1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the common interface used by the various execution engine
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MutexGuard.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/DynamicLibrary.h"
29 #include "llvm/System/Host.h"
30 #include "llvm/Target/TargetData.h"
35 STATISTIC(NumInitBytes
, "Number of bytes of global vars initialized");
36 STATISTIC(NumGlobals
, "Number of global vars initialized");
38 ExecutionEngine
*(*ExecutionEngine::JITCtor
)(
40 std::string
*ErrorStr
,
41 JITMemoryManager
*JMM
,
42 CodeGenOpt::Level OptLevel
,
47 const SmallVectorImpl
<std::string
>& MAttrs
) = 0;
48 ExecutionEngine
*(*ExecutionEngine::InterpCtor
)(Module
*M
,
49 std::string
*ErrorStr
) = 0;
51 ExecutionEngine::ExecutionEngine(Module
*M
)
53 LazyFunctionCreator(0),
54 ExceptionTableRegister(0),
55 ExceptionTableDeregister(0) {
56 CompilingLazily
= false;
57 GVCompilationDisabled
= false;
58 SymbolSearchingDisabled
= false;
60 assert(M
&& "Module is null?");
63 ExecutionEngine::~ExecutionEngine() {
64 clearAllGlobalMappings();
65 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
)
69 void ExecutionEngine::DeregisterAllTables() {
70 if (ExceptionTableDeregister
) {
71 std::vector
<void*>::iterator it
= AllExceptionTables
.begin();
72 std::vector
<void*>::iterator ite
= AllExceptionTables
.end();
73 for (; it
!= ite
; ++it
)
74 ExceptionTableDeregister(*it
);
75 AllExceptionTables
.clear();
80 // This class automatically deletes the memory block when the GlobalVariable is
82 class GVMemoryBlock
: public CallbackVH
{
83 GVMemoryBlock(const GlobalVariable
*GV
)
84 : CallbackVH(const_cast<GlobalVariable
*>(GV
)) {}
87 // Returns the address the GlobalVariable should be written into. The
88 // GVMemoryBlock object prefixes that.
89 static char *Create(const GlobalVariable
*GV
, const TargetData
& TD
) {
90 const Type
*ElTy
= GV
->getType()->getElementType();
91 size_t GVSize
= (size_t)TD
.getTypeAllocSize(ElTy
);
92 void *RawMemory
= ::operator new(
93 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock
),
94 TD
.getPreferredAlignment(GV
))
96 new(RawMemory
) GVMemoryBlock(GV
);
97 return static_cast<char*>(RawMemory
) + sizeof(GVMemoryBlock
);
100 virtual void deleted() {
101 // We allocated with operator new and with some extra memory hanging off the
102 // end, so don't just delete this. I'm not sure if this is actually
104 this->~GVMemoryBlock();
105 ::operator delete(this);
108 } // anonymous namespace
110 char* ExecutionEngine::getMemoryForGV(const GlobalVariable
* GV
) {
111 return GVMemoryBlock::Create(GV
, *getTargetData());
114 /// removeModule - Remove a Module from the list of modules.
115 bool ExecutionEngine::removeModule(Module
*M
) {
116 for(SmallVector
<Module
*, 1>::iterator I
= Modules
.begin(),
117 E
= Modules
.end(); I
!= E
; ++I
) {
121 clearGlobalMappingsFromModule(M
);
128 /// FindFunctionNamed - Search all of the active modules to find the one that
129 /// defines FnName. This is very slow operation and shouldn't be used for
131 Function
*ExecutionEngine::FindFunctionNamed(const char *FnName
) {
132 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
133 if (Function
*F
= Modules
[i
]->getFunction(FnName
))
140 void *ExecutionEngineState::RemoveMapping(
141 const MutexGuard
&, const GlobalValue
*ToUnmap
) {
142 GlobalAddressMapTy::iterator I
= GlobalAddressMap
.find(ToUnmap
);
144 if (I
== GlobalAddressMap
.end())
148 GlobalAddressMap
.erase(I
);
151 GlobalAddressReverseMap
.erase(OldVal
);
155 /// addGlobalMapping - Tell the execution engine that the specified global is
156 /// at the specified location. This is used internally as functions are JIT'd
157 /// and as global variables are laid out in memory. It can and should also be
158 /// used by clients of the EE that want to have an LLVM global overlay
159 /// existing data in memory.
160 void ExecutionEngine::addGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
161 MutexGuard
locked(lock
);
163 DEBUG(dbgs() << "JIT: Map \'" << GV
->getName()
164 << "\' to [" << Addr
<< "]\n";);
165 void *&CurVal
= EEState
.getGlobalAddressMap(locked
)[GV
];
166 assert((CurVal
== 0 || Addr
== 0) && "GlobalMapping already established!");
169 // If we are using the reverse mapping, add it too
170 if (!EEState
.getGlobalAddressReverseMap(locked
).empty()) {
171 AssertingVH
<const GlobalValue
> &V
=
172 EEState
.getGlobalAddressReverseMap(locked
)[Addr
];
173 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
178 /// clearAllGlobalMappings - Clear all global mappings and start over again
179 /// use in dynamic compilation scenarios when you want to move globals
180 void ExecutionEngine::clearAllGlobalMappings() {
181 MutexGuard
locked(lock
);
183 EEState
.getGlobalAddressMap(locked
).clear();
184 EEState
.getGlobalAddressReverseMap(locked
).clear();
187 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
188 /// particular module, because it has been removed from the JIT.
189 void ExecutionEngine::clearGlobalMappingsFromModule(Module
*M
) {
190 MutexGuard
locked(lock
);
192 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; ++FI
) {
193 EEState
.RemoveMapping(locked
, FI
);
195 for (Module::global_iterator GI
= M
->global_begin(), GE
= M
->global_end();
197 EEState
.RemoveMapping(locked
, GI
);
201 /// updateGlobalMapping - Replace an existing mapping for GV with a new
202 /// address. This updates both maps as required. If "Addr" is null, the
203 /// entry for the global is removed from the mappings.
204 void *ExecutionEngine::updateGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
205 MutexGuard
locked(lock
);
207 ExecutionEngineState::GlobalAddressMapTy
&Map
=
208 EEState
.getGlobalAddressMap(locked
);
210 // Deleting from the mapping?
212 return EEState
.RemoveMapping(locked
, GV
);
215 void *&CurVal
= Map
[GV
];
216 void *OldVal
= CurVal
;
218 if (CurVal
&& !EEState
.getGlobalAddressReverseMap(locked
).empty())
219 EEState
.getGlobalAddressReverseMap(locked
).erase(CurVal
);
222 // If we are using the reverse mapping, add it too
223 if (!EEState
.getGlobalAddressReverseMap(locked
).empty()) {
224 AssertingVH
<const GlobalValue
> &V
=
225 EEState
.getGlobalAddressReverseMap(locked
)[Addr
];
226 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
232 /// getPointerToGlobalIfAvailable - This returns the address of the specified
233 /// global value if it is has already been codegen'd, otherwise it returns null.
235 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue
*GV
) {
236 MutexGuard
locked(lock
);
238 ExecutionEngineState::GlobalAddressMapTy::iterator I
=
239 EEState
.getGlobalAddressMap(locked
).find(GV
);
240 return I
!= EEState
.getGlobalAddressMap(locked
).end() ? I
->second
: 0;
243 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
244 /// at the specified address.
246 const GlobalValue
*ExecutionEngine::getGlobalValueAtAddress(void *Addr
) {
247 MutexGuard
locked(lock
);
249 // If we haven't computed the reverse mapping yet, do so first.
250 if (EEState
.getGlobalAddressReverseMap(locked
).empty()) {
251 for (ExecutionEngineState::GlobalAddressMapTy::iterator
252 I
= EEState
.getGlobalAddressMap(locked
).begin(),
253 E
= EEState
.getGlobalAddressMap(locked
).end(); I
!= E
; ++I
)
254 EEState
.getGlobalAddressReverseMap(locked
).insert(std::make_pair(I
->second
,
258 std::map
<void *, AssertingVH
<const GlobalValue
> >::iterator I
=
259 EEState
.getGlobalAddressReverseMap(locked
).find(Addr
);
260 return I
!= EEState
.getGlobalAddressReverseMap(locked
).end() ? I
->second
: 0;
266 std::vector
<char*> Values
;
268 ArgvArray() : Array(NULL
) {}
269 ~ArgvArray() { clear(); }
273 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
278 /// Turn a vector of strings into a nice argv style array of pointers to null
279 /// terminated strings.
280 void *reset(LLVMContext
&C
, ExecutionEngine
*EE
,
281 const std::vector
<std::string
> &InputArgv
);
283 } // anonymous namespace
284 void *ArgvArray::reset(LLVMContext
&C
, ExecutionEngine
*EE
,
285 const std::vector
<std::string
> &InputArgv
) {
286 clear(); // Free the old contents.
287 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
288 Array
= new char[(InputArgv
.size()+1)*PtrSize
];
290 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array
<< "\n");
291 const Type
*SBytePtr
= Type::getInt8PtrTy(C
);
293 for (unsigned i
= 0; i
!= InputArgv
.size(); ++i
) {
294 unsigned Size
= InputArgv
[i
].size()+1;
295 char *Dest
= new char[Size
];
296 Values
.push_back(Dest
);
297 DEBUG(dbgs() << "JIT: ARGV[" << i
<< "] = " << (void*)Dest
<< "\n");
299 std::copy(InputArgv
[i
].begin(), InputArgv
[i
].end(), Dest
);
302 // Endian safe: Array[i] = (PointerTy)Dest;
303 EE
->StoreValueToMemory(PTOGV(Dest
), (GenericValue
*)(Array
+i
*PtrSize
),
308 EE
->StoreValueToMemory(PTOGV(0),
309 (GenericValue
*)(Array
+InputArgv
.size()*PtrSize
),
315 /// runStaticConstructorsDestructors - This method is used to execute all of
316 /// the static constructors or destructors for a module, depending on the
317 /// value of isDtors.
318 void ExecutionEngine::runStaticConstructorsDestructors(Module
*module
,
320 const char *Name
= isDtors
? "llvm.global_dtors" : "llvm.global_ctors";
322 // Execute global ctors/dtors for each module in the program.
324 GlobalVariable
*GV
= module
->getNamedGlobal(Name
);
326 // If this global has internal linkage, or if it has a use, then it must be
327 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
328 // this is the case, don't execute any of the global ctors, __main will do
330 if (!GV
|| GV
->isDeclaration() || GV
->hasLocalLinkage()) return;
332 // Should be an array of '{ int, void ()* }' structs. The first value is
333 // the init priority, which we ignore.
334 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
335 if (!InitList
) return;
336 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
337 if (ConstantStruct
*CS
=
338 dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))) {
339 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
341 Constant
*FP
= CS
->getOperand(1);
342 if (FP
->isNullValue())
343 break; // Found a null terminator, exit.
345 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
347 FP
= CE
->getOperand(0);
348 if (Function
*F
= dyn_cast
<Function
>(FP
)) {
349 // Execute the ctor/dtor function!
350 runFunction(F
, std::vector
<GenericValue
>());
355 /// runStaticConstructorsDestructors - This method is used to execute all of
356 /// the static constructors or destructors for a program, depending on the
357 /// value of isDtors.
358 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors
) {
359 // Execute global ctors/dtors for each module in the program.
360 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
)
361 runStaticConstructorsDestructors(Modules
[m
], isDtors
);
365 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
366 static bool isTargetNullPtr(ExecutionEngine
*EE
, void *Loc
) {
367 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
368 for (unsigned i
= 0; i
< PtrSize
; ++i
)
369 if (*(i
+ (uint8_t*)Loc
))
375 /// runFunctionAsMain - This is a helper function which wraps runFunction to
376 /// handle the common task of starting up main with the specified argc, argv,
377 /// and envp parameters.
378 int ExecutionEngine::runFunctionAsMain(Function
*Fn
,
379 const std::vector
<std::string
> &argv
,
380 const char * const * envp
) {
381 std::vector
<GenericValue
> GVArgs
;
383 GVArgc
.IntVal
= APInt(32, argv
.size());
386 unsigned NumArgs
= Fn
->getFunctionType()->getNumParams();
387 const FunctionType
*FTy
= Fn
->getFunctionType();
388 const Type
* PPInt8Ty
= Type::getInt8PtrTy(Fn
->getContext())->getPointerTo();
391 if (FTy
->getParamType(2) != PPInt8Ty
) {
392 report_fatal_error("Invalid type for third argument of main() supplied");
396 if (FTy
->getParamType(1) != PPInt8Ty
) {
397 report_fatal_error("Invalid type for second argument of main() supplied");
401 if (!FTy
->getParamType(0)->isIntegerTy(32)) {
402 report_fatal_error("Invalid type for first argument of main() supplied");
406 if (!FTy
->getReturnType()->isIntegerTy() &&
407 !FTy
->getReturnType()->isVoidTy()) {
408 report_fatal_error("Invalid return type of main() supplied");
412 report_fatal_error("Invalid number of arguments of main() supplied");
418 GVArgs
.push_back(GVArgc
); // Arg #0 = argc.
421 GVArgs
.push_back(PTOGV(CArgv
.reset(Fn
->getContext(), this, argv
)));
422 assert(!isTargetNullPtr(this, GVTOP(GVArgs
[1])) &&
423 "argv[0] was null after CreateArgv");
425 std::vector
<std::string
> EnvVars
;
426 for (unsigned i
= 0; envp
[i
]; ++i
)
427 EnvVars
.push_back(envp
[i
]);
429 GVArgs
.push_back(PTOGV(CEnv
.reset(Fn
->getContext(), this, EnvVars
)));
433 return runFunction(Fn
, GVArgs
).IntVal
.getZExtValue();
436 /// If possible, create a JIT, unless the caller specifically requests an
437 /// Interpreter or there's an error. If even an Interpreter cannot be created,
438 /// NULL is returned.
440 ExecutionEngine
*ExecutionEngine::create(Module
*M
,
441 bool ForceInterpreter
,
442 std::string
*ErrorStr
,
443 CodeGenOpt::Level OptLevel
,
445 return EngineBuilder(M
)
446 .setEngineKind(ForceInterpreter
447 ? EngineKind::Interpreter
449 .setErrorStr(ErrorStr
)
450 .setOptLevel(OptLevel
)
451 .setAllocateGVsWithCode(GVsWithCode
)
455 ExecutionEngine
*EngineBuilder::create() {
456 // Make sure we can resolve symbols in the program as well. The zero arg
457 // to the function tells DynamicLibrary to load the program, not a library.
458 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
))
461 // If the user specified a memory manager but didn't specify which engine to
462 // create, we assume they only want the JIT, and we fail if they only want
465 if (WhichEngine
& EngineKind::JIT
)
466 WhichEngine
= EngineKind::JIT
;
469 *ErrorStr
= "Cannot create an interpreter with a memory manager.";
474 // Unless the interpreter was explicitly selected or the JIT is not linked,
476 if (WhichEngine
& EngineKind::JIT
) {
477 if (ExecutionEngine::JITCtor
) {
478 ExecutionEngine
*EE
=
479 ExecutionEngine::JITCtor(M
, ErrorStr
, JMM
, OptLevel
,
480 AllocateGVsWithCode
, CMModel
,
481 MArch
, MCPU
, MAttrs
);
486 // If we can't make a JIT and we didn't request one specifically, try making
487 // an interpreter instead.
488 if (WhichEngine
& EngineKind::Interpreter
) {
489 if (ExecutionEngine::InterpCtor
)
490 return ExecutionEngine::InterpCtor(M
, ErrorStr
);
492 *ErrorStr
= "Interpreter has not been linked in.";
496 if ((WhichEngine
& EngineKind::JIT
) && ExecutionEngine::JITCtor
== 0) {
498 *ErrorStr
= "JIT has not been linked in.";
503 /// getPointerToGlobal - This returns the address of the specified global
504 /// value. This may involve code generation if it's a function.
506 void *ExecutionEngine::getPointerToGlobal(const GlobalValue
*GV
) {
507 if (Function
*F
= const_cast<Function
*>(dyn_cast
<Function
>(GV
)))
508 return getPointerToFunction(F
);
510 MutexGuard
locked(lock
);
511 void *p
= EEState
.getGlobalAddressMap(locked
)[GV
];
515 // Global variable might have been added since interpreter started.
516 if (GlobalVariable
*GVar
=
517 const_cast<GlobalVariable
*>(dyn_cast
<GlobalVariable
>(GV
)))
518 EmitGlobalVariable(GVar
);
520 llvm_unreachable("Global hasn't had an address allocated yet!");
521 return EEState
.getGlobalAddressMap(locked
)[GV
];
524 /// This function converts a Constant* into a GenericValue. The interesting
525 /// part is if C is a ConstantExpr.
526 /// @brief Get a GenericValue for a Constant*
527 GenericValue
ExecutionEngine::getConstantValue(const Constant
*C
) {
528 // If its undefined, return the garbage.
529 if (isa
<UndefValue
>(C
)) {
531 switch (C
->getType()->getTypeID()) {
532 case Type::IntegerTyID
:
533 case Type::X86_FP80TyID
:
534 case Type::FP128TyID
:
535 case Type::PPC_FP128TyID
:
536 // Although the value is undefined, we still have to construct an APInt
537 // with the correct bit width.
538 Result
.IntVal
= APInt(C
->getType()->getPrimitiveSizeInBits(), 0);
546 // If the value is a ConstantExpr
547 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
548 Constant
*Op0
= CE
->getOperand(0);
549 switch (CE
->getOpcode()) {
550 case Instruction::GetElementPtr
: {
552 GenericValue Result
= getConstantValue(Op0
);
553 SmallVector
<Value
*, 8> Indices(CE
->op_begin()+1, CE
->op_end());
555 TD
->getIndexedOffset(Op0
->getType(), &Indices
[0], Indices
.size());
557 char* tmp
= (char*) Result
.PointerVal
;
558 Result
= PTOGV(tmp
+ Offset
);
561 case Instruction::Trunc
: {
562 GenericValue GV
= getConstantValue(Op0
);
563 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
564 GV
.IntVal
= GV
.IntVal
.trunc(BitWidth
);
567 case Instruction::ZExt
: {
568 GenericValue GV
= getConstantValue(Op0
);
569 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
570 GV
.IntVal
= GV
.IntVal
.zext(BitWidth
);
573 case Instruction::SExt
: {
574 GenericValue GV
= getConstantValue(Op0
);
575 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
576 GV
.IntVal
= GV
.IntVal
.sext(BitWidth
);
579 case Instruction::FPTrunc
: {
581 GenericValue GV
= getConstantValue(Op0
);
582 GV
.FloatVal
= float(GV
.DoubleVal
);
585 case Instruction::FPExt
:{
587 GenericValue GV
= getConstantValue(Op0
);
588 GV
.DoubleVal
= double(GV
.FloatVal
);
591 case Instruction::UIToFP
: {
592 GenericValue GV
= getConstantValue(Op0
);
593 if (CE
->getType()->isFloatTy())
594 GV
.FloatVal
= float(GV
.IntVal
.roundToDouble());
595 else if (CE
->getType()->isDoubleTy())
596 GV
.DoubleVal
= GV
.IntVal
.roundToDouble();
597 else if (CE
->getType()->isX86_FP80Ty()) {
598 const uint64_t zero
[] = {0, 0};
599 APFloat apf
= APFloat(APInt(80, 2, zero
));
600 (void)apf
.convertFromAPInt(GV
.IntVal
,
602 APFloat::rmNearestTiesToEven
);
603 GV
.IntVal
= apf
.bitcastToAPInt();
607 case Instruction::SIToFP
: {
608 GenericValue GV
= getConstantValue(Op0
);
609 if (CE
->getType()->isFloatTy())
610 GV
.FloatVal
= float(GV
.IntVal
.signedRoundToDouble());
611 else if (CE
->getType()->isDoubleTy())
612 GV
.DoubleVal
= GV
.IntVal
.signedRoundToDouble();
613 else if (CE
->getType()->isX86_FP80Ty()) {
614 const uint64_t zero
[] = { 0, 0};
615 APFloat apf
= APFloat(APInt(80, 2, zero
));
616 (void)apf
.convertFromAPInt(GV
.IntVal
,
618 APFloat::rmNearestTiesToEven
);
619 GV
.IntVal
= apf
.bitcastToAPInt();
623 case Instruction::FPToUI
: // double->APInt conversion handles sign
624 case Instruction::FPToSI
: {
625 GenericValue GV
= getConstantValue(Op0
);
626 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
627 if (Op0
->getType()->isFloatTy())
628 GV
.IntVal
= APIntOps::RoundFloatToAPInt(GV
.FloatVal
, BitWidth
);
629 else if (Op0
->getType()->isDoubleTy())
630 GV
.IntVal
= APIntOps::RoundDoubleToAPInt(GV
.DoubleVal
, BitWidth
);
631 else if (Op0
->getType()->isX86_FP80Ty()) {
632 APFloat apf
= APFloat(GV
.IntVal
);
635 (void)apf
.convertToInteger(&v
, BitWidth
,
636 CE
->getOpcode()==Instruction::FPToSI
,
637 APFloat::rmTowardZero
, &ignored
);
638 GV
.IntVal
= v
; // endian?
642 case Instruction::PtrToInt
: {
643 GenericValue GV
= getConstantValue(Op0
);
644 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
645 GV
.IntVal
= APInt(PtrWidth
, uintptr_t(GV
.PointerVal
));
648 case Instruction::IntToPtr
: {
649 GenericValue GV
= getConstantValue(Op0
);
650 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
651 if (PtrWidth
!= GV
.IntVal
.getBitWidth())
652 GV
.IntVal
= GV
.IntVal
.zextOrTrunc(PtrWidth
);
653 assert(GV
.IntVal
.getBitWidth() <= 64 && "Bad pointer width");
654 GV
.PointerVal
= PointerTy(uintptr_t(GV
.IntVal
.getZExtValue()));
657 case Instruction::BitCast
: {
658 GenericValue GV
= getConstantValue(Op0
);
659 const Type
* DestTy
= CE
->getType();
660 switch (Op0
->getType()->getTypeID()) {
661 default: llvm_unreachable("Invalid bitcast operand");
662 case Type::IntegerTyID
:
663 assert(DestTy
->isFloatingPointTy() && "invalid bitcast");
664 if (DestTy
->isFloatTy())
665 GV
.FloatVal
= GV
.IntVal
.bitsToFloat();
666 else if (DestTy
->isDoubleTy())
667 GV
.DoubleVal
= GV
.IntVal
.bitsToDouble();
669 case Type::FloatTyID
:
670 assert(DestTy
->isIntegerTy(32) && "Invalid bitcast");
671 GV
.IntVal
.floatToBits(GV
.FloatVal
);
673 case Type::DoubleTyID
:
674 assert(DestTy
->isIntegerTy(64) && "Invalid bitcast");
675 GV
.IntVal
.doubleToBits(GV
.DoubleVal
);
677 case Type::PointerTyID
:
678 assert(DestTy
->isPointerTy() && "Invalid bitcast");
679 break; // getConstantValue(Op0) above already converted it
683 case Instruction::Add
:
684 case Instruction::FAdd
:
685 case Instruction::Sub
:
686 case Instruction::FSub
:
687 case Instruction::Mul
:
688 case Instruction::FMul
:
689 case Instruction::UDiv
:
690 case Instruction::SDiv
:
691 case Instruction::URem
:
692 case Instruction::SRem
:
693 case Instruction::And
:
694 case Instruction::Or
:
695 case Instruction::Xor
: {
696 GenericValue LHS
= getConstantValue(Op0
);
697 GenericValue RHS
= getConstantValue(CE
->getOperand(1));
699 switch (CE
->getOperand(0)->getType()->getTypeID()) {
700 default: llvm_unreachable("Bad add type!");
701 case Type::IntegerTyID
:
702 switch (CE
->getOpcode()) {
703 default: llvm_unreachable("Invalid integer opcode");
704 case Instruction::Add
: GV
.IntVal
= LHS
.IntVal
+ RHS
.IntVal
; break;
705 case Instruction::Sub
: GV
.IntVal
= LHS
.IntVal
- RHS
.IntVal
; break;
706 case Instruction::Mul
: GV
.IntVal
= LHS
.IntVal
* RHS
.IntVal
; break;
707 case Instruction::UDiv
:GV
.IntVal
= LHS
.IntVal
.udiv(RHS
.IntVal
); break;
708 case Instruction::SDiv
:GV
.IntVal
= LHS
.IntVal
.sdiv(RHS
.IntVal
); break;
709 case Instruction::URem
:GV
.IntVal
= LHS
.IntVal
.urem(RHS
.IntVal
); break;
710 case Instruction::SRem
:GV
.IntVal
= LHS
.IntVal
.srem(RHS
.IntVal
); break;
711 case Instruction::And
: GV
.IntVal
= LHS
.IntVal
& RHS
.IntVal
; break;
712 case Instruction::Or
: GV
.IntVal
= LHS
.IntVal
| RHS
.IntVal
; break;
713 case Instruction::Xor
: GV
.IntVal
= LHS
.IntVal
^ RHS
.IntVal
; break;
716 case Type::FloatTyID
:
717 switch (CE
->getOpcode()) {
718 default: llvm_unreachable("Invalid float opcode");
719 case Instruction::FAdd
:
720 GV
.FloatVal
= LHS
.FloatVal
+ RHS
.FloatVal
; break;
721 case Instruction::FSub
:
722 GV
.FloatVal
= LHS
.FloatVal
- RHS
.FloatVal
; break;
723 case Instruction::FMul
:
724 GV
.FloatVal
= LHS
.FloatVal
* RHS
.FloatVal
; break;
725 case Instruction::FDiv
:
726 GV
.FloatVal
= LHS
.FloatVal
/ RHS
.FloatVal
; break;
727 case Instruction::FRem
:
728 GV
.FloatVal
= std::fmod(LHS
.FloatVal
,RHS
.FloatVal
); break;
731 case Type::DoubleTyID
:
732 switch (CE
->getOpcode()) {
733 default: llvm_unreachable("Invalid double opcode");
734 case Instruction::FAdd
:
735 GV
.DoubleVal
= LHS
.DoubleVal
+ RHS
.DoubleVal
; break;
736 case Instruction::FSub
:
737 GV
.DoubleVal
= LHS
.DoubleVal
- RHS
.DoubleVal
; break;
738 case Instruction::FMul
:
739 GV
.DoubleVal
= LHS
.DoubleVal
* RHS
.DoubleVal
; break;
740 case Instruction::FDiv
:
741 GV
.DoubleVal
= LHS
.DoubleVal
/ RHS
.DoubleVal
; break;
742 case Instruction::FRem
:
743 GV
.DoubleVal
= std::fmod(LHS
.DoubleVal
,RHS
.DoubleVal
); break;
746 case Type::X86_FP80TyID
:
747 case Type::PPC_FP128TyID
:
748 case Type::FP128TyID
: {
749 APFloat apfLHS
= APFloat(LHS
.IntVal
);
750 switch (CE
->getOpcode()) {
751 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
752 case Instruction::FAdd
:
753 apfLHS
.add(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
754 GV
.IntVal
= apfLHS
.bitcastToAPInt();
756 case Instruction::FSub
:
757 apfLHS
.subtract(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
758 GV
.IntVal
= apfLHS
.bitcastToAPInt();
760 case Instruction::FMul
:
761 apfLHS
.multiply(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
762 GV
.IntVal
= apfLHS
.bitcastToAPInt();
764 case Instruction::FDiv
:
765 apfLHS
.divide(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
766 GV
.IntVal
= apfLHS
.bitcastToAPInt();
768 case Instruction::FRem
:
769 apfLHS
.mod(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
770 GV
.IntVal
= apfLHS
.bitcastToAPInt();
782 raw_string_ostream
Msg(msg
);
783 Msg
<< "ConstantExpr not handled: " << *CE
;
784 report_fatal_error(Msg
.str());
788 switch (C
->getType()->getTypeID()) {
789 case Type::FloatTyID
:
790 Result
.FloatVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToFloat();
792 case Type::DoubleTyID
:
793 Result
.DoubleVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToDouble();
795 case Type::X86_FP80TyID
:
796 case Type::FP128TyID
:
797 case Type::PPC_FP128TyID
:
798 Result
.IntVal
= cast
<ConstantFP
>(C
)->getValueAPF().bitcastToAPInt();
800 case Type::IntegerTyID
:
801 Result
.IntVal
= cast
<ConstantInt
>(C
)->getValue();
803 case Type::PointerTyID
:
804 if (isa
<ConstantPointerNull
>(C
))
805 Result
.PointerVal
= 0;
806 else if (const Function
*F
= dyn_cast
<Function
>(C
))
807 Result
= PTOGV(getPointerToFunctionOrStub(const_cast<Function
*>(F
)));
808 else if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
))
809 Result
= PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable
*>(GV
)));
810 else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
811 Result
= PTOGV(getPointerToBasicBlock(const_cast<BasicBlock
*>(
812 BA
->getBasicBlock())));
814 llvm_unreachable("Unknown constant pointer type!");
818 raw_string_ostream
Msg(msg
);
819 Msg
<< "ERROR: Constant unimplemented for type: " << *C
->getType();
820 report_fatal_error(Msg
.str());
825 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
826 /// with the integer held in IntVal.
827 static void StoreIntToMemory(const APInt
&IntVal
, uint8_t *Dst
,
828 unsigned StoreBytes
) {
829 assert((IntVal
.getBitWidth()+7)/8 >= StoreBytes
&& "Integer too small!");
830 uint8_t *Src
= (uint8_t *)IntVal
.getRawData();
832 if (sys::isLittleEndianHost())
833 // Little-endian host - the source is ordered from LSB to MSB. Order the
834 // destination from LSB to MSB: Do a straight copy.
835 memcpy(Dst
, Src
, StoreBytes
);
837 // Big-endian host - the source is an array of 64 bit words ordered from
838 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
839 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
840 while (StoreBytes
> sizeof(uint64_t)) {
841 StoreBytes
-= sizeof(uint64_t);
842 // May not be aligned so use memcpy.
843 memcpy(Dst
+ StoreBytes
, Src
, sizeof(uint64_t));
844 Src
+= sizeof(uint64_t);
847 memcpy(Dst
, Src
+ sizeof(uint64_t) - StoreBytes
, StoreBytes
);
851 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
852 /// is the address of the memory at which to store Val, cast to GenericValue *.
853 /// It is not a pointer to a GenericValue containing the address at which to
855 void ExecutionEngine::StoreValueToMemory(const GenericValue
&Val
,
856 GenericValue
*Ptr
, const Type
*Ty
) {
857 const unsigned StoreBytes
= getTargetData()->getTypeStoreSize(Ty
);
859 switch (Ty
->getTypeID()) {
860 case Type::IntegerTyID
:
861 StoreIntToMemory(Val
.IntVal
, (uint8_t*)Ptr
, StoreBytes
);
863 case Type::FloatTyID
:
864 *((float*)Ptr
) = Val
.FloatVal
;
866 case Type::DoubleTyID
:
867 *((double*)Ptr
) = Val
.DoubleVal
;
869 case Type::X86_FP80TyID
:
870 memcpy(Ptr
, Val
.IntVal
.getRawData(), 10);
872 case Type::PointerTyID
:
873 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
874 if (StoreBytes
!= sizeof(PointerTy
))
875 memset(Ptr
, 0, StoreBytes
);
877 *((PointerTy
*)Ptr
) = Val
.PointerVal
;
880 dbgs() << "Cannot store value of type " << *Ty
<< "!\n";
883 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
884 // Host and target are different endian - reverse the stored bytes.
885 std::reverse((uint8_t*)Ptr
, StoreBytes
+ (uint8_t*)Ptr
);
888 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
889 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
890 static void LoadIntFromMemory(APInt
&IntVal
, uint8_t *Src
, unsigned LoadBytes
) {
891 assert((IntVal
.getBitWidth()+7)/8 >= LoadBytes
&& "Integer too small!");
892 uint8_t *Dst
= (uint8_t *)IntVal
.getRawData();
894 if (sys::isLittleEndianHost())
895 // Little-endian host - the destination must be ordered from LSB to MSB.
896 // The source is ordered from LSB to MSB: Do a straight copy.
897 memcpy(Dst
, Src
, LoadBytes
);
899 // Big-endian - the destination is an array of 64 bit words ordered from
900 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
901 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
903 while (LoadBytes
> sizeof(uint64_t)) {
904 LoadBytes
-= sizeof(uint64_t);
905 // May not be aligned so use memcpy.
906 memcpy(Dst
, Src
+ LoadBytes
, sizeof(uint64_t));
907 Dst
+= sizeof(uint64_t);
910 memcpy(Dst
+ sizeof(uint64_t) - LoadBytes
, Src
, LoadBytes
);
916 void ExecutionEngine::LoadValueFromMemory(GenericValue
&Result
,
919 const unsigned LoadBytes
= getTargetData()->getTypeStoreSize(Ty
);
921 switch (Ty
->getTypeID()) {
922 case Type::IntegerTyID
:
923 // An APInt with all words initially zero.
924 Result
.IntVal
= APInt(cast
<IntegerType
>(Ty
)->getBitWidth(), 0);
925 LoadIntFromMemory(Result
.IntVal
, (uint8_t*)Ptr
, LoadBytes
);
927 case Type::FloatTyID
:
928 Result
.FloatVal
= *((float*)Ptr
);
930 case Type::DoubleTyID
:
931 Result
.DoubleVal
= *((double*)Ptr
);
933 case Type::PointerTyID
:
934 Result
.PointerVal
= *((PointerTy
*)Ptr
);
936 case Type::X86_FP80TyID
: {
937 // This is endian dependent, but it will only work on x86 anyway.
938 // FIXME: Will not trap if loading a signaling NaN.
941 Result
.IntVal
= APInt(80, 2, y
);
946 raw_string_ostream
Msg(msg
);
947 Msg
<< "Cannot load value of type " << *Ty
<< "!";
948 report_fatal_error(Msg
.str());
952 // InitializeMemory - Recursive function to apply a Constant value into the
953 // specified memory location...
955 void ExecutionEngine::InitializeMemory(const Constant
*Init
, void *Addr
) {
956 DEBUG(dbgs() << "JIT: Initializing " << Addr
<< " ");
958 if (isa
<UndefValue
>(Init
)) {
960 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Init
)) {
961 unsigned ElementSize
=
962 getTargetData()->getTypeAllocSize(CP
->getType()->getElementType());
963 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
964 InitializeMemory(CP
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
966 } else if (isa
<ConstantAggregateZero
>(Init
)) {
967 memset(Addr
, 0, (size_t)getTargetData()->getTypeAllocSize(Init
->getType()));
969 } else if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(Init
)) {
970 unsigned ElementSize
=
971 getTargetData()->getTypeAllocSize(CPA
->getType()->getElementType());
972 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
973 InitializeMemory(CPA
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
975 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(Init
)) {
976 const StructLayout
*SL
=
977 getTargetData()->getStructLayout(cast
<StructType
>(CPS
->getType()));
978 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
979 InitializeMemory(CPS
->getOperand(i
), (char*)Addr
+SL
->getElementOffset(i
));
981 } else if (Init
->getType()->isFirstClassType()) {
982 GenericValue Val
= getConstantValue(Init
);
983 StoreValueToMemory(Val
, (GenericValue
*)Addr
, Init
->getType());
987 dbgs() << "Bad Type: " << *Init
->getType() << "\n";
988 llvm_unreachable("Unknown constant type to initialize memory with!");
991 /// EmitGlobals - Emit all of the global variables to memory, storing their
992 /// addresses into GlobalAddress. This must make sure to copy the contents of
993 /// their initializers into the memory.
995 void ExecutionEngine::emitGlobals() {
997 // Loop over all of the global variables in the program, allocating the memory
998 // to hold them. If there is more than one module, do a prepass over globals
999 // to figure out how the different modules should link together.
1001 std::map
<std::pair
<std::string
, const Type
*>,
1002 const GlobalValue
*> LinkedGlobalsMap
;
1004 if (Modules
.size() != 1) {
1005 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
1006 Module
&M
= *Modules
[m
];
1007 for (Module::const_global_iterator I
= M
.global_begin(),
1008 E
= M
.global_end(); I
!= E
; ++I
) {
1009 const GlobalValue
*GV
= I
;
1010 if (GV
->hasLocalLinkage() || GV
->isDeclaration() ||
1011 GV
->hasAppendingLinkage() || !GV
->hasName())
1012 continue;// Ignore external globals and globals with internal linkage.
1014 const GlobalValue
*&GVEntry
=
1015 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
1017 // If this is the first time we've seen this global, it is the canonical
1024 // If the existing global is strong, never replace it.
1025 if (GVEntry
->hasExternalLinkage() ||
1026 GVEntry
->hasDLLImportLinkage() ||
1027 GVEntry
->hasDLLExportLinkage())
1030 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1031 // symbol. FIXME is this right for common?
1032 if (GV
->hasExternalLinkage() || GVEntry
->hasExternalWeakLinkage())
1038 std::vector
<const GlobalValue
*> NonCanonicalGlobals
;
1039 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
1040 Module
&M
= *Modules
[m
];
1041 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
1043 // In the multi-module case, see what this global maps to.
1044 if (!LinkedGlobalsMap
.empty()) {
1045 if (const GlobalValue
*GVEntry
=
1046 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())]) {
1047 // If something else is the canonical global, ignore this one.
1048 if (GVEntry
!= &*I
) {
1049 NonCanonicalGlobals
.push_back(I
);
1055 if (!I
->isDeclaration()) {
1056 addGlobalMapping(I
, getMemoryForGV(I
));
1058 // External variable reference. Try to use the dynamic loader to
1059 // get a pointer to it.
1061 sys::DynamicLibrary::SearchForAddressOfSymbol(I
->getName()))
1062 addGlobalMapping(I
, SymAddr
);
1064 report_fatal_error("Could not resolve external global address: "
1070 // If there are multiple modules, map the non-canonical globals to their
1071 // canonical location.
1072 if (!NonCanonicalGlobals
.empty()) {
1073 for (unsigned i
= 0, e
= NonCanonicalGlobals
.size(); i
!= e
; ++i
) {
1074 const GlobalValue
*GV
= NonCanonicalGlobals
[i
];
1075 const GlobalValue
*CGV
=
1076 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
1077 void *Ptr
= getPointerToGlobalIfAvailable(CGV
);
1078 assert(Ptr
&& "Canonical global wasn't codegen'd!");
1079 addGlobalMapping(GV
, Ptr
);
1083 // Now that all of the globals are set up in memory, loop through them all
1084 // and initialize their contents.
1085 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
1087 if (!I
->isDeclaration()) {
1088 if (!LinkedGlobalsMap
.empty()) {
1089 if (const GlobalValue
*GVEntry
=
1090 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())])
1091 if (GVEntry
!= &*I
) // Not the canonical variable.
1094 EmitGlobalVariable(I
);
1100 // EmitGlobalVariable - This method emits the specified global variable to the
1101 // address specified in GlobalAddresses, or allocates new memory if it's not
1102 // already in the map.
1103 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable
*GV
) {
1104 void *GA
= getPointerToGlobalIfAvailable(GV
);
1107 // If it's not already specified, allocate memory for the global.
1108 GA
= getMemoryForGV(GV
);
1109 addGlobalMapping(GV
, GA
);
1112 // Don't initialize if it's thread local, let the client do it.
1113 if (!GV
->isThreadLocal())
1114 InitializeMemory(GV
->getInitializer(), GA
);
1116 const Type
*ElTy
= GV
->getType()->getElementType();
1117 size_t GVSize
= (size_t)getTargetData()->getTypeAllocSize(ElTy
);
1118 NumInitBytes
+= (unsigned)GVSize
;
1122 ExecutionEngineState::ExecutionEngineState(ExecutionEngine
&EE
)
1123 : EE(EE
), GlobalAddressMap(this) {
1126 sys::Mutex
*ExecutionEngineState::AddressMapConfig::getMutex(
1127 ExecutionEngineState
*EES
) {
1128 return &EES
->EE
.lock
;
1130 void ExecutionEngineState::AddressMapConfig::onDelete(
1131 ExecutionEngineState
*EES
, const GlobalValue
*Old
) {
1132 void *OldVal
= EES
->GlobalAddressMap
.lookup(Old
);
1133 EES
->GlobalAddressReverseMap
.erase(OldVal
);
1136 void ExecutionEngineState::AddressMapConfig::onRAUW(
1137 ExecutionEngineState
*, const GlobalValue
*, const GlobalValue
*) {
1138 assert(false && "The ExecutionEngine doesn't know how to handle a"
1139 " RAUW on a value it has a global mapping for.");