1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
27 template<class ValType
>
28 struct ConstantTraits
;
30 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
31 /// behind the scenes to implement unary constant exprs.
32 class UnaryConstantExpr
: public ConstantExpr
{
33 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
35 // allocate space for exactly one operand
36 void *operator new(size_t s
) {
37 return User::operator new(s
, 1);
39 UnaryConstantExpr(unsigned Opcode
, Constant
*C
, const Type
*Ty
)
40 : ConstantExpr(Ty
, Opcode
, &Op
<0>(), 1) {
43 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
46 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
47 /// behind the scenes to implement binary constant exprs.
48 class BinaryConstantExpr
: public ConstantExpr
{
49 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
51 // allocate space for exactly two operands
52 void *operator new(size_t s
) {
53 return User::operator new(s
, 2);
55 BinaryConstantExpr(unsigned Opcode
, Constant
*C1
, Constant
*C2
,
57 : ConstantExpr(C1
->getType(), Opcode
, &Op
<0>(), 2) {
60 SubclassOptionalData
= Flags
;
62 /// Transparently provide more efficient getOperand methods.
63 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
66 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
67 /// behind the scenes to implement select constant exprs.
68 class SelectConstantExpr
: public ConstantExpr
{
69 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
71 // allocate space for exactly three operands
72 void *operator new(size_t s
) {
73 return User::operator new(s
, 3);
75 SelectConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
76 : ConstantExpr(C2
->getType(), Instruction::Select
, &Op
<0>(), 3) {
81 /// Transparently provide more efficient getOperand methods.
82 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
85 /// ExtractElementConstantExpr - This class is private to
86 /// Constants.cpp, and is used behind the scenes to implement
87 /// extractelement constant exprs.
88 class ExtractElementConstantExpr
: public ConstantExpr
{
89 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
91 // allocate space for exactly two operands
92 void *operator new(size_t s
) {
93 return User::operator new(s
, 2);
95 ExtractElementConstantExpr(Constant
*C1
, Constant
*C2
)
96 : ConstantExpr(cast
<VectorType
>(C1
->getType())->getElementType(),
97 Instruction::ExtractElement
, &Op
<0>(), 2) {
101 /// Transparently provide more efficient getOperand methods.
102 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
105 /// InsertElementConstantExpr - This class is private to
106 /// Constants.cpp, and is used behind the scenes to implement
107 /// insertelement constant exprs.
108 class InsertElementConstantExpr
: public ConstantExpr
{
109 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
111 // allocate space for exactly three operands
112 void *operator new(size_t s
) {
113 return User::operator new(s
, 3);
115 InsertElementConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
116 : ConstantExpr(C1
->getType(), Instruction::InsertElement
,
122 /// Transparently provide more efficient getOperand methods.
123 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
126 /// ShuffleVectorConstantExpr - This class is private to
127 /// Constants.cpp, and is used behind the scenes to implement
128 /// shufflevector constant exprs.
129 class ShuffleVectorConstantExpr
: public ConstantExpr
{
130 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
132 // allocate space for exactly three operands
133 void *operator new(size_t s
) {
134 return User::operator new(s
, 3);
136 ShuffleVectorConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
137 : ConstantExpr(VectorType::get(
138 cast
<VectorType
>(C1
->getType())->getElementType(),
139 cast
<VectorType
>(C3
->getType())->getNumElements()),
140 Instruction::ShuffleVector
,
146 /// Transparently provide more efficient getOperand methods.
147 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
150 /// ExtractValueConstantExpr - This class is private to
151 /// Constants.cpp, and is used behind the scenes to implement
152 /// extractvalue constant exprs.
153 class ExtractValueConstantExpr
: public ConstantExpr
{
154 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
156 // allocate space for exactly one operand
157 void *operator new(size_t s
) {
158 return User::operator new(s
, 1);
160 ExtractValueConstantExpr(Constant
*Agg
,
161 const SmallVector
<unsigned, 4> &IdxList
,
163 : ConstantExpr(DestTy
, Instruction::ExtractValue
, &Op
<0>(), 1),
168 /// Indices - These identify which value to extract.
169 const SmallVector
<unsigned, 4> Indices
;
171 /// Transparently provide more efficient getOperand methods.
172 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
175 /// InsertValueConstantExpr - This class is private to
176 /// Constants.cpp, and is used behind the scenes to implement
177 /// insertvalue constant exprs.
178 class InsertValueConstantExpr
: public ConstantExpr
{
179 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
181 // allocate space for exactly one operand
182 void *operator new(size_t s
) {
183 return User::operator new(s
, 2);
185 InsertValueConstantExpr(Constant
*Agg
, Constant
*Val
,
186 const SmallVector
<unsigned, 4> &IdxList
,
188 : ConstantExpr(DestTy
, Instruction::InsertValue
, &Op
<0>(), 2),
194 /// Indices - These identify the position for the insertion.
195 const SmallVector
<unsigned, 4> Indices
;
197 /// Transparently provide more efficient getOperand methods.
198 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
202 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
203 /// used behind the scenes to implement getelementpr constant exprs.
204 class GetElementPtrConstantExpr
: public ConstantExpr
{
205 GetElementPtrConstantExpr(Constant
*C
, const std::vector
<Constant
*> &IdxList
,
208 static GetElementPtrConstantExpr
*Create(Constant
*C
,
209 const std::vector
<Constant
*>&IdxList
,
212 GetElementPtrConstantExpr
*Result
=
213 new(IdxList
.size() + 1) GetElementPtrConstantExpr(C
, IdxList
, DestTy
);
214 Result
->SubclassOptionalData
= Flags
;
217 /// Transparently provide more efficient getOperand methods.
218 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
221 // CompareConstantExpr - This class is private to Constants.cpp, and is used
222 // behind the scenes to implement ICmp and FCmp constant expressions. This is
223 // needed in order to store the predicate value for these instructions.
224 struct CompareConstantExpr
: public ConstantExpr
{
225 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
226 // allocate space for exactly two operands
227 void *operator new(size_t s
) {
228 return User::operator new(s
, 2);
230 unsigned short predicate
;
231 CompareConstantExpr(const Type
*ty
, Instruction::OtherOps opc
,
232 unsigned short pred
, Constant
* LHS
, Constant
* RHS
)
233 : ConstantExpr(ty
, opc
, &Op
<0>(), 2), predicate(pred
) {
237 /// Transparently provide more efficient getOperand methods.
238 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
242 struct OperandTraits
<UnaryConstantExpr
> : public FixedNumOperandTraits
<1> {
244 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr
, Value
)
247 struct OperandTraits
<BinaryConstantExpr
> : public FixedNumOperandTraits
<2> {
249 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr
, Value
)
252 struct OperandTraits
<SelectConstantExpr
> : public FixedNumOperandTraits
<3> {
254 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr
, Value
)
257 struct OperandTraits
<ExtractElementConstantExpr
> : public FixedNumOperandTraits
<2> {
259 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr
, Value
)
262 struct OperandTraits
<InsertElementConstantExpr
> : public FixedNumOperandTraits
<3> {
264 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr
, Value
)
267 struct OperandTraits
<ShuffleVectorConstantExpr
> : public FixedNumOperandTraits
<3> {
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr
, Value
)
272 struct OperandTraits
<ExtractValueConstantExpr
> : public FixedNumOperandTraits
<1> {
274 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr
, Value
)
277 struct OperandTraits
<InsertValueConstantExpr
> : public FixedNumOperandTraits
<2> {
279 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr
, Value
)
282 struct OperandTraits
<GetElementPtrConstantExpr
> : public VariadicOperandTraits
<1> {
285 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr
, Value
)
289 struct OperandTraits
<CompareConstantExpr
> : public FixedNumOperandTraits
<2> {
291 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr
, Value
)
293 struct ExprMapKeyType
{
294 typedef SmallVector
<unsigned, 4> IndexList
;
296 ExprMapKeyType(unsigned opc
,
297 const std::vector
<Constant
*> &ops
,
298 unsigned short flags
= 0,
299 unsigned short optionalflags
= 0,
300 const IndexList
&inds
= IndexList())
301 : opcode(opc
), subclassoptionaldata(optionalflags
), subclassdata(flags
),
302 operands(ops
), indices(inds
) {}
304 uint8_t subclassoptionaldata
;
305 uint16_t subclassdata
;
306 std::vector
<Constant
*> operands
;
308 bool operator==(const ExprMapKeyType
& that
) const {
309 return this->opcode
== that
.opcode
&&
310 this->subclassdata
== that
.subclassdata
&&
311 this->subclassoptionaldata
== that
.subclassoptionaldata
&&
312 this->operands
== that
.operands
&&
313 this->indices
== that
.indices
;
315 bool operator<(const ExprMapKeyType
& that
) const {
316 if (this->opcode
!= that
.opcode
) return this->opcode
< that
.opcode
;
317 if (this->operands
!= that
.operands
) return this->operands
< that
.operands
;
318 if (this->subclassdata
!= that
.subclassdata
)
319 return this->subclassdata
< that
.subclassdata
;
320 if (this->subclassoptionaldata
!= that
.subclassoptionaldata
)
321 return this->subclassoptionaldata
< that
.subclassoptionaldata
;
322 if (this->indices
!= that
.indices
) return this->indices
< that
.indices
;
326 bool operator!=(const ExprMapKeyType
& that
) const {
327 return !(*this == that
);
331 struct InlineAsmKeyType
{
332 InlineAsmKeyType(StringRef AsmString
,
333 StringRef Constraints
, bool hasSideEffects
,
335 : asm_string(AsmString
), constraints(Constraints
),
336 has_side_effects(hasSideEffects
), is_align_stack(isAlignStack
) {}
337 std::string asm_string
;
338 std::string constraints
;
339 bool has_side_effects
;
341 bool operator==(const InlineAsmKeyType
& that
) const {
342 return this->asm_string
== that
.asm_string
&&
343 this->constraints
== that
.constraints
&&
344 this->has_side_effects
== that
.has_side_effects
&&
345 this->is_align_stack
== that
.is_align_stack
;
347 bool operator<(const InlineAsmKeyType
& that
) const {
348 if (this->asm_string
!= that
.asm_string
)
349 return this->asm_string
< that
.asm_string
;
350 if (this->constraints
!= that
.constraints
)
351 return this->constraints
< that
.constraints
;
352 if (this->has_side_effects
!= that
.has_side_effects
)
353 return this->has_side_effects
< that
.has_side_effects
;
354 if (this->is_align_stack
!= that
.is_align_stack
)
355 return this->is_align_stack
< that
.is_align_stack
;
359 bool operator!=(const InlineAsmKeyType
& that
) const {
360 return !(*this == that
);
364 // The number of operands for each ConstantCreator::create method is
365 // determined by the ConstantTraits template.
366 // ConstantCreator - A class that is used to create constants by
367 // ConstantUniqueMap*. This class should be partially specialized if there is
368 // something strange that needs to be done to interface to the ctor for the
371 template<typename T
, typename Alloc
>
372 struct ConstantTraits
< std::vector
<T
, Alloc
> > {
373 static unsigned uses(const std::vector
<T
, Alloc
>& v
) {
379 struct ConstantTraits
<Constant
*> {
380 static unsigned uses(Constant
* const & v
) {
385 template<class ConstantClass
, class TypeClass
, class ValType
>
386 struct ConstantCreator
{
387 static ConstantClass
*create(const TypeClass
*Ty
, const ValType
&V
) {
388 return new(ConstantTraits
<ValType
>::uses(V
)) ConstantClass(Ty
, V
);
392 template<class ConstantClass
>
393 struct ConstantKeyData
{
394 typedef void ValType
;
395 static ValType
getValType(ConstantClass
*C
) {
396 llvm_unreachable("Unknown Constant type!");
401 struct ConstantCreator
<ConstantExpr
, Type
, ExprMapKeyType
> {
402 static ConstantExpr
*create(const Type
*Ty
, const ExprMapKeyType
&V
,
403 unsigned short pred
= 0) {
404 if (Instruction::isCast(V
.opcode
))
405 return new UnaryConstantExpr(V
.opcode
, V
.operands
[0], Ty
);
406 if ((V
.opcode
>= Instruction::BinaryOpsBegin
&&
407 V
.opcode
< Instruction::BinaryOpsEnd
))
408 return new BinaryConstantExpr(V
.opcode
, V
.operands
[0], V
.operands
[1],
409 V
.subclassoptionaldata
);
410 if (V
.opcode
== Instruction::Select
)
411 return new SelectConstantExpr(V
.operands
[0], V
.operands
[1],
413 if (V
.opcode
== Instruction::ExtractElement
)
414 return new ExtractElementConstantExpr(V
.operands
[0], V
.operands
[1]);
415 if (V
.opcode
== Instruction::InsertElement
)
416 return new InsertElementConstantExpr(V
.operands
[0], V
.operands
[1],
418 if (V
.opcode
== Instruction::ShuffleVector
)
419 return new ShuffleVectorConstantExpr(V
.operands
[0], V
.operands
[1],
421 if (V
.opcode
== Instruction::InsertValue
)
422 return new InsertValueConstantExpr(V
.operands
[0], V
.operands
[1],
424 if (V
.opcode
== Instruction::ExtractValue
)
425 return new ExtractValueConstantExpr(V
.operands
[0], V
.indices
, Ty
);
426 if (V
.opcode
== Instruction::GetElementPtr
) {
427 std::vector
<Constant
*> IdxList(V
.operands
.begin()+1, V
.operands
.end());
428 return GetElementPtrConstantExpr::Create(V
.operands
[0], IdxList
, Ty
,
429 V
.subclassoptionaldata
);
432 // The compare instructions are weird. We have to encode the predicate
433 // value and it is combined with the instruction opcode by multiplying
434 // the opcode by one hundred. We must decode this to get the predicate.
435 if (V
.opcode
== Instruction::ICmp
)
436 return new CompareConstantExpr(Ty
, Instruction::ICmp
, V
.subclassdata
,
437 V
.operands
[0], V
.operands
[1]);
438 if (V
.opcode
== Instruction::FCmp
)
439 return new CompareConstantExpr(Ty
, Instruction::FCmp
, V
.subclassdata
,
440 V
.operands
[0], V
.operands
[1]);
441 llvm_unreachable("Invalid ConstantExpr!");
447 struct ConstantKeyData
<ConstantExpr
> {
448 typedef ExprMapKeyType ValType
;
449 static ValType
getValType(ConstantExpr
*CE
) {
450 std::vector
<Constant
*> Operands
;
451 Operands
.reserve(CE
->getNumOperands());
452 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
453 Operands
.push_back(cast
<Constant
>(CE
->getOperand(i
)));
454 return ExprMapKeyType(CE
->getOpcode(), Operands
,
455 CE
->isCompare() ? CE
->getPredicate() : 0,
456 CE
->getRawSubclassOptionalData(),
458 CE
->getIndices() : SmallVector
<unsigned, 4>());
462 // ConstantAggregateZero does not take extra "value" argument...
463 template<class ValType
>
464 struct ConstantCreator
<ConstantAggregateZero
, Type
, ValType
> {
465 static ConstantAggregateZero
*create(const Type
*Ty
, const ValType
&V
){
466 return new ConstantAggregateZero(Ty
);
471 struct ConstantKeyData
<ConstantVector
> {
472 typedef std::vector
<Constant
*> ValType
;
473 static ValType
getValType(ConstantVector
*CP
) {
474 std::vector
<Constant
*> Elements
;
475 Elements
.reserve(CP
->getNumOperands());
476 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
477 Elements
.push_back(CP
->getOperand(i
));
483 struct ConstantKeyData
<ConstantAggregateZero
> {
484 typedef char ValType
;
485 static ValType
getValType(ConstantAggregateZero
*C
) {
491 struct ConstantKeyData
<ConstantArray
> {
492 typedef std::vector
<Constant
*> ValType
;
493 static ValType
getValType(ConstantArray
*CA
) {
494 std::vector
<Constant
*> Elements
;
495 Elements
.reserve(CA
->getNumOperands());
496 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
)
497 Elements
.push_back(cast
<Constant
>(CA
->getOperand(i
)));
503 struct ConstantKeyData
<ConstantStruct
> {
504 typedef std::vector
<Constant
*> ValType
;
505 static ValType
getValType(ConstantStruct
*CS
) {
506 std::vector
<Constant
*> Elements
;
507 Elements
.reserve(CS
->getNumOperands());
508 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
)
509 Elements
.push_back(cast
<Constant
>(CS
->getOperand(i
)));
514 // ConstantPointerNull does not take extra "value" argument...
515 template<class ValType
>
516 struct ConstantCreator
<ConstantPointerNull
, PointerType
, ValType
> {
517 static ConstantPointerNull
*create(const PointerType
*Ty
, const ValType
&V
){
518 return new ConstantPointerNull(Ty
);
523 struct ConstantKeyData
<ConstantPointerNull
> {
524 typedef char ValType
;
525 static ValType
getValType(ConstantPointerNull
*C
) {
530 // UndefValue does not take extra "value" argument...
531 template<class ValType
>
532 struct ConstantCreator
<UndefValue
, Type
, ValType
> {
533 static UndefValue
*create(const Type
*Ty
, const ValType
&V
) {
534 return new UndefValue(Ty
);
539 struct ConstantKeyData
<UndefValue
> {
540 typedef char ValType
;
541 static ValType
getValType(UndefValue
*C
) {
547 struct ConstantCreator
<InlineAsm
, PointerType
, InlineAsmKeyType
> {
548 static InlineAsm
*create(const PointerType
*Ty
, const InlineAsmKeyType
&Key
) {
549 return new InlineAsm(Ty
, Key
.asm_string
, Key
.constraints
,
550 Key
.has_side_effects
, Key
.is_align_stack
);
555 struct ConstantKeyData
<InlineAsm
> {
556 typedef InlineAsmKeyType ValType
;
557 static ValType
getValType(InlineAsm
*Asm
) {
558 return InlineAsmKeyType(Asm
->getAsmString(), Asm
->getConstraintString(),
559 Asm
->hasSideEffects(), Asm
->isAlignStack());
563 template<class ValType
, class TypeClass
, class ConstantClass
,
564 bool HasLargeKey
= false /*true for arrays and structs*/ >
565 class ConstantUniqueMap
: public AbstractTypeUser
{
567 typedef std::pair
<const TypeClass
*, ValType
> MapKey
;
568 typedef std::map
<MapKey
, ConstantClass
*> MapTy
;
569 typedef std::map
<ConstantClass
*, typename
MapTy::iterator
> InverseMapTy
;
570 typedef std::map
<const DerivedType
*, typename
MapTy::iterator
>
573 /// Map - This is the main map from the element descriptor to the Constants.
574 /// This is the primary way we avoid creating two of the same shape
578 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
579 /// from the constants to their element in Map. This is important for
580 /// removal of constants from the array, which would otherwise have to scan
581 /// through the map with very large keys.
582 InverseMapTy InverseMap
;
584 /// AbstractTypeMap - Map for abstract type constants.
586 AbstractTypeMapTy AbstractTypeMap
;
589 typename
MapTy::iterator
map_begin() { return Map
.begin(); }
590 typename
MapTy::iterator
map_end() { return Map
.end(); }
592 void freeConstants() {
593 for (typename
MapTy::iterator I
=Map
.begin(), E
=Map
.end();
595 // Asserts that use_empty().
600 /// InsertOrGetItem - Return an iterator for the specified element.
601 /// If the element exists in the map, the returned iterator points to the
602 /// entry and Exists=true. If not, the iterator points to the newly
603 /// inserted entry and returns Exists=false. Newly inserted entries have
604 /// I->second == 0, and should be filled in.
605 typename
MapTy::iterator
InsertOrGetItem(std::pair
<MapKey
, ConstantClass
*>
608 std::pair
<typename
MapTy::iterator
, bool> IP
= Map
.insert(InsertVal
);
614 typename
MapTy::iterator
FindExistingElement(ConstantClass
*CP
) {
616 typename
InverseMapTy::iterator IMI
= InverseMap
.find(CP
);
617 assert(IMI
!= InverseMap
.end() && IMI
->second
!= Map
.end() &&
618 IMI
->second
->second
== CP
&&
619 "InverseMap corrupt!");
623 typename
MapTy::iterator I
=
624 Map
.find(MapKey(static_cast<const TypeClass
*>(CP
->getRawType()),
625 ConstantKeyData
<ConstantClass
>::getValType(CP
)));
626 if (I
== Map
.end() || I
->second
!= CP
) {
627 // FIXME: This should not use a linear scan. If this gets to be a
628 // performance problem, someone should look at this.
629 for (I
= Map
.begin(); I
!= Map
.end() && I
->second
!= CP
; ++I
)
635 void AddAbstractTypeUser(const Type
*Ty
, typename
MapTy::iterator I
) {
636 // If the type of the constant is abstract, make sure that an entry
637 // exists for it in the AbstractTypeMap.
638 if (Ty
->isAbstract()) {
639 const DerivedType
*DTy
= static_cast<const DerivedType
*>(Ty
);
640 typename
AbstractTypeMapTy::iterator TI
= AbstractTypeMap
.find(DTy
);
642 if (TI
== AbstractTypeMap
.end()) {
643 // Add ourselves to the ATU list of the type.
644 cast
<DerivedType
>(DTy
)->addAbstractTypeUser(this);
646 AbstractTypeMap
.insert(TI
, std::make_pair(DTy
, I
));
651 ConstantClass
* Create(const TypeClass
*Ty
, const ValType
&V
,
652 typename
MapTy::iterator I
) {
653 ConstantClass
* Result
=
654 ConstantCreator
<ConstantClass
,TypeClass
,ValType
>::create(Ty
, V
);
656 assert(Result
->getType() == Ty
&& "Type specified is not correct!");
657 I
= Map
.insert(I
, std::make_pair(MapKey(Ty
, V
), Result
));
659 if (HasLargeKey
) // Remember the reverse mapping if needed.
660 InverseMap
.insert(std::make_pair(Result
, I
));
662 AddAbstractTypeUser(Ty
, I
);
668 /// getOrCreate - Return the specified constant from the map, creating it if
670 ConstantClass
*getOrCreate(const TypeClass
*Ty
, const ValType
&V
) {
671 MapKey
Lookup(Ty
, V
);
672 ConstantClass
* Result
= 0;
674 typename
MapTy::iterator I
= Map
.find(Lookup
);
680 // If no preexisting value, create one now...
681 Result
= Create(Ty
, V
, I
);
687 void UpdateAbstractTypeMap(const DerivedType
*Ty
,
688 typename
MapTy::iterator I
) {
689 assert(AbstractTypeMap
.count(Ty
) &&
690 "Abstract type not in AbstractTypeMap?");
691 typename
MapTy::iterator
&ATMEntryIt
= AbstractTypeMap
[Ty
];
692 if (ATMEntryIt
== I
) {
693 // Yes, we are removing the representative entry for this type.
694 // See if there are any other entries of the same type.
695 typename
MapTy::iterator TmpIt
= ATMEntryIt
;
697 // First check the entry before this one...
698 if (TmpIt
!= Map
.begin()) {
700 if (TmpIt
->first
.first
!= Ty
) // Not the same type, move back...
704 // If we didn't find the same type, try to move forward...
705 if (TmpIt
== ATMEntryIt
) {
707 if (TmpIt
== Map
.end() || TmpIt
->first
.first
!= Ty
)
708 --TmpIt
; // No entry afterwards with the same type
711 // If there is another entry in the map of the same abstract type,
712 // update the AbstractTypeMap entry now.
713 if (TmpIt
!= ATMEntryIt
) {
716 // Otherwise, we are removing the last instance of this type
717 // from the table. Remove from the ATM, and from user list.
718 cast
<DerivedType
>(Ty
)->removeAbstractTypeUser(this);
719 AbstractTypeMap
.erase(Ty
);
724 void remove(ConstantClass
*CP
) {
725 typename
MapTy::iterator I
= FindExistingElement(CP
);
726 assert(I
!= Map
.end() && "Constant not found in constant table!");
727 assert(I
->second
== CP
&& "Didn't find correct element?");
729 if (HasLargeKey
) // Remember the reverse mapping if needed.
730 InverseMap
.erase(CP
);
732 // Now that we found the entry, make sure this isn't the entry that
733 // the AbstractTypeMap points to.
734 const TypeClass
*Ty
= I
->first
.first
;
735 if (Ty
->isAbstract())
736 UpdateAbstractTypeMap(static_cast<const DerivedType
*>(Ty
), I
);
741 /// MoveConstantToNewSlot - If we are about to change C to be the element
742 /// specified by I, update our internal data structures to reflect this
744 void MoveConstantToNewSlot(ConstantClass
*C
, typename
MapTy::iterator I
) {
745 // First, remove the old location of the specified constant in the map.
746 typename
MapTy::iterator OldI
= FindExistingElement(C
);
747 assert(OldI
!= Map
.end() && "Constant not found in constant table!");
748 assert(OldI
->second
== C
&& "Didn't find correct element?");
750 // If this constant is the representative element for its abstract type,
751 // update the AbstractTypeMap so that the representative element is I.
753 // This must use getRawType() because if the type is under refinement, we
754 // will get the refineAbstractType callback below, and we don't want to
755 // kick union find in on the constant.
756 if (C
->getRawType()->isAbstract()) {
757 typename
AbstractTypeMapTy::iterator ATI
=
758 AbstractTypeMap
.find(cast
<DerivedType
>(C
->getRawType()));
759 assert(ATI
!= AbstractTypeMap
.end() &&
760 "Abstract type not in AbstractTypeMap?");
761 if (ATI
->second
== OldI
)
765 // Remove the old entry from the map.
768 // Update the inverse map so that we know that this constant is now
769 // located at descriptor I.
771 assert(I
->second
== C
&& "Bad inversemap entry!");
776 void refineAbstractType(const DerivedType
*OldTy
, const Type
*NewTy
) {
777 typename
AbstractTypeMapTy::iterator I
= AbstractTypeMap
.find(OldTy
);
779 assert(I
!= AbstractTypeMap
.end() &&
780 "Abstract type not in AbstractTypeMap?");
782 // Convert a constant at a time until the last one is gone. The last one
783 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
784 // eliminated eventually.
786 ConstantClass
*C
= I
->second
->second
;
787 MapKey
Key(cast
<TypeClass
>(NewTy
),
788 ConstantKeyData
<ConstantClass
>::getValType(C
));
790 std::pair
<typename
MapTy::iterator
, bool> IP
=
791 Map
.insert(std::make_pair(Key
, C
));
793 // The map didn't previously have an appropriate constant in the
796 // Remove the old entry.
797 typename
MapTy::iterator OldI
=
798 Map
.find(MapKey(cast
<TypeClass
>(OldTy
), IP
.first
->first
.second
));
799 assert(OldI
!= Map
.end() && "Constant not in map!");
800 UpdateAbstractTypeMap(OldTy
, OldI
);
803 // Set the constant's type. This is done in place!
806 // Update the inverse map so that we know that this constant is now
807 // located at descriptor I.
809 InverseMap
[C
] = IP
.first
;
811 AddAbstractTypeUser(NewTy
, IP
.first
);
813 // The map already had an appropriate constant in the new type, so
814 // there's no longer a need for the old constant.
815 C
->uncheckedReplaceAllUsesWith(IP
.first
->second
);
816 C
->destroyConstant(); // This constant is now dead, destroy it.
818 I
= AbstractTypeMap
.find(OldTy
);
819 } while (I
!= AbstractTypeMap
.end());
822 // If the type became concrete without being refined to any other existing
823 // type, we just remove ourselves from the ATU list.
824 void typeBecameConcrete(const DerivedType
*AbsTy
) {
825 AbsTy
->removeAbstractTypeUser(this);
829 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");