zpu: first sign of being able to build a .S file
[llvm/zpu.git] / utils / TableGen / DAGISelMatcherOpt.cpp
blobc73bdb9efb681d3056a22230dbeb0bd821a438da
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DAG Matcher optimizer.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel-opt"
15 #include "DAGISelMatcher.h"
16 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <vector>
22 using namespace llvm;
24 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25 /// into single compound nodes like RecordChild.
26 static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
27 const CodeGenDAGPatterns &CGP) {
28 // If we reached the end of the chain, we're done.
29 Matcher *N = MatcherPtr.get();
30 if (N == 0) return;
32 // If we have a scope node, walk down all of the children.
33 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
35 OwningPtr<Matcher> Child(Scope->takeChild(i));
36 ContractNodes(Child, CGP);
37 Scope->resetChild(i, Child.take());
39 return;
42 // If we found a movechild node with a node that comes in a 'foochild' form,
43 // transform it.
44 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
45 Matcher *New = 0;
46 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47 if (MC->getChildNo() < 8) // Only have RecordChild0...7
48 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
49 RM->getResultNo());
51 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
52 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
53 CT->getResNo() == 0) // CheckChildType checks res #0
54 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
56 if (New) {
57 // Insert the new node.
58 New->setNext(MatcherPtr.take());
59 MatcherPtr.reset(New);
60 // Remove the old one.
61 MC->setNext(MC->getNext()->takeNext());
62 return ContractNodes(MatcherPtr, CGP);
66 // Zap movechild -> moveparent.
67 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
68 if (MoveParentMatcher *MP =
69 dyn_cast<MoveParentMatcher>(MC->getNext())) {
70 MatcherPtr.reset(MP->takeNext());
71 return ContractNodes(MatcherPtr, CGP);
74 // Turn EmitNode->MarkFlagResults->CompleteMatch into
75 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
76 // MorphNodeTo formation. This is safe because MarkFlagResults never refers
77 // to the root of the pattern.
78 if (isa<EmitNodeMatcher>(N) && isa<MarkFlagResultsMatcher>(N->getNext()) &&
79 isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
80 // Unlink the two nodes from the list.
81 Matcher *EmitNode = MatcherPtr.take();
82 Matcher *MFR = EmitNode->takeNext();
83 Matcher *Tail = MFR->takeNext();
85 // Relink them.
86 MatcherPtr.reset(MFR);
87 MFR->setNext(EmitNode);
88 EmitNode->setNext(Tail);
89 return ContractNodes(MatcherPtr, CGP);
92 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
93 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
94 if (CompleteMatchMatcher *CM =
95 dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
96 // We can only use MorphNodeTo if the result values match up.
97 unsigned RootResultFirst = EN->getFirstResultSlot();
98 bool ResultsMatch = true;
99 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
100 if (CM->getResult(i) != RootResultFirst+i)
101 ResultsMatch = false;
103 // If the selected node defines a subset of the flag/chain results, we
104 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
105 // matched pattern has a chain but the root node doesn't.
106 const PatternToMatch &Pattern = CM->getPattern();
108 if (!EN->hasChain() &&
109 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
110 ResultsMatch = false;
112 // If the matched node has a flag and the output root doesn't, we can't
113 // use MorphNodeTo.
115 // NOTE: Strictly speaking, we don't have to check for the flag here
116 // because the code in the pattern generator doesn't handle it right. We
117 // do it anyway for thoroughness.
118 if (!EN->hasOutFlag() &&
119 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP))
120 ResultsMatch = false;
123 // If the root result node defines more results than the source root node
124 // *and* has a chain or flag input, then we can't match it because it
125 // would end up replacing the extra result with the chain/flag.
126 #if 0
127 if ((EN->hasFlag() || EN->hasChain()) &&
128 EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...)
129 ResultMatch = false;
130 #endif
132 if (ResultsMatch) {
133 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
134 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
135 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
136 VTs.data(), VTs.size(),
137 Operands.data(),Operands.size(),
138 EN->hasChain(), EN->hasInFlag(),
139 EN->hasOutFlag(),
140 EN->hasMemRefs(),
141 EN->getNumFixedArityOperands(),
142 Pattern));
143 return;
146 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
147 // variants.
150 ContractNodes(N->getNextPtr(), CGP);
153 // If we have a CheckType/CheckChildType/Record node followed by a
154 // CheckOpcode, invert the two nodes. We prefer to do structural checks
155 // before type checks, as this opens opportunities for factoring on targets
156 // like X86 where many operations are valid on multiple types.
157 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
158 isa<RecordMatcher>(N)) &&
159 isa<CheckOpcodeMatcher>(N->getNext())) {
160 // Unlink the two nodes from the list.
161 Matcher *CheckType = MatcherPtr.take();
162 Matcher *CheckOpcode = CheckType->takeNext();
163 Matcher *Tail = CheckOpcode->takeNext();
165 // Relink them.
166 MatcherPtr.reset(CheckOpcode);
167 CheckOpcode->setNext(CheckType);
168 CheckType->setNext(Tail);
169 return ContractNodes(MatcherPtr, CGP);
173 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
174 /// the matching tree. The generator dumps them at the top level of the pattern
175 /// though, which prevents factoring from being able to see past them. This
176 /// optimization sinks them as far down into the pattern as possible.
178 /// Conceptually, we'd like to sink these predicates all the way to the last
179 /// matcher predicate in the series. However, it turns out that some
180 /// ComplexPatterns have side effects on the graph, so we really don't want to
181 /// run a the complex pattern if the pattern predicate will fail. For this
182 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
184 static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
185 // Recursively scan for a PatternPredicate.
186 // If we reached the end of the chain, we're done.
187 Matcher *N = MatcherPtr.get();
188 if (N == 0) return;
190 // Walk down all members of a scope node.
191 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
192 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
193 OwningPtr<Matcher> Child(Scope->takeChild(i));
194 SinkPatternPredicates(Child);
195 Scope->resetChild(i, Child.take());
197 return;
200 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
201 // we find one.
202 CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
203 if (CPPM == 0)
204 return SinkPatternPredicates(N->getNextPtr());
206 // Ok, we found one, lets try to sink it. Check if we can sink it past the
207 // next node in the chain. If not, we won't be able to change anything and
208 // might as well bail.
209 if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
210 return;
212 // Okay, we know we can sink it past at least one node. Unlink it from the
213 // chain and scan for the new insertion point.
214 MatcherPtr.take(); // Don't delete CPPM.
215 MatcherPtr.reset(CPPM->takeNext());
217 N = MatcherPtr.get();
218 while (N->getNext()->isSafeToReorderWithPatternPredicate())
219 N = N->getNext();
221 // At this point, we want to insert CPPM after N.
222 CPPM->setNext(N->takeNext());
223 N->setNext(CPPM);
226 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
227 /// specified kind. Return null if we didn't find one otherwise return the
228 /// matcher.
229 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
230 for (; M; M = M->getNext())
231 if (M->getKind() == Kind)
232 return M;
233 return 0;
237 /// FactorNodes - Turn matches like this:
238 /// Scope
239 /// OPC_CheckType i32
240 /// ABC
241 /// OPC_CheckType i32
242 /// XYZ
243 /// into:
244 /// OPC_CheckType i32
245 /// Scope
246 /// ABC
247 /// XYZ
249 static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
250 // If we reached the end of the chain, we're done.
251 Matcher *N = MatcherPtr.get();
252 if (N == 0) return;
254 // If this is not a push node, just scan for one.
255 ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
256 if (Scope == 0)
257 return FactorNodes(N->getNextPtr());
259 // Okay, pull together the children of the scope node into a vector so we can
260 // inspect it more easily. While we're at it, bucket them up by the hash
261 // code of their first predicate.
262 SmallVector<Matcher*, 32> OptionsToMatch;
264 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
265 // Factor the subexpression.
266 OwningPtr<Matcher> Child(Scope->takeChild(i));
267 FactorNodes(Child);
269 if (Matcher *N = Child.take())
270 OptionsToMatch.push_back(N);
273 SmallVector<Matcher*, 32> NewOptionsToMatch;
275 // Loop over options to match, merging neighboring patterns with identical
276 // starting nodes into a shared matcher.
277 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
278 // Find the set of matchers that start with this node.
279 Matcher *Optn = OptionsToMatch[OptionIdx++];
281 if (OptionIdx == e) {
282 NewOptionsToMatch.push_back(Optn);
283 continue;
286 // See if the next option starts with the same matcher. If the two
287 // neighbors *do* start with the same matcher, we can factor the matcher out
288 // of at least these two patterns. See what the maximal set we can merge
289 // together is.
290 SmallVector<Matcher*, 8> EqualMatchers;
291 EqualMatchers.push_back(Optn);
293 // Factor all of the known-equal matchers after this one into the same
294 // group.
295 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
296 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
298 // If we found a non-equal matcher, see if it is contradictory with the
299 // current node. If so, we know that the ordering relation between the
300 // current sets of nodes and this node don't matter. Look past it to see if
301 // we can merge anything else into this matching group.
302 unsigned Scan = OptionIdx;
303 while (1) {
304 // If we ran out of stuff to scan, we're done.
305 if (Scan == e) break;
307 Matcher *ScanMatcher = OptionsToMatch[Scan];
309 // If we found an entry that matches out matcher, merge it into the set to
310 // handle.
311 if (Optn->isEqual(ScanMatcher)) {
312 // If is equal after all, add the option to EqualMatchers and remove it
313 // from OptionsToMatch.
314 EqualMatchers.push_back(ScanMatcher);
315 OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
316 --e;
317 continue;
320 // If the option we're checking for contradicts the start of the list,
321 // skip over it.
322 if (Optn->isContradictory(ScanMatcher)) {
323 ++Scan;
324 continue;
327 // If we're scanning for a simple node, see if it occurs later in the
328 // sequence. If so, and if we can move it up, it might be contradictory
329 // or the same as what we're looking for. If so, reorder it.
330 if (Optn->isSimplePredicateOrRecordNode()) {
331 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
332 if (M2 != 0 && M2 != ScanMatcher &&
333 M2->canMoveBefore(ScanMatcher) &&
334 (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
335 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
336 M2->setNext(MatcherWithoutM2);
337 OptionsToMatch[Scan] = M2;
338 continue;
342 // Otherwise, we don't know how to handle this entry, we have to bail.
343 break;
346 if (Scan != e &&
347 // Don't print it's obvious nothing extra could be merged anyway.
348 Scan+1 != e) {
349 DEBUG(errs() << "Couldn't merge this:\n";
350 Optn->print(errs(), 4);
351 errs() << "into this:\n";
352 OptionsToMatch[Scan]->print(errs(), 4);
353 if (Scan+1 != e)
354 OptionsToMatch[Scan+1]->printOne(errs());
355 if (Scan+2 < e)
356 OptionsToMatch[Scan+2]->printOne(errs());
357 errs() << "\n");
360 // If we only found one option starting with this matcher, no factoring is
361 // possible.
362 if (EqualMatchers.size() == 1) {
363 NewOptionsToMatch.push_back(EqualMatchers[0]);
364 continue;
367 // Factor these checks by pulling the first node off each entry and
368 // discarding it. Take the first one off the first entry to reuse.
369 Matcher *Shared = Optn;
370 Optn = Optn->takeNext();
371 EqualMatchers[0] = Optn;
373 // Remove and delete the first node from the other matchers we're factoring.
374 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
375 Matcher *Tmp = EqualMatchers[i]->takeNext();
376 delete EqualMatchers[i];
377 EqualMatchers[i] = Tmp;
380 Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
382 // Recursively factor the newly created node.
383 FactorNodes(Shared->getNextPtr());
385 NewOptionsToMatch.push_back(Shared);
388 // If we're down to a single pattern to match, then we don't need this scope
389 // anymore.
390 if (NewOptionsToMatch.size() == 1) {
391 MatcherPtr.reset(NewOptionsToMatch[0]);
392 return;
395 if (NewOptionsToMatch.empty()) {
396 MatcherPtr.reset(0);
397 return;
400 // If our factoring failed (didn't achieve anything) see if we can simplify in
401 // other ways.
403 // Check to see if all of the leading entries are now opcode checks. If so,
404 // we can convert this Scope to be a OpcodeSwitch instead.
405 bool AllOpcodeChecks = true, AllTypeChecks = true;
406 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
407 // Check to see if this breaks a series of CheckOpcodeMatchers.
408 if (AllOpcodeChecks &&
409 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
410 #if 0
411 if (i > 3) {
412 errs() << "FAILING OPC #" << i << "\n";
413 NewOptionsToMatch[i]->dump();
415 #endif
416 AllOpcodeChecks = false;
419 // Check to see if this breaks a series of CheckTypeMatcher's.
420 if (AllTypeChecks) {
421 CheckTypeMatcher *CTM =
422 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
423 Matcher::CheckType));
424 if (CTM == 0 ||
425 // iPTR checks could alias any other case without us knowing, don't
426 // bother with them.
427 CTM->getType() == MVT::iPTR ||
428 // SwitchType only works for result #0.
429 CTM->getResNo() != 0 ||
430 // If the CheckType isn't at the start of the list, see if we can move
431 // it there.
432 !CTM->canMoveBefore(NewOptionsToMatch[i])) {
433 #if 0
434 if (i > 3 && AllTypeChecks) {
435 errs() << "FAILING TYPE #" << i << "\n";
436 NewOptionsToMatch[i]->dump();
438 #endif
439 AllTypeChecks = false;
444 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
445 if (AllOpcodeChecks) {
446 StringSet<> Opcodes;
447 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
448 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
449 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
450 assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
451 "Duplicate opcodes not factored?");
452 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
455 MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
456 return;
459 // If all the options are CheckType's, we can form the SwitchType, woot.
460 if (AllTypeChecks) {
461 DenseMap<unsigned, unsigned> TypeEntry;
462 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
463 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
464 CheckTypeMatcher *CTM =
465 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
466 Matcher::CheckType));
467 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
468 MVT::SimpleValueType CTMTy = CTM->getType();
469 delete CTM;
471 unsigned &Entry = TypeEntry[CTMTy];
472 if (Entry != 0) {
473 // If we have unfactored duplicate types, then we should factor them.
474 Matcher *PrevMatcher = Cases[Entry-1].second;
475 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
476 SM->setNumChildren(SM->getNumChildren()+1);
477 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
478 continue;
481 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
482 Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
483 continue;
486 Entry = Cases.size()+1;
487 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
490 if (Cases.size() != 1) {
491 MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
492 } else {
493 // If we factored and ended up with one case, create it now.
494 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
495 MatcherPtr->setNext(Cases[0].second);
497 return;
501 // Reassemble the Scope node with the adjusted children.
502 Scope->setNumChildren(NewOptionsToMatch.size());
503 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
504 Scope->resetChild(i, NewOptionsToMatch[i]);
507 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
508 const CodeGenDAGPatterns &CGP) {
509 OwningPtr<Matcher> MatcherPtr(TheMatcher);
510 ContractNodes(MatcherPtr, CGP);
511 SinkPatternPredicates(MatcherPtr);
512 FactorNodes(MatcherPtr);
513 return MatcherPtr.take();