zpu: wip - add pass to convert registers to stack slots
[llvm/zpu.git] / lib / VMCore / AutoUpgrade.cpp
blob64b0b518284e03e6e2a3fb5caa61641230bc690c
1 //===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the auto-upgrade helper functions
12 //===----------------------------------------------------------------------===//
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Module.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/IRBuilder.h"
24 #include <cstring>
25 using namespace llvm;
28 static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
29 assert(F && "Illegal to upgrade a non-existent Function.");
31 // Get the Function's name.
32 const std::string& Name = F->getName();
34 // Convenience
35 const FunctionType *FTy = F->getFunctionType();
37 // Quickly eliminate it, if it's not a candidate.
38 if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' ||
39 Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
40 return false;
42 Module *M = F->getParent();
43 switch (Name[5]) {
44 default: break;
45 case 'a':
46 // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss,
47 // and atomics with default address spaces to their new names to their new
48 // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32)
49 if (Name.compare(5,7,"atomic.",7) == 0) {
50 if (Name.compare(12,3,"lcs",3) == 0) {
51 std::string::size_type delim = Name.find('.',12);
52 F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) +
53 ".p0" + Name.substr(delim+1));
54 NewFn = F;
55 return true;
57 else if (Name.compare(12,3,"las",3) == 0) {
58 std::string::size_type delim = Name.find('.',12);
59 F->setName("llvm.atomic.load.add"+Name.substr(delim)
60 + ".p0" + Name.substr(delim+1));
61 NewFn = F;
62 return true;
64 else if (Name.compare(12,3,"lss",3) == 0) {
65 std::string::size_type delim = Name.find('.',12);
66 F->setName("llvm.atomic.load.sub"+Name.substr(delim)
67 + ".p0" + Name.substr(delim+1));
68 NewFn = F;
69 return true;
71 else if (Name.rfind(".p") == std::string::npos) {
72 // We don't have an address space qualifier so this has be upgraded
73 // to the new name. Copy the type name at the end of the intrinsic
74 // and add to it
75 std::string::size_type delim = Name.find_last_of('.');
76 assert(delim != std::string::npos && "can not find type");
77 F->setName(Name + ".p0" + Name.substr(delim+1));
78 NewFn = F;
79 return true;
81 } else if (Name.compare(5, 9, "arm.neon.", 9) == 0) {
82 if (((Name.compare(14, 5, "vmovl", 5) == 0 ||
83 Name.compare(14, 5, "vaddl", 5) == 0 ||
84 Name.compare(14, 5, "vsubl", 5) == 0 ||
85 Name.compare(14, 5, "vaddw", 5) == 0 ||
86 Name.compare(14, 5, "vsubw", 5) == 0 ||
87 Name.compare(14, 5, "vmull", 5) == 0 ||
88 Name.compare(14, 5, "vmlal", 5) == 0 ||
89 Name.compare(14, 5, "vmlsl", 5) == 0 ||
90 Name.compare(14, 5, "vabdl", 5) == 0 ||
91 Name.compare(14, 5, "vabal", 5) == 0) &&
92 (Name.compare(19, 2, "s.", 2) == 0 ||
93 Name.compare(19, 2, "u.", 2) == 0)) ||
95 (Name.compare(14, 4, "vaba", 4) == 0 &&
96 (Name.compare(18, 2, "s.", 2) == 0 ||
97 Name.compare(18, 2, "u.", 2) == 0)) ||
99 (Name.compare(14, 6, "vmovn.", 6) == 0)) {
101 // Calls to these are transformed into IR without intrinsics.
102 NewFn = 0;
103 return true;
105 // Old versions of NEON ld/st intrinsics are missing alignment arguments.
106 bool isVLd = (Name.compare(14, 3, "vld", 3) == 0);
107 bool isVSt = (Name.compare(14, 3, "vst", 3) == 0);
108 if (isVLd || isVSt) {
109 unsigned NumVecs = Name.at(17) - '0';
110 if (NumVecs == 0 || NumVecs > 4)
111 return false;
112 bool isLaneOp = (Name.compare(18, 5, "lane.", 5) == 0);
113 if (!isLaneOp && Name.at(18) != '.')
114 return false;
115 unsigned ExpectedArgs = 2; // for the address and alignment
116 if (isVSt || isLaneOp)
117 ExpectedArgs += NumVecs;
118 if (isLaneOp)
119 ExpectedArgs += 1; // for the lane number
120 unsigned NumP = FTy->getNumParams();
121 if (NumP != ExpectedArgs - 1)
122 return false;
124 // Change the name of the old (bad) intrinsic, because
125 // its type is incorrect, but we cannot overload that name.
126 F->setName("");
128 // One argument is missing: add the alignment argument.
129 std::vector<const Type*> NewParams;
130 for (unsigned p = 0; p < NumP; ++p)
131 NewParams.push_back(FTy->getParamType(p));
132 NewParams.push_back(Type::getInt32Ty(F->getContext()));
133 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(),
134 NewParams, false);
135 NewFn = cast<Function>(M->getOrInsertFunction(Name, NewFTy));
136 return true;
139 break;
140 case 'b':
141 // This upgrades the name of the llvm.bswap intrinsic function to only use
142 // a single type name for overloading. We only care about the old format
143 // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being
144 // a '.' after 'bswap.'
145 if (Name.compare(5,6,"bswap.",6) == 0) {
146 std::string::size_type delim = Name.find('.',11);
148 if (delim != std::string::npos) {
149 // Construct the new name as 'llvm.bswap' + '.i*'
150 F->setName(Name.substr(0,10)+Name.substr(delim));
151 NewFn = F;
152 return true;
155 break;
157 case 'c':
158 // We only want to fix the 'llvm.ct*' intrinsics which do not have the
159 // correct return type, so we check for the name, and then check if the
160 // return type does not match the parameter type.
161 if ( (Name.compare(5,5,"ctpop",5) == 0 ||
162 Name.compare(5,4,"ctlz",4) == 0 ||
163 Name.compare(5,4,"cttz",4) == 0) &&
164 FTy->getReturnType() != FTy->getParamType(0)) {
165 // We first need to change the name of the old (bad) intrinsic, because
166 // its type is incorrect, but we cannot overload that name. We
167 // arbitrarily unique it here allowing us to construct a correctly named
168 // and typed function below.
169 F->setName("");
171 // Now construct the new intrinsic with the correct name and type. We
172 // leave the old function around in order to query its type, whatever it
173 // may be, and correctly convert up to the new type.
174 NewFn = cast<Function>(M->getOrInsertFunction(Name,
175 FTy->getParamType(0),
176 FTy->getParamType(0),
177 (Type *)0));
178 return true;
180 break;
182 case 'e':
183 // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector.
184 if (Name.compare("llvm.eh.selector.i32") == 0) {
185 F->setName("llvm.eh.selector");
186 NewFn = F;
187 return true;
189 // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for.
190 if (Name.compare("llvm.eh.typeid.for.i32") == 0) {
191 F->setName("llvm.eh.typeid.for");
192 NewFn = F;
193 return true;
195 // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector.
196 if (Name.compare("llvm.eh.selector.i64") == 0) {
197 NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector);
198 return true;
200 // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for.
201 if (Name.compare("llvm.eh.typeid.for.i64") == 0) {
202 NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for);
203 return true;
205 break;
207 case 'm': {
208 // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the
209 // new format that allows overloading the pointer for different address
210 // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16)
211 const char* NewFnName = NULL;
212 if (Name.compare(5,8,"memcpy.i",8) == 0) {
213 if (Name[13] == '8')
214 NewFnName = "llvm.memcpy.p0i8.p0i8.i8";
215 else if (Name.compare(13,2,"16") == 0)
216 NewFnName = "llvm.memcpy.p0i8.p0i8.i16";
217 else if (Name.compare(13,2,"32") == 0)
218 NewFnName = "llvm.memcpy.p0i8.p0i8.i32";
219 else if (Name.compare(13,2,"64") == 0)
220 NewFnName = "llvm.memcpy.p0i8.p0i8.i64";
221 } else if (Name.compare(5,9,"memmove.i",9) == 0) {
222 if (Name[14] == '8')
223 NewFnName = "llvm.memmove.p0i8.p0i8.i8";
224 else if (Name.compare(14,2,"16") == 0)
225 NewFnName = "llvm.memmove.p0i8.p0i8.i16";
226 else if (Name.compare(14,2,"32") == 0)
227 NewFnName = "llvm.memmove.p0i8.p0i8.i32";
228 else if (Name.compare(14,2,"64") == 0)
229 NewFnName = "llvm.memmove.p0i8.p0i8.i64";
231 else if (Name.compare(5,8,"memset.i",8) == 0) {
232 if (Name[13] == '8')
233 NewFnName = "llvm.memset.p0i8.i8";
234 else if (Name.compare(13,2,"16") == 0)
235 NewFnName = "llvm.memset.p0i8.i16";
236 else if (Name.compare(13,2,"32") == 0)
237 NewFnName = "llvm.memset.p0i8.i32";
238 else if (Name.compare(13,2,"64") == 0)
239 NewFnName = "llvm.memset.p0i8.i64";
241 if (NewFnName) {
242 NewFn = cast<Function>(M->getOrInsertFunction(NewFnName,
243 FTy->getReturnType(),
244 FTy->getParamType(0),
245 FTy->getParamType(1),
246 FTy->getParamType(2),
247 FTy->getParamType(3),
248 Type::getInt1Ty(F->getContext()),
249 (Type *)0));
250 return true;
252 break;
254 case 'p':
255 // This upgrades the llvm.part.select overloaded intrinsic names to only
256 // use one type specifier in the name. We only care about the old format
257 // 'llvm.part.select.i*.i*', and solve as above with bswap.
258 if (Name.compare(5,12,"part.select.",12) == 0) {
259 std::string::size_type delim = Name.find('.',17);
261 if (delim != std::string::npos) {
262 // Construct a new name as 'llvm.part.select' + '.i*'
263 F->setName(Name.substr(0,16)+Name.substr(delim));
264 NewFn = F;
265 return true;
267 break;
270 // This upgrades the llvm.part.set intrinsics similarly as above, however
271 // we care about 'llvm.part.set.i*.i*.i*', but only the first two types
272 // must match. There is an additional type specifier after these two
273 // matching types that we must retain when upgrading. Thus, we require
274 // finding 2 periods, not just one, after the intrinsic name.
275 if (Name.compare(5,9,"part.set.",9) == 0) {
276 std::string::size_type delim = Name.find('.',14);
278 if (delim != std::string::npos &&
279 Name.find('.',delim+1) != std::string::npos) {
280 // Construct a new name as 'llvm.part.select' + '.i*.i*'
281 F->setName(Name.substr(0,13)+Name.substr(delim));
282 NewFn = F;
283 return true;
285 break;
288 break;
289 case 'x':
290 // This fixes all MMX shift intrinsic instructions to take a
291 // x86_mmx instead of a v1i64, v2i32, v4i16, or v8i8.
292 if (Name.compare(5, 8, "x86.mmx.", 8) == 0) {
293 const Type *X86_MMXTy = VectorType::getX86_MMXTy(FTy->getContext());
295 if (Name.compare(13, 4, "padd", 4) == 0 ||
296 Name.compare(13, 4, "psub", 4) == 0 ||
297 Name.compare(13, 4, "pmul", 4) == 0 ||
298 Name.compare(13, 5, "pmadd", 5) == 0 ||
299 Name.compare(13, 4, "pand", 4) == 0 ||
300 Name.compare(13, 3, "por", 3) == 0 ||
301 Name.compare(13, 4, "pxor", 4) == 0 ||
302 Name.compare(13, 4, "pavg", 4) == 0 ||
303 Name.compare(13, 4, "pmax", 4) == 0 ||
304 Name.compare(13, 4, "pmin", 4) == 0 ||
305 Name.compare(13, 4, "psad", 4) == 0 ||
306 Name.compare(13, 4, "psll", 4) == 0 ||
307 Name.compare(13, 4, "psrl", 4) == 0 ||
308 Name.compare(13, 4, "psra", 4) == 0 ||
309 Name.compare(13, 4, "pack", 4) == 0 ||
310 Name.compare(13, 6, "punpck", 6) == 0 ||
311 Name.compare(13, 4, "pcmp", 4) == 0) {
312 assert(FTy->getNumParams() == 2 && "MMX intrinsic takes 2 args!");
313 const Type *SecondParamTy = X86_MMXTy;
315 if (Name.compare(13, 5, "pslli", 5) == 0 ||
316 Name.compare(13, 5, "psrli", 5) == 0 ||
317 Name.compare(13, 5, "psrai", 5) == 0)
318 SecondParamTy = FTy->getParamType(1);
320 // Don't do anything if it has the correct types.
321 if (FTy->getReturnType() == X86_MMXTy &&
322 FTy->getParamType(0) == X86_MMXTy &&
323 FTy->getParamType(1) == SecondParamTy)
324 break;
326 // We first need to change the name of the old (bad) intrinsic, because
327 // its type is incorrect, but we cannot overload that name. We
328 // arbitrarily unique it here allowing us to construct a correctly named
329 // and typed function below.
330 F->setName("");
332 // Now construct the new intrinsic with the correct name and type. We
333 // leave the old function around in order to query its type, whatever it
334 // may be, and correctly convert up to the new type.
335 NewFn = cast<Function>(M->getOrInsertFunction(Name,
336 X86_MMXTy, X86_MMXTy,
337 SecondParamTy, (Type*)0));
338 return true;
341 if (Name.compare(13, 8, "maskmovq", 8) == 0) {
342 // Don't do anything if it has the correct types.
343 if (FTy->getParamType(0) == X86_MMXTy &&
344 FTy->getParamType(1) == X86_MMXTy)
345 break;
347 F->setName("");
348 NewFn = cast<Function>(M->getOrInsertFunction(Name,
349 FTy->getReturnType(),
350 X86_MMXTy,
351 X86_MMXTy,
352 FTy->getParamType(2),
353 (Type*)0));
354 return true;
357 if (Name.compare(13, 8, "pmovmskb", 8) == 0) {
358 if (FTy->getParamType(0) == X86_MMXTy)
359 break;
361 F->setName("");
362 NewFn = cast<Function>(M->getOrInsertFunction(Name,
363 FTy->getReturnType(),
364 X86_MMXTy,
365 (Type*)0));
366 return true;
369 if (Name.compare(13, 5, "movnt", 5) == 0) {
370 if (FTy->getParamType(1) == X86_MMXTy)
371 break;
373 F->setName("");
374 NewFn = cast<Function>(M->getOrInsertFunction(Name,
375 FTy->getReturnType(),
376 FTy->getParamType(0),
377 X86_MMXTy,
378 (Type*)0));
379 return true;
382 if (Name.compare(13, 7, "palignr", 7) == 0) {
383 if (FTy->getReturnType() == X86_MMXTy &&
384 FTy->getParamType(0) == X86_MMXTy &&
385 FTy->getParamType(1) == X86_MMXTy)
386 break;
388 F->setName("");
389 NewFn = cast<Function>(M->getOrInsertFunction(Name,
390 X86_MMXTy,
391 X86_MMXTy,
392 X86_MMXTy,
393 FTy->getParamType(2),
394 (Type*)0));
395 return true;
398 if (Name.compare(13, 5, "pextr", 5) == 0) {
399 if (FTy->getParamType(0) == X86_MMXTy)
400 break;
402 F->setName("");
403 NewFn = cast<Function>(M->getOrInsertFunction(Name,
404 FTy->getReturnType(),
405 X86_MMXTy,
406 FTy->getParamType(1),
407 (Type*)0));
408 return true;
411 if (Name.compare(13, 5, "pinsr", 5) == 0) {
412 if (FTy->getReturnType() == X86_MMXTy &&
413 FTy->getParamType(0) == X86_MMXTy)
414 break;
416 F->setName("");
417 NewFn = cast<Function>(M->getOrInsertFunction(Name,
418 X86_MMXTy,
419 X86_MMXTy,
420 FTy->getParamType(1),
421 FTy->getParamType(2),
422 (Type*)0));
423 return true;
426 if (Name.compare(13, 12, "cvtsi32.si64", 12) == 0) {
427 if (FTy->getReturnType() == X86_MMXTy)
428 break;
430 F->setName("");
431 NewFn = cast<Function>(M->getOrInsertFunction(Name,
432 X86_MMXTy,
433 FTy->getParamType(0),
434 (Type*)0));
435 return true;
438 if (Name.compare(13, 12, "cvtsi64.si32", 12) == 0) {
439 if (FTy->getParamType(0) == X86_MMXTy)
440 break;
442 F->setName("");
443 NewFn = cast<Function>(M->getOrInsertFunction(Name,
444 FTy->getReturnType(),
445 X86_MMXTy,
446 (Type*)0));
447 return true;
450 if (Name.compare(13, 8, "vec.init", 8) == 0) {
451 if (FTy->getReturnType() == X86_MMXTy)
452 break;
454 F->setName("");
456 if (Name.compare(21, 2, ".b", 2) == 0)
457 NewFn = cast<Function>(M->getOrInsertFunction(Name,
458 X86_MMXTy,
459 FTy->getParamType(0),
460 FTy->getParamType(1),
461 FTy->getParamType(2),
462 FTy->getParamType(3),
463 FTy->getParamType(4),
464 FTy->getParamType(5),
465 FTy->getParamType(6),
466 FTy->getParamType(7),
467 (Type*)0));
468 else if (Name.compare(21, 2, ".w", 2) == 0)
469 NewFn = cast<Function>(M->getOrInsertFunction(Name,
470 X86_MMXTy,
471 FTy->getParamType(0),
472 FTy->getParamType(1),
473 FTy->getParamType(2),
474 FTy->getParamType(3),
475 (Type*)0));
476 else if (Name.compare(21, 2, ".d", 2) == 0)
477 NewFn = cast<Function>(M->getOrInsertFunction(Name,
478 X86_MMXTy,
479 FTy->getParamType(0),
480 FTy->getParamType(1),
481 (Type*)0));
482 return true;
486 if (Name.compare(13, 9, "vec.ext.d", 9) == 0) {
487 if (FTy->getReturnType() == X86_MMXTy &&
488 FTy->getParamType(0) == X86_MMXTy)
489 break;
491 F->setName("");
492 NewFn = cast<Function>(M->getOrInsertFunction(Name,
493 X86_MMXTy,
494 X86_MMXTy,
495 FTy->getParamType(1),
496 (Type*)0));
497 return true;
500 if (Name.compare(13, 9, "emms", 4) == 0 ||
501 Name.compare(13, 9, "femms", 5) == 0) {
502 NewFn = 0;
503 break;
506 // We really shouldn't get here ever.
507 assert(0 && "Invalid MMX intrinsic!");
508 break;
509 } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 ||
510 Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 ||
511 Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 ||
512 Name.compare(5,15,"x86.sse2.movs.d",15) == 0 ||
513 Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 ||
514 Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 ||
515 Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 ||
516 Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 ||
517 Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) {
518 // Calls to these intrinsics are transformed into ShuffleVector's.
519 NewFn = 0;
520 return true;
521 } else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) {
522 // Calls to these intrinsics are transformed into vector multiplies.
523 NewFn = 0;
524 return true;
525 } else if (Name.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 ||
526 Name.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) {
527 // Calls to these intrinsics are transformed into vector shuffles, shifts,
528 // or 0.
529 NewFn = 0;
530 return true;
531 } else if (Name.compare(5, 17, "x86.ssse3.pshuf.w", 17) == 0) {
532 // This is an SSE/MMX instruction.
533 const Type *X86_MMXTy = VectorType::getX86_MMXTy(FTy->getContext());
534 NewFn =
535 cast<Function>(M->getOrInsertFunction("llvm.x86.sse.pshuf.w",
536 X86_MMXTy,
537 X86_MMXTy,
538 Type::getInt8Ty(F->getContext()),
539 (Type*)0));
540 return true;
543 break;
546 // This may not belong here. This function is effectively being overloaded
547 // to both detect an intrinsic which needs upgrading, and to provide the
548 // upgraded form of the intrinsic. We should perhaps have two separate
549 // functions for this.
550 return false;
553 bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
554 NewFn = 0;
555 bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn);
557 // Upgrade intrinsic attributes. This does not change the function.
558 if (NewFn)
559 F = NewFn;
560 if (unsigned id = F->getIntrinsicID())
561 F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id));
562 return Upgraded;
565 bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) {
566 StringRef Name(GV->getName());
568 // We are only upgrading one symbol here.
569 if (Name == ".llvm.eh.catch.all.value") {
570 GV->setName("llvm.eh.catch.all.value");
571 return true;
574 return false;
577 /// ExtendNEONArgs - For NEON "long" and "wide" operations, where the results
578 /// have vector elements twice as big as one or both source operands, do the
579 /// sign- or zero-extension that used to be handled by intrinsics. The
580 /// extended values are returned via V0 and V1.
581 static void ExtendNEONArgs(CallInst *CI, Value *Arg0, Value *Arg1,
582 Value *&V0, Value *&V1) {
583 Function *F = CI->getCalledFunction();
584 const std::string& Name = F->getName();
585 bool isLong = (Name.at(18) == 'l');
586 bool isSigned = (Name.at(19) == 's');
588 if (isSigned) {
589 if (isLong)
590 V0 = new SExtInst(Arg0, CI->getType(), "", CI);
591 else
592 V0 = Arg0;
593 V1 = new SExtInst(Arg1, CI->getType(), "", CI);
594 } else {
595 if (isLong)
596 V0 = new ZExtInst(Arg0, CI->getType(), "", CI);
597 else
598 V0 = Arg0;
599 V1 = new ZExtInst(Arg1, CI->getType(), "", CI);
603 /// CallVABD - As part of expanding a call to one of the old NEON vabdl, vaba,
604 /// or vabal intrinsics, construct a call to a vabd intrinsic. Examine the
605 /// name of the old intrinsic to determine whether to use a signed or unsigned
606 /// vabd intrinsic. Get the type from the old call instruction, adjusted for
607 /// half-size vector elements if the old intrinsic was vabdl or vabal.
608 static Instruction *CallVABD(CallInst *CI, Value *Arg0, Value *Arg1) {
609 Function *F = CI->getCalledFunction();
610 const std::string& Name = F->getName();
611 bool isLong = (Name.at(18) == 'l');
612 bool isSigned = (Name.at(isLong ? 19 : 18) == 's');
614 Intrinsic::ID intID;
615 if (isSigned)
616 intID = Intrinsic::arm_neon_vabds;
617 else
618 intID = Intrinsic::arm_neon_vabdu;
620 const Type *Ty = CI->getType();
621 if (isLong)
622 Ty = VectorType::getTruncatedElementVectorType(cast<const VectorType>(Ty));
624 Function *VABD = Intrinsic::getDeclaration(F->getParent(), intID, &Ty, 1);
625 Value *Operands[2];
626 Operands[0] = Arg0;
627 Operands[1] = Arg1;
628 return CallInst::Create(VABD, Operands, Operands+2,
629 "upgraded."+CI->getName(), CI);
632 /// ConstructNewCallInst - Construct a new CallInst with the signature of NewFn.
633 static void ConstructNewCallInst(Function *NewFn, CallInst *OldCI,
634 Value **Operands, unsigned NumOps,
635 bool AssignName = true) {
636 // Construct a new CallInst.
637 CallInst *NewCI =
638 CallInst::Create(NewFn, Operands, Operands + NumOps,
639 AssignName ? "upgraded." + OldCI->getName() : "", OldCI);
641 NewCI->setTailCall(OldCI->isTailCall());
642 NewCI->setCallingConv(OldCI->getCallingConv());
644 // Handle any uses of the old CallInst. If the type has changed, add a cast.
645 if (!OldCI->use_empty()) {
646 if (OldCI->getType() != NewCI->getType()) {
647 Function *OldFn = OldCI->getCalledFunction();
648 CastInst *RetCast =
649 CastInst::Create(CastInst::getCastOpcode(NewCI, true,
650 OldFn->getReturnType(), true),
651 NewCI, OldFn->getReturnType(), NewCI->getName(),OldCI);
653 // Replace all uses of the old call with the new cast which has the
654 // correct type.
655 OldCI->replaceAllUsesWith(RetCast);
656 } else {
657 OldCI->replaceAllUsesWith(NewCI);
661 // Clean up the old call now that it has been completely upgraded.
662 OldCI->eraseFromParent();
665 // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
666 // upgraded intrinsic. All argument and return casting must be provided in
667 // order to seamlessly integrate with existing context.
668 void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
669 Function *F = CI->getCalledFunction();
670 LLVMContext &C = CI->getContext();
671 ImmutableCallSite CS(CI);
673 assert(F && "CallInst has no function associated with it.");
675 if (!NewFn) {
676 // Get the Function's name.
677 const std::string& Name = F->getName();
679 // Upgrade ARM NEON intrinsics.
680 if (Name.compare(5, 9, "arm.neon.", 9) == 0) {
681 Instruction *NewI;
682 Value *V0, *V1;
683 if (Name.compare(14, 7, "vmovls.", 7) == 0) {
684 NewI = new SExtInst(CI->getArgOperand(0), CI->getType(),
685 "upgraded." + CI->getName(), CI);
686 } else if (Name.compare(14, 7, "vmovlu.", 7) == 0) {
687 NewI = new ZExtInst(CI->getArgOperand(0), CI->getType(),
688 "upgraded." + CI->getName(), CI);
689 } else if (Name.compare(14, 4, "vadd", 4) == 0) {
690 ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1);
691 NewI = BinaryOperator::CreateAdd(V0, V1, "upgraded."+CI->getName(), CI);
692 } else if (Name.compare(14, 4, "vsub", 4) == 0) {
693 ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1);
694 NewI = BinaryOperator::CreateSub(V0, V1,"upgraded."+CI->getName(),CI);
695 } else if (Name.compare(14, 4, "vmul", 4) == 0) {
696 ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1);
697 NewI = BinaryOperator::CreateMul(V0, V1,"upgraded."+CI->getName(),CI);
698 } else if (Name.compare(14, 4, "vmla", 4) == 0) {
699 ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1);
700 Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI);
701 NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), MulI,
702 "upgraded."+CI->getName(), CI);
703 } else if (Name.compare(14, 4, "vmls", 4) == 0) {
704 ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1);
705 Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI);
706 NewI = BinaryOperator::CreateSub(CI->getArgOperand(0), MulI,
707 "upgraded."+CI->getName(), CI);
708 } else if (Name.compare(14, 4, "vabd", 4) == 0) {
709 NewI = CallVABD(CI, CI->getArgOperand(0), CI->getArgOperand(1));
710 NewI = new ZExtInst(NewI, CI->getType(), "upgraded."+CI->getName(), CI);
711 } else if (Name.compare(14, 4, "vaba", 4) == 0) {
712 NewI = CallVABD(CI, CI->getArgOperand(1), CI->getArgOperand(2));
713 if (Name.at(18) == 'l')
714 NewI = new ZExtInst(NewI, CI->getType(), "", CI);
715 NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), NewI,
716 "upgraded."+CI->getName(), CI);
717 } else if (Name.compare(14, 6, "vmovn.", 6) == 0) {
718 NewI = new TruncInst(CI->getArgOperand(0), CI->getType(),
719 "upgraded." + CI->getName(), CI);
720 } else {
721 llvm_unreachable("Unknown arm.neon function for CallInst upgrade.");
723 // Replace any uses of the old CallInst.
724 if (!CI->use_empty())
725 CI->replaceAllUsesWith(NewI);
726 CI->eraseFromParent();
727 return;
730 bool isLoadH = false, isLoadL = false, isMovL = false;
731 bool isMovSD = false, isShufPD = false;
732 bool isUnpckhPD = false, isUnpcklPD = false;
733 bool isPunpckhQPD = false, isPunpcklQPD = false;
734 if (F->getName() == "llvm.x86.sse2.loadh.pd")
735 isLoadH = true;
736 else if (F->getName() == "llvm.x86.sse2.loadl.pd")
737 isLoadL = true;
738 else if (F->getName() == "llvm.x86.sse2.movl.dq")
739 isMovL = true;
740 else if (F->getName() == "llvm.x86.sse2.movs.d")
741 isMovSD = true;
742 else if (F->getName() == "llvm.x86.sse2.shuf.pd")
743 isShufPD = true;
744 else if (F->getName() == "llvm.x86.sse2.unpckh.pd")
745 isUnpckhPD = true;
746 else if (F->getName() == "llvm.x86.sse2.unpckl.pd")
747 isUnpcklPD = true;
748 else if (F->getName() == "llvm.x86.sse2.punpckh.qdq")
749 isPunpckhQPD = true;
750 else if (F->getName() == "llvm.x86.sse2.punpckl.qdq")
751 isPunpcklQPD = true;
753 if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD ||
754 isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
755 std::vector<Constant*> Idxs;
756 Value *Op0 = CI->getArgOperand(0);
757 ShuffleVectorInst *SI = NULL;
758 if (isLoadH || isLoadL) {
759 Value *Op1 = UndefValue::get(Op0->getType());
760 Value *Addr = new BitCastInst(CI->getArgOperand(1),
761 Type::getDoublePtrTy(C),
762 "upgraded.", CI);
763 Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI);
764 Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0);
765 Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI);
767 if (isLoadH) {
768 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
769 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
770 } else {
771 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
772 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
774 Value *Mask = ConstantVector::get(Idxs);
775 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
776 } else if (isMovL) {
777 Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0);
778 Idxs.push_back(Zero);
779 Idxs.push_back(Zero);
780 Idxs.push_back(Zero);
781 Idxs.push_back(Zero);
782 Value *ZeroV = ConstantVector::get(Idxs);
784 Idxs.clear();
785 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4));
786 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5));
787 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
788 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
789 Value *Mask = ConstantVector::get(Idxs);
790 SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI);
791 } else if (isMovSD ||
792 isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
793 Value *Op1 = CI->getArgOperand(1);
794 if (isMovSD) {
795 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
796 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
797 } else if (isUnpckhPD || isPunpckhQPD) {
798 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
799 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
800 } else {
801 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
802 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
804 Value *Mask = ConstantVector::get(Idxs);
805 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
806 } else if (isShufPD) {
807 Value *Op1 = CI->getArgOperand(1);
808 unsigned MaskVal =
809 cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue();
810 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1));
811 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C),
812 ((MaskVal >> 1) & 1)+2));
813 Value *Mask = ConstantVector::get(Idxs);
814 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
817 assert(SI && "Unexpected!");
819 // Handle any uses of the old CallInst.
820 if (!CI->use_empty())
821 // Replace all uses of the old call with the new cast which has the
822 // correct type.
823 CI->replaceAllUsesWith(SI);
825 // Clean up the old call now that it has been completely upgraded.
826 CI->eraseFromParent();
827 } else if (F->getName() == "llvm.x86.sse41.pmulld") {
828 // Upgrade this set of intrinsics into vector multiplies.
829 Instruction *Mul = BinaryOperator::CreateMul(CI->getArgOperand(0),
830 CI->getArgOperand(1),
831 CI->getName(),
832 CI);
833 // Fix up all the uses with our new multiply.
834 if (!CI->use_empty())
835 CI->replaceAllUsesWith(Mul);
837 // Remove upgraded multiply.
838 CI->eraseFromParent();
839 } else if (F->getName() == "llvm.x86.ssse3.palign.r") {
840 Value *Op1 = CI->getArgOperand(0);
841 Value *Op2 = CI->getArgOperand(1);
842 Value *Op3 = CI->getArgOperand(2);
843 unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue();
844 Value *Rep;
845 IRBuilder<> Builder(C);
846 Builder.SetInsertPoint(CI->getParent(), CI);
848 // If palignr is shifting the pair of input vectors less than 9 bytes,
849 // emit a shuffle instruction.
850 if (shiftVal <= 8) {
851 const Type *IntTy = Type::getInt32Ty(C);
852 const Type *EltTy = Type::getInt8Ty(C);
853 const Type *VecTy = VectorType::get(EltTy, 8);
855 Op2 = Builder.CreateBitCast(Op2, VecTy);
856 Op1 = Builder.CreateBitCast(Op1, VecTy);
858 llvm::SmallVector<llvm::Constant*, 8> Indices;
859 for (unsigned i = 0; i != 8; ++i)
860 Indices.push_back(ConstantInt::get(IntTy, shiftVal + i));
862 Value *SV = ConstantVector::get(Indices.begin(), Indices.size());
863 Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr");
864 Rep = Builder.CreateBitCast(Rep, F->getReturnType());
867 // If palignr is shifting the pair of input vectors more than 8 but less
868 // than 16 bytes, emit a logical right shift of the destination.
869 else if (shiftVal < 16) {
870 // MMX has these as 1 x i64 vectors for some odd optimization reasons.
871 const Type *EltTy = Type::getInt64Ty(C);
872 const Type *VecTy = VectorType::get(EltTy, 1);
874 Op1 = Builder.CreateBitCast(Op1, VecTy, "cast");
875 Op2 = ConstantInt::get(VecTy, (shiftVal-8) * 8);
877 // create i32 constant
878 Function *I =
879 Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_mmx_psrl_q);
880 Rep = Builder.CreateCall2(I, Op1, Op2, "palignr");
883 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
884 else {
885 Rep = Constant::getNullValue(F->getReturnType());
888 // Replace any uses with our new instruction.
889 if (!CI->use_empty())
890 CI->replaceAllUsesWith(Rep);
892 // Remove upgraded instruction.
893 CI->eraseFromParent();
895 } else if (F->getName() == "llvm.x86.ssse3.palign.r.128") {
896 Value *Op1 = CI->getArgOperand(0);
897 Value *Op2 = CI->getArgOperand(1);
898 Value *Op3 = CI->getArgOperand(2);
899 unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue();
900 Value *Rep;
901 IRBuilder<> Builder(C);
902 Builder.SetInsertPoint(CI->getParent(), CI);
904 // If palignr is shifting the pair of input vectors less than 17 bytes,
905 // emit a shuffle instruction.
906 if (shiftVal <= 16) {
907 const Type *IntTy = Type::getInt32Ty(C);
908 const Type *EltTy = Type::getInt8Ty(C);
909 const Type *VecTy = VectorType::get(EltTy, 16);
911 Op2 = Builder.CreateBitCast(Op2, VecTy);
912 Op1 = Builder.CreateBitCast(Op1, VecTy);
914 llvm::SmallVector<llvm::Constant*, 16> Indices;
915 for (unsigned i = 0; i != 16; ++i)
916 Indices.push_back(ConstantInt::get(IntTy, shiftVal + i));
918 Value *SV = ConstantVector::get(Indices.begin(), Indices.size());
919 Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr");
920 Rep = Builder.CreateBitCast(Rep, F->getReturnType());
923 // If palignr is shifting the pair of input vectors more than 16 but less
924 // than 32 bytes, emit a logical right shift of the destination.
925 else if (shiftVal < 32) {
926 const Type *EltTy = Type::getInt64Ty(C);
927 const Type *VecTy = VectorType::get(EltTy, 2);
928 const Type *IntTy = Type::getInt32Ty(C);
930 Op1 = Builder.CreateBitCast(Op1, VecTy, "cast");
931 Op2 = ConstantInt::get(IntTy, (shiftVal-16) * 8);
933 // create i32 constant
934 Function *I =
935 Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse2_psrl_dq);
936 Rep = Builder.CreateCall2(I, Op1, Op2, "palignr");
939 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
940 else {
941 Rep = Constant::getNullValue(F->getReturnType());
944 // Replace any uses with our new instruction.
945 if (!CI->use_empty())
946 CI->replaceAllUsesWith(Rep);
948 // Remove upgraded instruction.
949 CI->eraseFromParent();
951 } else {
952 llvm_unreachable("Unknown function for CallInst upgrade.");
954 return;
957 switch (NewFn->getIntrinsicID()) {
958 default: llvm_unreachable("Unknown function for CallInst upgrade.");
959 case Intrinsic::arm_neon_vld1:
960 case Intrinsic::arm_neon_vld2:
961 case Intrinsic::arm_neon_vld3:
962 case Intrinsic::arm_neon_vld4:
963 case Intrinsic::arm_neon_vst1:
964 case Intrinsic::arm_neon_vst2:
965 case Intrinsic::arm_neon_vst3:
966 case Intrinsic::arm_neon_vst4:
967 case Intrinsic::arm_neon_vld2lane:
968 case Intrinsic::arm_neon_vld3lane:
969 case Intrinsic::arm_neon_vld4lane:
970 case Intrinsic::arm_neon_vst2lane:
971 case Intrinsic::arm_neon_vst3lane:
972 case Intrinsic::arm_neon_vst4lane: {
973 // Add a default alignment argument of 1.
974 SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end());
975 Operands.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
976 CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
977 CI->getName(), CI);
978 NewCI->setTailCall(CI->isTailCall());
979 NewCI->setCallingConv(CI->getCallingConv());
981 // Handle any uses of the old CallInst.
982 if (!CI->use_empty())
983 // Replace all uses of the old call with the new cast which has the
984 // correct type.
985 CI->replaceAllUsesWith(NewCI);
987 // Clean up the old call now that it has been completely upgraded.
988 CI->eraseFromParent();
989 break;
992 case Intrinsic::x86_mmx_padd_b:
993 case Intrinsic::x86_mmx_padd_w:
994 case Intrinsic::x86_mmx_padd_d:
995 case Intrinsic::x86_mmx_padd_q:
996 case Intrinsic::x86_mmx_padds_b:
997 case Intrinsic::x86_mmx_padds_w:
998 case Intrinsic::x86_mmx_paddus_b:
999 case Intrinsic::x86_mmx_paddus_w:
1000 case Intrinsic::x86_mmx_psub_b:
1001 case Intrinsic::x86_mmx_psub_w:
1002 case Intrinsic::x86_mmx_psub_d:
1003 case Intrinsic::x86_mmx_psub_q:
1004 case Intrinsic::x86_mmx_psubs_b:
1005 case Intrinsic::x86_mmx_psubs_w:
1006 case Intrinsic::x86_mmx_psubus_b:
1007 case Intrinsic::x86_mmx_psubus_w:
1008 case Intrinsic::x86_mmx_pmulh_w:
1009 case Intrinsic::x86_mmx_pmull_w:
1010 case Intrinsic::x86_mmx_pmulhu_w:
1011 case Intrinsic::x86_mmx_pmulu_dq:
1012 case Intrinsic::x86_mmx_pmadd_wd:
1013 case Intrinsic::x86_mmx_pand:
1014 case Intrinsic::x86_mmx_pandn:
1015 case Intrinsic::x86_mmx_por:
1016 case Intrinsic::x86_mmx_pxor:
1017 case Intrinsic::x86_mmx_pavg_b:
1018 case Intrinsic::x86_mmx_pavg_w:
1019 case Intrinsic::x86_mmx_pmaxu_b:
1020 case Intrinsic::x86_mmx_pmaxs_w:
1021 case Intrinsic::x86_mmx_pminu_b:
1022 case Intrinsic::x86_mmx_pmins_w:
1023 case Intrinsic::x86_mmx_psad_bw:
1024 case Intrinsic::x86_mmx_psll_w:
1025 case Intrinsic::x86_mmx_psll_d:
1026 case Intrinsic::x86_mmx_psll_q:
1027 case Intrinsic::x86_mmx_pslli_w:
1028 case Intrinsic::x86_mmx_pslli_d:
1029 case Intrinsic::x86_mmx_pslli_q:
1030 case Intrinsic::x86_mmx_psrl_w:
1031 case Intrinsic::x86_mmx_psrl_d:
1032 case Intrinsic::x86_mmx_psrl_q:
1033 case Intrinsic::x86_mmx_psrli_w:
1034 case Intrinsic::x86_mmx_psrli_d:
1035 case Intrinsic::x86_mmx_psrli_q:
1036 case Intrinsic::x86_mmx_psra_w:
1037 case Intrinsic::x86_mmx_psra_d:
1038 case Intrinsic::x86_mmx_psrai_w:
1039 case Intrinsic::x86_mmx_psrai_d:
1040 case Intrinsic::x86_mmx_packsswb:
1041 case Intrinsic::x86_mmx_packssdw:
1042 case Intrinsic::x86_mmx_packuswb:
1043 case Intrinsic::x86_mmx_punpckhbw:
1044 case Intrinsic::x86_mmx_punpckhwd:
1045 case Intrinsic::x86_mmx_punpckhdq:
1046 case Intrinsic::x86_mmx_punpcklbw:
1047 case Intrinsic::x86_mmx_punpcklwd:
1048 case Intrinsic::x86_mmx_punpckldq:
1049 case Intrinsic::x86_mmx_pcmpeq_b:
1050 case Intrinsic::x86_mmx_pcmpeq_w:
1051 case Intrinsic::x86_mmx_pcmpeq_d:
1052 case Intrinsic::x86_mmx_pcmpgt_b:
1053 case Intrinsic::x86_mmx_pcmpgt_w:
1054 case Intrinsic::x86_mmx_pcmpgt_d: {
1055 Value *Operands[2];
1057 // Cast the operand to the X86 MMX type.
1058 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1059 NewFn->getFunctionType()->getParamType(0),
1060 "upgraded.", CI);
1062 switch (NewFn->getIntrinsicID()) {
1063 default:
1064 // Cast to the X86 MMX type.
1065 Operands[1] = new BitCastInst(CI->getArgOperand(1),
1066 NewFn->getFunctionType()->getParamType(1),
1067 "upgraded.", CI);
1068 break;
1069 case Intrinsic::x86_mmx_pslli_w:
1070 case Intrinsic::x86_mmx_pslli_d:
1071 case Intrinsic::x86_mmx_pslli_q:
1072 case Intrinsic::x86_mmx_psrli_w:
1073 case Intrinsic::x86_mmx_psrli_d:
1074 case Intrinsic::x86_mmx_psrli_q:
1075 case Intrinsic::x86_mmx_psrai_w:
1076 case Intrinsic::x86_mmx_psrai_d:
1077 // These take an i32 as their second parameter.
1078 Operands[1] = CI->getArgOperand(1);
1079 break;
1082 ConstructNewCallInst(NewFn, CI, Operands, 2);
1083 break;
1085 case Intrinsic::x86_mmx_maskmovq: {
1086 Value *Operands[3];
1088 // Cast the operands to the X86 MMX type.
1089 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1090 NewFn->getFunctionType()->getParamType(0),
1091 "upgraded.", CI);
1092 Operands[1] = new BitCastInst(CI->getArgOperand(1),
1093 NewFn->getFunctionType()->getParamType(1),
1094 "upgraded.", CI);
1095 Operands[2] = CI->getArgOperand(2);
1097 ConstructNewCallInst(NewFn, CI, Operands, 3, false);
1098 break;
1100 case Intrinsic::x86_mmx_pmovmskb: {
1101 Value *Operands[1];
1103 // Cast the operand to the X86 MMX type.
1104 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1105 NewFn->getFunctionType()->getParamType(0),
1106 "upgraded.", CI);
1108 ConstructNewCallInst(NewFn, CI, Operands, 1);
1109 break;
1111 case Intrinsic::x86_mmx_movnt_dq: {
1112 Value *Operands[2];
1114 Operands[0] = CI->getArgOperand(0);
1116 // Cast the operand to the X86 MMX type.
1117 Operands[1] = new BitCastInst(CI->getArgOperand(1),
1118 NewFn->getFunctionType()->getParamType(1),
1119 "upgraded.", CI);
1121 ConstructNewCallInst(NewFn, CI, Operands, 2, false);
1122 break;
1124 case Intrinsic::x86_mmx_palignr_b: {
1125 Value *Operands[3];
1127 // Cast the operands to the X86 MMX type.
1128 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1129 NewFn->getFunctionType()->getParamType(0),
1130 "upgraded.", CI);
1131 Operands[1] = new BitCastInst(CI->getArgOperand(1),
1132 NewFn->getFunctionType()->getParamType(1),
1133 "upgraded.", CI);
1134 Operands[2] = CI->getArgOperand(2);
1136 ConstructNewCallInst(NewFn, CI, Operands, 3);
1137 break;
1139 case Intrinsic::x86_mmx_pextr_w: {
1140 Value *Operands[2];
1142 // Cast the operands to the X86 MMX type.
1143 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1144 NewFn->getFunctionType()->getParamType(0),
1145 "upgraded.", CI);
1146 Operands[1] = CI->getArgOperand(1);
1148 ConstructNewCallInst(NewFn, CI, Operands, 2);
1149 break;
1151 case Intrinsic::x86_mmx_pinsr_w: {
1152 Value *Operands[3];
1154 // Cast the operands to the X86 MMX type.
1155 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1156 NewFn->getFunctionType()->getParamType(0),
1157 "upgraded.", CI);
1158 Operands[1] = CI->getArgOperand(1);
1159 Operands[2] = CI->getArgOperand(2);
1161 ConstructNewCallInst(NewFn, CI, Operands, 3);
1162 break;
1164 case Intrinsic::x86_sse_pshuf_w: {
1165 IRBuilder<> Builder(C);
1166 Builder.SetInsertPoint(CI->getParent(), CI);
1168 // Cast the operand to the X86 MMX type.
1169 Value *Operands[2];
1170 Operands[0] =
1171 Builder.CreateBitCast(CI->getArgOperand(0),
1172 NewFn->getFunctionType()->getParamType(0),
1173 "upgraded.");
1174 Operands[1] =
1175 Builder.CreateTrunc(CI->getArgOperand(1),
1176 Type::getInt8Ty(C),
1177 "upgraded.");
1179 ConstructNewCallInst(NewFn, CI, Operands, 2);
1180 break;
1183 #if 0
1184 case Intrinsic::x86_mmx_cvtsi32_si64: {
1185 // The return type needs to be changed.
1186 Value *Operands[1];
1187 Operands[0] = CI->getArgOperand(0);
1188 ConstructNewCallInst(NewFn, CI, Operands, 1);
1189 break;
1191 case Intrinsic::x86_mmx_cvtsi64_si32: {
1192 Value *Operands[1];
1194 // Cast the operand to the X86 MMX type.
1195 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1196 NewFn->getFunctionType()->getParamType(0),
1197 "upgraded.", CI);
1199 ConstructNewCallInst(NewFn, CI, Operands, 1);
1200 break;
1202 case Intrinsic::x86_mmx_vec_init_b:
1203 case Intrinsic::x86_mmx_vec_init_w:
1204 case Intrinsic::x86_mmx_vec_init_d: {
1205 // The return type needs to be changed.
1206 Value *Operands[8];
1207 unsigned NumOps = 0;
1209 switch (NewFn->getIntrinsicID()) {
1210 default: break;
1211 case Intrinsic::x86_mmx_vec_init_b: NumOps = 8; break;
1212 case Intrinsic::x86_mmx_vec_init_w: NumOps = 4; break;
1213 case Intrinsic::x86_mmx_vec_init_d: NumOps = 2; break;
1216 switch (NewFn->getIntrinsicID()) {
1217 default: break;
1218 case Intrinsic::x86_mmx_vec_init_b:
1219 Operands[7] = CI->getArgOperand(7);
1220 Operands[6] = CI->getArgOperand(6);
1221 Operands[5] = CI->getArgOperand(5);
1222 Operands[4] = CI->getArgOperand(4);
1223 // FALLTHRU
1224 case Intrinsic::x86_mmx_vec_init_w:
1225 Operands[3] = CI->getArgOperand(3);
1226 Operands[2] = CI->getArgOperand(2);
1227 // FALLTHRU
1228 case Intrinsic::x86_mmx_vec_init_d:
1229 Operands[1] = CI->getArgOperand(1);
1230 Operands[0] = CI->getArgOperand(0);
1231 break;
1234 ConstructNewCallInst(NewFn, CI, Operands, NumOps);
1235 break;
1237 case Intrinsic::x86_mmx_vec_ext_d: {
1238 Value *Operands[2];
1240 // Cast the operand to the X86 MMX type.
1241 Operands[0] = new BitCastInst(CI->getArgOperand(0),
1242 NewFn->getFunctionType()->getParamType(0),
1243 "upgraded.", CI);
1244 Operands[1] = CI->getArgOperand(1);
1246 ConstructNewCallInst(NewFn, CI, Operands, 2);
1247 break;
1249 #endif
1251 case Intrinsic::ctlz:
1252 case Intrinsic::ctpop:
1253 case Intrinsic::cttz: {
1254 // Build a small vector of the original arguments.
1255 SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end());
1257 // Construct a new CallInst
1258 CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
1259 "upgraded."+CI->getName(), CI);
1260 NewCI->setTailCall(CI->isTailCall());
1261 NewCI->setCallingConv(CI->getCallingConv());
1263 // Handle any uses of the old CallInst.
1264 if (!CI->use_empty()) {
1265 // Check for sign extend parameter attributes on the return values.
1266 bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt);
1267 bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt);
1269 // Construct an appropriate cast from the new return type to the old.
1270 CastInst *RetCast = CastInst::Create(
1271 CastInst::getCastOpcode(NewCI, SrcSExt,
1272 F->getReturnType(),
1273 DestSExt),
1274 NewCI, F->getReturnType(),
1275 NewCI->getName(), CI);
1276 NewCI->moveBefore(RetCast);
1278 // Replace all uses of the old call with the new cast which has the
1279 // correct type.
1280 CI->replaceAllUsesWith(RetCast);
1283 // Clean up the old call now that it has been completely upgraded.
1284 CI->eraseFromParent();
1286 break;
1287 case Intrinsic::eh_selector:
1288 case Intrinsic::eh_typeid_for: {
1289 // Only the return type changed.
1290 SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end());
1291 CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
1292 "upgraded." + CI->getName(), CI);
1293 NewCI->setTailCall(CI->isTailCall());
1294 NewCI->setCallingConv(CI->getCallingConv());
1296 // Handle any uses of the old CallInst.
1297 if (!CI->use_empty()) {
1298 // Construct an appropriate cast from the new return type to the old.
1299 CastInst *RetCast =
1300 CastInst::Create(CastInst::getCastOpcode(NewCI, true,
1301 F->getReturnType(), true),
1302 NewCI, F->getReturnType(), NewCI->getName(), CI);
1303 CI->replaceAllUsesWith(RetCast);
1305 CI->eraseFromParent();
1307 break;
1308 case Intrinsic::memcpy:
1309 case Intrinsic::memmove:
1310 case Intrinsic::memset: {
1311 // Add isVolatile
1312 const llvm::Type *I1Ty = llvm::Type::getInt1Ty(CI->getContext());
1313 Value *Operands[5] = { CI->getArgOperand(0), CI->getArgOperand(1),
1314 CI->getArgOperand(2), CI->getArgOperand(3),
1315 llvm::ConstantInt::get(I1Ty, 0) };
1316 CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+5,
1317 CI->getName(), CI);
1318 NewCI->setTailCall(CI->isTailCall());
1319 NewCI->setCallingConv(CI->getCallingConv());
1320 // Handle any uses of the old CallInst.
1321 if (!CI->use_empty())
1322 // Replace all uses of the old call with the new cast which has the
1323 // correct type.
1324 CI->replaceAllUsesWith(NewCI);
1326 // Clean up the old call now that it has been completely upgraded.
1327 CI->eraseFromParent();
1328 break;
1333 // This tests each Function to determine if it needs upgrading. When we find
1334 // one we are interested in, we then upgrade all calls to reflect the new
1335 // function.
1336 void llvm::UpgradeCallsToIntrinsic(Function* F) {
1337 assert(F && "Illegal attempt to upgrade a non-existent intrinsic.");
1339 // Upgrade the function and check if it is a totaly new function.
1340 Function* NewFn;
1341 if (UpgradeIntrinsicFunction(F, NewFn)) {
1342 if (NewFn != F) {
1343 // Replace all uses to the old function with the new one if necessary.
1344 for (Value::use_iterator UI = F->use_begin(), UE = F->use_end();
1345 UI != UE; ) {
1346 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
1347 UpgradeIntrinsicCall(CI, NewFn);
1349 // Remove old function, no longer used, from the module.
1350 F->eraseFromParent();
1355 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
1356 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
1357 /// strips that use.
1358 void llvm::CheckDebugInfoIntrinsics(Module *M) {
1361 if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
1362 while (!FuncStart->use_empty()) {
1363 CallInst *CI = cast<CallInst>(FuncStart->use_back());
1364 CI->eraseFromParent();
1366 FuncStart->eraseFromParent();
1369 if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
1370 while (!StopPoint->use_empty()) {
1371 CallInst *CI = cast<CallInst>(StopPoint->use_back());
1372 CI->eraseFromParent();
1374 StopPoint->eraseFromParent();
1377 if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
1378 while (!RegionStart->use_empty()) {
1379 CallInst *CI = cast<CallInst>(RegionStart->use_back());
1380 CI->eraseFromParent();
1382 RegionStart->eraseFromParent();
1385 if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
1386 while (!RegionEnd->use_empty()) {
1387 CallInst *CI = cast<CallInst>(RegionEnd->use_back());
1388 CI->eraseFromParent();
1390 RegionEnd->eraseFromParent();
1393 if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
1394 if (!Declare->use_empty()) {
1395 DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
1396 if (!isa<MDNode>(DDI->getArgOperand(0)) ||
1397 !isa<MDNode>(DDI->getArgOperand(1))) {
1398 while (!Declare->use_empty()) {
1399 CallInst *CI = cast<CallInst>(Declare->use_back());
1400 CI->eraseFromParent();
1402 Declare->eraseFromParent();