zpu: wip - add pass to convert registers to stack slots
[llvm/zpu.git] / lib / VMCore / Dominators.cpp
blobb7581686c2a03660d4d711b437f943541a43714a
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/Dominators.h"
18 #include "llvm/Support/CFG.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/SetOperations.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Analysis/DominatorInternals.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/CommandLine.h"
29 #include <algorithm>
30 using namespace llvm;
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40 cl::desc("Verify dominator info (time consuming)"));
42 //===----------------------------------------------------------------------===//
43 // DominatorTree Implementation
44 //===----------------------------------------------------------------------===//
46 // Provide public access to DominatorTree information. Implementation details
47 // can be found in DominatorCalculation.h.
49 //===----------------------------------------------------------------------===//
51 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
52 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
54 char DominatorTree::ID = 0;
55 INITIALIZE_PASS(DominatorTree, "domtree",
56 "Dominator Tree Construction", true, true)
58 bool DominatorTree::runOnFunction(Function &F) {
59 DT->recalculate(F);
60 return false;
63 void DominatorTree::verifyAnalysis() const {
64 if (!VerifyDomInfo) return;
66 Function &F = *getRoot()->getParent();
68 DominatorTree OtherDT;
69 OtherDT.getBase().recalculate(F);
70 assert(!compare(OtherDT) && "Invalid DominatorTree info!");
73 void DominatorTree::print(raw_ostream &OS, const Module *) const {
74 DT->print(OS);
77 // dominates - Return true if A dominates a use in B. This performs the
78 // special checks necessary if A and B are in the same basic block.
79 bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
80 const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
82 // If A is an invoke instruction, its value is only available in this normal
83 // successor block.
84 if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
85 BBA = II->getNormalDest();
87 if (BBA != BBB) return dominates(BBA, BBB);
89 // It is not possible to determine dominance between two PHI nodes
90 // based on their ordering.
91 if (isa<PHINode>(A) && isa<PHINode>(B))
92 return false;
94 // Loop through the basic block until we find A or B.
95 BasicBlock::const_iterator I = BBA->begin();
96 for (; &*I != A && &*I != B; ++I)
97 /*empty*/;
99 return &*I == A;
104 //===----------------------------------------------------------------------===//
105 // DominanceFrontier Implementation
106 //===----------------------------------------------------------------------===//
108 char DominanceFrontier::ID = 0;
109 INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
110 "Dominance Frontier Construction", true, true)
111 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
112 INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
113 "Dominance Frontier Construction", true, true)
115 void DominanceFrontier::verifyAnalysis() const {
116 if (!VerifyDomInfo) return;
118 DominatorTree &DT = getAnalysis<DominatorTree>();
120 DominanceFrontier OtherDF;
121 const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
122 OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
123 assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
126 // NewBB is split and now it has one successor. Update dominance frontier to
127 // reflect this change.
128 void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
129 assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
130 "NewBB should have a single successor!");
131 BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
133 // NewBBSucc inherits original NewBB frontier.
134 DominanceFrontier::iterator NewBBI = find(NewBB);
135 if (NewBBI != end())
136 addBasicBlock(NewBBSucc, NewBBI->second);
138 // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
139 // DF(NewBBSucc) without the stuff that the new block does not dominate
140 // a predecessor of.
141 DominatorTree &DT = getAnalysis<DominatorTree>();
142 DomTreeNode *NewBBNode = DT.getNode(NewBB);
143 DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
144 if (DT.dominates(NewBBNode, NewBBSuccNode)) {
145 DominanceFrontier::iterator DFI = find(NewBBSucc);
146 if (DFI != end()) {
147 DominanceFrontier::DomSetType Set = DFI->second;
148 // Filter out stuff in Set that we do not dominate a predecessor of.
149 for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
150 E = Set.end(); SetI != E;) {
151 bool DominatesPred = false;
152 for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
153 PI != E; ++PI)
154 if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
155 DominatesPred = true;
156 break;
158 if (!DominatesPred)
159 Set.erase(SetI++);
160 else
161 ++SetI;
164 if (NewBBI != end()) {
165 for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
166 E = Set.end(); SetI != E; ++SetI) {
167 BasicBlock *SB = *SetI;
168 addToFrontier(NewBBI, SB);
170 } else
171 addBasicBlock(NewBB, Set);
174 } else {
175 // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
176 // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
177 // NewBBSucc)). NewBBSucc is the single successor of NewBB.
178 DominanceFrontier::DomSetType NewDFSet;
179 NewDFSet.insert(NewBBSucc);
180 addBasicBlock(NewBB, NewDFSet);
183 // Now update dominance frontiers which either used to contain NewBBSucc
184 // or which now need to include NewBB.
186 // Collect the set of blocks which dominate a predecessor of NewBB or
187 // NewSuccBB and which don't dominate both. This is an initial
188 // approximation of the blocks whose dominance frontiers will need updates.
189 SmallVector<DomTreeNode *, 16> AllPredDoms;
191 // Compute the block which dominates both NewBBSucc and NewBB. This is
192 // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
193 // The code below which climbs dominator trees will stop at this point,
194 // because from this point up, dominance frontiers are unaffected.
195 DomTreeNode *DominatesBoth = 0;
196 if (NewBBSuccNode) {
197 DominatesBoth = NewBBSuccNode->getIDom();
198 if (DominatesBoth == NewBBNode)
199 DominatesBoth = NewBBNode->getIDom();
202 // Collect the set of all blocks which dominate a predecessor of NewBB.
203 SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
204 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
205 for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
206 if (DTN == DominatesBoth)
207 break;
208 if (!NewBBPredDoms.insert(DTN))
209 break;
210 AllPredDoms.push_back(DTN);
213 // Collect the set of all blocks which dominate a predecessor of NewSuccBB.
214 SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
215 for (pred_iterator PI = pred_begin(NewBBSucc),
216 E = pred_end(NewBBSucc); PI != E; ++PI)
217 for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
218 if (DTN == DominatesBoth)
219 break;
220 if (!NewBBSuccPredDoms.insert(DTN))
221 break;
222 if (!NewBBPredDoms.count(DTN))
223 AllPredDoms.push_back(DTN);
226 // Visit all relevant dominance frontiers and make any needed updates.
227 for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
228 E = AllPredDoms.end(); I != E; ++I) {
229 DomTreeNode *DTN = *I;
230 iterator DFI = find((*I)->getBlock());
232 // Only consider nodes that have NewBBSucc in their dominator frontier.
233 if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
235 // If the block dominates a predecessor of NewBB but does not properly
236 // dominate NewBB itself, add NewBB to its dominance frontier.
237 if (NewBBPredDoms.count(DTN) &&
238 !DT.properlyDominates(DTN, NewBBNode))
239 addToFrontier(DFI, NewBB);
241 // If the block does not dominate a predecessor of NewBBSucc or
242 // properly dominates NewBBSucc itself, remove NewBBSucc from its
243 // dominance frontier.
244 if (!NewBBSuccPredDoms.count(DTN) ||
245 DT.properlyDominates(DTN, NewBBSuccNode))
246 removeFromFrontier(DFI, NewBBSucc);
250 namespace {
251 class DFCalculateWorkObject {
252 public:
253 DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
254 const DomTreeNode *N,
255 const DomTreeNode *PN)
256 : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
257 BasicBlock *currentBB;
258 BasicBlock *parentBB;
259 const DomTreeNode *Node;
260 const DomTreeNode *parentNode;
264 const DominanceFrontier::DomSetType &
265 DominanceFrontier::calculate(const DominatorTree &DT,
266 const DomTreeNode *Node) {
267 BasicBlock *BB = Node->getBlock();
268 DomSetType *Result = NULL;
270 std::vector<DFCalculateWorkObject> workList;
271 SmallPtrSet<BasicBlock *, 32> visited;
273 workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
274 do {
275 DFCalculateWorkObject *currentW = &workList.back();
276 assert (currentW && "Missing work object.");
278 BasicBlock *currentBB = currentW->currentBB;
279 BasicBlock *parentBB = currentW->parentBB;
280 const DomTreeNode *currentNode = currentW->Node;
281 const DomTreeNode *parentNode = currentW->parentNode;
282 assert (currentBB && "Invalid work object. Missing current Basic Block");
283 assert (currentNode && "Invalid work object. Missing current Node");
284 DomSetType &S = Frontiers[currentBB];
286 // Visit each block only once.
287 if (visited.count(currentBB) == 0) {
288 visited.insert(currentBB);
290 // Loop over CFG successors to calculate DFlocal[currentNode]
291 for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
292 SI != SE; ++SI) {
293 // Does Node immediately dominate this successor?
294 if (DT[*SI]->getIDom() != currentNode)
295 S.insert(*SI);
299 // At this point, S is DFlocal. Now we union in DFup's of our children...
300 // Loop through and visit the nodes that Node immediately dominates (Node's
301 // children in the IDomTree)
302 bool visitChild = false;
303 for (DomTreeNode::const_iterator NI = currentNode->begin(),
304 NE = currentNode->end(); NI != NE; ++NI) {
305 DomTreeNode *IDominee = *NI;
306 BasicBlock *childBB = IDominee->getBlock();
307 if (visited.count(childBB) == 0) {
308 workList.push_back(DFCalculateWorkObject(childBB, currentBB,
309 IDominee, currentNode));
310 visitChild = true;
314 // If all children are visited or there is any child then pop this block
315 // from the workList.
316 if (!visitChild) {
318 if (!parentBB) {
319 Result = &S;
320 break;
323 DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
324 DomSetType &parentSet = Frontiers[parentBB];
325 for (; CDFI != CDFE; ++CDFI) {
326 if (!DT.properlyDominates(parentNode, DT[*CDFI]))
327 parentSet.insert(*CDFI);
329 workList.pop_back();
332 } while (!workList.empty());
334 return *Result;
337 void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
338 for (const_iterator I = begin(), E = end(); I != E; ++I) {
339 OS << " DomFrontier for BB ";
340 if (I->first)
341 WriteAsOperand(OS, I->first, false);
342 else
343 OS << " <<exit node>>";
344 OS << " is:\t";
346 const std::set<BasicBlock*> &BBs = I->second;
348 for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
349 I != E; ++I) {
350 OS << ' ';
351 if (*I)
352 WriteAsOperand(OS, *I, false);
353 else
354 OS << "<<exit node>>";
356 OS << "\n";
360 void DominanceFrontierBase::dump() const {
361 print(dbgs());