duplicate.
650 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
652 // NodeHasChain - Whether the instruction node we're creating takes chains.
653 bool NodeHasChain = InstPatNode &&
654 InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
656 bool isRoot = N == Pattern.getDstPattern();
658 // TreeHasOutFlag - True if this tree has a flag.
659 bool TreeHasInFlag = false, TreeHasOutFlag = false;
660 if (isRoot) {
661 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
662 TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
663 SrcPat->TreeHasProperty(SDNPInFlag, CGP);
665 // FIXME2: this is checking the entire pattern, not just the node in
666 // question, doing this just for the root seems like a total hack.
667 TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
670 // NumResults - This is the number of results produced by the instruction in
671 // the "outs" list.
672 unsigned NumResults = Inst.getNumResults();
674 // Loop over all of the operands of the instruction pattern, emitting code
675 // to fill them all in. The node 'N' usually has number children equal to
676 // the number of input operands of the instruction. However, in cases
677 // where there are predicate operands for an instruction, we need to fill
678 // in the 'execute always' values. Match up the node operands to the
679 // instruction operands to do this.
680 SmallVector<unsigned, 8> InstOps;
681 for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
682 InstOpNo != e; ++InstOpNo) {
684 // Determine what to emit for this operand.
685 Record *OperandNode = II.Operands[InstOpNo].Rec;
686 if ((OperandNode->isSubClassOf("PredicateOperand") ||
687 OperandNode->isSubClassOf("OptionalDefOperand")) &&
688 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
689 // This is a predicate or optional def operand; emit the
690 // 'default ops' operands.
691 const DAGDefaultOperand &DefaultOp
692 = CGP.getDefaultOperand(OperandNode);
693 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
694 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
695 continue;
698 const TreePatternNode *Child = N->getChild(ChildNo);
700 // Otherwise this is a normal operand or a predicate operand without
701 // 'execute always'; emit it.
702 unsigned BeforeAddingNumOps = InstOps.size();
703 EmitResultOperand(Child, InstOps);
704 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
706 // If the operand is an instruction and it produced multiple results, just
707 // take the first one.
708 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
709 InstOps.resize(BeforeAddingNumOps+1);
711 ++ChildNo;
714 // If this node has an input flag or explicitly specified input physregs, we
715 // need to add chained and flagged copyfromreg nodes and materialize the flag
716 // input.
717 if (isRoot && !PhysRegInputs.empty()) {
718 // Emit all of the CopyToReg nodes for the input physical registers. These
719 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
720 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
721 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
722 PhysRegInputs[i].first));
723 // Even if the node has no other flag inputs, the resultant node must be
724 // flagged to the CopyFromReg nodes we just generated.
725 TreeHasInFlag = true;
728 // Result order: node results, chain, flags
730 // Determine the result types.
731 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
732 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
733 ResultVTs.push_back(N->getType(i));
735 // If this is the root instruction of a pattern that has physical registers in
736 // its result pattern, add output VTs for them. For example, X86 has:
737 // (set AL, (mul ...))
738 // This also handles implicit results like:
739 // (implicit EFLAGS)
740 if (isRoot && !Pattern.getDstRegs().empty()) {
741 // If the root came from an implicit def in the instruction handling stuff,
742 // don't re-add it.
743 Record *HandledReg = 0;
744 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
745 HandledReg = II.ImplicitDefs[0];
747 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
748 Record *Reg = Pattern.getDstRegs()[i];
749 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
750 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
754 // If this is the root of the pattern and the pattern we're matching includes
755 // a node that is variadic, mark the generated node as variadic so that it
756 // gets the excess operands from the input DAG.
757 int NumFixedArityOperands = -1;
758 if (isRoot &&
759 (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
760 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
762 // If this is the root node and any of the nodes matched nodes in the input
763 // pattern have MemRefs in them, have the interpreter collect them and plop
764 // them onto this node.
766 // FIXME3: This is actively incorrect for result patterns where the root of
767 // the pattern is not the memory reference and is also incorrect when the
768 // result pattern has multiple memory-referencing instructions. For example,
769 // in the X86 backend, this pattern causes the memrefs to get attached to the
770 // CVTSS2SDrr instead of the MOVSSrm:
772 // def : Pat<(extloadf32 addr:$src),
773 // (CVTSS2SDrr (MOVSSrm addr:$src))>;
775 bool NodeHasMemRefs =
776 isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
778 assert((!ResultVTs.empty() || TreeHasOutFlag || NodeHasChain) &&
779 "Node has no result");
781 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
782 ResultVTs.data(), ResultVTs.size(),
783 InstOps.data(), InstOps.size(),
784 NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
785 NodeHasMemRefs, NumFixedArityOperands,
786 NextRecordedOperandNo));
788 // The non-chain and non-flag results of the newly emitted node get recorded.
789 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
790 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
791 OutputOps.push_back(NextRecordedOperandNo++);
795 void MatcherGen::
796 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
797 SmallVectorImpl<unsigned> &ResultOps) {
798 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
800 // Emit the operand.
801 SmallVector<unsigned, 8> InputOps;
803 // FIXME2: Could easily generalize this to support multiple inputs and outputs
804 // to the SDNodeXForm. For now we just support one input and one output like
805 // the old instruction selector.
806 assert(N->getNumChildren() == 1);
807 EmitResultOperand(N->getChild(0), InputOps);
809 // The input currently must have produced exactly one result.
810 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
812 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
813 ResultOps.push_back(NextRecordedOperandNo++);
816 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
817 SmallVectorImpl<unsigned> &ResultOps) {
818 // This is something selected from the pattern we matched.
819 if (!N->getName().empty())
820 return EmitResultOfNamedOperand(N, ResultOps);
822 if (N->isLeaf())
823 return EmitResultLeafAsOperand(N, ResultOps);
825 Record *OpRec = N->getOperator();
826 if (OpRec->isSubClassOf("Instruction"))
827 return EmitResultInstructionAsOperand(N, ResultOps);
828 if (OpRec->isSubClassOf("SDNodeXForm"))
829 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
830 errs() << "Unknown result node to emit code for: " << *N << '\n';
831 throw std::string("Unknown node in result pattern!");
834 void MatcherGen::EmitResultCode() {
835 // Patterns that match nodes with (potentially multiple) chain inputs have to
836 // merge them together into a token factor. This informs the generated code
837 // what all the chained nodes are.
838 if (!MatchedChainNodes.empty())
839 AddMatcher(new EmitMergeInputChainsMatcher
840 (MatchedChainNodes.data(), MatchedChainNodes.size()));
842 // Codegen the root of the result pattern, capturing the resulting values.
843 SmallVector<unsigned, 8> Ops;
844 EmitResultOperand(Pattern.getDstPattern(), Ops);
846 // At this point, we have however many values the result pattern produces.
847 // However, the input pattern might not need all of these. If there are
848 // excess values at the end (such as implicit defs of condition codes etc)
849 // just lop them off. This doesn't need to worry about flags or chains, just
850 // explicit results.
852 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
854 // If the pattern also has (implicit) results, count them as well.
855 if (!Pattern.getDstRegs().empty()) {
856 // If the root came from an implicit def in the instruction handling stuff,
857 // don't re-add it.
858 Record *HandledReg = 0;
859 const TreePatternNode *DstPat = Pattern.getDstPattern();
860 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
861 const CodeGenTarget &CGT = CGP.getTargetInfo();
862 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
864 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
865 HandledReg = II.ImplicitDefs[0];
868 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
869 Record *Reg = Pattern.getDstRegs()[i];
870 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
871 ++NumSrcResults;
875 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
876 Ops.resize(NumSrcResults);
878 // If the matched pattern covers nodes which define a flag result, emit a node
879 // that tells the matcher about them so that it can update their results.
880 if (!MatchedFlagResultNodes.empty())
881 AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
882 MatchedFlagResultNodes.size()));
884 AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
888 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
889 /// the specified variant. If the variant number is invalid, this returns null.
890 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
891 unsigned Variant,
892 const CodeGenDAGPatterns &CGP) {
893 MatcherGen Gen(Pattern, CGP);
895 // Generate the code for the matcher.
896 if (Gen.EmitMatcherCode(Variant))
897 return 0;
899 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
900 // FIXME2: Split result code out to another table, and make the matcher end
901 // with an "Emit <index>" command. This allows result generation stuff to be
902 // shared and factored?
904 // If the match succeeds, then we generate Pattern.
905 Gen.EmitResultCode();
907 // Unconditional match.
908 return Gen.GetMatcher();