zpu: wip - add pass to convert registers to stack slots
[llvm/zpu.git] / lib / VMCore / ConstantsContext.h
blob1c04c3e1987e2c944a9240b038330ed20382577e
1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <map>
26 namespace llvm {
27 template<class ValType>
28 struct ConstantTraits;
30 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
31 /// behind the scenes to implement unary constant exprs.
32 class UnaryConstantExpr : public ConstantExpr {
33 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
34 public:
35 // allocate space for exactly one operand
36 void *operator new(size_t s) {
37 return User::operator new(s, 1);
39 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
40 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
41 Op<0>() = C;
43 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
46 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
47 /// behind the scenes to implement binary constant exprs.
48 class BinaryConstantExpr : public ConstantExpr {
49 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
50 public:
51 // allocate space for exactly two operands
52 void *operator new(size_t s) {
53 return User::operator new(s, 2);
55 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
56 unsigned Flags)
57 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
58 Op<0>() = C1;
59 Op<1>() = C2;
60 SubclassOptionalData = Flags;
62 /// Transparently provide more efficient getOperand methods.
63 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
66 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
67 /// behind the scenes to implement select constant exprs.
68 class SelectConstantExpr : public ConstantExpr {
69 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
70 public:
71 // allocate space for exactly three operands
72 void *operator new(size_t s) {
73 return User::operator new(s, 3);
75 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
76 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
77 Op<0>() = C1;
78 Op<1>() = C2;
79 Op<2>() = C3;
81 /// Transparently provide more efficient getOperand methods.
82 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
85 /// ExtractElementConstantExpr - This class is private to
86 /// Constants.cpp, and is used behind the scenes to implement
87 /// extractelement constant exprs.
88 class ExtractElementConstantExpr : public ConstantExpr {
89 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
90 public:
91 // allocate space for exactly two operands
92 void *operator new(size_t s) {
93 return User::operator new(s, 2);
95 ExtractElementConstantExpr(Constant *C1, Constant *C2)
96 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
97 Instruction::ExtractElement, &Op<0>(), 2) {
98 Op<0>() = C1;
99 Op<1>() = C2;
101 /// Transparently provide more efficient getOperand methods.
102 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
105 /// InsertElementConstantExpr - This class is private to
106 /// Constants.cpp, and is used behind the scenes to implement
107 /// insertelement constant exprs.
108 class InsertElementConstantExpr : public ConstantExpr {
109 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
110 public:
111 // allocate space for exactly three operands
112 void *operator new(size_t s) {
113 return User::operator new(s, 3);
115 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
116 : ConstantExpr(C1->getType(), Instruction::InsertElement,
117 &Op<0>(), 3) {
118 Op<0>() = C1;
119 Op<1>() = C2;
120 Op<2>() = C3;
122 /// Transparently provide more efficient getOperand methods.
123 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
126 /// ShuffleVectorConstantExpr - This class is private to
127 /// Constants.cpp, and is used behind the scenes to implement
128 /// shufflevector constant exprs.
129 class ShuffleVectorConstantExpr : public ConstantExpr {
130 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
131 public:
132 // allocate space for exactly three operands
133 void *operator new(size_t s) {
134 return User::operator new(s, 3);
136 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
137 : ConstantExpr(VectorType::get(
138 cast<VectorType>(C1->getType())->getElementType(),
139 cast<VectorType>(C3->getType())->getNumElements()),
140 Instruction::ShuffleVector,
141 &Op<0>(), 3) {
142 Op<0>() = C1;
143 Op<1>() = C2;
144 Op<2>() = C3;
146 /// Transparently provide more efficient getOperand methods.
147 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
150 /// ExtractValueConstantExpr - This class is private to
151 /// Constants.cpp, and is used behind the scenes to implement
152 /// extractvalue constant exprs.
153 class ExtractValueConstantExpr : public ConstantExpr {
154 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
155 public:
156 // allocate space for exactly one operand
157 void *operator new(size_t s) {
158 return User::operator new(s, 1);
160 ExtractValueConstantExpr(Constant *Agg,
161 const SmallVector<unsigned, 4> &IdxList,
162 const Type *DestTy)
163 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
164 Indices(IdxList) {
165 Op<0>() = Agg;
168 /// Indices - These identify which value to extract.
169 const SmallVector<unsigned, 4> Indices;
171 /// Transparently provide more efficient getOperand methods.
172 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
175 /// InsertValueConstantExpr - This class is private to
176 /// Constants.cpp, and is used behind the scenes to implement
177 /// insertvalue constant exprs.
178 class InsertValueConstantExpr : public ConstantExpr {
179 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
180 public:
181 // allocate space for exactly one operand
182 void *operator new(size_t s) {
183 return User::operator new(s, 2);
185 InsertValueConstantExpr(Constant *Agg, Constant *Val,
186 const SmallVector<unsigned, 4> &IdxList,
187 const Type *DestTy)
188 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
189 Indices(IdxList) {
190 Op<0>() = Agg;
191 Op<1>() = Val;
194 /// Indices - These identify the position for the insertion.
195 const SmallVector<unsigned, 4> Indices;
197 /// Transparently provide more efficient getOperand methods.
198 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
202 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
203 /// used behind the scenes to implement getelementpr constant exprs.
204 class GetElementPtrConstantExpr : public ConstantExpr {
205 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
206 const Type *DestTy);
207 public:
208 static GetElementPtrConstantExpr *Create(Constant *C,
209 const std::vector<Constant*>&IdxList,
210 const Type *DestTy,
211 unsigned Flags) {
212 GetElementPtrConstantExpr *Result =
213 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
214 Result->SubclassOptionalData = Flags;
215 return Result;
217 /// Transparently provide more efficient getOperand methods.
218 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221 // CompareConstantExpr - This class is private to Constants.cpp, and is used
222 // behind the scenes to implement ICmp and FCmp constant expressions. This is
223 // needed in order to store the predicate value for these instructions.
224 struct CompareConstantExpr : public ConstantExpr {
225 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
226 // allocate space for exactly two operands
227 void *operator new(size_t s) {
228 return User::operator new(s, 2);
230 unsigned short predicate;
231 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
232 unsigned short pred, Constant* LHS, Constant* RHS)
233 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
234 Op<0>() = LHS;
235 Op<1>() = RHS;
237 /// Transparently provide more efficient getOperand methods.
238 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
241 template <>
242 struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
244 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
246 template <>
247 struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
249 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
251 template <>
252 struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
254 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
256 template <>
257 struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
259 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
261 template <>
262 struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
264 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
266 template <>
267 struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
271 template <>
272 struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
274 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
276 template <>
277 struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
279 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
281 template <>
282 struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
285 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
288 template <>
289 struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
291 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
293 struct ExprMapKeyType {
294 typedef SmallVector<unsigned, 4> IndexList;
296 ExprMapKeyType(unsigned opc,
297 const std::vector<Constant*> &ops,
298 unsigned short flags = 0,
299 unsigned short optionalflags = 0,
300 const IndexList &inds = IndexList())
301 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
302 operands(ops), indices(inds) {}
303 uint8_t opcode;
304 uint8_t subclassoptionaldata;
305 uint16_t subclassdata;
306 std::vector<Constant*> operands;
307 IndexList indices;
308 bool operator==(const ExprMapKeyType& that) const {
309 return this->opcode == that.opcode &&
310 this->subclassdata == that.subclassdata &&
311 this->subclassoptionaldata == that.subclassoptionaldata &&
312 this->operands == that.operands &&
313 this->indices == that.indices;
315 bool operator<(const ExprMapKeyType & that) const {
316 if (this->opcode != that.opcode) return this->opcode < that.opcode;
317 if (this->operands != that.operands) return this->operands < that.operands;
318 if (this->subclassdata != that.subclassdata)
319 return this->subclassdata < that.subclassdata;
320 if (this->subclassoptionaldata != that.subclassoptionaldata)
321 return this->subclassoptionaldata < that.subclassoptionaldata;
322 if (this->indices != that.indices) return this->indices < that.indices;
323 return false;
326 bool operator!=(const ExprMapKeyType& that) const {
327 return !(*this == that);
331 struct InlineAsmKeyType {
332 InlineAsmKeyType(StringRef AsmString,
333 StringRef Constraints, bool hasSideEffects,
334 bool isAlignStack)
335 : asm_string(AsmString), constraints(Constraints),
336 has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
337 std::string asm_string;
338 std::string constraints;
339 bool has_side_effects;
340 bool is_align_stack;
341 bool operator==(const InlineAsmKeyType& that) const {
342 return this->asm_string == that.asm_string &&
343 this->constraints == that.constraints &&
344 this->has_side_effects == that.has_side_effects &&
345 this->is_align_stack == that.is_align_stack;
347 bool operator<(const InlineAsmKeyType& that) const {
348 if (this->asm_string != that.asm_string)
349 return this->asm_string < that.asm_string;
350 if (this->constraints != that.constraints)
351 return this->constraints < that.constraints;
352 if (this->has_side_effects != that.has_side_effects)
353 return this->has_side_effects < that.has_side_effects;
354 if (this->is_align_stack != that.is_align_stack)
355 return this->is_align_stack < that.is_align_stack;
356 return false;
359 bool operator!=(const InlineAsmKeyType& that) const {
360 return !(*this == that);
364 // The number of operands for each ConstantCreator::create method is
365 // determined by the ConstantTraits template.
366 // ConstantCreator - A class that is used to create constants by
367 // ConstantUniqueMap*. This class should be partially specialized if there is
368 // something strange that needs to be done to interface to the ctor for the
369 // constant.
371 template<typename T, typename Alloc>
372 struct ConstantTraits< std::vector<T, Alloc> > {
373 static unsigned uses(const std::vector<T, Alloc>& v) {
374 return v.size();
378 template<>
379 struct ConstantTraits<Constant *> {
380 static unsigned uses(Constant * const & v) {
381 return 1;
385 template<class ConstantClass, class TypeClass, class ValType>
386 struct ConstantCreator {
387 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
388 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
392 template<class ConstantClass>
393 struct ConstantKeyData {
394 typedef void ValType;
395 static ValType getValType(ConstantClass *C) {
396 llvm_unreachable("Unknown Constant type!");
400 template<>
401 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
402 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
403 unsigned short pred = 0) {
404 if (Instruction::isCast(V.opcode))
405 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
406 if ((V.opcode >= Instruction::BinaryOpsBegin &&
407 V.opcode < Instruction::BinaryOpsEnd))
408 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
409 V.subclassoptionaldata);
410 if (V.opcode == Instruction::Select)
411 return new SelectConstantExpr(V.operands[0], V.operands[1],
412 V.operands[2]);
413 if (V.opcode == Instruction::ExtractElement)
414 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
415 if (V.opcode == Instruction::InsertElement)
416 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
417 V.operands[2]);
418 if (V.opcode == Instruction::ShuffleVector)
419 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
420 V.operands[2]);
421 if (V.opcode == Instruction::InsertValue)
422 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
423 V.indices, Ty);
424 if (V.opcode == Instruction::ExtractValue)
425 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
426 if (V.opcode == Instruction::GetElementPtr) {
427 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
428 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
429 V.subclassoptionaldata);
432 // The compare instructions are weird. We have to encode the predicate
433 // value and it is combined with the instruction opcode by multiplying
434 // the opcode by one hundred. We must decode this to get the predicate.
435 if (V.opcode == Instruction::ICmp)
436 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
437 V.operands[0], V.operands[1]);
438 if (V.opcode == Instruction::FCmp)
439 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
440 V.operands[0], V.operands[1]);
441 llvm_unreachable("Invalid ConstantExpr!");
442 return 0;
446 template<>
447 struct ConstantKeyData<ConstantExpr> {
448 typedef ExprMapKeyType ValType;
449 static ValType getValType(ConstantExpr *CE) {
450 std::vector<Constant*> Operands;
451 Operands.reserve(CE->getNumOperands());
452 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
453 Operands.push_back(cast<Constant>(CE->getOperand(i)));
454 return ExprMapKeyType(CE->getOpcode(), Operands,
455 CE->isCompare() ? CE->getPredicate() : 0,
456 CE->getRawSubclassOptionalData(),
457 CE->hasIndices() ?
458 CE->getIndices() : SmallVector<unsigned, 4>());
462 // ConstantAggregateZero does not take extra "value" argument...
463 template<class ValType>
464 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
465 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
466 return new ConstantAggregateZero(Ty);
470 template<>
471 struct ConstantKeyData<ConstantVector> {
472 typedef std::vector<Constant*> ValType;
473 static ValType getValType(ConstantVector *CP) {
474 std::vector<Constant*> Elements;
475 Elements.reserve(CP->getNumOperands());
476 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
477 Elements.push_back(CP->getOperand(i));
478 return Elements;
482 template<>
483 struct ConstantKeyData<ConstantAggregateZero> {
484 typedef char ValType;
485 static ValType getValType(ConstantAggregateZero *C) {
486 return 0;
490 template<>
491 struct ConstantKeyData<ConstantArray> {
492 typedef std::vector<Constant*> ValType;
493 static ValType getValType(ConstantArray *CA) {
494 std::vector<Constant*> Elements;
495 Elements.reserve(CA->getNumOperands());
496 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
497 Elements.push_back(cast<Constant>(CA->getOperand(i)));
498 return Elements;
502 template<>
503 struct ConstantKeyData<ConstantStruct> {
504 typedef std::vector<Constant*> ValType;
505 static ValType getValType(ConstantStruct *CS) {
506 std::vector<Constant*> Elements;
507 Elements.reserve(CS->getNumOperands());
508 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
509 Elements.push_back(cast<Constant>(CS->getOperand(i)));
510 return Elements;
514 // ConstantPointerNull does not take extra "value" argument...
515 template<class ValType>
516 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
517 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
518 return new ConstantPointerNull(Ty);
522 template<>
523 struct ConstantKeyData<ConstantPointerNull> {
524 typedef char ValType;
525 static ValType getValType(ConstantPointerNull *C) {
526 return 0;
530 // UndefValue does not take extra "value" argument...
531 template<class ValType>
532 struct ConstantCreator<UndefValue, Type, ValType> {
533 static UndefValue *create(const Type *Ty, const ValType &V) {
534 return new UndefValue(Ty);
538 template<>
539 struct ConstantKeyData<UndefValue> {
540 typedef char ValType;
541 static ValType getValType(UndefValue *C) {
542 return 0;
546 template<>
547 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
548 static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) {
549 return new InlineAsm(Ty, Key.asm_string, Key.constraints,
550 Key.has_side_effects, Key.is_align_stack);
554 template<>
555 struct ConstantKeyData<InlineAsm> {
556 typedef InlineAsmKeyType ValType;
557 static ValType getValType(InlineAsm *Asm) {
558 return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
559 Asm->hasSideEffects(), Asm->isAlignStack());
563 template<class ValType, class TypeClass, class ConstantClass,
564 bool HasLargeKey = false /*true for arrays and structs*/ >
565 class ConstantUniqueMap : public AbstractTypeUser {
566 public:
567 typedef std::pair<const TypeClass*, ValType> MapKey;
568 typedef std::map<MapKey, ConstantClass *> MapTy;
569 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
570 typedef std::map<const DerivedType*, typename MapTy::iterator>
571 AbstractTypeMapTy;
572 private:
573 /// Map - This is the main map from the element descriptor to the Constants.
574 /// This is the primary way we avoid creating two of the same shape
575 /// constant.
576 MapTy Map;
578 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
579 /// from the constants to their element in Map. This is important for
580 /// removal of constants from the array, which would otherwise have to scan
581 /// through the map with very large keys.
582 InverseMapTy InverseMap;
584 /// AbstractTypeMap - Map for abstract type constants.
586 AbstractTypeMapTy AbstractTypeMap;
588 public:
589 typename MapTy::iterator map_begin() { return Map.begin(); }
590 typename MapTy::iterator map_end() { return Map.end(); }
592 void freeConstants() {
593 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
594 I != E; ++I) {
595 // Asserts that use_empty().
596 delete I->second;
600 /// InsertOrGetItem - Return an iterator for the specified element.
601 /// If the element exists in the map, the returned iterator points to the
602 /// entry and Exists=true. If not, the iterator points to the newly
603 /// inserted entry and returns Exists=false. Newly inserted entries have
604 /// I->second == 0, and should be filled in.
605 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
606 &InsertVal,
607 bool &Exists) {
608 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
609 Exists = !IP.second;
610 return IP.first;
613 private:
614 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
615 if (HasLargeKey) {
616 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
617 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
618 IMI->second->second == CP &&
619 "InverseMap corrupt!");
620 return IMI->second;
623 typename MapTy::iterator I =
624 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
625 ConstantKeyData<ConstantClass>::getValType(CP)));
626 if (I == Map.end() || I->second != CP) {
627 // FIXME: This should not use a linear scan. If this gets to be a
628 // performance problem, someone should look at this.
629 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
630 /* empty */;
632 return I;
635 void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
636 // If the type of the constant is abstract, make sure that an entry
637 // exists for it in the AbstractTypeMap.
638 if (Ty->isAbstract()) {
639 const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
640 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
642 if (TI == AbstractTypeMap.end()) {
643 // Add ourselves to the ATU list of the type.
644 cast<DerivedType>(DTy)->addAbstractTypeUser(this);
646 AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
651 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
652 typename MapTy::iterator I) {
653 ConstantClass* Result =
654 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
656 assert(Result->getType() == Ty && "Type specified is not correct!");
657 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
659 if (HasLargeKey) // Remember the reverse mapping if needed.
660 InverseMap.insert(std::make_pair(Result, I));
662 AddAbstractTypeUser(Ty, I);
664 return Result;
666 public:
668 /// getOrCreate - Return the specified constant from the map, creating it if
669 /// necessary.
670 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
671 MapKey Lookup(Ty, V);
672 ConstantClass* Result = 0;
674 typename MapTy::iterator I = Map.find(Lookup);
675 // Is it in the map?
676 if (I != Map.end())
677 Result = I->second;
679 if (!Result) {
680 // If no preexisting value, create one now...
681 Result = Create(Ty, V, I);
684 return Result;
687 void UpdateAbstractTypeMap(const DerivedType *Ty,
688 typename MapTy::iterator I) {
689 assert(AbstractTypeMap.count(Ty) &&
690 "Abstract type not in AbstractTypeMap?");
691 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
692 if (ATMEntryIt == I) {
693 // Yes, we are removing the representative entry for this type.
694 // See if there are any other entries of the same type.
695 typename MapTy::iterator TmpIt = ATMEntryIt;
697 // First check the entry before this one...
698 if (TmpIt != Map.begin()) {
699 --TmpIt;
700 if (TmpIt->first.first != Ty) // Not the same type, move back...
701 ++TmpIt;
704 // If we didn't find the same type, try to move forward...
705 if (TmpIt == ATMEntryIt) {
706 ++TmpIt;
707 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
708 --TmpIt; // No entry afterwards with the same type
711 // If there is another entry in the map of the same abstract type,
712 // update the AbstractTypeMap entry now.
713 if (TmpIt != ATMEntryIt) {
714 ATMEntryIt = TmpIt;
715 } else {
716 // Otherwise, we are removing the last instance of this type
717 // from the table. Remove from the ATM, and from user list.
718 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
719 AbstractTypeMap.erase(Ty);
724 void remove(ConstantClass *CP) {
725 typename MapTy::iterator I = FindExistingElement(CP);
726 assert(I != Map.end() && "Constant not found in constant table!");
727 assert(I->second == CP && "Didn't find correct element?");
729 if (HasLargeKey) // Remember the reverse mapping if needed.
730 InverseMap.erase(CP);
732 // Now that we found the entry, make sure this isn't the entry that
733 // the AbstractTypeMap points to.
734 const TypeClass *Ty = I->first.first;
735 if (Ty->isAbstract())
736 UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
738 Map.erase(I);
741 /// MoveConstantToNewSlot - If we are about to change C to be the element
742 /// specified by I, update our internal data structures to reflect this
743 /// fact.
744 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
745 // First, remove the old location of the specified constant in the map.
746 typename MapTy::iterator OldI = FindExistingElement(C);
747 assert(OldI != Map.end() && "Constant not found in constant table!");
748 assert(OldI->second == C && "Didn't find correct element?");
750 // If this constant is the representative element for its abstract type,
751 // update the AbstractTypeMap so that the representative element is I.
753 // This must use getRawType() because if the type is under refinement, we
754 // will get the refineAbstractType callback below, and we don't want to
755 // kick union find in on the constant.
756 if (C->getRawType()->isAbstract()) {
757 typename AbstractTypeMapTy::iterator ATI =
758 AbstractTypeMap.find(cast<DerivedType>(C->getRawType()));
759 assert(ATI != AbstractTypeMap.end() &&
760 "Abstract type not in AbstractTypeMap?");
761 if (ATI->second == OldI)
762 ATI->second = I;
765 // Remove the old entry from the map.
766 Map.erase(OldI);
768 // Update the inverse map so that we know that this constant is now
769 // located at descriptor I.
770 if (HasLargeKey) {
771 assert(I->second == C && "Bad inversemap entry!");
772 InverseMap[C] = I;
776 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
777 typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
779 assert(I != AbstractTypeMap.end() &&
780 "Abstract type not in AbstractTypeMap?");
782 // Convert a constant at a time until the last one is gone. The last one
783 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
784 // eliminated eventually.
785 do {
786 ConstantClass *C = I->second->second;
787 MapKey Key(cast<TypeClass>(NewTy),
788 ConstantKeyData<ConstantClass>::getValType(C));
790 std::pair<typename MapTy::iterator, bool> IP =
791 Map.insert(std::make_pair(Key, C));
792 if (IP.second) {
793 // The map didn't previously have an appropriate constant in the
794 // new type.
796 // Remove the old entry.
797 typename MapTy::iterator OldI =
798 Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
799 assert(OldI != Map.end() && "Constant not in map!");
800 UpdateAbstractTypeMap(OldTy, OldI);
801 Map.erase(OldI);
803 // Set the constant's type. This is done in place!
804 setType(C, NewTy);
806 // Update the inverse map so that we know that this constant is now
807 // located at descriptor I.
808 if (HasLargeKey)
809 InverseMap[C] = IP.first;
811 AddAbstractTypeUser(NewTy, IP.first);
812 } else {
813 // The map already had an appropriate constant in the new type, so
814 // there's no longer a need for the old constant.
815 C->uncheckedReplaceAllUsesWith(IP.first->second);
816 C->destroyConstant(); // This constant is now dead, destroy it.
818 I = AbstractTypeMap.find(OldTy);
819 } while (I != AbstractTypeMap.end());
822 // If the type became concrete without being refined to any other existing
823 // type, we just remove ourselves from the ATU list.
824 void typeBecameConcrete(const DerivedType *AbsTy) {
825 AbsTy->removeAbstractTypeUser(this);
828 void dump() const {
829 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
835 #endif