1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(unsigned numWords
) {
33 uint64_t * result
= new uint64_t[numWords
];
34 assert(result
&& "APInt memory allocation fails!");
35 memset(result
, 0, numWords
* sizeof(uint64_t));
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(unsigned numWords
) {
42 uint64_t * result
= new uint64_t[numWords
];
43 assert(result
&& "APInt memory allocation fails!");
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit
, uint8_t radix
) {
73 void APInt::initSlowCase(unsigned numBits
, uint64_t val
, bool isSigned
) {
74 pVal
= getClearedMemory(getNumWords());
76 if (isSigned
&& int64_t(val
) < 0)
77 for (unsigned i
= 1; i
< getNumWords(); ++i
)
81 void APInt::initSlowCase(const APInt
& that
) {
82 pVal
= getMemory(getNumWords());
83 memcpy(pVal
, that
.pVal
, getNumWords() * APINT_WORD_SIZE
);
87 APInt::APInt(unsigned numBits
, unsigned numWords
, const uint64_t bigVal
[])
88 : BitWidth(numBits
), VAL(0) {
89 assert(BitWidth
&& "Bitwidth too small");
90 assert(bigVal
&& "Null pointer detected!");
94 // Get memory, cleared to 0
95 pVal
= getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words
= std::min
<unsigned>(numWords
, getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(pVal
, bigVal
, words
* APINT_WORD_SIZE
);
101 // Make sure unused high bits are cleared
105 APInt::APInt(unsigned numbits
, StringRef Str
, uint8_t radix
)
106 : BitWidth(numbits
), VAL(0) {
107 assert(BitWidth
&& "Bitwidth too small");
108 fromString(numbits
, Str
, radix
);
111 APInt
& APInt::AssignSlowCase(const APInt
& RHS
) {
112 // Don't do anything for X = X
116 if (BitWidth
== RHS
.getBitWidth()) {
117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal
, RHS
.pVal
, getNumWords() * APINT_WORD_SIZE
);
123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS
.isSingleWord());
127 pVal
= getMemory(RHS
.getNumWords());
128 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
129 } else if (getNumWords() == RHS
.getNumWords())
130 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
131 else if (RHS
.isSingleWord()) {
136 pVal
= getMemory(RHS
.getNumWords());
137 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
139 BitWidth
= RHS
.BitWidth
;
140 return clearUnusedBits();
143 APInt
& APInt::operator=(uint64_t RHS
) {
148 memset(pVal
+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE
);
150 return clearUnusedBits();
153 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID
& ID
) const {
155 ID
.AddInteger(BitWidth
);
157 if (isSingleWord()) {
162 unsigned NumWords
= getNumWords();
163 for (unsigned i
= 0; i
< NumWords
; ++i
)
164 ID
.AddInteger(pVal
[i
]);
167 /// add_1 - This function adds a single "digit" integer, y, to the multiple
168 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
169 /// 1 is returned if there is a carry out, otherwise 0 is returned.
170 /// @returns the carry of the addition.
171 static bool add_1(uint64_t dest
[], uint64_t x
[], unsigned len
, uint64_t y
) {
172 for (unsigned i
= 0; i
< len
; ++i
) {
175 y
= 1; // Carry one to next digit.
177 y
= 0; // No need to carry so exit early
184 /// @brief Prefix increment operator. Increments the APInt by one.
185 APInt
& APInt::operator++() {
189 add_1(pVal
, pVal
, getNumWords(), 1);
190 return clearUnusedBits();
193 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
195 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
196 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197 /// In other words, if y > x then this function returns 1, otherwise 0.
198 /// @returns the borrow out of the subtraction
199 static bool sub_1(uint64_t x
[], unsigned len
, uint64_t y
) {
200 for (unsigned i
= 0; i
< len
; ++i
) {
204 y
= 1; // We have to "borrow 1" from next "digit"
206 y
= 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
213 /// @brief Prefix decrement operator. Decrements the APInt by one.
214 APInt
& APInt::operator--() {
218 sub_1(pVal
, getNumWords(), 1);
219 return clearUnusedBits();
222 /// add - This function adds the integer array x to the integer array Y and
223 /// places the result in dest.
224 /// @returns the carry out from the addition
225 /// @brief General addition of 64-bit integer arrays
226 static bool add(uint64_t *dest
, const uint64_t *x
, const uint64_t *y
,
229 for (unsigned i
= 0; i
< len
; ++i
) {
230 uint64_t limit
= std::min(x
[i
],y
[i
]); // must come first in case dest == x
231 dest
[i
] = x
[i
] + y
[i
] + carry
;
232 carry
= dest
[i
] < limit
|| (carry
&& dest
[i
] == limit
);
237 /// Adds the RHS APint to this APInt.
238 /// @returns this, after addition of RHS.
239 /// @brief Addition assignment operator.
240 APInt
& APInt::operator+=(const APInt
& RHS
) {
241 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
245 add(pVal
, pVal
, RHS
.pVal
, getNumWords());
247 return clearUnusedBits();
250 /// Subtracts the integer array y from the integer array x
251 /// @returns returns the borrow out.
252 /// @brief Generalized subtraction of 64-bit integer arrays.
253 static bool sub(uint64_t *dest
, const uint64_t *x
, const uint64_t *y
,
256 for (unsigned i
= 0; i
< len
; ++i
) {
257 uint64_t x_tmp
= borrow
? x
[i
] - 1 : x
[i
];
258 borrow
= y
[i
] > x_tmp
|| (borrow
&& x
[i
] == 0);
259 dest
[i
] = x_tmp
- y
[i
];
264 /// Subtracts the RHS APInt from this APInt
265 /// @returns this, after subtraction
266 /// @brief Subtraction assignment operator.
267 APInt
& APInt::operator-=(const APInt
& RHS
) {
268 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
272 sub(pVal
, pVal
, RHS
.pVal
, getNumWords());
273 return clearUnusedBits();
276 /// Multiplies an integer array, x, by a uint64_t integer and places the result
278 /// @returns the carry out of the multiplication.
279 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280 static uint64_t mul_1(uint64_t dest
[], uint64_t x
[], unsigned len
, uint64_t y
) {
281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly
= y
& 0xffffffffULL
, hy
= y
>> 32;
285 // For each digit of x.
286 for (unsigned i
= 0; i
< len
; ++i
) {
287 // Split x into high and low words
288 uint64_t lx
= x
[i
] & 0xffffffffULL
;
289 uint64_t hx
= x
[i
] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry
= 0;
295 dest
[i
] = carry
+ lx
* ly
;
296 // Determine if the add above introduces carry.
297 hasCarry
= (dest
[i
] < carry
) ? 1 : 0;
298 carry
= hx
* ly
+ (dest
[i
] >> 32) + (hasCarry
? (1ULL << 32) : 0);
299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry
= (!carry
&& hasCarry
) ? 1 : (!carry
? 2 : 0);
303 carry
+= (lx
* hy
) & 0xffffffffULL
;
304 dest
[i
] = (carry
<< 32) | (dest
[i
] & 0xffffffffULL
);
305 carry
= (((!carry
&& hasCarry
!= 2) || hasCarry
== 1) ? (1ULL << 32) : 0) +
306 (carry
>> 32) + ((lx
* hy
) >> 32) + hx
* hy
;
311 /// Multiplies integer array x by integer array y and stores the result into
312 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
313 /// @brief Generalized multiplicate of integer arrays.
314 static void mul(uint64_t dest
[], uint64_t x
[], unsigned xlen
, uint64_t y
[],
316 dest
[xlen
] = mul_1(dest
, x
, xlen
, y
[0]);
317 for (unsigned i
= 1; i
< ylen
; ++i
) {
318 uint64_t ly
= y
[i
] & 0xffffffffULL
, hy
= y
[i
] >> 32;
319 uint64_t carry
= 0, lx
= 0, hx
= 0;
320 for (unsigned j
= 0; j
< xlen
; ++j
) {
321 lx
= x
[j
] & 0xffffffffULL
;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry
= 0;
328 uint64_t resul
= carry
+ lx
* ly
;
329 hasCarry
= (resul
< carry
) ? 1 : 0;
330 carry
= (hasCarry
? (1ULL << 32) : 0) + hx
* ly
+ (resul
>> 32);
331 hasCarry
= (!carry
&& hasCarry
) ? 1 : (!carry
? 2 : 0);
333 carry
+= (lx
* hy
) & 0xffffffffULL
;
334 resul
= (carry
<< 32) | (resul
& 0xffffffffULL
);
336 carry
= (((!carry
&& hasCarry
!= 2) || hasCarry
== 1) ? (1ULL << 32) : 0)+
337 (carry
>> 32) + (dest
[i
+j
] < resul
? 1 : 0) +
338 ((lx
* hy
) >> 32) + hx
* hy
;
340 dest
[i
+xlen
] = carry
;
344 APInt
& APInt::operator*=(const APInt
& RHS
) {
345 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
346 if (isSingleWord()) {
352 // Get some bit facts about LHS and check for zero
353 unsigned lhsBits
= getActiveBits();
354 unsigned lhsWords
= !lhsBits
? 0 : whichWord(lhsBits
- 1) + 1;
359 // Get some bit facts about RHS and check for zero
360 unsigned rhsBits
= RHS
.getActiveBits();
361 unsigned rhsWords
= !rhsBits
? 0 : whichWord(rhsBits
- 1) + 1;
368 // Allocate space for the result
369 unsigned destWords
= rhsWords
+ lhsWords
;
370 uint64_t *dest
= getMemory(destWords
);
372 // Perform the long multiply
373 mul(dest
, pVal
, lhsWords
, RHS
.pVal
, rhsWords
);
375 // Copy result back into *this
377 unsigned wordsToCopy
= destWords
>= getNumWords() ? getNumWords() : destWords
;
378 memcpy(pVal
, dest
, wordsToCopy
* APINT_WORD_SIZE
);
380 // delete dest array and return
385 APInt
& APInt::operator&=(const APInt
& RHS
) {
386 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
387 if (isSingleWord()) {
391 unsigned numWords
= getNumWords();
392 for (unsigned i
= 0; i
< numWords
; ++i
)
393 pVal
[i
] &= RHS
.pVal
[i
];
397 APInt
& APInt::operator|=(const APInt
& RHS
) {
398 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
399 if (isSingleWord()) {
403 unsigned numWords
= getNumWords();
404 for (unsigned i
= 0; i
< numWords
; ++i
)
405 pVal
[i
] |= RHS
.pVal
[i
];
409 APInt
& APInt::operator^=(const APInt
& RHS
) {
410 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
411 if (isSingleWord()) {
413 this->clearUnusedBits();
416 unsigned numWords
= getNumWords();
417 for (unsigned i
= 0; i
< numWords
; ++i
)
418 pVal
[i
] ^= RHS
.pVal
[i
];
419 return clearUnusedBits();
422 APInt
APInt::AndSlowCase(const APInt
& RHS
) const {
423 unsigned numWords
= getNumWords();
424 uint64_t* val
= getMemory(numWords
);
425 for (unsigned i
= 0; i
< numWords
; ++i
)
426 val
[i
] = pVal
[i
] & RHS
.pVal
[i
];
427 return APInt(val
, getBitWidth());
430 APInt
APInt::OrSlowCase(const APInt
& RHS
) const {
431 unsigned numWords
= getNumWords();
432 uint64_t *val
= getMemory(numWords
);
433 for (unsigned i
= 0; i
< numWords
; ++i
)
434 val
[i
] = pVal
[i
] | RHS
.pVal
[i
];
435 return APInt(val
, getBitWidth());
438 APInt
APInt::XorSlowCase(const APInt
& RHS
) const {
439 unsigned numWords
= getNumWords();
440 uint64_t *val
= getMemory(numWords
);
441 for (unsigned i
= 0; i
< numWords
; ++i
)
442 val
[i
] = pVal
[i
] ^ RHS
.pVal
[i
];
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val
, getBitWidth()).clearUnusedBits();
448 bool APInt::operator !() const {
452 for (unsigned i
= 0; i
< getNumWords(); ++i
)
458 APInt
APInt::operator*(const APInt
& RHS
) const {
459 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
461 return APInt(BitWidth
, VAL
* RHS
.VAL
);
464 return Result
.clearUnusedBits();
467 APInt
APInt::operator+(const APInt
& RHS
) const {
468 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
470 return APInt(BitWidth
, VAL
+ RHS
.VAL
);
471 APInt
Result(BitWidth
, 0);
472 add(Result
.pVal
, this->pVal
, RHS
.pVal
, getNumWords());
473 return Result
.clearUnusedBits();
476 APInt
APInt::operator-(const APInt
& RHS
) const {
477 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
479 return APInt(BitWidth
, VAL
- RHS
.VAL
);
480 APInt
Result(BitWidth
, 0);
481 sub(Result
.pVal
, this->pVal
, RHS
.pVal
, getNumWords());
482 return Result
.clearUnusedBits();
485 bool APInt::operator[](unsigned bitPosition
) const {
486 return (maskBit(bitPosition
) &
487 (isSingleWord() ? VAL
: pVal
[whichWord(bitPosition
)])) != 0;
490 bool APInt::EqualSlowCase(const APInt
& RHS
) const {
491 // Get some facts about the number of bits used in the two operands.
492 unsigned n1
= getActiveBits();
493 unsigned n2
= RHS
.getActiveBits();
495 // If the number of bits isn't the same, they aren't equal
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1
<= APINT_BITS_PER_WORD
)
501 return pVal
[0] == RHS
.pVal
[0];
503 // Otherwise, compare everything
504 for (int i
= whichWord(n1
- 1); i
>= 0; --i
)
505 if (pVal
[i
] != RHS
.pVal
[i
])
510 bool APInt::EqualSlowCase(uint64_t Val
) const {
511 unsigned n
= getActiveBits();
512 if (n
<= APINT_BITS_PER_WORD
)
513 return pVal
[0] == Val
;
518 bool APInt::ult(const APInt
& RHS
) const {
519 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be same for comparison");
521 return VAL
< RHS
.VAL
;
523 // Get active bit length of both operands
524 unsigned n1
= getActiveBits();
525 unsigned n2
= RHS
.getActiveBits();
527 // If magnitude of LHS is less than RHS, return true.
531 // If magnitude of RHS is greather than LHS, return false.
535 // If they bot fit in a word, just compare the low order word
536 if (n1
<= APINT_BITS_PER_WORD
&& n2
<= APINT_BITS_PER_WORD
)
537 return pVal
[0] < RHS
.pVal
[0];
539 // Otherwise, compare all words
540 unsigned topWord
= whichWord(std::max(n1
,n2
)-1);
541 for (int i
= topWord
; i
>= 0; --i
) {
542 if (pVal
[i
] > RHS
.pVal
[i
])
544 if (pVal
[i
] < RHS
.pVal
[i
])
550 bool APInt::slt(const APInt
& RHS
) const {
551 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext
= (int64_t(VAL
) << (64-BitWidth
)) >> (64-BitWidth
);
554 int64_t rhsSext
= (int64_t(RHS
.VAL
) << (64-BitWidth
)) >> (64-BitWidth
);
555 return lhsSext
< rhsSext
;
560 bool lhsNeg
= isNegative();
561 bool rhsNeg
= rhs
.isNegative();
563 // Sign bit is set so perform two's complement to make it positive
568 // Sign bit is set so perform two's complement to make it positive
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
586 APInt
& APInt::set(unsigned bitPosition
) {
588 VAL
|= maskBit(bitPosition
);
590 pVal
[whichWord(bitPosition
)] |= maskBit(bitPosition
);
594 /// Set the given bit to 0 whose position is given as "bitPosition".
595 /// @brief Set a given bit to 0.
596 APInt
& APInt::clear(unsigned bitPosition
) {
598 VAL
&= ~maskBit(bitPosition
);
600 pVal
[whichWord(bitPosition
)] &= ~maskBit(bitPosition
);
604 /// @brief Toggle every bit to its opposite value.
606 /// Toggle a given bit to its opposite value whose position is given
607 /// as "bitPosition".
608 /// @brief Toggles a given bit to its opposite value.
609 APInt
& APInt::flip(unsigned bitPosition
) {
610 assert(bitPosition
< BitWidth
&& "Out of the bit-width range!");
611 if ((*this)[bitPosition
]) clear(bitPosition
);
612 else set(bitPosition
);
616 unsigned APInt::getBitsNeeded(StringRef str
, uint8_t radix
) {
617 assert(!str
.empty() && "Invalid string length");
618 assert((radix
== 10 || radix
== 8 || radix
== 16 || radix
== 2) &&
619 "Radix should be 2, 8, 10, or 16!");
621 size_t slen
= str
.size();
623 // Each computation below needs to know if it's negative.
624 StringRef::iterator p
= str
.begin();
625 unsigned isNegative
= *p
== '-';
626 if (*p
== '-' || *p
== '+') {
629 assert(slen
&& "String is only a sign, needs a value.");
632 // For radixes of power-of-two values, the bits required is accurately and
635 return slen
+ isNegative
;
637 return slen
* 3 + isNegative
;
639 return slen
* 4 + isNegative
;
641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
645 // Compute a sufficient number of bits that is always large enough but might
646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient
= slen
== 1 ? 4 : slen
* 64/18;
651 // Convert to the actual binary value.
652 APInt
tmp(sufficient
, StringRef(p
, slen
), radix
);
654 // Compute how many bits are required. If the log is infinite, assume we need
656 unsigned log
= tmp
.logBase2();
657 if (log
== (unsigned)-1) {
658 return isNegative
+ 1;
660 return isNegative
+ log
+ 1;
664 // From http://www.burtleburtle.net, byBob Jenkins.
665 // When targeting x86, both GCC and LLVM seem to recognize this as a
666 // rotate instruction.
667 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
669 // From http://www.burtleburtle.net, by Bob Jenkins.
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
680 // From http://www.burtleburtle.net, by Bob Jenkins.
681 #define final(a,b,c) \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
692 // hashword() was adapted from http://www.burtleburtle.net, by Bob
693 // Jenkins. k is a pointer to an array of uint32_t values; length is
694 // the length of the key, in 32-bit chunks. This version only handles
695 // keys that are a multiple of 32 bits in size.
696 static inline uint32_t hashword(const uint64_t *k64
, size_t length
)
698 const uint32_t *k
= reinterpret_cast<const uint32_t *>(k64
);
701 /* Set up the internal state */
702 a
= b
= c
= 0xdeadbeef + (((uint32_t)length
)<<2);
704 /*------------------------------------------------- handle most of the key */
714 /*------------------------------------------- handle the last 3 uint32_t's */
715 switch (length
) { /* all the case statements fall through */
720 case 0: /* case 0: nothing left to add */
723 /*------------------------------------------------------ report the result */
727 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
728 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
729 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
730 // function into about 35 instructions when inlined.
731 static inline uint32_t hashword8(const uint64_t k64
)
734 a
= b
= c
= 0xdeadbeef + 4;
736 a
+= k64
& 0xffffffff;
744 uint64_t APInt::getHashValue() const {
747 hash
= hashword8(VAL
);
749 hash
= hashword(pVal
, getNumWords()*2);
753 /// HiBits - This function returns the high "numBits" bits of this APInt.
754 APInt
APInt::getHiBits(unsigned numBits
) const {
755 return APIntOps::lshr(*this, BitWidth
- numBits
);
758 /// LoBits - This function returns the low "numBits" bits of this APInt.
759 APInt
APInt::getLoBits(unsigned numBits
) const {
760 return APIntOps::lshr(APIntOps::shl(*this, BitWidth
- numBits
),
764 bool APInt::isPowerOf2() const {
765 return (!!*this) && !(*this & (*this - APInt(BitWidth
,1)));
768 unsigned APInt::countLeadingZerosSlowCase() const {
769 // Treat the most significand word differently because it might have
770 // meaningless bits set beyond the precision.
771 unsigned BitsInMSW
= BitWidth
% APINT_BITS_PER_WORD
;
773 if (BitsInMSW
) MSWMask
= (integerPart(1) << BitsInMSW
) - 1;
775 MSWMask
= ~integerPart(0);
776 BitsInMSW
= APINT_BITS_PER_WORD
;
779 unsigned i
= getNumWords();
780 integerPart MSW
= pVal
[i
-1] & MSWMask
;
782 return CountLeadingZeros_64(MSW
) - (APINT_BITS_PER_WORD
- BitsInMSW
);
784 unsigned Count
= BitsInMSW
;
785 for (--i
; i
> 0u; --i
) {
787 Count
+= APINT_BITS_PER_WORD
;
789 Count
+= CountLeadingZeros_64(pVal
[i
-1]);
796 static unsigned countLeadingOnes_64(uint64_t V
, unsigned skip
) {
800 while (V
&& (V
& (1ULL << 63))) {
807 unsigned APInt::countLeadingOnes() const {
809 return countLeadingOnes_64(VAL
, APINT_BITS_PER_WORD
- BitWidth
);
811 unsigned highWordBits
= BitWidth
% APINT_BITS_PER_WORD
;
814 highWordBits
= APINT_BITS_PER_WORD
;
817 shift
= APINT_BITS_PER_WORD
- highWordBits
;
819 int i
= getNumWords() - 1;
820 unsigned Count
= countLeadingOnes_64(pVal
[i
], shift
);
821 if (Count
== highWordBits
) {
822 for (i
--; i
>= 0; --i
) {
823 if (pVal
[i
] == -1ULL)
824 Count
+= APINT_BITS_PER_WORD
;
826 Count
+= countLeadingOnes_64(pVal
[i
], 0);
834 unsigned APInt::countTrailingZeros() const {
836 return std::min(unsigned(CountTrailingZeros_64(VAL
)), BitWidth
);
839 for (; i
< getNumWords() && pVal
[i
] == 0; ++i
)
840 Count
+= APINT_BITS_PER_WORD
;
841 if (i
< getNumWords())
842 Count
+= CountTrailingZeros_64(pVal
[i
]);
843 return std::min(Count
, BitWidth
);
846 unsigned APInt::countTrailingOnesSlowCase() const {
849 for (; i
< getNumWords() && pVal
[i
] == -1ULL; ++i
)
850 Count
+= APINT_BITS_PER_WORD
;
851 if (i
< getNumWords())
852 Count
+= CountTrailingOnes_64(pVal
[i
]);
853 return std::min(Count
, BitWidth
);
856 unsigned APInt::countPopulationSlowCase() const {
858 for (unsigned i
= 0; i
< getNumWords(); ++i
)
859 Count
+= CountPopulation_64(pVal
[i
]);
863 APInt
APInt::byteSwap() const {
864 assert(BitWidth
>= 16 && BitWidth
% 16 == 0 && "Cannot byteswap!");
866 return APInt(BitWidth
, ByteSwap_16(uint16_t(VAL
)));
867 else if (BitWidth
== 32)
868 return APInt(BitWidth
, ByteSwap_32(unsigned(VAL
)));
869 else if (BitWidth
== 48) {
870 unsigned Tmp1
= unsigned(VAL
>> 16);
871 Tmp1
= ByteSwap_32(Tmp1
);
872 uint16_t Tmp2
= uint16_t(VAL
);
873 Tmp2
= ByteSwap_16(Tmp2
);
874 return APInt(BitWidth
, (uint64_t(Tmp2
) << 32) | Tmp1
);
875 } else if (BitWidth
== 64)
876 return APInt(BitWidth
, ByteSwap_64(VAL
));
878 APInt
Result(BitWidth
, 0);
879 char *pByte
= (char*)Result
.pVal
;
880 for (unsigned i
= 0; i
< BitWidth
/ APINT_WORD_SIZE
/ 2; ++i
) {
882 pByte
[i
] = pByte
[BitWidth
/ APINT_WORD_SIZE
- 1 - i
];
883 pByte
[BitWidth
/ APINT_WORD_SIZE
- i
- 1] = Tmp
;
889 APInt
llvm::APIntOps::GreatestCommonDivisor(const APInt
& API1
,
891 APInt A
= API1
, B
= API2
;
894 B
= APIntOps::urem(A
, B
);
900 APInt
llvm::APIntOps::RoundDoubleToAPInt(double Double
, unsigned width
) {
907 // Get the sign bit from the highest order bit
908 bool isNeg
= T
.I
>> 63;
910 // Get the 11-bit exponent and adjust for the 1023 bit bias
911 int64_t exp
= ((T
.I
>> 52) & 0x7ff) - 1023;
913 // If the exponent is negative, the value is < 0 so just return 0.
915 return APInt(width
, 0u);
917 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
918 uint64_t mantissa
= (T
.I
& (~0ULL >> 12)) | 1ULL << 52;
920 // If the exponent doesn't shift all bits out of the mantissa
922 return isNeg
? -APInt(width
, mantissa
>> (52 - exp
)) :
923 APInt(width
, mantissa
>> (52 - exp
));
925 // If the client didn't provide enough bits for us to shift the mantissa into
926 // then the result is undefined, just return 0
927 if (width
<= exp
- 52)
928 return APInt(width
, 0);
930 // Otherwise, we have to shift the mantissa bits up to the right location
931 APInt
Tmp(width
, mantissa
);
932 Tmp
= Tmp
.shl((unsigned)exp
- 52);
933 return isNeg
? -Tmp
: Tmp
;
936 /// RoundToDouble - This function converts this APInt to a double.
937 /// The layout for double is as following (IEEE Standard 754):
938 /// --------------------------------------
939 /// | Sign Exponent Fraction Bias |
940 /// |-------------------------------------- |
941 /// | 1[63] 11[62-52] 52[51-00] 1023 |
942 /// --------------------------------------
943 double APInt::roundToDouble(bool isSigned
) const {
945 // Handle the simple case where the value is contained in one uint64_t.
946 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
947 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD
) {
949 int64_t sext
= (int64_t(getWord(0)) << (64-BitWidth
)) >> (64-BitWidth
);
952 return double(getWord(0));
955 // Determine if the value is negative.
956 bool isNeg
= isSigned
? (*this)[BitWidth
-1] : false;
958 // Construct the absolute value if we're negative.
959 APInt
Tmp(isNeg
? -(*this) : (*this));
961 // Figure out how many bits we're using.
962 unsigned n
= Tmp
.getActiveBits();
964 // The exponent (without bias normalization) is just the number of bits
965 // we are using. Note that the sign bit is gone since we constructed the
969 // Return infinity for exponent overflow
971 if (!isSigned
|| !isNeg
)
972 return std::numeric_limits
<double>::infinity();
974 return -std::numeric_limits
<double>::infinity();
976 exp
+= 1023; // Increment for 1023 bias
978 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
979 // extract the high 52 bits from the correct words in pVal.
981 unsigned hiWord
= whichWord(n
-1);
983 mantissa
= Tmp
.pVal
[0];
985 mantissa
>>= n
- 52; // shift down, we want the top 52 bits.
987 assert(hiWord
> 0 && "huh?");
988 uint64_t hibits
= Tmp
.pVal
[hiWord
] << (52 - n
% APINT_BITS_PER_WORD
);
989 uint64_t lobits
= Tmp
.pVal
[hiWord
-1] >> (11 + n
% APINT_BITS_PER_WORD
);
990 mantissa
= hibits
| lobits
;
993 // The leading bit of mantissa is implicit, so get rid of it.
994 uint64_t sign
= isNeg
? (1ULL << (APINT_BITS_PER_WORD
- 1)) : 0;
999 T
.I
= sign
| (exp
<< 52) | mantissa
;
1003 // Truncate to new width.
1004 APInt
&APInt::trunc(unsigned width
) {
1005 assert(width
< BitWidth
&& "Invalid APInt Truncate request");
1006 assert(width
&& "Can't truncate to 0 bits");
1007 unsigned wordsBefore
= getNumWords();
1009 unsigned wordsAfter
= getNumWords();
1010 if (wordsBefore
!= wordsAfter
) {
1011 if (wordsAfter
== 1) {
1012 uint64_t *tmp
= pVal
;
1016 uint64_t *newVal
= getClearedMemory(wordsAfter
);
1017 for (unsigned i
= 0; i
< wordsAfter
; ++i
)
1018 newVal
[i
] = pVal
[i
];
1023 return clearUnusedBits();
1026 // Sign extend to a new width.
1027 APInt
&APInt::sext(unsigned width
) {
1028 assert(width
> BitWidth
&& "Invalid APInt SignExtend request");
1029 // If the sign bit isn't set, this is the same as zext.
1030 if (!isNegative()) {
1035 // The sign bit is set. First, get some facts
1036 unsigned wordsBefore
= getNumWords();
1037 unsigned wordBits
= BitWidth
% APINT_BITS_PER_WORD
;
1039 unsigned wordsAfter
= getNumWords();
1041 // Mask the high order word appropriately
1042 if (wordsBefore
== wordsAfter
) {
1043 unsigned newWordBits
= width
% APINT_BITS_PER_WORD
;
1044 // The extension is contained to the wordsBefore-1th word.
1045 uint64_t mask
= ~0ULL;
1047 mask
>>= APINT_BITS_PER_WORD
- newWordBits
;
1049 if (wordsBefore
== 1)
1052 pVal
[wordsBefore
-1] |= mask
;
1053 return clearUnusedBits();
1056 uint64_t mask
= wordBits
== 0 ? 0 : ~0ULL << wordBits
;
1057 uint64_t *newVal
= getMemory(wordsAfter
);
1058 if (wordsBefore
== 1)
1059 newVal
[0] = VAL
| mask
;
1061 for (unsigned i
= 0; i
< wordsBefore
; ++i
)
1062 newVal
[i
] = pVal
[i
];
1063 newVal
[wordsBefore
-1] |= mask
;
1065 for (unsigned i
= wordsBefore
; i
< wordsAfter
; i
++)
1067 if (wordsBefore
!= 1)
1070 return clearUnusedBits();
1073 // Zero extend to a new width.
1074 APInt
&APInt::zext(unsigned width
) {
1075 assert(width
> BitWidth
&& "Invalid APInt ZeroExtend request");
1076 unsigned wordsBefore
= getNumWords();
1078 unsigned wordsAfter
= getNumWords();
1079 if (wordsBefore
!= wordsAfter
) {
1080 uint64_t *newVal
= getClearedMemory(wordsAfter
);
1081 if (wordsBefore
== 1)
1084 for (unsigned i
= 0; i
< wordsBefore
; ++i
)
1085 newVal
[i
] = pVal
[i
];
1086 if (wordsBefore
!= 1)
1093 APInt
&APInt::zextOrTrunc(unsigned width
) {
1094 if (BitWidth
< width
)
1096 if (BitWidth
> width
)
1097 return trunc(width
);
1101 APInt
&APInt::sextOrTrunc(unsigned width
) {
1102 if (BitWidth
< width
)
1104 if (BitWidth
> width
)
1105 return trunc(width
);
1109 /// Arithmetic right-shift this APInt by shiftAmt.
1110 /// @brief Arithmetic right-shift function.
1111 APInt
APInt::ashr(const APInt
&shiftAmt
) const {
1112 return ashr((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1115 /// Arithmetic right-shift this APInt by shiftAmt.
1116 /// @brief Arithmetic right-shift function.
1117 APInt
APInt::ashr(unsigned shiftAmt
) const {
1118 assert(shiftAmt
<= BitWidth
&& "Invalid shift amount");
1119 // Handle a degenerate case
1123 // Handle single word shifts with built-in ashr
1124 if (isSingleWord()) {
1125 if (shiftAmt
== BitWidth
)
1126 return APInt(BitWidth
, 0); // undefined
1128 unsigned SignBit
= APINT_BITS_PER_WORD
- BitWidth
;
1129 return APInt(BitWidth
,
1130 (((int64_t(VAL
) << SignBit
) >> SignBit
) >> shiftAmt
));
1134 // If all the bits were shifted out, the result is, technically, undefined.
1135 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1136 // issues in the algorithm below.
1137 if (shiftAmt
== BitWidth
) {
1139 return APInt(BitWidth
, -1ULL, true);
1141 return APInt(BitWidth
, 0);
1144 // Create some space for the result.
1145 uint64_t * val
= new uint64_t[getNumWords()];
1147 // Compute some values needed by the following shift algorithms
1148 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
; // bits to shift per word
1149 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
; // word offset for shift
1150 unsigned breakWord
= getNumWords() - 1 - offset
; // last word affected
1151 unsigned bitsInWord
= whichBit(BitWidth
); // how many bits in last word?
1152 if (bitsInWord
== 0)
1153 bitsInWord
= APINT_BITS_PER_WORD
;
1155 // If we are shifting whole words, just move whole words
1156 if (wordShift
== 0) {
1157 // Move the words containing significant bits
1158 for (unsigned i
= 0; i
<= breakWord
; ++i
)
1159 val
[i
] = pVal
[i
+offset
]; // move whole word
1161 // Adjust the top significant word for sign bit fill, if negative
1163 if (bitsInWord
< APINT_BITS_PER_WORD
)
1164 val
[breakWord
] |= ~0ULL << bitsInWord
; // set high bits
1166 // Shift the low order words
1167 for (unsigned i
= 0; i
< breakWord
; ++i
) {
1168 // This combines the shifted corresponding word with the low bits from
1169 // the next word (shifted into this word's high bits).
1170 val
[i
] = (pVal
[i
+offset
] >> wordShift
) |
1171 (pVal
[i
+offset
+1] << (APINT_BITS_PER_WORD
- wordShift
));
1174 // Shift the break word. In this case there are no bits from the next word
1175 // to include in this word.
1176 val
[breakWord
] = pVal
[breakWord
+offset
] >> wordShift
;
1178 // Deal with sign extenstion in the break word, and possibly the word before
1181 if (wordShift
> bitsInWord
) {
1184 ~0ULL << (APINT_BITS_PER_WORD
- (wordShift
- bitsInWord
));
1185 val
[breakWord
] |= ~0ULL;
1187 val
[breakWord
] |= (~0ULL << (bitsInWord
- wordShift
));
1191 // Remaining words are 0 or -1, just assign them.
1192 uint64_t fillValue
= (isNegative() ? -1ULL : 0);
1193 for (unsigned i
= breakWord
+1; i
< getNumWords(); ++i
)
1195 return APInt(val
, BitWidth
).clearUnusedBits();
1198 /// Logical right-shift this APInt by shiftAmt.
1199 /// @brief Logical right-shift function.
1200 APInt
APInt::lshr(const APInt
&shiftAmt
) const {
1201 return lshr((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1204 /// Logical right-shift this APInt by shiftAmt.
1205 /// @brief Logical right-shift function.
1206 APInt
APInt::lshr(unsigned shiftAmt
) const {
1207 if (isSingleWord()) {
1208 if (shiftAmt
== BitWidth
)
1209 return APInt(BitWidth
, 0);
1211 return APInt(BitWidth
, this->VAL
>> shiftAmt
);
1214 // If all the bits were shifted out, the result is 0. This avoids issues
1215 // with shifting by the size of the integer type, which produces undefined
1216 // results. We define these "undefined results" to always be 0.
1217 if (shiftAmt
== BitWidth
)
1218 return APInt(BitWidth
, 0);
1220 // If none of the bits are shifted out, the result is *this. This avoids
1221 // issues with shifting by the size of the integer type, which produces
1222 // undefined results in the code below. This is also an optimization.
1226 // Create some space for the result.
1227 uint64_t * val
= new uint64_t[getNumWords()];
1229 // If we are shifting less than a word, compute the shift with a simple carry
1230 if (shiftAmt
< APINT_BITS_PER_WORD
) {
1232 for (int i
= getNumWords()-1; i
>= 0; --i
) {
1233 val
[i
] = (pVal
[i
] >> shiftAmt
) | carry
;
1234 carry
= pVal
[i
] << (APINT_BITS_PER_WORD
- shiftAmt
);
1236 return APInt(val
, BitWidth
).clearUnusedBits();
1239 // Compute some values needed by the remaining shift algorithms
1240 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
;
1241 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
;
1243 // If we are shifting whole words, just move whole words
1244 if (wordShift
== 0) {
1245 for (unsigned i
= 0; i
< getNumWords() - offset
; ++i
)
1246 val
[i
] = pVal
[i
+offset
];
1247 for (unsigned i
= getNumWords()-offset
; i
< getNumWords(); i
++)
1249 return APInt(val
,BitWidth
).clearUnusedBits();
1252 // Shift the low order words
1253 unsigned breakWord
= getNumWords() - offset
-1;
1254 for (unsigned i
= 0; i
< breakWord
; ++i
)
1255 val
[i
] = (pVal
[i
+offset
] >> wordShift
) |
1256 (pVal
[i
+offset
+1] << (APINT_BITS_PER_WORD
- wordShift
));
1257 // Shift the break word.
1258 val
[breakWord
] = pVal
[breakWord
+offset
] >> wordShift
;
1260 // Remaining words are 0
1261 for (unsigned i
= breakWord
+1; i
< getNumWords(); ++i
)
1263 return APInt(val
, BitWidth
).clearUnusedBits();
1266 /// Left-shift this APInt by shiftAmt.
1267 /// @brief Left-shift function.
1268 APInt
APInt::shl(const APInt
&shiftAmt
) const {
1269 // It's undefined behavior in C to shift by BitWidth or greater.
1270 return shl((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1273 APInt
APInt::shlSlowCase(unsigned shiftAmt
) const {
1274 // If all the bits were shifted out, the result is 0. This avoids issues
1275 // with shifting by the size of the integer type, which produces undefined
1276 // results. We define these "undefined results" to always be 0.
1277 if (shiftAmt
== BitWidth
)
1278 return APInt(BitWidth
, 0);
1280 // If none of the bits are shifted out, the result is *this. This avoids a
1281 // lshr by the words size in the loop below which can produce incorrect
1282 // results. It also avoids the expensive computation below for a common case.
1286 // Create some space for the result.
1287 uint64_t * val
= new uint64_t[getNumWords()];
1289 // If we are shifting less than a word, do it the easy way
1290 if (shiftAmt
< APINT_BITS_PER_WORD
) {
1292 for (unsigned i
= 0; i
< getNumWords(); i
++) {
1293 val
[i
] = pVal
[i
] << shiftAmt
| carry
;
1294 carry
= pVal
[i
] >> (APINT_BITS_PER_WORD
- shiftAmt
);
1296 return APInt(val
, BitWidth
).clearUnusedBits();
1299 // Compute some values needed by the remaining shift algorithms
1300 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
;
1301 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
;
1303 // If we are shifting whole words, just move whole words
1304 if (wordShift
== 0) {
1305 for (unsigned i
= 0; i
< offset
; i
++)
1307 for (unsigned i
= offset
; i
< getNumWords(); i
++)
1308 val
[i
] = pVal
[i
-offset
];
1309 return APInt(val
,BitWidth
).clearUnusedBits();
1312 // Copy whole words from this to Result.
1313 unsigned i
= getNumWords() - 1;
1314 for (; i
> offset
; --i
)
1315 val
[i
] = pVal
[i
-offset
] << wordShift
|
1316 pVal
[i
-offset
-1] >> (APINT_BITS_PER_WORD
- wordShift
);
1317 val
[offset
] = pVal
[0] << wordShift
;
1318 for (i
= 0; i
< offset
; ++i
)
1320 return APInt(val
, BitWidth
).clearUnusedBits();
1323 APInt
APInt::rotl(const APInt
&rotateAmt
) const {
1324 return rotl((unsigned)rotateAmt
.getLimitedValue(BitWidth
));
1327 APInt
APInt::rotl(unsigned rotateAmt
) const {
1330 // Don't get too fancy, just use existing shift/or facilities
1334 lo
.lshr(BitWidth
- rotateAmt
);
1338 APInt
APInt::rotr(const APInt
&rotateAmt
) const {
1339 return rotr((unsigned)rotateAmt
.getLimitedValue(BitWidth
));
1342 APInt
APInt::rotr(unsigned rotateAmt
) const {
1345 // Don't get too fancy, just use existing shift/or facilities
1349 hi
.shl(BitWidth
- rotateAmt
);
1353 // Square Root - this method computes and returns the square root of "this".
1354 // Three mechanisms are used for computation. For small values (<= 5 bits),
1355 // a table lookup is done. This gets some performance for common cases. For
1356 // values using less than 52 bits, the value is converted to double and then
1357 // the libc sqrt function is called. The result is rounded and then converted
1358 // back to a uint64_t which is then used to construct the result. Finally,
1359 // the Babylonian method for computing square roots is used.
1360 APInt
APInt::sqrt() const {
1362 // Determine the magnitude of the value.
1363 unsigned magnitude
= getActiveBits();
1365 // Use a fast table for some small values. This also gets rid of some
1366 // rounding errors in libc sqrt for small values.
1367 if (magnitude
<= 5) {
1368 static const uint8_t results
[32] = {
1371 /* 3- 6 */ 2, 2, 2, 2,
1372 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1373 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1374 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1377 return APInt(BitWidth
, results
[ (isSingleWord() ? VAL
: pVal
[0]) ]);
1380 // If the magnitude of the value fits in less than 52 bits (the precision of
1381 // an IEEE double precision floating point value), then we can use the
1382 // libc sqrt function which will probably use a hardware sqrt computation.
1383 // This should be faster than the algorithm below.
1384 if (magnitude
< 52) {
1386 return APInt(BitWidth
,
1387 uint64_t(::round(::sqrt(double(isSingleWord()?VAL
:pVal
[0])))));
1389 return APInt(BitWidth
,
1390 uint64_t(::sqrt(double(isSingleWord()?VAL
:pVal
[0]))) + 0.5);
1394 // Okay, all the short cuts are exhausted. We must compute it. The following
1395 // is a classical Babylonian method for computing the square root. This code
1396 // was adapted to APINt from a wikipedia article on such computations.
1397 // See http://www.wikipedia.org/ and go to the page named
1398 // Calculate_an_integer_square_root.
1399 unsigned nbits
= BitWidth
, i
= 4;
1400 APInt
testy(BitWidth
, 16);
1401 APInt
x_old(BitWidth
, 1);
1402 APInt
x_new(BitWidth
, 0);
1403 APInt
two(BitWidth
, 2);
1405 // Select a good starting value using binary logarithms.
1406 for (;; i
+= 2, testy
= testy
.shl(2))
1407 if (i
>= nbits
|| this->ule(testy
)) {
1408 x_old
= x_old
.shl(i
/ 2);
1412 // Use the Babylonian method to arrive at the integer square root:
1414 x_new
= (this->udiv(x_old
) + x_old
).udiv(two
);
1415 if (x_old
.ule(x_new
))
1420 // Make sure we return the closest approximation
1421 // NOTE: The rounding calculation below is correct. It will produce an
1422 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1423 // determined to be a rounding issue with pari/gp as it begins to use a
1424 // floating point representation after 192 bits. There are no discrepancies
1425 // between this algorithm and pari/gp for bit widths < 192 bits.
1426 APInt
square(x_old
* x_old
);
1427 APInt
nextSquare((x_old
+ 1) * (x_old
+1));
1428 if (this->ult(square
))
1430 else if (this->ule(nextSquare
)) {
1431 APInt
midpoint((nextSquare
- square
).udiv(two
));
1432 APInt
offset(*this - square
);
1433 if (offset
.ult(midpoint
))
1438 llvm_unreachable("Error in APInt::sqrt computation");
1442 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1443 /// iterative extended Euclidean algorithm is used to solve for this value,
1444 /// however we simplify it to speed up calculating only the inverse, and take
1445 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1446 /// (potentially large) APInts around.
1447 APInt
APInt::multiplicativeInverse(const APInt
& modulo
) const {
1448 assert(ult(modulo
) && "This APInt must be smaller than the modulo");
1450 // Using the properties listed at the following web page (accessed 06/21/08):
1451 // http://www.numbertheory.org/php/euclid.html
1452 // (especially the properties numbered 3, 4 and 9) it can be proved that
1453 // BitWidth bits suffice for all the computations in the algorithm implemented
1454 // below. More precisely, this number of bits suffice if the multiplicative
1455 // inverse exists, but may not suffice for the general extended Euclidean
1458 APInt r
[2] = { modulo
, *this };
1459 APInt t
[2] = { APInt(BitWidth
, 0), APInt(BitWidth
, 1) };
1460 APInt
q(BitWidth
, 0);
1463 for (i
= 0; r
[i
^1] != 0; i
^= 1) {
1464 // An overview of the math without the confusing bit-flipping:
1465 // q = r[i-2] / r[i-1]
1466 // r[i] = r[i-2] % r[i-1]
1467 // t[i] = t[i-2] - t[i-1] * q
1468 udivrem(r
[i
], r
[i
^1], q
, r
[i
]);
1472 // If this APInt and the modulo are not coprime, there is no multiplicative
1473 // inverse, so return 0. We check this by looking at the next-to-last
1474 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1477 return APInt(BitWidth
, 0);
1479 // The next-to-last t is the multiplicative inverse. However, we are
1480 // interested in a positive inverse. Calcuate a positive one from a negative
1481 // one if necessary. A simple addition of the modulo suffices because
1482 // abs(t[i]) is known to be less than *this/2 (see the link above).
1483 return t
[i
].isNegative() ? t
[i
] + modulo
: t
[i
];
1486 /// Calculate the magic numbers required to implement a signed integer division
1487 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1488 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1489 /// Warren, Jr., chapter 10.
1490 APInt::ms
APInt::magic() const {
1491 const APInt
& d
= *this;
1493 APInt ad
, anc
, delta
, q1
, r1
, q2
, r2
, t
;
1494 APInt signedMin
= APInt::getSignedMinValue(d
.getBitWidth());
1498 t
= signedMin
+ (d
.lshr(d
.getBitWidth() - 1));
1499 anc
= t
- 1 - t
.urem(ad
); // absolute value of nc
1500 p
= d
.getBitWidth() - 1; // initialize p
1501 q1
= signedMin
.udiv(anc
); // initialize q1 = 2p/abs(nc)
1502 r1
= signedMin
- q1
*anc
; // initialize r1 = rem(2p,abs(nc))
1503 q2
= signedMin
.udiv(ad
); // initialize q2 = 2p/abs(d)
1504 r2
= signedMin
- q2
*ad
; // initialize r2 = rem(2p,abs(d))
1507 q1
= q1
<<1; // update q1 = 2p/abs(nc)
1508 r1
= r1
<<1; // update r1 = rem(2p/abs(nc))
1509 if (r1
.uge(anc
)) { // must be unsigned comparison
1513 q2
= q2
<<1; // update q2 = 2p/abs(d)
1514 r2
= r2
<<1; // update r2 = rem(2p/abs(d))
1515 if (r2
.uge(ad
)) { // must be unsigned comparison
1520 } while (q1
.ule(delta
) || (q1
== delta
&& r1
== 0));
1523 if (d
.isNegative()) mag
.m
= -mag
.m
; // resulting magic number
1524 mag
.s
= p
- d
.getBitWidth(); // resulting shift
1528 /// Calculate the magic numbers required to implement an unsigned integer
1529 /// division by a constant as a sequence of multiplies, adds and shifts.
1530 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1531 /// S. Warren, Jr., chapter 10.
1532 APInt::mu
APInt::magicu() const {
1533 const APInt
& d
= *this;
1535 APInt nc
, delta
, q1
, r1
, q2
, r2
;
1537 magu
.a
= 0; // initialize "add" indicator
1538 APInt allOnes
= APInt::getAllOnesValue(d
.getBitWidth());
1539 APInt signedMin
= APInt::getSignedMinValue(d
.getBitWidth());
1540 APInt signedMax
= APInt::getSignedMaxValue(d
.getBitWidth());
1542 nc
= allOnes
- (-d
).urem(d
);
1543 p
= d
.getBitWidth() - 1; // initialize p
1544 q1
= signedMin
.udiv(nc
); // initialize q1 = 2p/nc
1545 r1
= signedMin
- q1
*nc
; // initialize r1 = rem(2p,nc)
1546 q2
= signedMax
.udiv(d
); // initialize q2 = (2p-1)/d
1547 r2
= signedMax
- q2
*d
; // initialize r2 = rem((2p-1),d)
1550 if (r1
.uge(nc
- r1
)) {
1551 q1
= q1
+ q1
+ 1; // update q1
1552 r1
= r1
+ r1
- nc
; // update r1
1555 q1
= q1
+q1
; // update q1
1556 r1
= r1
+r1
; // update r1
1558 if ((r2
+ 1).uge(d
- r2
)) {
1559 if (q2
.uge(signedMax
)) magu
.a
= 1;
1560 q2
= q2
+q2
+ 1; // update q2
1561 r2
= r2
+r2
+ 1 - d
; // update r2
1564 if (q2
.uge(signedMin
)) magu
.a
= 1;
1565 q2
= q2
+q2
; // update q2
1566 r2
= r2
+r2
+ 1; // update r2
1569 } while (p
< d
.getBitWidth()*2 &&
1570 (q1
.ult(delta
) || (q1
== delta
&& r1
== 0)));
1571 magu
.m
= q2
+ 1; // resulting magic number
1572 magu
.s
= p
- d
.getBitWidth(); // resulting shift
1576 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1577 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1578 /// variables here have the same names as in the algorithm. Comments explain
1579 /// the algorithm and any deviation from it.
1580 static void KnuthDiv(unsigned *u
, unsigned *v
, unsigned *q
, unsigned* r
,
1581 unsigned m
, unsigned n
) {
1582 assert(u
&& "Must provide dividend");
1583 assert(v
&& "Must provide divisor");
1584 assert(q
&& "Must provide quotient");
1585 assert(u
!= v
&& u
!= q
&& v
!= q
&& "Must us different memory");
1586 assert(n
>1 && "n must be > 1");
1588 // Knuth uses the value b as the base of the number system. In our case b
1589 // is 2^31 so we just set it to -1u.
1590 uint64_t b
= uint64_t(1) << 32;
1593 DEBUG(dbgs() << "KnuthDiv: m=" << m
<< " n=" << n
<< '\n');
1594 DEBUG(dbgs() << "KnuthDiv: original:");
1595 DEBUG(for (int i
= m
+n
; i
>=0; i
--) dbgs() << " " << u
[i
]);
1596 DEBUG(dbgs() << " by");
1597 DEBUG(for (int i
= n
; i
>0; i
--) dbgs() << " " << v
[i
-1]);
1598 DEBUG(dbgs() << '\n');
1600 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1601 // u and v by d. Note that we have taken Knuth's advice here to use a power
1602 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1603 // 2 allows us to shift instead of multiply and it is easy to determine the
1604 // shift amount from the leading zeros. We are basically normalizing the u
1605 // and v so that its high bits are shifted to the top of v's range without
1606 // overflow. Note that this can require an extra word in u so that u must
1607 // be of length m+n+1.
1608 unsigned shift
= CountLeadingZeros_32(v
[n
-1]);
1609 unsigned v_carry
= 0;
1610 unsigned u_carry
= 0;
1612 for (unsigned i
= 0; i
< m
+n
; ++i
) {
1613 unsigned u_tmp
= u
[i
] >> (32 - shift
);
1614 u
[i
] = (u
[i
] << shift
) | u_carry
;
1617 for (unsigned i
= 0; i
< n
; ++i
) {
1618 unsigned v_tmp
= v
[i
] >> (32 - shift
);
1619 v
[i
] = (v
[i
] << shift
) | v_carry
;
1625 DEBUG(dbgs() << "KnuthDiv: normal:");
1626 DEBUG(for (int i
= m
+n
; i
>=0; i
--) dbgs() << " " << u
[i
]);
1627 DEBUG(dbgs() << " by");
1628 DEBUG(for (int i
= n
; i
>0; i
--) dbgs() << " " << v
[i
-1]);
1629 DEBUG(dbgs() << '\n');
1632 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1635 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j
<< '\n');
1636 // D3. [Calculate q'.].
1637 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1638 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1639 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1640 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1641 // on v[n-2] determines at high speed most of the cases in which the trial
1642 // value qp is one too large, and it eliminates all cases where qp is two
1644 uint64_t dividend
= ((uint64_t(u
[j
+n
]) << 32) + u
[j
+n
-1]);
1645 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend
<< '\n');
1646 uint64_t qp
= dividend
/ v
[n
-1];
1647 uint64_t rp
= dividend
% v
[n
-1];
1648 if (qp
== b
|| qp
*v
[n
-2] > b
*rp
+ u
[j
+n
-2]) {
1651 if (rp
< b
&& (qp
== b
|| qp
*v
[n
-2] > b
*rp
+ u
[j
+n
-2]))
1654 DEBUG(dbgs() << "KnuthDiv: qp == " << qp
<< ", rp == " << rp
<< '\n');
1656 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1657 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1658 // consists of a simple multiplication by a one-place number, combined with
1661 for (unsigned i
= 0; i
< n
; ++i
) {
1662 uint64_t u_tmp
= uint64_t(u
[j
+i
]) | (uint64_t(u
[j
+i
+1]) << 32);
1663 uint64_t subtrahend
= uint64_t(qp
) * uint64_t(v
[i
]);
1664 bool borrow
= subtrahend
> u_tmp
;
1665 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1666 << ", subtrahend == " << subtrahend
1667 << ", borrow = " << borrow
<< '\n');
1669 uint64_t result
= u_tmp
- subtrahend
;
1671 u
[k
++] = (unsigned)(result
& (b
-1)); // subtract low word
1672 u
[k
++] = (unsigned)(result
>> 32); // subtract high word
1673 while (borrow
&& k
<= m
+n
) { // deal with borrow to the left
1679 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u
[j
+i
] << ", u[j+i+1] == " <<
1682 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1683 DEBUG(for (int i
= m
+n
; i
>=0; i
--) dbgs() << " " << u
[i
]);
1684 DEBUG(dbgs() << '\n');
1685 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1686 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1687 // true value plus b**(n+1), namely as the b's complement of
1688 // the true value, and a "borrow" to the left should be remembered.
1691 bool carry
= true; // true because b's complement is "complement + 1"
1692 for (unsigned i
= 0; i
<= m
+n
; ++i
) {
1693 u
[i
] = ~u
[i
] + carry
; // b's complement
1694 carry
= carry
&& u
[i
] == 0;
1697 DEBUG(dbgs() << "KnuthDiv: after complement:");
1698 DEBUG(for (int i
= m
+n
; i
>=0; i
--) dbgs() << " " << u
[i
]);
1699 DEBUG(dbgs() << '\n');
1701 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1702 // negative, go to step D6; otherwise go on to step D7.
1703 q
[j
] = (unsigned)qp
;
1705 // D6. [Add back]. The probability that this step is necessary is very
1706 // small, on the order of only 2/b. Make sure that test data accounts for
1707 // this possibility. Decrease q[j] by 1
1709 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1710 // A carry will occur to the left of u[j+n], and it should be ignored
1711 // since it cancels with the borrow that occurred in D4.
1713 for (unsigned i
= 0; i
< n
; i
++) {
1714 unsigned limit
= std::min(u
[j
+i
],v
[i
]);
1715 u
[j
+i
] += v
[i
] + carry
;
1716 carry
= u
[j
+i
] < limit
|| (carry
&& u
[j
+i
] == limit
);
1720 DEBUG(dbgs() << "KnuthDiv: after correction:");
1721 DEBUG(for (int i
= m
+n
; i
>=0; i
--) dbgs() <<" " << u
[i
]);
1722 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q
[j
] << '\n');
1724 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1727 DEBUG(dbgs() << "KnuthDiv: quotient:");
1728 DEBUG(for (int i
= m
; i
>=0; i
--) dbgs() <<" " << q
[i
]);
1729 DEBUG(dbgs() << '\n');
1731 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1732 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1733 // compute the remainder (urem uses this).
1735 // The value d is expressed by the "shift" value above since we avoided
1736 // multiplication by d by using a shift left. So, all we have to do is
1737 // shift right here. In order to mak
1740 DEBUG(dbgs() << "KnuthDiv: remainder:");
1741 for (int i
= n
-1; i
>= 0; i
--) {
1742 r
[i
] = (u
[i
] >> shift
) | carry
;
1743 carry
= u
[i
] << (32 - shift
);
1744 DEBUG(dbgs() << " " << r
[i
]);
1747 for (int i
= n
-1; i
>= 0; i
--) {
1749 DEBUG(dbgs() << " " << r
[i
]);
1752 DEBUG(dbgs() << '\n');
1755 DEBUG(dbgs() << '\n');
1759 void APInt::divide(const APInt LHS
, unsigned lhsWords
,
1760 const APInt
&RHS
, unsigned rhsWords
,
1761 APInt
*Quotient
, APInt
*Remainder
)
1763 assert(lhsWords
>= rhsWords
&& "Fractional result");
1765 // First, compose the values into an array of 32-bit words instead of
1766 // 64-bit words. This is a necessity of both the "short division" algorithm
1767 // and the Knuth "classical algorithm" which requires there to be native
1768 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1769 // can't use 64-bit operands here because we don't have native results of
1770 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1771 // work on large-endian machines.
1772 uint64_t mask
= ~0ull >> (sizeof(unsigned)*CHAR_BIT
);
1773 unsigned n
= rhsWords
* 2;
1774 unsigned m
= (lhsWords
* 2) - n
;
1776 // Allocate space for the temporary values we need either on the stack, if
1777 // it will fit, or on the heap if it won't.
1778 unsigned SPACE
[128];
1783 if ((Remainder
?4:3)*n
+2*m
+1 <= 128) {
1786 Q
= &SPACE
[(m
+n
+1) + n
];
1788 R
= &SPACE
[(m
+n
+1) + n
+ (m
+n
)];
1790 U
= new unsigned[m
+ n
+ 1];
1791 V
= new unsigned[n
];
1792 Q
= new unsigned[m
+n
];
1794 R
= new unsigned[n
];
1797 // Initialize the dividend
1798 memset(U
, 0, (m
+n
+1)*sizeof(unsigned));
1799 for (unsigned i
= 0; i
< lhsWords
; ++i
) {
1800 uint64_t tmp
= (LHS
.getNumWords() == 1 ? LHS
.VAL
: LHS
.pVal
[i
]);
1801 U
[i
* 2] = (unsigned)(tmp
& mask
);
1802 U
[i
* 2 + 1] = (unsigned)(tmp
>> (sizeof(unsigned)*CHAR_BIT
));
1804 U
[m
+n
] = 0; // this extra word is for "spill" in the Knuth algorithm.
1806 // Initialize the divisor
1807 memset(V
, 0, (n
)*sizeof(unsigned));
1808 for (unsigned i
= 0; i
< rhsWords
; ++i
) {
1809 uint64_t tmp
= (RHS
.getNumWords() == 1 ? RHS
.VAL
: RHS
.pVal
[i
]);
1810 V
[i
* 2] = (unsigned)(tmp
& mask
);
1811 V
[i
* 2 + 1] = (unsigned)(tmp
>> (sizeof(unsigned)*CHAR_BIT
));
1814 // initialize the quotient and remainder
1815 memset(Q
, 0, (m
+n
) * sizeof(unsigned));
1817 memset(R
, 0, n
* sizeof(unsigned));
1819 // Now, adjust m and n for the Knuth division. n is the number of words in
1820 // the divisor. m is the number of words by which the dividend exceeds the
1821 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1822 // contain any zero words or the Knuth algorithm fails.
1823 for (unsigned i
= n
; i
> 0 && V
[i
-1] == 0; i
--) {
1827 for (unsigned i
= m
+n
; i
> 0 && U
[i
-1] == 0; i
--)
1830 // If we're left with only a single word for the divisor, Knuth doesn't work
1831 // so we implement the short division algorithm here. This is much simpler
1832 // and faster because we are certain that we can divide a 64-bit quantity
1833 // by a 32-bit quantity at hardware speed and short division is simply a
1834 // series of such operations. This is just like doing short division but we
1835 // are using base 2^32 instead of base 10.
1836 assert(n
!= 0 && "Divide by zero?");
1838 unsigned divisor
= V
[0];
1839 unsigned remainder
= 0;
1840 for (int i
= m
+n
-1; i
>= 0; i
--) {
1841 uint64_t partial_dividend
= uint64_t(remainder
) << 32 | U
[i
];
1842 if (partial_dividend
== 0) {
1845 } else if (partial_dividend
< divisor
) {
1847 remainder
= (unsigned)partial_dividend
;
1848 } else if (partial_dividend
== divisor
) {
1852 Q
[i
] = (unsigned)(partial_dividend
/ divisor
);
1853 remainder
= (unsigned)(partial_dividend
- (Q
[i
] * divisor
));
1859 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1861 KnuthDiv(U
, V
, Q
, R
, m
, n
);
1864 // If the caller wants the quotient
1866 // Set up the Quotient value's memory.
1867 if (Quotient
->BitWidth
!= LHS
.BitWidth
) {
1868 if (Quotient
->isSingleWord())
1871 delete [] Quotient
->pVal
;
1872 Quotient
->BitWidth
= LHS
.BitWidth
;
1873 if (!Quotient
->isSingleWord())
1874 Quotient
->pVal
= getClearedMemory(Quotient
->getNumWords());
1878 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1880 if (lhsWords
== 1) {
1882 uint64_t(Q
[0]) | (uint64_t(Q
[1]) << (APINT_BITS_PER_WORD
/ 2));
1883 if (Quotient
->isSingleWord())
1884 Quotient
->VAL
= tmp
;
1886 Quotient
->pVal
[0] = tmp
;
1888 assert(!Quotient
->isSingleWord() && "Quotient APInt not large enough");
1889 for (unsigned i
= 0; i
< lhsWords
; ++i
)
1891 uint64_t(Q
[i
*2]) | (uint64_t(Q
[i
*2+1]) << (APINT_BITS_PER_WORD
/ 2));
1895 // If the caller wants the remainder
1897 // Set up the Remainder value's memory.
1898 if (Remainder
->BitWidth
!= RHS
.BitWidth
) {
1899 if (Remainder
->isSingleWord())
1902 delete [] Remainder
->pVal
;
1903 Remainder
->BitWidth
= RHS
.BitWidth
;
1904 if (!Remainder
->isSingleWord())
1905 Remainder
->pVal
= getClearedMemory(Remainder
->getNumWords());
1909 // The remainder is in R. Reconstitute the remainder into Remainder's low
1911 if (rhsWords
== 1) {
1913 uint64_t(R
[0]) | (uint64_t(R
[1]) << (APINT_BITS_PER_WORD
/ 2));
1914 if (Remainder
->isSingleWord())
1915 Remainder
->VAL
= tmp
;
1917 Remainder
->pVal
[0] = tmp
;
1919 assert(!Remainder
->isSingleWord() && "Remainder APInt not large enough");
1920 for (unsigned i
= 0; i
< rhsWords
; ++i
)
1921 Remainder
->pVal
[i
] =
1922 uint64_t(R
[i
*2]) | (uint64_t(R
[i
*2+1]) << (APINT_BITS_PER_WORD
/ 2));
1926 // Clean up the memory we allocated.
1927 if (U
!= &SPACE
[0]) {
1935 APInt
APInt::udiv(const APInt
& RHS
) const {
1936 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1938 // First, deal with the easy case
1939 if (isSingleWord()) {
1940 assert(RHS
.VAL
!= 0 && "Divide by zero?");
1941 return APInt(BitWidth
, VAL
/ RHS
.VAL
);
1944 // Get some facts about the LHS and RHS number of bits and words
1945 unsigned rhsBits
= RHS
.getActiveBits();
1946 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
1947 assert(rhsWords
&& "Divided by zero???");
1948 unsigned lhsBits
= this->getActiveBits();
1949 unsigned lhsWords
= !lhsBits
? 0 : (APInt::whichWord(lhsBits
- 1) + 1);
1951 // Deal with some degenerate cases
1954 return APInt(BitWidth
, 0);
1955 else if (lhsWords
< rhsWords
|| this->ult(RHS
)) {
1956 // X / Y ===> 0, iff X < Y
1957 return APInt(BitWidth
, 0);
1958 } else if (*this == RHS
) {
1960 return APInt(BitWidth
, 1);
1961 } else if (lhsWords
== 1 && rhsWords
== 1) {
1962 // All high words are zero, just use native divide
1963 return APInt(BitWidth
, this->pVal
[0] / RHS
.pVal
[0]);
1966 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1967 APInt
Quotient(1,0); // to hold result.
1968 divide(*this, lhsWords
, RHS
, rhsWords
, &Quotient
, 0);
1972 APInt
APInt::urem(const APInt
& RHS
) const {
1973 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1974 if (isSingleWord()) {
1975 assert(RHS
.VAL
!= 0 && "Remainder by zero?");
1976 return APInt(BitWidth
, VAL
% RHS
.VAL
);
1979 // Get some facts about the LHS
1980 unsigned lhsBits
= getActiveBits();
1981 unsigned lhsWords
= !lhsBits
? 0 : (whichWord(lhsBits
- 1) + 1);
1983 // Get some facts about the RHS
1984 unsigned rhsBits
= RHS
.getActiveBits();
1985 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
1986 assert(rhsWords
&& "Performing remainder operation by zero ???");
1988 // Check the degenerate cases
1989 if (lhsWords
== 0) {
1991 return APInt(BitWidth
, 0);
1992 } else if (lhsWords
< rhsWords
|| this->ult(RHS
)) {
1993 // X % Y ===> X, iff X < Y
1995 } else if (*this == RHS
) {
1997 return APInt(BitWidth
, 0);
1998 } else if (lhsWords
== 1) {
1999 // All high words are zero, just use native remainder
2000 return APInt(BitWidth
, pVal
[0] % RHS
.pVal
[0]);
2003 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2004 APInt
Remainder(1,0);
2005 divide(*this, lhsWords
, RHS
, rhsWords
, 0, &Remainder
);
2009 void APInt::udivrem(const APInt
&LHS
, const APInt
&RHS
,
2010 APInt
&Quotient
, APInt
&Remainder
) {
2011 // Get some size facts about the dividend and divisor
2012 unsigned lhsBits
= LHS
.getActiveBits();
2013 unsigned lhsWords
= !lhsBits
? 0 : (APInt::whichWord(lhsBits
- 1) + 1);
2014 unsigned rhsBits
= RHS
.getActiveBits();
2015 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
2017 // Check the degenerate cases
2018 if (lhsWords
== 0) {
2019 Quotient
= 0; // 0 / Y ===> 0
2020 Remainder
= 0; // 0 % Y ===> 0
2024 if (lhsWords
< rhsWords
|| LHS
.ult(RHS
)) {
2025 Remainder
= LHS
; // X % Y ===> X, iff X < Y
2026 Quotient
= 0; // X / Y ===> 0, iff X < Y
2031 Quotient
= 1; // X / X ===> 1
2032 Remainder
= 0; // X % X ===> 0;
2036 if (lhsWords
== 1 && rhsWords
== 1) {
2037 // There is only one word to consider so use the native versions.
2038 uint64_t lhsValue
= LHS
.isSingleWord() ? LHS
.VAL
: LHS
.pVal
[0];
2039 uint64_t rhsValue
= RHS
.isSingleWord() ? RHS
.VAL
: RHS
.pVal
[0];
2040 Quotient
= APInt(LHS
.getBitWidth(), lhsValue
/ rhsValue
);
2041 Remainder
= APInt(LHS
.getBitWidth(), lhsValue
% rhsValue
);
2045 // Okay, lets do it the long way
2046 divide(LHS
, lhsWords
, RHS
, rhsWords
, &Quotient
, &Remainder
);
2049 APInt
APInt::sadd_ov(const APInt
&RHS
, bool &Overflow
) const {
2050 APInt Res
= *this+RHS
;
2051 Overflow
= isNonNegative() == RHS
.isNonNegative() &&
2052 Res
.isNonNegative() != isNonNegative();
2056 APInt
APInt::uadd_ov(const APInt
&RHS
, bool &Overflow
) const {
2057 APInt Res
= *this+RHS
;
2058 Overflow
= Res
.ult(RHS
);
2062 APInt
APInt::ssub_ov(const APInt
&RHS
, bool &Overflow
) const {
2063 APInt Res
= *this - RHS
;
2064 Overflow
= isNonNegative() != RHS
.isNonNegative() &&
2065 Res
.isNonNegative() != isNonNegative();
2069 APInt
APInt::usub_ov(const APInt
&RHS
, bool &Overflow
) const {
2070 APInt Res
= *this-RHS
;
2071 Overflow
= Res
.ugt(*this);
2075 APInt
APInt::sdiv_ov(const APInt
&RHS
, bool &Overflow
) const {
2076 // MININT/-1 --> overflow.
2077 Overflow
= isMinSignedValue() && RHS
.isAllOnesValue();
2081 APInt
APInt::smul_ov(const APInt
&RHS
, bool &Overflow
) const {
2082 APInt Res
= *this * RHS
;
2084 if (*this != 0 && RHS
!= 0)
2085 Overflow
= Res
.sdiv(RHS
) != *this || Res
.sdiv(*this) != RHS
;
2091 APInt
APInt::sshl_ov(unsigned ShAmt
, bool &Overflow
) const {
2092 Overflow
= ShAmt
>= getBitWidth();
2094 ShAmt
= getBitWidth()-1;
2096 if (isNonNegative()) // Don't allow sign change.
2097 Overflow
= ShAmt
>= countLeadingZeros();
2099 Overflow
= ShAmt
>= countLeadingOnes();
2101 return *this << ShAmt
;
2107 void APInt::fromString(unsigned numbits
, StringRef str
, uint8_t radix
) {
2108 // Check our assumptions here
2109 assert(!str
.empty() && "Invalid string length");
2110 assert((radix
== 10 || radix
== 8 || radix
== 16 || radix
== 2) &&
2111 "Radix should be 2, 8, 10, or 16!");
2113 StringRef::iterator p
= str
.begin();
2114 size_t slen
= str
.size();
2115 bool isNeg
= *p
== '-';
2116 if (*p
== '-' || *p
== '+') {
2119 assert(slen
&& "String is only a sign, needs a value.");
2121 assert((slen
<= numbits
|| radix
!= 2) && "Insufficient bit width");
2122 assert(((slen
-1)*3 <= numbits
|| radix
!= 8) && "Insufficient bit width");
2123 assert(((slen
-1)*4 <= numbits
|| radix
!= 16) && "Insufficient bit width");
2124 assert((((slen
-1)*64)/22 <= numbits
|| radix
!= 10) &&
2125 "Insufficient bit width");
2128 if (!isSingleWord())
2129 pVal
= getClearedMemory(getNumWords());
2131 // Figure out if we can shift instead of multiply
2132 unsigned shift
= (radix
== 16 ? 4 : radix
== 8 ? 3 : radix
== 2 ? 1 : 0);
2134 // Set up an APInt for the digit to add outside the loop so we don't
2135 // constantly construct/destruct it.
2136 APInt
apdigit(getBitWidth(), 0);
2137 APInt
apradix(getBitWidth(), radix
);
2139 // Enter digit traversal loop
2140 for (StringRef::iterator e
= str
.end(); p
!= e
; ++p
) {
2141 unsigned digit
= getDigit(*p
, radix
);
2142 assert(digit
< radix
&& "Invalid character in digit string");
2144 // Shift or multiply the value by the radix
2152 // Add in the digit we just interpreted
2153 if (apdigit
.isSingleWord())
2154 apdigit
.VAL
= digit
;
2156 apdigit
.pVal
[0] = digit
;
2159 // If its negative, put it in two's complement form
2166 void APInt::toString(SmallVectorImpl
<char> &Str
, unsigned Radix
,
2167 bool Signed
) const {
2168 assert((Radix
== 10 || Radix
== 8 || Radix
== 16 || Radix
== 2) &&
2169 "Radix should be 2, 8, 10, or 16!");
2171 // First, check for a zero value and just short circuit the logic below.
2177 static const char Digits
[] = "0123456789ABCDEF";
2179 if (isSingleWord()) {
2181 char *BufPtr
= Buffer
+65;
2187 int64_t I
= getSExtValue();
2197 *--BufPtr
= Digits
[N
% Radix
];
2200 Str
.append(BufPtr
, Buffer
+65);
2206 if (Signed
&& isNegative()) {
2207 // They want to print the signed version and it is a negative value
2208 // Flip the bits and add one to turn it into the equivalent positive
2209 // value and put a '-' in the result.
2215 // We insert the digits backward, then reverse them to get the right order.
2216 unsigned StartDig
= Str
.size();
2218 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2219 // because the number of bits per digit (1, 3 and 4 respectively) divides
2220 // equaly. We just shift until the value is zero.
2222 // Just shift tmp right for each digit width until it becomes zero
2223 unsigned ShiftAmt
= (Radix
== 16 ? 4 : (Radix
== 8 ? 3 : 1));
2224 unsigned MaskAmt
= Radix
- 1;
2227 unsigned Digit
= unsigned(Tmp
.getRawData()[0]) & MaskAmt
;
2228 Str
.push_back(Digits
[Digit
]);
2229 Tmp
= Tmp
.lshr(ShiftAmt
);
2232 APInt
divisor(4, 10);
2234 APInt
APdigit(1, 0);
2235 APInt
tmp2(Tmp
.getBitWidth(), 0);
2236 divide(Tmp
, Tmp
.getNumWords(), divisor
, divisor
.getNumWords(), &tmp2
,
2238 unsigned Digit
= (unsigned)APdigit
.getZExtValue();
2239 assert(Digit
< Radix
&& "divide failed");
2240 Str
.push_back(Digits
[Digit
]);
2245 // Reverse the digits before returning.
2246 std::reverse(Str
.begin()+StartDig
, Str
.end());
2249 /// toString - This returns the APInt as a std::string. Note that this is an
2250 /// inefficient method. It is better to pass in a SmallVector/SmallString
2251 /// to the methods above.
2252 std::string
APInt::toString(unsigned Radix
= 10, bool Signed
= true) const {
2254 toString(S
, Radix
, Signed
);
2259 void APInt::dump() const {
2260 SmallString
<40> S
, U
;
2261 this->toStringUnsigned(U
);
2262 this->toStringSigned(S
);
2263 dbgs() << "APInt(" << BitWidth
<< "b, "
2264 << U
.str() << "u " << S
.str() << "s)";
2267 void APInt::print(raw_ostream
&OS
, bool isSigned
) const {
2269 this->toString(S
, 10, isSigned
);
2273 // This implements a variety of operations on a representation of
2274 // arbitrary precision, two's-complement, bignum integer values.
2276 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2277 // and unrestricting assumption.
2278 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2279 COMPILE_TIME_ASSERT(integerPartWidth
% 2 == 0);
2281 /* Some handy functions local to this file. */
2284 /* Returns the integer part with the least significant BITS set.
2285 BITS cannot be zero. */
2286 static inline integerPart
2287 lowBitMask(unsigned int bits
)
2289 assert(bits
!= 0 && bits
<= integerPartWidth
);
2291 return ~(integerPart
) 0 >> (integerPartWidth
- bits
);
2294 /* Returns the value of the lower half of PART. */
2295 static inline integerPart
2296 lowHalf(integerPart part
)
2298 return part
& lowBitMask(integerPartWidth
/ 2);
2301 /* Returns the value of the upper half of PART. */
2302 static inline integerPart
2303 highHalf(integerPart part
)
2305 return part
>> (integerPartWidth
/ 2);
2308 /* Returns the bit number of the most significant set bit of a part.
2309 If the input number has no bits set -1U is returned. */
2311 partMSB(integerPart value
)
2313 unsigned int n
, msb
;
2318 n
= integerPartWidth
/ 2;
2333 /* Returns the bit number of the least significant set bit of a
2334 part. If the input number has no bits set -1U is returned. */
2336 partLSB(integerPart value
)
2338 unsigned int n
, lsb
;
2343 lsb
= integerPartWidth
- 1;
2344 n
= integerPartWidth
/ 2;
2359 /* Sets the least significant part of a bignum to the input value, and
2360 zeroes out higher parts. */
2362 APInt::tcSet(integerPart
*dst
, integerPart part
, unsigned int parts
)
2369 for (i
= 1; i
< parts
; i
++)
2373 /* Assign one bignum to another. */
2375 APInt::tcAssign(integerPart
*dst
, const integerPart
*src
, unsigned int parts
)
2379 for (i
= 0; i
< parts
; i
++)
2383 /* Returns true if a bignum is zero, false otherwise. */
2385 APInt::tcIsZero(const integerPart
*src
, unsigned int parts
)
2389 for (i
= 0; i
< parts
; i
++)
2396 /* Extract the given bit of a bignum; returns 0 or 1. */
2398 APInt::tcExtractBit(const integerPart
*parts
, unsigned int bit
)
2400 return (parts
[bit
/ integerPartWidth
] &
2401 ((integerPart
) 1 << bit
% integerPartWidth
)) != 0;
2404 /* Set the given bit of a bignum. */
2406 APInt::tcSetBit(integerPart
*parts
, unsigned int bit
)
2408 parts
[bit
/ integerPartWidth
] |= (integerPart
) 1 << (bit
% integerPartWidth
);
2411 /* Clears the given bit of a bignum. */
2413 APInt::tcClearBit(integerPart
*parts
, unsigned int bit
)
2415 parts
[bit
/ integerPartWidth
] &=
2416 ~((integerPart
) 1 << (bit
% integerPartWidth
));
2419 /* Returns the bit number of the least significant set bit of a
2420 number. If the input number has no bits set -1U is returned. */
2422 APInt::tcLSB(const integerPart
*parts
, unsigned int n
)
2424 unsigned int i
, lsb
;
2426 for (i
= 0; i
< n
; i
++) {
2427 if (parts
[i
] != 0) {
2428 lsb
= partLSB(parts
[i
]);
2430 return lsb
+ i
* integerPartWidth
;
2437 /* Returns the bit number of the most significant set bit of a number.
2438 If the input number has no bits set -1U is returned. */
2440 APInt::tcMSB(const integerPart
*parts
, unsigned int n
)
2447 if (parts
[n
] != 0) {
2448 msb
= partMSB(parts
[n
]);
2450 return msb
+ n
* integerPartWidth
;
2457 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2458 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2459 the least significant bit of DST. All high bits above srcBITS in
2460 DST are zero-filled. */
2462 APInt::tcExtract(integerPart
*dst
, unsigned int dstCount
,const integerPart
*src
,
2463 unsigned int srcBits
, unsigned int srcLSB
)
2465 unsigned int firstSrcPart
, dstParts
, shift
, n
;
2467 dstParts
= (srcBits
+ integerPartWidth
- 1) / integerPartWidth
;
2468 assert(dstParts
<= dstCount
);
2470 firstSrcPart
= srcLSB
/ integerPartWidth
;
2471 tcAssign (dst
, src
+ firstSrcPart
, dstParts
);
2473 shift
= srcLSB
% integerPartWidth
;
2474 tcShiftRight (dst
, dstParts
, shift
);
2476 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2477 in DST. If this is less that srcBits, append the rest, else
2478 clear the high bits. */
2479 n
= dstParts
* integerPartWidth
- shift
;
2481 integerPart mask
= lowBitMask (srcBits
- n
);
2482 dst
[dstParts
- 1] |= ((src
[firstSrcPart
+ dstParts
] & mask
)
2483 << n
% integerPartWidth
);
2484 } else if (n
> srcBits
) {
2485 if (srcBits
% integerPartWidth
)
2486 dst
[dstParts
- 1] &= lowBitMask (srcBits
% integerPartWidth
);
2489 /* Clear high parts. */
2490 while (dstParts
< dstCount
)
2491 dst
[dstParts
++] = 0;
2494 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2496 APInt::tcAdd(integerPart
*dst
, const integerPart
*rhs
,
2497 integerPart c
, unsigned int parts
)
2503 for (i
= 0; i
< parts
; i
++) {
2508 dst
[i
] += rhs
[i
] + 1;
2519 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2521 APInt::tcSubtract(integerPart
*dst
, const integerPart
*rhs
,
2522 integerPart c
, unsigned int parts
)
2528 for (i
= 0; i
< parts
; i
++) {
2533 dst
[i
] -= rhs
[i
] + 1;
2544 /* Negate a bignum in-place. */
2546 APInt::tcNegate(integerPart
*dst
, unsigned int parts
)
2548 tcComplement(dst
, parts
);
2549 tcIncrement(dst
, parts
);
2552 /* DST += SRC * MULTIPLIER + CARRY if add is true
2553 DST = SRC * MULTIPLIER + CARRY if add is false
2555 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2556 they must start at the same point, i.e. DST == SRC.
2558 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2559 returned. Otherwise DST is filled with the least significant
2560 DSTPARTS parts of the result, and if all of the omitted higher
2561 parts were zero return zero, otherwise overflow occurred and
2564 APInt::tcMultiplyPart(integerPart
*dst
, const integerPart
*src
,
2565 integerPart multiplier
, integerPart carry
,
2566 unsigned int srcParts
, unsigned int dstParts
,
2571 /* Otherwise our writes of DST kill our later reads of SRC. */
2572 assert(dst
<= src
|| dst
>= src
+ srcParts
);
2573 assert(dstParts
<= srcParts
+ 1);
2575 /* N loops; minimum of dstParts and srcParts. */
2576 n
= dstParts
< srcParts
? dstParts
: srcParts
;
2578 for (i
= 0; i
< n
; i
++) {
2579 integerPart low
, mid
, high
, srcPart
;
2581 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2583 This cannot overflow, because
2585 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2587 which is less than n^2. */
2591 if (multiplier
== 0 || srcPart
== 0) {
2595 low
= lowHalf(srcPart
) * lowHalf(multiplier
);
2596 high
= highHalf(srcPart
) * highHalf(multiplier
);
2598 mid
= lowHalf(srcPart
) * highHalf(multiplier
);
2599 high
+= highHalf(mid
);
2600 mid
<<= integerPartWidth
/ 2;
2601 if (low
+ mid
< low
)
2605 mid
= highHalf(srcPart
) * lowHalf(multiplier
);
2606 high
+= highHalf(mid
);
2607 mid
<<= integerPartWidth
/ 2;
2608 if (low
+ mid
< low
)
2612 /* Now add carry. */
2613 if (low
+ carry
< low
)
2619 /* And now DST[i], and store the new low part there. */
2620 if (low
+ dst
[i
] < low
)
2630 /* Full multiplication, there is no overflow. */
2631 assert(i
+ 1 == dstParts
);
2635 /* We overflowed if there is carry. */
2639 /* We would overflow if any significant unwritten parts would be
2640 non-zero. This is true if any remaining src parts are non-zero
2641 and the multiplier is non-zero. */
2643 for (; i
< srcParts
; i
++)
2647 /* We fitted in the narrow destination. */
2652 /* DST = LHS * RHS, where DST has the same width as the operands and
2653 is filled with the least significant parts of the result. Returns
2654 one if overflow occurred, otherwise zero. DST must be disjoint
2655 from both operands. */
2657 APInt::tcMultiply(integerPart
*dst
, const integerPart
*lhs
,
2658 const integerPart
*rhs
, unsigned int parts
)
2663 assert(dst
!= lhs
&& dst
!= rhs
);
2666 tcSet(dst
, 0, parts
);
2668 for (i
= 0; i
< parts
; i
++)
2669 overflow
|= tcMultiplyPart(&dst
[i
], lhs
, rhs
[i
], 0, parts
,
2675 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2676 operands. No overflow occurs. DST must be disjoint from both
2677 operands. Returns the number of parts required to hold the
2680 APInt::tcFullMultiply(integerPart
*dst
, const integerPart
*lhs
,
2681 const integerPart
*rhs
, unsigned int lhsParts
,
2682 unsigned int rhsParts
)
2684 /* Put the narrower number on the LHS for less loops below. */
2685 if (lhsParts
> rhsParts
) {
2686 return tcFullMultiply (dst
, rhs
, lhs
, rhsParts
, lhsParts
);
2690 assert(dst
!= lhs
&& dst
!= rhs
);
2692 tcSet(dst
, 0, rhsParts
);
2694 for (n
= 0; n
< lhsParts
; n
++)
2695 tcMultiplyPart(&dst
[n
], rhs
, lhs
[n
], 0, rhsParts
, rhsParts
+ 1, true);
2697 n
= lhsParts
+ rhsParts
;
2699 return n
- (dst
[n
- 1] == 0);
2703 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2704 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2705 set REMAINDER to the remainder, return zero. i.e.
2707 OLD_LHS = RHS * LHS + REMAINDER
2709 SCRATCH is a bignum of the same size as the operands and result for
2710 use by the routine; its contents need not be initialized and are
2711 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2714 APInt::tcDivide(integerPart
*lhs
, const integerPart
*rhs
,
2715 integerPart
*remainder
, integerPart
*srhs
,
2718 unsigned int n
, shiftCount
;
2721 assert(lhs
!= remainder
&& lhs
!= srhs
&& remainder
!= srhs
);
2723 shiftCount
= tcMSB(rhs
, parts
) + 1;
2724 if (shiftCount
== 0)
2727 shiftCount
= parts
* integerPartWidth
- shiftCount
;
2728 n
= shiftCount
/ integerPartWidth
;
2729 mask
= (integerPart
) 1 << (shiftCount
% integerPartWidth
);
2731 tcAssign(srhs
, rhs
, parts
);
2732 tcShiftLeft(srhs
, parts
, shiftCount
);
2733 tcAssign(remainder
, lhs
, parts
);
2734 tcSet(lhs
, 0, parts
);
2736 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2741 compare
= tcCompare(remainder
, srhs
, parts
);
2743 tcSubtract(remainder
, srhs
, 0, parts
);
2747 if (shiftCount
== 0)
2750 tcShiftRight(srhs
, parts
, 1);
2751 if ((mask
>>= 1) == 0)
2752 mask
= (integerPart
) 1 << (integerPartWidth
- 1), n
--;
2758 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2759 There are no restrictions on COUNT. */
2761 APInt::tcShiftLeft(integerPart
*dst
, unsigned int parts
, unsigned int count
)
2764 unsigned int jump
, shift
;
2766 /* Jump is the inter-part jump; shift is is intra-part shift. */
2767 jump
= count
/ integerPartWidth
;
2768 shift
= count
% integerPartWidth
;
2770 while (parts
> jump
) {
2775 /* dst[i] comes from the two parts src[i - jump] and, if we have
2776 an intra-part shift, src[i - jump - 1]. */
2777 part
= dst
[parts
- jump
];
2780 if (parts
>= jump
+ 1)
2781 part
|= dst
[parts
- jump
- 1] >> (integerPartWidth
- shift
);
2792 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2793 zero. There are no restrictions on COUNT. */
2795 APInt::tcShiftRight(integerPart
*dst
, unsigned int parts
, unsigned int count
)
2798 unsigned int i
, jump
, shift
;
2800 /* Jump is the inter-part jump; shift is is intra-part shift. */
2801 jump
= count
/ integerPartWidth
;
2802 shift
= count
% integerPartWidth
;
2804 /* Perform the shift. This leaves the most significant COUNT bits
2805 of the result at zero. */
2806 for (i
= 0; i
< parts
; i
++) {
2809 if (i
+ jump
>= parts
) {
2812 part
= dst
[i
+ jump
];
2815 if (i
+ jump
+ 1 < parts
)
2816 part
|= dst
[i
+ jump
+ 1] << (integerPartWidth
- shift
);
2825 /* Bitwise and of two bignums. */
2827 APInt::tcAnd(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2831 for (i
= 0; i
< parts
; i
++)
2835 /* Bitwise inclusive or of two bignums. */
2837 APInt::tcOr(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2841 for (i
= 0; i
< parts
; i
++)
2845 /* Bitwise exclusive or of two bignums. */
2847 APInt::tcXor(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2851 for (i
= 0; i
< parts
; i
++)
2855 /* Complement a bignum in-place. */
2857 APInt::tcComplement(integerPart
*dst
, unsigned int parts
)
2861 for (i
= 0; i
< parts
; i
++)
2865 /* Comparison (unsigned) of two bignums. */
2867 APInt::tcCompare(const integerPart
*lhs
, const integerPart
*rhs
,
2872 if (lhs
[parts
] == rhs
[parts
])
2875 if (lhs
[parts
] > rhs
[parts
])
2884 /* Increment a bignum in-place, return the carry flag. */
2886 APInt::tcIncrement(integerPart
*dst
, unsigned int parts
)
2890 for (i
= 0; i
< parts
; i
++)
2897 /* Set the least significant BITS bits of a bignum, clear the
2900 APInt::tcSetLeastSignificantBits(integerPart
*dst
, unsigned int parts
,
2906 while (bits
> integerPartWidth
) {
2907 dst
[i
++] = ~(integerPart
) 0;
2908 bits
-= integerPartWidth
;
2912 dst
[i
++] = ~(integerPart
) 0 >> (integerPartWidth
- bits
);