1 //===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the auto-upgrade helper functions
12 //===----------------------------------------------------------------------===//
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Module.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/IRBuilder.h"
28 static bool UpgradeIntrinsicFunction1(Function
*F
, Function
*&NewFn
) {
29 assert(F
&& "Illegal to upgrade a non-existent Function.");
31 // Get the Function's name.
32 const std::string
& Name
= F
->getName();
35 const FunctionType
*FTy
= F
->getFunctionType();
37 // Quickly eliminate it, if it's not a candidate.
38 if (Name
.length() <= 8 || Name
[0] != 'l' || Name
[1] != 'l' ||
39 Name
[2] != 'v' || Name
[3] != 'm' || Name
[4] != '.')
42 Module
*M
= F
->getParent();
46 // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss,
47 // and atomics with default address spaces to their new names to their new
48 // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32)
49 if (Name
.compare(5,7,"atomic.",7) == 0) {
50 if (Name
.compare(12,3,"lcs",3) == 0) {
51 std::string::size_type delim
= Name
.find('.',12);
52 F
->setName("llvm.atomic.cmp.swap" + Name
.substr(delim
) +
53 ".p0" + Name
.substr(delim
+1));
57 else if (Name
.compare(12,3,"las",3) == 0) {
58 std::string::size_type delim
= Name
.find('.',12);
59 F
->setName("llvm.atomic.load.add"+Name
.substr(delim
)
60 + ".p0" + Name
.substr(delim
+1));
64 else if (Name
.compare(12,3,"lss",3) == 0) {
65 std::string::size_type delim
= Name
.find('.',12);
66 F
->setName("llvm.atomic.load.sub"+Name
.substr(delim
)
67 + ".p0" + Name
.substr(delim
+1));
71 else if (Name
.rfind(".p") == std::string::npos
) {
72 // We don't have an address space qualifier so this has be upgraded
73 // to the new name. Copy the type name at the end of the intrinsic
75 std::string::size_type delim
= Name
.find_last_of('.');
76 assert(delim
!= std::string::npos
&& "can not find type");
77 F
->setName(Name
+ ".p0" + Name
.substr(delim
+1));
81 } else if (Name
.compare(5, 9, "arm.neon.", 9) == 0) {
82 if (((Name
.compare(14, 5, "vmovl", 5) == 0 ||
83 Name
.compare(14, 5, "vaddl", 5) == 0 ||
84 Name
.compare(14, 5, "vsubl", 5) == 0 ||
85 Name
.compare(14, 5, "vaddw", 5) == 0 ||
86 Name
.compare(14, 5, "vsubw", 5) == 0 ||
87 Name
.compare(14, 5, "vmull", 5) == 0 ||
88 Name
.compare(14, 5, "vmlal", 5) == 0 ||
89 Name
.compare(14, 5, "vmlsl", 5) == 0 ||
90 Name
.compare(14, 5, "vabdl", 5) == 0 ||
91 Name
.compare(14, 5, "vabal", 5) == 0) &&
92 (Name
.compare(19, 2, "s.", 2) == 0 ||
93 Name
.compare(19, 2, "u.", 2) == 0)) ||
95 (Name
.compare(14, 4, "vaba", 4) == 0 &&
96 (Name
.compare(18, 2, "s.", 2) == 0 ||
97 Name
.compare(18, 2, "u.", 2) == 0)) ||
99 (Name
.compare(14, 6, "vmovn.", 6) == 0)) {
101 // Calls to these are transformed into IR without intrinsics.
105 // Old versions of NEON ld/st intrinsics are missing alignment arguments.
106 bool isVLd
= (Name
.compare(14, 3, "vld", 3) == 0);
107 bool isVSt
= (Name
.compare(14, 3, "vst", 3) == 0);
108 if (isVLd
|| isVSt
) {
109 unsigned NumVecs
= Name
.at(17) - '0';
110 if (NumVecs
== 0 || NumVecs
> 4)
112 bool isLaneOp
= (Name
.compare(18, 5, "lane.", 5) == 0);
113 if (!isLaneOp
&& Name
.at(18) != '.')
115 unsigned ExpectedArgs
= 2; // for the address and alignment
116 if (isVSt
|| isLaneOp
)
117 ExpectedArgs
+= NumVecs
;
119 ExpectedArgs
+= 1; // for the lane number
120 unsigned NumP
= FTy
->getNumParams();
121 if (NumP
!= ExpectedArgs
- 1)
124 // Change the name of the old (bad) intrinsic, because
125 // its type is incorrect, but we cannot overload that name.
128 // One argument is missing: add the alignment argument.
129 std::vector
<const Type
*> NewParams
;
130 for (unsigned p
= 0; p
< NumP
; ++p
)
131 NewParams
.push_back(FTy
->getParamType(p
));
132 NewParams
.push_back(Type::getInt32Ty(F
->getContext()));
133 FunctionType
*NewFTy
= FunctionType::get(FTy
->getReturnType(),
135 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
, NewFTy
));
141 // This upgrades the name of the llvm.bswap intrinsic function to only use
142 // a single type name for overloading. We only care about the old format
143 // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being
144 // a '.' after 'bswap.'
145 if (Name
.compare(5,6,"bswap.",6) == 0) {
146 std::string::size_type delim
= Name
.find('.',11);
148 if (delim
!= std::string::npos
) {
149 // Construct the new name as 'llvm.bswap' + '.i*'
150 F
->setName(Name
.substr(0,10)+Name
.substr(delim
));
158 // We only want to fix the 'llvm.ct*' intrinsics which do not have the
159 // correct return type, so we check for the name, and then check if the
160 // return type does not match the parameter type.
161 if ( (Name
.compare(5,5,"ctpop",5) == 0 ||
162 Name
.compare(5,4,"ctlz",4) == 0 ||
163 Name
.compare(5,4,"cttz",4) == 0) &&
164 FTy
->getReturnType() != FTy
->getParamType(0)) {
165 // We first need to change the name of the old (bad) intrinsic, because
166 // its type is incorrect, but we cannot overload that name. We
167 // arbitrarily unique it here allowing us to construct a correctly named
168 // and typed function below.
171 // Now construct the new intrinsic with the correct name and type. We
172 // leave the old function around in order to query its type, whatever it
173 // may be, and correctly convert up to the new type.
174 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
175 FTy
->getParamType(0),
176 FTy
->getParamType(0),
183 // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector.
184 if (Name
.compare("llvm.eh.selector.i32") == 0) {
185 F
->setName("llvm.eh.selector");
189 // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for.
190 if (Name
.compare("llvm.eh.typeid.for.i32") == 0) {
191 F
->setName("llvm.eh.typeid.for");
195 // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector.
196 if (Name
.compare("llvm.eh.selector.i64") == 0) {
197 NewFn
= Intrinsic::getDeclaration(M
, Intrinsic::eh_selector
);
200 // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for.
201 if (Name
.compare("llvm.eh.typeid.for.i64") == 0) {
202 NewFn
= Intrinsic::getDeclaration(M
, Intrinsic::eh_typeid_for
);
208 // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the
209 // new format that allows overloading the pointer for different address
210 // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16)
211 const char* NewFnName
= NULL
;
212 if (Name
.compare(5,8,"memcpy.i",8) == 0) {
214 NewFnName
= "llvm.memcpy.p0i8.p0i8.i8";
215 else if (Name
.compare(13,2,"16") == 0)
216 NewFnName
= "llvm.memcpy.p0i8.p0i8.i16";
217 else if (Name
.compare(13,2,"32") == 0)
218 NewFnName
= "llvm.memcpy.p0i8.p0i8.i32";
219 else if (Name
.compare(13,2,"64") == 0)
220 NewFnName
= "llvm.memcpy.p0i8.p0i8.i64";
221 } else if (Name
.compare(5,9,"memmove.i",9) == 0) {
223 NewFnName
= "llvm.memmove.p0i8.p0i8.i8";
224 else if (Name
.compare(14,2,"16") == 0)
225 NewFnName
= "llvm.memmove.p0i8.p0i8.i16";
226 else if (Name
.compare(14,2,"32") == 0)
227 NewFnName
= "llvm.memmove.p0i8.p0i8.i32";
228 else if (Name
.compare(14,2,"64") == 0)
229 NewFnName
= "llvm.memmove.p0i8.p0i8.i64";
231 else if (Name
.compare(5,8,"memset.i",8) == 0) {
233 NewFnName
= "llvm.memset.p0i8.i8";
234 else if (Name
.compare(13,2,"16") == 0)
235 NewFnName
= "llvm.memset.p0i8.i16";
236 else if (Name
.compare(13,2,"32") == 0)
237 NewFnName
= "llvm.memset.p0i8.i32";
238 else if (Name
.compare(13,2,"64") == 0)
239 NewFnName
= "llvm.memset.p0i8.i64";
242 NewFn
= cast
<Function
>(M
->getOrInsertFunction(NewFnName
,
243 FTy
->getReturnType(),
244 FTy
->getParamType(0),
245 FTy
->getParamType(1),
246 FTy
->getParamType(2),
247 FTy
->getParamType(3),
248 Type::getInt1Ty(F
->getContext()),
255 // This upgrades the llvm.part.select overloaded intrinsic names to only
256 // use one type specifier in the name. We only care about the old format
257 // 'llvm.part.select.i*.i*', and solve as above with bswap.
258 if (Name
.compare(5,12,"part.select.",12) == 0) {
259 std::string::size_type delim
= Name
.find('.',17);
261 if (delim
!= std::string::npos
) {
262 // Construct a new name as 'llvm.part.select' + '.i*'
263 F
->setName(Name
.substr(0,16)+Name
.substr(delim
));
270 // This upgrades the llvm.part.set intrinsics similarly as above, however
271 // we care about 'llvm.part.set.i*.i*.i*', but only the first two types
272 // must match. There is an additional type specifier after these two
273 // matching types that we must retain when upgrading. Thus, we require
274 // finding 2 periods, not just one, after the intrinsic name.
275 if (Name
.compare(5,9,"part.set.",9) == 0) {
276 std::string::size_type delim
= Name
.find('.',14);
278 if (delim
!= std::string::npos
&&
279 Name
.find('.',delim
+1) != std::string::npos
) {
280 // Construct a new name as 'llvm.part.select' + '.i*.i*'
281 F
->setName(Name
.substr(0,13)+Name
.substr(delim
));
290 // This fixes all MMX shift intrinsic instructions to take a
291 // x86_mmx instead of a v1i64, v2i32, v4i16, or v8i8.
292 if (Name
.compare(5, 8, "x86.mmx.", 8) == 0) {
293 const Type
*X86_MMXTy
= VectorType::getX86_MMXTy(FTy
->getContext());
295 if (Name
.compare(13, 4, "padd", 4) == 0 ||
296 Name
.compare(13, 4, "psub", 4) == 0 ||
297 Name
.compare(13, 4, "pmul", 4) == 0 ||
298 Name
.compare(13, 5, "pmadd", 5) == 0 ||
299 Name
.compare(13, 4, "pand", 4) == 0 ||
300 Name
.compare(13, 3, "por", 3) == 0 ||
301 Name
.compare(13, 4, "pxor", 4) == 0 ||
302 Name
.compare(13, 4, "pavg", 4) == 0 ||
303 Name
.compare(13, 4, "pmax", 4) == 0 ||
304 Name
.compare(13, 4, "pmin", 4) == 0 ||
305 Name
.compare(13, 4, "psad", 4) == 0 ||
306 Name
.compare(13, 4, "psll", 4) == 0 ||
307 Name
.compare(13, 4, "psrl", 4) == 0 ||
308 Name
.compare(13, 4, "psra", 4) == 0 ||
309 Name
.compare(13, 4, "pack", 4) == 0 ||
310 Name
.compare(13, 6, "punpck", 6) == 0 ||
311 Name
.compare(13, 4, "pcmp", 4) == 0) {
312 assert(FTy
->getNumParams() == 2 && "MMX intrinsic takes 2 args!");
313 const Type
*SecondParamTy
= X86_MMXTy
;
315 if (Name
.compare(13, 5, "pslli", 5) == 0 ||
316 Name
.compare(13, 5, "psrli", 5) == 0 ||
317 Name
.compare(13, 5, "psrai", 5) == 0)
318 SecondParamTy
= FTy
->getParamType(1);
320 // Don't do anything if it has the correct types.
321 if (FTy
->getReturnType() == X86_MMXTy
&&
322 FTy
->getParamType(0) == X86_MMXTy
&&
323 FTy
->getParamType(1) == SecondParamTy
)
326 // We first need to change the name of the old (bad) intrinsic, because
327 // its type is incorrect, but we cannot overload that name. We
328 // arbitrarily unique it here allowing us to construct a correctly named
329 // and typed function below.
332 // Now construct the new intrinsic with the correct name and type. We
333 // leave the old function around in order to query its type, whatever it
334 // may be, and correctly convert up to the new type.
335 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
336 X86_MMXTy
, X86_MMXTy
,
337 SecondParamTy
, (Type
*)0));
341 if (Name
.compare(13, 8, "maskmovq", 8) == 0) {
342 // Don't do anything if it has the correct types.
343 if (FTy
->getParamType(0) == X86_MMXTy
&&
344 FTy
->getParamType(1) == X86_MMXTy
)
348 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
349 FTy
->getReturnType(),
352 FTy
->getParamType(2),
357 if (Name
.compare(13, 8, "pmovmskb", 8) == 0) {
358 if (FTy
->getParamType(0) == X86_MMXTy
)
362 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
363 FTy
->getReturnType(),
369 if (Name
.compare(13, 5, "movnt", 5) == 0) {
370 if (FTy
->getParamType(1) == X86_MMXTy
)
374 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
375 FTy
->getReturnType(),
376 FTy
->getParamType(0),
382 if (Name
.compare(13, 7, "palignr", 7) == 0) {
383 if (FTy
->getReturnType() == X86_MMXTy
&&
384 FTy
->getParamType(0) == X86_MMXTy
&&
385 FTy
->getParamType(1) == X86_MMXTy
)
389 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
393 FTy
->getParamType(2),
398 if (Name
.compare(13, 5, "pextr", 5) == 0) {
399 if (FTy
->getParamType(0) == X86_MMXTy
)
403 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
404 FTy
->getReturnType(),
406 FTy
->getParamType(1),
411 if (Name
.compare(13, 5, "pinsr", 5) == 0) {
412 if (FTy
->getReturnType() == X86_MMXTy
&&
413 FTy
->getParamType(0) == X86_MMXTy
)
417 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
420 FTy
->getParamType(1),
421 FTy
->getParamType(2),
426 if (Name
.compare(13, 12, "cvtsi32.si64", 12) == 0) {
427 if (FTy
->getReturnType() == X86_MMXTy
)
431 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
433 FTy
->getParamType(0),
438 if (Name
.compare(13, 12, "cvtsi64.si32", 12) == 0) {
439 if (FTy
->getParamType(0) == X86_MMXTy
)
443 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
444 FTy
->getReturnType(),
450 if (Name
.compare(13, 8, "vec.init", 8) == 0) {
451 if (FTy
->getReturnType() == X86_MMXTy
)
456 if (Name
.compare(21, 2, ".b", 2) == 0)
457 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
459 FTy
->getParamType(0),
460 FTy
->getParamType(1),
461 FTy
->getParamType(2),
462 FTy
->getParamType(3),
463 FTy
->getParamType(4),
464 FTy
->getParamType(5),
465 FTy
->getParamType(6),
466 FTy
->getParamType(7),
468 else if (Name
.compare(21, 2, ".w", 2) == 0)
469 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
471 FTy
->getParamType(0),
472 FTy
->getParamType(1),
473 FTy
->getParamType(2),
474 FTy
->getParamType(3),
476 else if (Name
.compare(21, 2, ".d", 2) == 0)
477 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
479 FTy
->getParamType(0),
480 FTy
->getParamType(1),
486 if (Name
.compare(13, 9, "vec.ext.d", 9) == 0) {
487 if (FTy
->getReturnType() == X86_MMXTy
&&
488 FTy
->getParamType(0) == X86_MMXTy
)
492 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
495 FTy
->getParamType(1),
500 if (Name
.compare(13, 9, "emms", 4) == 0 ||
501 Name
.compare(13, 9, "femms", 5) == 0) {
506 // We really shouldn't get here ever.
507 assert(0 && "Invalid MMX intrinsic!");
509 } else if (Name
.compare(5,17,"x86.sse2.loadh.pd",17) == 0 ||
510 Name
.compare(5,17,"x86.sse2.loadl.pd",17) == 0 ||
511 Name
.compare(5,16,"x86.sse2.movl.dq",16) == 0 ||
512 Name
.compare(5,15,"x86.sse2.movs.d",15) == 0 ||
513 Name
.compare(5,16,"x86.sse2.shuf.pd",16) == 0 ||
514 Name
.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 ||
515 Name
.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 ||
516 Name
.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 ||
517 Name
.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) {
518 // Calls to these intrinsics are transformed into ShuffleVector's.
521 } else if (Name
.compare(5, 16, "x86.sse41.pmulld", 16) == 0) {
522 // Calls to these intrinsics are transformed into vector multiplies.
525 } else if (Name
.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 ||
526 Name
.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) {
527 // Calls to these intrinsics are transformed into vector shuffles, shifts,
531 } else if (Name
.compare(5, 17, "x86.ssse3.pshuf.w", 17) == 0) {
532 // This is an SSE/MMX instruction.
533 const Type
*X86_MMXTy
= VectorType::getX86_MMXTy(FTy
->getContext());
535 cast
<Function
>(M
->getOrInsertFunction("llvm.x86.sse.pshuf.w",
538 Type::getInt8Ty(F
->getContext()),
546 // This may not belong here. This function is effectively being overloaded
547 // to both detect an intrinsic which needs upgrading, and to provide the
548 // upgraded form of the intrinsic. We should perhaps have two separate
549 // functions for this.
553 bool llvm::UpgradeIntrinsicFunction(Function
*F
, Function
*&NewFn
) {
555 bool Upgraded
= UpgradeIntrinsicFunction1(F
, NewFn
);
557 // Upgrade intrinsic attributes. This does not change the function.
560 if (unsigned id
= F
->getIntrinsicID())
561 F
->setAttributes(Intrinsic::getAttributes((Intrinsic::ID
)id
));
565 bool llvm::UpgradeGlobalVariable(GlobalVariable
*GV
) {
566 StringRef
Name(GV
->getName());
568 // We are only upgrading one symbol here.
569 if (Name
== ".llvm.eh.catch.all.value") {
570 GV
->setName("llvm.eh.catch.all.value");
577 /// ExtendNEONArgs - For NEON "long" and "wide" operations, where the results
578 /// have vector elements twice as big as one or both source operands, do the
579 /// sign- or zero-extension that used to be handled by intrinsics. The
580 /// extended values are returned via V0 and V1.
581 static void ExtendNEONArgs(CallInst
*CI
, Value
*Arg0
, Value
*Arg1
,
582 Value
*&V0
, Value
*&V1
) {
583 Function
*F
= CI
->getCalledFunction();
584 const std::string
& Name
= F
->getName();
585 bool isLong
= (Name
.at(18) == 'l');
586 bool isSigned
= (Name
.at(19) == 's');
590 V0
= new SExtInst(Arg0
, CI
->getType(), "", CI
);
593 V1
= new SExtInst(Arg1
, CI
->getType(), "", CI
);
596 V0
= new ZExtInst(Arg0
, CI
->getType(), "", CI
);
599 V1
= new ZExtInst(Arg1
, CI
->getType(), "", CI
);
603 /// CallVABD - As part of expanding a call to one of the old NEON vabdl, vaba,
604 /// or vabal intrinsics, construct a call to a vabd intrinsic. Examine the
605 /// name of the old intrinsic to determine whether to use a signed or unsigned
606 /// vabd intrinsic. Get the type from the old call instruction, adjusted for
607 /// half-size vector elements if the old intrinsic was vabdl or vabal.
608 static Instruction
*CallVABD(CallInst
*CI
, Value
*Arg0
, Value
*Arg1
) {
609 Function
*F
= CI
->getCalledFunction();
610 const std::string
& Name
= F
->getName();
611 bool isLong
= (Name
.at(18) == 'l');
612 bool isSigned
= (Name
.at(isLong
? 19 : 18) == 's');
616 intID
= Intrinsic::arm_neon_vabds
;
618 intID
= Intrinsic::arm_neon_vabdu
;
620 const Type
*Ty
= CI
->getType();
622 Ty
= VectorType::getTruncatedElementVectorType(cast
<const VectorType
>(Ty
));
624 Function
*VABD
= Intrinsic::getDeclaration(F
->getParent(), intID
, &Ty
, 1);
628 return CallInst::Create(VABD
, Operands
, Operands
+2,
629 "upgraded."+CI
->getName(), CI
);
632 /// ConstructNewCallInst - Construct a new CallInst with the signature of NewFn.
633 static void ConstructNewCallInst(Function
*NewFn
, CallInst
*OldCI
,
634 Value
**Operands
, unsigned NumOps
,
635 bool AssignName
= true) {
636 // Construct a new CallInst.
638 CallInst::Create(NewFn
, Operands
, Operands
+ NumOps
,
639 AssignName
? "upgraded." + OldCI
->getName() : "", OldCI
);
641 NewCI
->setTailCall(OldCI
->isTailCall());
642 NewCI
->setCallingConv(OldCI
->getCallingConv());
644 // Handle any uses of the old CallInst. If the type has changed, add a cast.
645 if (!OldCI
->use_empty()) {
646 if (OldCI
->getType() != NewCI
->getType()) {
647 Function
*OldFn
= OldCI
->getCalledFunction();
649 CastInst::Create(CastInst::getCastOpcode(NewCI
, true,
650 OldFn
->getReturnType(), true),
651 NewCI
, OldFn
->getReturnType(), NewCI
->getName(),OldCI
);
653 // Replace all uses of the old call with the new cast which has the
655 OldCI
->replaceAllUsesWith(RetCast
);
657 OldCI
->replaceAllUsesWith(NewCI
);
661 // Clean up the old call now that it has been completely upgraded.
662 OldCI
->eraseFromParent();
665 // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
666 // upgraded intrinsic. All argument and return casting must be provided in
667 // order to seamlessly integrate with existing context.
668 void llvm::UpgradeIntrinsicCall(CallInst
*CI
, Function
*NewFn
) {
669 Function
*F
= CI
->getCalledFunction();
670 LLVMContext
&C
= CI
->getContext();
671 ImmutableCallSite
CS(CI
);
673 assert(F
&& "CallInst has no function associated with it.");
676 // Get the Function's name.
677 const std::string
& Name
= F
->getName();
679 // Upgrade ARM NEON intrinsics.
680 if (Name
.compare(5, 9, "arm.neon.", 9) == 0) {
683 if (Name
.compare(14, 7, "vmovls.", 7) == 0) {
684 NewI
= new SExtInst(CI
->getArgOperand(0), CI
->getType(),
685 "upgraded." + CI
->getName(), CI
);
686 } else if (Name
.compare(14, 7, "vmovlu.", 7) == 0) {
687 NewI
= new ZExtInst(CI
->getArgOperand(0), CI
->getType(),
688 "upgraded." + CI
->getName(), CI
);
689 } else if (Name
.compare(14, 4, "vadd", 4) == 0) {
690 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
691 NewI
= BinaryOperator::CreateAdd(V0
, V1
, "upgraded."+CI
->getName(), CI
);
692 } else if (Name
.compare(14, 4, "vsub", 4) == 0) {
693 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
694 NewI
= BinaryOperator::CreateSub(V0
, V1
,"upgraded."+CI
->getName(),CI
);
695 } else if (Name
.compare(14, 4, "vmul", 4) == 0) {
696 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
697 NewI
= BinaryOperator::CreateMul(V0
, V1
,"upgraded."+CI
->getName(),CI
);
698 } else if (Name
.compare(14, 4, "vmla", 4) == 0) {
699 ExtendNEONArgs(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2), V0
, V1
);
700 Instruction
*MulI
= BinaryOperator::CreateMul(V0
, V1
, "", CI
);
701 NewI
= BinaryOperator::CreateAdd(CI
->getArgOperand(0), MulI
,
702 "upgraded."+CI
->getName(), CI
);
703 } else if (Name
.compare(14, 4, "vmls", 4) == 0) {
704 ExtendNEONArgs(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2), V0
, V1
);
705 Instruction
*MulI
= BinaryOperator::CreateMul(V0
, V1
, "", CI
);
706 NewI
= BinaryOperator::CreateSub(CI
->getArgOperand(0), MulI
,
707 "upgraded."+CI
->getName(), CI
);
708 } else if (Name
.compare(14, 4, "vabd", 4) == 0) {
709 NewI
= CallVABD(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1));
710 NewI
= new ZExtInst(NewI
, CI
->getType(), "upgraded."+CI
->getName(), CI
);
711 } else if (Name
.compare(14, 4, "vaba", 4) == 0) {
712 NewI
= CallVABD(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2));
713 if (Name
.at(18) == 'l')
714 NewI
= new ZExtInst(NewI
, CI
->getType(), "", CI
);
715 NewI
= BinaryOperator::CreateAdd(CI
->getArgOperand(0), NewI
,
716 "upgraded."+CI
->getName(), CI
);
717 } else if (Name
.compare(14, 6, "vmovn.", 6) == 0) {
718 NewI
= new TruncInst(CI
->getArgOperand(0), CI
->getType(),
719 "upgraded." + CI
->getName(), CI
);
721 llvm_unreachable("Unknown arm.neon function for CallInst upgrade.");
723 // Replace any uses of the old CallInst.
724 if (!CI
->use_empty())
725 CI
->replaceAllUsesWith(NewI
);
726 CI
->eraseFromParent();
730 bool isLoadH
= false, isLoadL
= false, isMovL
= false;
731 bool isMovSD
= false, isShufPD
= false;
732 bool isUnpckhPD
= false, isUnpcklPD
= false;
733 bool isPunpckhQPD
= false, isPunpcklQPD
= false;
734 if (F
->getName() == "llvm.x86.sse2.loadh.pd")
736 else if (F
->getName() == "llvm.x86.sse2.loadl.pd")
738 else if (F
->getName() == "llvm.x86.sse2.movl.dq")
740 else if (F
->getName() == "llvm.x86.sse2.movs.d")
742 else if (F
->getName() == "llvm.x86.sse2.shuf.pd")
744 else if (F
->getName() == "llvm.x86.sse2.unpckh.pd")
746 else if (F
->getName() == "llvm.x86.sse2.unpckl.pd")
748 else if (F
->getName() == "llvm.x86.sse2.punpckh.qdq")
750 else if (F
->getName() == "llvm.x86.sse2.punpckl.qdq")
753 if (isLoadH
|| isLoadL
|| isMovL
|| isMovSD
|| isShufPD
||
754 isUnpckhPD
|| isUnpcklPD
|| isPunpckhQPD
|| isPunpcklQPD
) {
755 std::vector
<Constant
*> Idxs
;
756 Value
*Op0
= CI
->getArgOperand(0);
757 ShuffleVectorInst
*SI
= NULL
;
758 if (isLoadH
|| isLoadL
) {
759 Value
*Op1
= UndefValue::get(Op0
->getType());
760 Value
*Addr
= new BitCastInst(CI
->getArgOperand(1),
761 Type::getDoublePtrTy(C
),
763 Value
*Load
= new LoadInst(Addr
, "upgraded.", false, 8, CI
);
764 Value
*Idx
= ConstantInt::get(Type::getInt32Ty(C
), 0);
765 Op1
= InsertElementInst::Create(Op1
, Load
, Idx
, "upgraded.", CI
);
768 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 0));
769 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
771 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
772 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
774 Value
*Mask
= ConstantVector::get(Idxs
);
775 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
777 Constant
*Zero
= ConstantInt::get(Type::getInt32Ty(C
), 0);
778 Idxs
.push_back(Zero
);
779 Idxs
.push_back(Zero
);
780 Idxs
.push_back(Zero
);
781 Idxs
.push_back(Zero
);
782 Value
*ZeroV
= ConstantVector::get(Idxs
);
785 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 4));
786 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 5));
787 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
788 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 3));
789 Value
*Mask
= ConstantVector::get(Idxs
);
790 SI
= new ShuffleVectorInst(ZeroV
, Op0
, Mask
, "upgraded.", CI
);
791 } else if (isMovSD
||
792 isUnpckhPD
|| isUnpcklPD
|| isPunpckhQPD
|| isPunpcklQPD
) {
793 Value
*Op1
= CI
->getArgOperand(1);
795 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
796 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
797 } else if (isUnpckhPD
|| isPunpckhQPD
) {
798 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
799 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 3));
801 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 0));
802 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
804 Value
*Mask
= ConstantVector::get(Idxs
);
805 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
806 } else if (isShufPD
) {
807 Value
*Op1
= CI
->getArgOperand(1);
809 cast
<ConstantInt
>(CI
->getArgOperand(2))->getZExtValue();
810 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), MaskVal
& 1));
811 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
),
812 ((MaskVal
>> 1) & 1)+2));
813 Value
*Mask
= ConstantVector::get(Idxs
);
814 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
817 assert(SI
&& "Unexpected!");
819 // Handle any uses of the old CallInst.
820 if (!CI
->use_empty())
821 // Replace all uses of the old call with the new cast which has the
823 CI
->replaceAllUsesWith(SI
);
825 // Clean up the old call now that it has been completely upgraded.
826 CI
->eraseFromParent();
827 } else if (F
->getName() == "llvm.x86.sse41.pmulld") {
828 // Upgrade this set of intrinsics into vector multiplies.
829 Instruction
*Mul
= BinaryOperator::CreateMul(CI
->getArgOperand(0),
830 CI
->getArgOperand(1),
833 // Fix up all the uses with our new multiply.
834 if (!CI
->use_empty())
835 CI
->replaceAllUsesWith(Mul
);
837 // Remove upgraded multiply.
838 CI
->eraseFromParent();
839 } else if (F
->getName() == "llvm.x86.ssse3.palign.r") {
840 Value
*Op1
= CI
->getArgOperand(0);
841 Value
*Op2
= CI
->getArgOperand(1);
842 Value
*Op3
= CI
->getArgOperand(2);
843 unsigned shiftVal
= cast
<ConstantInt
>(Op3
)->getZExtValue();
845 IRBuilder
<> Builder(C
);
846 Builder
.SetInsertPoint(CI
->getParent(), CI
);
848 // If palignr is shifting the pair of input vectors less than 9 bytes,
849 // emit a shuffle instruction.
851 const Type
*IntTy
= Type::getInt32Ty(C
);
852 const Type
*EltTy
= Type::getInt8Ty(C
);
853 const Type
*VecTy
= VectorType::get(EltTy
, 8);
855 Op2
= Builder
.CreateBitCast(Op2
, VecTy
);
856 Op1
= Builder
.CreateBitCast(Op1
, VecTy
);
858 llvm::SmallVector
<llvm::Constant
*, 8> Indices
;
859 for (unsigned i
= 0; i
!= 8; ++i
)
860 Indices
.push_back(ConstantInt::get(IntTy
, shiftVal
+ i
));
862 Value
*SV
= ConstantVector::get(Indices
.begin(), Indices
.size());
863 Rep
= Builder
.CreateShuffleVector(Op2
, Op1
, SV
, "palignr");
864 Rep
= Builder
.CreateBitCast(Rep
, F
->getReturnType());
867 // If palignr is shifting the pair of input vectors more than 8 but less
868 // than 16 bytes, emit a logical right shift of the destination.
869 else if (shiftVal
< 16) {
870 // MMX has these as 1 x i64 vectors for some odd optimization reasons.
871 const Type
*EltTy
= Type::getInt64Ty(C
);
872 const Type
*VecTy
= VectorType::get(EltTy
, 1);
874 Op1
= Builder
.CreateBitCast(Op1
, VecTy
, "cast");
875 Op2
= ConstantInt::get(VecTy
, (shiftVal
-8) * 8);
877 // create i32 constant
879 Intrinsic::getDeclaration(F
->getParent(), Intrinsic::x86_mmx_psrl_q
);
880 Rep
= Builder
.CreateCall2(I
, Op1
, Op2
, "palignr");
883 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
885 Rep
= Constant::getNullValue(F
->getReturnType());
888 // Replace any uses with our new instruction.
889 if (!CI
->use_empty())
890 CI
->replaceAllUsesWith(Rep
);
892 // Remove upgraded instruction.
893 CI
->eraseFromParent();
895 } else if (F
->getName() == "llvm.x86.ssse3.palign.r.128") {
896 Value
*Op1
= CI
->getArgOperand(0);
897 Value
*Op2
= CI
->getArgOperand(1);
898 Value
*Op3
= CI
->getArgOperand(2);
899 unsigned shiftVal
= cast
<ConstantInt
>(Op3
)->getZExtValue();
901 IRBuilder
<> Builder(C
);
902 Builder
.SetInsertPoint(CI
->getParent(), CI
);
904 // If palignr is shifting the pair of input vectors less than 17 bytes,
905 // emit a shuffle instruction.
906 if (shiftVal
<= 16) {
907 const Type
*IntTy
= Type::getInt32Ty(C
);
908 const Type
*EltTy
= Type::getInt8Ty(C
);
909 const Type
*VecTy
= VectorType::get(EltTy
, 16);
911 Op2
= Builder
.CreateBitCast(Op2
, VecTy
);
912 Op1
= Builder
.CreateBitCast(Op1
, VecTy
);
914 llvm::SmallVector
<llvm::Constant
*, 16> Indices
;
915 for (unsigned i
= 0; i
!= 16; ++i
)
916 Indices
.push_back(ConstantInt::get(IntTy
, shiftVal
+ i
));
918 Value
*SV
= ConstantVector::get(Indices
.begin(), Indices
.size());
919 Rep
= Builder
.CreateShuffleVector(Op2
, Op1
, SV
, "palignr");
920 Rep
= Builder
.CreateBitCast(Rep
, F
->getReturnType());
923 // If palignr is shifting the pair of input vectors more than 16 but less
924 // than 32 bytes, emit a logical right shift of the destination.
925 else if (shiftVal
< 32) {
926 const Type
*EltTy
= Type::getInt64Ty(C
);
927 const Type
*VecTy
= VectorType::get(EltTy
, 2);
928 const Type
*IntTy
= Type::getInt32Ty(C
);
930 Op1
= Builder
.CreateBitCast(Op1
, VecTy
, "cast");
931 Op2
= ConstantInt::get(IntTy
, (shiftVal
-16) * 8);
933 // create i32 constant
935 Intrinsic::getDeclaration(F
->getParent(), Intrinsic::x86_sse2_psrl_dq
);
936 Rep
= Builder
.CreateCall2(I
, Op1
, Op2
, "palignr");
939 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
941 Rep
= Constant::getNullValue(F
->getReturnType());
944 // Replace any uses with our new instruction.
945 if (!CI
->use_empty())
946 CI
->replaceAllUsesWith(Rep
);
948 // Remove upgraded instruction.
949 CI
->eraseFromParent();
952 llvm_unreachable("Unknown function for CallInst upgrade.");
957 switch (NewFn
->getIntrinsicID()) {
958 default: llvm_unreachable("Unknown function for CallInst upgrade.");
959 case Intrinsic::arm_neon_vld1
:
960 case Intrinsic::arm_neon_vld2
:
961 case Intrinsic::arm_neon_vld3
:
962 case Intrinsic::arm_neon_vld4
:
963 case Intrinsic::arm_neon_vst1
:
964 case Intrinsic::arm_neon_vst2
:
965 case Intrinsic::arm_neon_vst3
:
966 case Intrinsic::arm_neon_vst4
:
967 case Intrinsic::arm_neon_vld2lane
:
968 case Intrinsic::arm_neon_vld3lane
:
969 case Intrinsic::arm_neon_vld4lane
:
970 case Intrinsic::arm_neon_vst2lane
:
971 case Intrinsic::arm_neon_vst3lane
:
972 case Intrinsic::arm_neon_vst4lane
: {
973 // Add a default alignment argument of 1.
974 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
975 Operands
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
976 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
978 NewCI
->setTailCall(CI
->isTailCall());
979 NewCI
->setCallingConv(CI
->getCallingConv());
981 // Handle any uses of the old CallInst.
982 if (!CI
->use_empty())
983 // Replace all uses of the old call with the new cast which has the
985 CI
->replaceAllUsesWith(NewCI
);
987 // Clean up the old call now that it has been completely upgraded.
988 CI
->eraseFromParent();
992 case Intrinsic::x86_mmx_padd_b
:
993 case Intrinsic::x86_mmx_padd_w
:
994 case Intrinsic::x86_mmx_padd_d
:
995 case Intrinsic::x86_mmx_padd_q
:
996 case Intrinsic::x86_mmx_padds_b
:
997 case Intrinsic::x86_mmx_padds_w
:
998 case Intrinsic::x86_mmx_paddus_b
:
999 case Intrinsic::x86_mmx_paddus_w
:
1000 case Intrinsic::x86_mmx_psub_b
:
1001 case Intrinsic::x86_mmx_psub_w
:
1002 case Intrinsic::x86_mmx_psub_d
:
1003 case Intrinsic::x86_mmx_psub_q
:
1004 case Intrinsic::x86_mmx_psubs_b
:
1005 case Intrinsic::x86_mmx_psubs_w
:
1006 case Intrinsic::x86_mmx_psubus_b
:
1007 case Intrinsic::x86_mmx_psubus_w
:
1008 case Intrinsic::x86_mmx_pmulh_w
:
1009 case Intrinsic::x86_mmx_pmull_w
:
1010 case Intrinsic::x86_mmx_pmulhu_w
:
1011 case Intrinsic::x86_mmx_pmulu_dq
:
1012 case Intrinsic::x86_mmx_pmadd_wd
:
1013 case Intrinsic::x86_mmx_pand
:
1014 case Intrinsic::x86_mmx_pandn
:
1015 case Intrinsic::x86_mmx_por
:
1016 case Intrinsic::x86_mmx_pxor
:
1017 case Intrinsic::x86_mmx_pavg_b
:
1018 case Intrinsic::x86_mmx_pavg_w
:
1019 case Intrinsic::x86_mmx_pmaxu_b
:
1020 case Intrinsic::x86_mmx_pmaxs_w
:
1021 case Intrinsic::x86_mmx_pminu_b
:
1022 case Intrinsic::x86_mmx_pmins_w
:
1023 case Intrinsic::x86_mmx_psad_bw
:
1024 case Intrinsic::x86_mmx_psll_w
:
1025 case Intrinsic::x86_mmx_psll_d
:
1026 case Intrinsic::x86_mmx_psll_q
:
1027 case Intrinsic::x86_mmx_pslli_w
:
1028 case Intrinsic::x86_mmx_pslli_d
:
1029 case Intrinsic::x86_mmx_pslli_q
:
1030 case Intrinsic::x86_mmx_psrl_w
:
1031 case Intrinsic::x86_mmx_psrl_d
:
1032 case Intrinsic::x86_mmx_psrl_q
:
1033 case Intrinsic::x86_mmx_psrli_w
:
1034 case Intrinsic::x86_mmx_psrli_d
:
1035 case Intrinsic::x86_mmx_psrli_q
:
1036 case Intrinsic::x86_mmx_psra_w
:
1037 case Intrinsic::x86_mmx_psra_d
:
1038 case Intrinsic::x86_mmx_psrai_w
:
1039 case Intrinsic::x86_mmx_psrai_d
:
1040 case Intrinsic::x86_mmx_packsswb
:
1041 case Intrinsic::x86_mmx_packssdw
:
1042 case Intrinsic::x86_mmx_packuswb
:
1043 case Intrinsic::x86_mmx_punpckhbw
:
1044 case Intrinsic::x86_mmx_punpckhwd
:
1045 case Intrinsic::x86_mmx_punpckhdq
:
1046 case Intrinsic::x86_mmx_punpcklbw
:
1047 case Intrinsic::x86_mmx_punpcklwd
:
1048 case Intrinsic::x86_mmx_punpckldq
:
1049 case Intrinsic::x86_mmx_pcmpeq_b
:
1050 case Intrinsic::x86_mmx_pcmpeq_w
:
1051 case Intrinsic::x86_mmx_pcmpeq_d
:
1052 case Intrinsic::x86_mmx_pcmpgt_b
:
1053 case Intrinsic::x86_mmx_pcmpgt_w
:
1054 case Intrinsic::x86_mmx_pcmpgt_d
: {
1057 // Cast the operand to the X86 MMX type.
1058 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1059 NewFn
->getFunctionType()->getParamType(0),
1062 switch (NewFn
->getIntrinsicID()) {
1064 // Cast to the X86 MMX type.
1065 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1066 NewFn
->getFunctionType()->getParamType(1),
1069 case Intrinsic::x86_mmx_pslli_w
:
1070 case Intrinsic::x86_mmx_pslli_d
:
1071 case Intrinsic::x86_mmx_pslli_q
:
1072 case Intrinsic::x86_mmx_psrli_w
:
1073 case Intrinsic::x86_mmx_psrli_d
:
1074 case Intrinsic::x86_mmx_psrli_q
:
1075 case Intrinsic::x86_mmx_psrai_w
:
1076 case Intrinsic::x86_mmx_psrai_d
:
1077 // These take an i32 as their second parameter.
1078 Operands
[1] = CI
->getArgOperand(1);
1082 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1085 case Intrinsic::x86_mmx_maskmovq
: {
1088 // Cast the operands to the X86 MMX type.
1089 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1090 NewFn
->getFunctionType()->getParamType(0),
1092 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1093 NewFn
->getFunctionType()->getParamType(1),
1095 Operands
[2] = CI
->getArgOperand(2);
1097 ConstructNewCallInst(NewFn
, CI
, Operands
, 3, false);
1100 case Intrinsic::x86_mmx_pmovmskb
: {
1103 // Cast the operand to the X86 MMX type.
1104 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1105 NewFn
->getFunctionType()->getParamType(0),
1108 ConstructNewCallInst(NewFn
, CI
, Operands
, 1);
1111 case Intrinsic::x86_mmx_movnt_dq
: {
1114 Operands
[0] = CI
->getArgOperand(0);
1116 // Cast the operand to the X86 MMX type.
1117 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1118 NewFn
->getFunctionType()->getParamType(1),
1121 ConstructNewCallInst(NewFn
, CI
, Operands
, 2, false);
1124 case Intrinsic::x86_mmx_palignr_b
: {
1127 // Cast the operands to the X86 MMX type.
1128 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1129 NewFn
->getFunctionType()->getParamType(0),
1131 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1132 NewFn
->getFunctionType()->getParamType(1),
1134 Operands
[2] = CI
->getArgOperand(2);
1136 ConstructNewCallInst(NewFn
, CI
, Operands
, 3);
1139 case Intrinsic::x86_mmx_pextr_w
: {
1142 // Cast the operands to the X86 MMX type.
1143 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1144 NewFn
->getFunctionType()->getParamType(0),
1146 Operands
[1] = CI
->getArgOperand(1);
1148 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1151 case Intrinsic::x86_mmx_pinsr_w
: {
1154 // Cast the operands to the X86 MMX type.
1155 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1156 NewFn
->getFunctionType()->getParamType(0),
1158 Operands
[1] = CI
->getArgOperand(1);
1159 Operands
[2] = CI
->getArgOperand(2);
1161 ConstructNewCallInst(NewFn
, CI
, Operands
, 3);
1164 case Intrinsic::x86_sse_pshuf_w
: {
1165 IRBuilder
<> Builder(C
);
1166 Builder
.SetInsertPoint(CI
->getParent(), CI
);
1168 // Cast the operand to the X86 MMX type.
1171 Builder
.CreateBitCast(CI
->getArgOperand(0),
1172 NewFn
->getFunctionType()->getParamType(0),
1175 Builder
.CreateTrunc(CI
->getArgOperand(1),
1179 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1184 case Intrinsic::x86_mmx_cvtsi32_si64
: {
1185 // The return type needs to be changed.
1187 Operands
[0] = CI
->getArgOperand(0);
1188 ConstructNewCallInst(NewFn
, CI
, Operands
, 1);
1191 case Intrinsic::x86_mmx_cvtsi64_si32
: {
1194 // Cast the operand to the X86 MMX type.
1195 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1196 NewFn
->getFunctionType()->getParamType(0),
1199 ConstructNewCallInst(NewFn
, CI
, Operands
, 1);
1202 case Intrinsic::x86_mmx_vec_init_b
:
1203 case Intrinsic::x86_mmx_vec_init_w
:
1204 case Intrinsic::x86_mmx_vec_init_d
: {
1205 // The return type needs to be changed.
1207 unsigned NumOps
= 0;
1209 switch (NewFn
->getIntrinsicID()) {
1211 case Intrinsic::x86_mmx_vec_init_b
: NumOps
= 8; break;
1212 case Intrinsic::x86_mmx_vec_init_w
: NumOps
= 4; break;
1213 case Intrinsic::x86_mmx_vec_init_d
: NumOps
= 2; break;
1216 switch (NewFn
->getIntrinsicID()) {
1218 case Intrinsic::x86_mmx_vec_init_b
:
1219 Operands
[7] = CI
->getArgOperand(7);
1220 Operands
[6] = CI
->getArgOperand(6);
1221 Operands
[5] = CI
->getArgOperand(5);
1222 Operands
[4] = CI
->getArgOperand(4);
1224 case Intrinsic::x86_mmx_vec_init_w
:
1225 Operands
[3] = CI
->getArgOperand(3);
1226 Operands
[2] = CI
->getArgOperand(2);
1228 case Intrinsic::x86_mmx_vec_init_d
:
1229 Operands
[1] = CI
->getArgOperand(1);
1230 Operands
[0] = CI
->getArgOperand(0);
1234 ConstructNewCallInst(NewFn
, CI
, Operands
, NumOps
);
1237 case Intrinsic::x86_mmx_vec_ext_d
: {
1240 // Cast the operand to the X86 MMX type.
1241 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1242 NewFn
->getFunctionType()->getParamType(0),
1244 Operands
[1] = CI
->getArgOperand(1);
1246 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1251 case Intrinsic::ctlz
:
1252 case Intrinsic::ctpop
:
1253 case Intrinsic::cttz
: {
1254 // Build a small vector of the original arguments.
1255 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
1257 // Construct a new CallInst
1258 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
1259 "upgraded."+CI
->getName(), CI
);
1260 NewCI
->setTailCall(CI
->isTailCall());
1261 NewCI
->setCallingConv(CI
->getCallingConv());
1263 // Handle any uses of the old CallInst.
1264 if (!CI
->use_empty()) {
1265 // Check for sign extend parameter attributes on the return values.
1266 bool SrcSExt
= NewFn
->getAttributes().paramHasAttr(0, Attribute::SExt
);
1267 bool DestSExt
= F
->getAttributes().paramHasAttr(0, Attribute::SExt
);
1269 // Construct an appropriate cast from the new return type to the old.
1270 CastInst
*RetCast
= CastInst::Create(
1271 CastInst::getCastOpcode(NewCI
, SrcSExt
,
1274 NewCI
, F
->getReturnType(),
1275 NewCI
->getName(), CI
);
1276 NewCI
->moveBefore(RetCast
);
1278 // Replace all uses of the old call with the new cast which has the
1280 CI
->replaceAllUsesWith(RetCast
);
1283 // Clean up the old call now that it has been completely upgraded.
1284 CI
->eraseFromParent();
1287 case Intrinsic::eh_selector
:
1288 case Intrinsic::eh_typeid_for
: {
1289 // Only the return type changed.
1290 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
1291 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
1292 "upgraded." + CI
->getName(), CI
);
1293 NewCI
->setTailCall(CI
->isTailCall());
1294 NewCI
->setCallingConv(CI
->getCallingConv());
1296 // Handle any uses of the old CallInst.
1297 if (!CI
->use_empty()) {
1298 // Construct an appropriate cast from the new return type to the old.
1300 CastInst::Create(CastInst::getCastOpcode(NewCI
, true,
1301 F
->getReturnType(), true),
1302 NewCI
, F
->getReturnType(), NewCI
->getName(), CI
);
1303 CI
->replaceAllUsesWith(RetCast
);
1305 CI
->eraseFromParent();
1308 case Intrinsic::memcpy
:
1309 case Intrinsic::memmove
:
1310 case Intrinsic::memset
: {
1312 const llvm::Type
*I1Ty
= llvm::Type::getInt1Ty(CI
->getContext());
1313 Value
*Operands
[5] = { CI
->getArgOperand(0), CI
->getArgOperand(1),
1314 CI
->getArgOperand(2), CI
->getArgOperand(3),
1315 llvm::ConstantInt::get(I1Ty
, 0) };
1316 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
, Operands
+5,
1318 NewCI
->setTailCall(CI
->isTailCall());
1319 NewCI
->setCallingConv(CI
->getCallingConv());
1320 // Handle any uses of the old CallInst.
1321 if (!CI
->use_empty())
1322 // Replace all uses of the old call with the new cast which has the
1324 CI
->replaceAllUsesWith(NewCI
);
1326 // Clean up the old call now that it has been completely upgraded.
1327 CI
->eraseFromParent();
1333 // This tests each Function to determine if it needs upgrading. When we find
1334 // one we are interested in, we then upgrade all calls to reflect the new
1336 void llvm::UpgradeCallsToIntrinsic(Function
* F
) {
1337 assert(F
&& "Illegal attempt to upgrade a non-existent intrinsic.");
1339 // Upgrade the function and check if it is a totaly new function.
1341 if (UpgradeIntrinsicFunction(F
, NewFn
)) {
1343 // Replace all uses to the old function with the new one if necessary.
1344 for (Value::use_iterator UI
= F
->use_begin(), UE
= F
->use_end();
1346 if (CallInst
* CI
= dyn_cast
<CallInst
>(*UI
++))
1347 UpgradeIntrinsicCall(CI
, NewFn
);
1349 // Remove old function, no longer used, from the module.
1350 F
->eraseFromParent();
1355 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
1356 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
1357 /// strips that use.
1358 void llvm::CheckDebugInfoIntrinsics(Module
*M
) {
1361 if (Function
*FuncStart
= M
->getFunction("llvm.dbg.func.start")) {
1362 while (!FuncStart
->use_empty()) {
1363 CallInst
*CI
= cast
<CallInst
>(FuncStart
->use_back());
1364 CI
->eraseFromParent();
1366 FuncStart
->eraseFromParent();
1369 if (Function
*StopPoint
= M
->getFunction("llvm.dbg.stoppoint")) {
1370 while (!StopPoint
->use_empty()) {
1371 CallInst
*CI
= cast
<CallInst
>(StopPoint
->use_back());
1372 CI
->eraseFromParent();
1374 StopPoint
->eraseFromParent();
1377 if (Function
*RegionStart
= M
->getFunction("llvm.dbg.region.start")) {
1378 while (!RegionStart
->use_empty()) {
1379 CallInst
*CI
= cast
<CallInst
>(RegionStart
->use_back());
1380 CI
->eraseFromParent();
1382 RegionStart
->eraseFromParent();
1385 if (Function
*RegionEnd
= M
->getFunction("llvm.dbg.region.end")) {
1386 while (!RegionEnd
->use_empty()) {
1387 CallInst
*CI
= cast
<CallInst
>(RegionEnd
->use_back());
1388 CI
->eraseFromParent();
1390 RegionEnd
->eraseFromParent();
1393 if (Function
*Declare
= M
->getFunction("llvm.dbg.declare")) {
1394 if (!Declare
->use_empty()) {
1395 DbgDeclareInst
*DDI
= cast
<DbgDeclareInst
>(Declare
->use_back());
1396 if (!isa
<MDNode
>(DDI
->getArgOperand(0)) ||
1397 !isa
<MDNode
>(DDI
->getArgOperand(1))) {
1398 while (!Declare
->use_empty()) {
1399 CallInst
*CI
= cast
<CallInst
>(Declare
->use_back());
1400 CI
->eraseFromParent();
1402 Declare
->eraseFromParent();