zpu: wip eke out some simple instructions for load/store/add
[llvm/zpu.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blob77082c4d04190d92433360e186dea694386e9411
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MutexGuard.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/DynamicLibrary.h"
29 #include "llvm/System/Host.h"
30 #include "llvm/Target/TargetData.h"
31 #include <cmath>
32 #include <cstring>
33 using namespace llvm;
35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
36 STATISTIC(NumGlobals , "Number of global vars initialized");
38 ExecutionEngine *(*ExecutionEngine::JITCtor)(
39 Module *M,
40 std::string *ErrorStr,
41 JITMemoryManager *JMM,
42 CodeGenOpt::Level OptLevel,
43 bool GVsWithCode,
44 CodeModel::Model CMM,
45 StringRef MArch,
46 StringRef MCPU,
47 const SmallVectorImpl<std::string>& MAttrs) = 0;
48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
49 std::string *ErrorStr) = 0;
51 ExecutionEngine::ExecutionEngine(Module *M)
52 : EEState(*this),
53 LazyFunctionCreator(0),
54 ExceptionTableRegister(0),
55 ExceptionTableDeregister(0) {
56 CompilingLazily = false;
57 GVCompilationDisabled = false;
58 SymbolSearchingDisabled = false;
59 Modules.push_back(M);
60 assert(M && "Module is null?");
63 ExecutionEngine::~ExecutionEngine() {
64 clearAllGlobalMappings();
65 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
66 delete Modules[i];
69 void ExecutionEngine::DeregisterAllTables() {
70 if (ExceptionTableDeregister) {
71 std::vector<void*>::iterator it = AllExceptionTables.begin();
72 std::vector<void*>::iterator ite = AllExceptionTables.end();
73 for (; it != ite; ++it)
74 ExceptionTableDeregister(*it);
75 AllExceptionTables.clear();
79 namespace {
80 // This class automatically deletes the memory block when the GlobalVariable is
81 // destroyed.
82 class GVMemoryBlock : public CallbackVH {
83 GVMemoryBlock(const GlobalVariable *GV)
84 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
86 public:
87 // Returns the address the GlobalVariable should be written into. The
88 // GVMemoryBlock object prefixes that.
89 static char *Create(const GlobalVariable *GV, const TargetData& TD) {
90 const Type *ElTy = GV->getType()->getElementType();
91 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
92 void *RawMemory = ::operator new(
93 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
94 TD.getPreferredAlignment(GV))
95 + GVSize);
96 new(RawMemory) GVMemoryBlock(GV);
97 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
100 virtual void deleted() {
101 // We allocated with operator new and with some extra memory hanging off the
102 // end, so don't just delete this. I'm not sure if this is actually
103 // required.
104 this->~GVMemoryBlock();
105 ::operator delete(this);
108 } // anonymous namespace
110 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
111 return GVMemoryBlock::Create(GV, *getTargetData());
114 /// removeModule - Remove a Module from the list of modules.
115 bool ExecutionEngine::removeModule(Module *M) {
116 for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
117 E = Modules.end(); I != E; ++I) {
118 Module *Found = *I;
119 if (Found == M) {
120 Modules.erase(I);
121 clearGlobalMappingsFromModule(M);
122 return true;
125 return false;
128 /// FindFunctionNamed - Search all of the active modules to find the one that
129 /// defines FnName. This is very slow operation and shouldn't be used for
130 /// general code.
131 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
132 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
133 if (Function *F = Modules[i]->getFunction(FnName))
134 return F;
136 return 0;
140 void *ExecutionEngineState::RemoveMapping(
141 const MutexGuard &, const GlobalValue *ToUnmap) {
142 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
143 void *OldVal;
144 if (I == GlobalAddressMap.end())
145 OldVal = 0;
146 else {
147 OldVal = I->second;
148 GlobalAddressMap.erase(I);
151 GlobalAddressReverseMap.erase(OldVal);
152 return OldVal;
155 /// addGlobalMapping - Tell the execution engine that the specified global is
156 /// at the specified location. This is used internally as functions are JIT'd
157 /// and as global variables are laid out in memory. It can and should also be
158 /// used by clients of the EE that want to have an LLVM global overlay
159 /// existing data in memory.
160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
161 MutexGuard locked(lock);
163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
164 << "\' to [" << Addr << "]\n";);
165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
167 CurVal = Addr;
169 // If we are using the reverse mapping, add it too
170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
171 AssertingVH<const GlobalValue> &V =
172 EEState.getGlobalAddressReverseMap(locked)[Addr];
173 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
174 V = GV;
178 /// clearAllGlobalMappings - Clear all global mappings and start over again
179 /// use in dynamic compilation scenarios when you want to move globals
180 void ExecutionEngine::clearAllGlobalMappings() {
181 MutexGuard locked(lock);
183 EEState.getGlobalAddressMap(locked).clear();
184 EEState.getGlobalAddressReverseMap(locked).clear();
187 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
188 /// particular module, because it has been removed from the JIT.
189 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
190 MutexGuard locked(lock);
192 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
193 EEState.RemoveMapping(locked, FI);
195 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
196 GI != GE; ++GI) {
197 EEState.RemoveMapping(locked, GI);
201 /// updateGlobalMapping - Replace an existing mapping for GV with a new
202 /// address. This updates both maps as required. If "Addr" is null, the
203 /// entry for the global is removed from the mappings.
204 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
205 MutexGuard locked(lock);
207 ExecutionEngineState::GlobalAddressMapTy &Map =
208 EEState.getGlobalAddressMap(locked);
210 // Deleting from the mapping?
211 if (Addr == 0) {
212 return EEState.RemoveMapping(locked, GV);
215 void *&CurVal = Map[GV];
216 void *OldVal = CurVal;
218 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
219 EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
220 CurVal = Addr;
222 // If we are using the reverse mapping, add it too
223 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
224 AssertingVH<const GlobalValue> &V =
225 EEState.getGlobalAddressReverseMap(locked)[Addr];
226 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
227 V = GV;
229 return OldVal;
232 /// getPointerToGlobalIfAvailable - This returns the address of the specified
233 /// global value if it is has already been codegen'd, otherwise it returns null.
235 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
236 MutexGuard locked(lock);
238 ExecutionEngineState::GlobalAddressMapTy::iterator I =
239 EEState.getGlobalAddressMap(locked).find(GV);
240 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
243 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
244 /// at the specified address.
246 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
247 MutexGuard locked(lock);
249 // If we haven't computed the reverse mapping yet, do so first.
250 if (EEState.getGlobalAddressReverseMap(locked).empty()) {
251 for (ExecutionEngineState::GlobalAddressMapTy::iterator
252 I = EEState.getGlobalAddressMap(locked).begin(),
253 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
254 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
255 I->first));
258 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
259 EEState.getGlobalAddressReverseMap(locked).find(Addr);
260 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
263 namespace {
264 class ArgvArray {
265 char *Array;
266 std::vector<char*> Values;
267 public:
268 ArgvArray() : Array(NULL) {}
269 ~ArgvArray() { clear(); }
270 void clear() {
271 delete[] Array;
272 Array = NULL;
273 for (size_t I = 0, E = Values.size(); I != E; ++I) {
274 delete[] Values[I];
276 Values.clear();
278 /// Turn a vector of strings into a nice argv style array of pointers to null
279 /// terminated strings.
280 void *reset(LLVMContext &C, ExecutionEngine *EE,
281 const std::vector<std::string> &InputArgv);
283 } // anonymous namespace
284 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
285 const std::vector<std::string> &InputArgv) {
286 clear(); // Free the old contents.
287 unsigned PtrSize = EE->getTargetData()->getPointerSize();
288 Array = new char[(InputArgv.size()+1)*PtrSize];
290 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
291 const Type *SBytePtr = Type::getInt8PtrTy(C);
293 for (unsigned i = 0; i != InputArgv.size(); ++i) {
294 unsigned Size = InputArgv[i].size()+1;
295 char *Dest = new char[Size];
296 Values.push_back(Dest);
297 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
299 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
300 Dest[Size-1] = 0;
302 // Endian safe: Array[i] = (PointerTy)Dest;
303 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
304 SBytePtr);
307 // Null terminate it
308 EE->StoreValueToMemory(PTOGV(0),
309 (GenericValue*)(Array+InputArgv.size()*PtrSize),
310 SBytePtr);
311 return Array;
315 /// runStaticConstructorsDestructors - This method is used to execute all of
316 /// the static constructors or destructors for a module, depending on the
317 /// value of isDtors.
318 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
319 bool isDtors) {
320 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
322 // Execute global ctors/dtors for each module in the program.
324 GlobalVariable *GV = module->getNamedGlobal(Name);
326 // If this global has internal linkage, or if it has a use, then it must be
327 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
328 // this is the case, don't execute any of the global ctors, __main will do
329 // it.
330 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
332 // Should be an array of '{ int, void ()* }' structs. The first value is
333 // the init priority, which we ignore.
334 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
335 if (!InitList) return;
336 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
337 if (ConstantStruct *CS =
338 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
339 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
341 Constant *FP = CS->getOperand(1);
342 if (FP->isNullValue())
343 break; // Found a null terminator, exit.
345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
346 if (CE->isCast())
347 FP = CE->getOperand(0);
348 if (Function *F = dyn_cast<Function>(FP)) {
349 // Execute the ctor/dtor function!
350 runFunction(F, std::vector<GenericValue>());
355 /// runStaticConstructorsDestructors - This method is used to execute all of
356 /// the static constructors or destructors for a program, depending on the
357 /// value of isDtors.
358 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
359 // Execute global ctors/dtors for each module in the program.
360 for (unsigned m = 0, e = Modules.size(); m != e; ++m)
361 runStaticConstructorsDestructors(Modules[m], isDtors);
364 #ifndef NDEBUG
365 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
366 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
367 unsigned PtrSize = EE->getTargetData()->getPointerSize();
368 for (unsigned i = 0; i < PtrSize; ++i)
369 if (*(i + (uint8_t*)Loc))
370 return false;
371 return true;
373 #endif
375 /// runFunctionAsMain - This is a helper function which wraps runFunction to
376 /// handle the common task of starting up main with the specified argc, argv,
377 /// and envp parameters.
378 int ExecutionEngine::runFunctionAsMain(Function *Fn,
379 const std::vector<std::string> &argv,
380 const char * const * envp) {
381 std::vector<GenericValue> GVArgs;
382 GenericValue GVArgc;
383 GVArgc.IntVal = APInt(32, argv.size());
385 // Check main() type
386 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
387 const FunctionType *FTy = Fn->getFunctionType();
388 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
389 switch (NumArgs) {
390 case 3:
391 if (FTy->getParamType(2) != PPInt8Ty) {
392 report_fatal_error("Invalid type for third argument of main() supplied");
394 // FALLS THROUGH
395 case 2:
396 if (FTy->getParamType(1) != PPInt8Ty) {
397 report_fatal_error("Invalid type for second argument of main() supplied");
399 // FALLS THROUGH
400 case 1:
401 if (!FTy->getParamType(0)->isIntegerTy(32)) {
402 report_fatal_error("Invalid type for first argument of main() supplied");
404 // FALLS THROUGH
405 case 0:
406 if (!FTy->getReturnType()->isIntegerTy() &&
407 !FTy->getReturnType()->isVoidTy()) {
408 report_fatal_error("Invalid return type of main() supplied");
410 break;
411 default:
412 report_fatal_error("Invalid number of arguments of main() supplied");
415 ArgvArray CArgv;
416 ArgvArray CEnv;
417 if (NumArgs) {
418 GVArgs.push_back(GVArgc); // Arg #0 = argc.
419 if (NumArgs > 1) {
420 // Arg #1 = argv.
421 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
422 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
423 "argv[0] was null after CreateArgv");
424 if (NumArgs > 2) {
425 std::vector<std::string> EnvVars;
426 for (unsigned i = 0; envp[i]; ++i)
427 EnvVars.push_back(envp[i]);
428 // Arg #2 = envp.
429 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
433 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
436 /// If possible, create a JIT, unless the caller specifically requests an
437 /// Interpreter or there's an error. If even an Interpreter cannot be created,
438 /// NULL is returned.
440 ExecutionEngine *ExecutionEngine::create(Module *M,
441 bool ForceInterpreter,
442 std::string *ErrorStr,
443 CodeGenOpt::Level OptLevel,
444 bool GVsWithCode) {
445 return EngineBuilder(M)
446 .setEngineKind(ForceInterpreter
447 ? EngineKind::Interpreter
448 : EngineKind::JIT)
449 .setErrorStr(ErrorStr)
450 .setOptLevel(OptLevel)
451 .setAllocateGVsWithCode(GVsWithCode)
452 .create();
455 ExecutionEngine *EngineBuilder::create() {
456 // Make sure we can resolve symbols in the program as well. The zero arg
457 // to the function tells DynamicLibrary to load the program, not a library.
458 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
459 return 0;
461 // If the user specified a memory manager but didn't specify which engine to
462 // create, we assume they only want the JIT, and we fail if they only want
463 // the interpreter.
464 if (JMM) {
465 if (WhichEngine & EngineKind::JIT)
466 WhichEngine = EngineKind::JIT;
467 else {
468 if (ErrorStr)
469 *ErrorStr = "Cannot create an interpreter with a memory manager.";
470 return 0;
474 // Unless the interpreter was explicitly selected or the JIT is not linked,
475 // try making a JIT.
476 if (WhichEngine & EngineKind::JIT) {
477 if (ExecutionEngine::JITCtor) {
478 ExecutionEngine *EE =
479 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
480 AllocateGVsWithCode, CMModel,
481 MArch, MCPU, MAttrs);
482 if (EE) return EE;
486 // If we can't make a JIT and we didn't request one specifically, try making
487 // an interpreter instead.
488 if (WhichEngine & EngineKind::Interpreter) {
489 if (ExecutionEngine::InterpCtor)
490 return ExecutionEngine::InterpCtor(M, ErrorStr);
491 if (ErrorStr)
492 *ErrorStr = "Interpreter has not been linked in.";
493 return 0;
496 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
497 if (ErrorStr)
498 *ErrorStr = "JIT has not been linked in.";
500 return 0;
503 /// getPointerToGlobal - This returns the address of the specified global
504 /// value. This may involve code generation if it's a function.
506 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
507 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
508 return getPointerToFunction(F);
510 MutexGuard locked(lock);
511 void *p = EEState.getGlobalAddressMap(locked)[GV];
512 if (p)
513 return p;
515 // Global variable might have been added since interpreter started.
516 if (GlobalVariable *GVar =
517 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
518 EmitGlobalVariable(GVar);
519 else
520 llvm_unreachable("Global hasn't had an address allocated yet!");
521 return EEState.getGlobalAddressMap(locked)[GV];
524 /// This function converts a Constant* into a GenericValue. The interesting
525 /// part is if C is a ConstantExpr.
526 /// @brief Get a GenericValue for a Constant*
527 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
528 // If its undefined, return the garbage.
529 if (isa<UndefValue>(C)) {
530 GenericValue Result;
531 switch (C->getType()->getTypeID()) {
532 case Type::IntegerTyID:
533 case Type::X86_FP80TyID:
534 case Type::FP128TyID:
535 case Type::PPC_FP128TyID:
536 // Although the value is undefined, we still have to construct an APInt
537 // with the correct bit width.
538 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
539 break;
540 default:
541 break;
543 return Result;
546 // If the value is a ConstantExpr
547 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
548 Constant *Op0 = CE->getOperand(0);
549 switch (CE->getOpcode()) {
550 case Instruction::GetElementPtr: {
551 // Compute the index
552 GenericValue Result = getConstantValue(Op0);
553 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
554 uint64_t Offset =
555 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
557 char* tmp = (char*) Result.PointerVal;
558 Result = PTOGV(tmp + Offset);
559 return Result;
561 case Instruction::Trunc: {
562 GenericValue GV = getConstantValue(Op0);
563 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
564 GV.IntVal = GV.IntVal.trunc(BitWidth);
565 return GV;
567 case Instruction::ZExt: {
568 GenericValue GV = getConstantValue(Op0);
569 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
570 GV.IntVal = GV.IntVal.zext(BitWidth);
571 return GV;
573 case Instruction::SExt: {
574 GenericValue GV = getConstantValue(Op0);
575 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
576 GV.IntVal = GV.IntVal.sext(BitWidth);
577 return GV;
579 case Instruction::FPTrunc: {
580 // FIXME long double
581 GenericValue GV = getConstantValue(Op0);
582 GV.FloatVal = float(GV.DoubleVal);
583 return GV;
585 case Instruction::FPExt:{
586 // FIXME long double
587 GenericValue GV = getConstantValue(Op0);
588 GV.DoubleVal = double(GV.FloatVal);
589 return GV;
591 case Instruction::UIToFP: {
592 GenericValue GV = getConstantValue(Op0);
593 if (CE->getType()->isFloatTy())
594 GV.FloatVal = float(GV.IntVal.roundToDouble());
595 else if (CE->getType()->isDoubleTy())
596 GV.DoubleVal = GV.IntVal.roundToDouble();
597 else if (CE->getType()->isX86_FP80Ty()) {
598 const uint64_t zero[] = {0, 0};
599 APFloat apf = APFloat(APInt(80, 2, zero));
600 (void)apf.convertFromAPInt(GV.IntVal,
601 false,
602 APFloat::rmNearestTiesToEven);
603 GV.IntVal = apf.bitcastToAPInt();
605 return GV;
607 case Instruction::SIToFP: {
608 GenericValue GV = getConstantValue(Op0);
609 if (CE->getType()->isFloatTy())
610 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
611 else if (CE->getType()->isDoubleTy())
612 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
613 else if (CE->getType()->isX86_FP80Ty()) {
614 const uint64_t zero[] = { 0, 0};
615 APFloat apf = APFloat(APInt(80, 2, zero));
616 (void)apf.convertFromAPInt(GV.IntVal,
617 true,
618 APFloat::rmNearestTiesToEven);
619 GV.IntVal = apf.bitcastToAPInt();
621 return GV;
623 case Instruction::FPToUI: // double->APInt conversion handles sign
624 case Instruction::FPToSI: {
625 GenericValue GV = getConstantValue(Op0);
626 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
627 if (Op0->getType()->isFloatTy())
628 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
629 else if (Op0->getType()->isDoubleTy())
630 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
631 else if (Op0->getType()->isX86_FP80Ty()) {
632 APFloat apf = APFloat(GV.IntVal);
633 uint64_t v;
634 bool ignored;
635 (void)apf.convertToInteger(&v, BitWidth,
636 CE->getOpcode()==Instruction::FPToSI,
637 APFloat::rmTowardZero, &ignored);
638 GV.IntVal = v; // endian?
640 return GV;
642 case Instruction::PtrToInt: {
643 GenericValue GV = getConstantValue(Op0);
644 uint32_t PtrWidth = TD->getPointerSizeInBits();
645 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
646 return GV;
648 case Instruction::IntToPtr: {
649 GenericValue GV = getConstantValue(Op0);
650 uint32_t PtrWidth = TD->getPointerSizeInBits();
651 if (PtrWidth != GV.IntVal.getBitWidth())
652 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
653 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
654 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
655 return GV;
657 case Instruction::BitCast: {
658 GenericValue GV = getConstantValue(Op0);
659 const Type* DestTy = CE->getType();
660 switch (Op0->getType()->getTypeID()) {
661 default: llvm_unreachable("Invalid bitcast operand");
662 case Type::IntegerTyID:
663 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
664 if (DestTy->isFloatTy())
665 GV.FloatVal = GV.IntVal.bitsToFloat();
666 else if (DestTy->isDoubleTy())
667 GV.DoubleVal = GV.IntVal.bitsToDouble();
668 break;
669 case Type::FloatTyID:
670 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
671 GV.IntVal.floatToBits(GV.FloatVal);
672 break;
673 case Type::DoubleTyID:
674 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
675 GV.IntVal.doubleToBits(GV.DoubleVal);
676 break;
677 case Type::PointerTyID:
678 assert(DestTy->isPointerTy() && "Invalid bitcast");
679 break; // getConstantValue(Op0) above already converted it
681 return GV;
683 case Instruction::Add:
684 case Instruction::FAdd:
685 case Instruction::Sub:
686 case Instruction::FSub:
687 case Instruction::Mul:
688 case Instruction::FMul:
689 case Instruction::UDiv:
690 case Instruction::SDiv:
691 case Instruction::URem:
692 case Instruction::SRem:
693 case Instruction::And:
694 case Instruction::Or:
695 case Instruction::Xor: {
696 GenericValue LHS = getConstantValue(Op0);
697 GenericValue RHS = getConstantValue(CE->getOperand(1));
698 GenericValue GV;
699 switch (CE->getOperand(0)->getType()->getTypeID()) {
700 default: llvm_unreachable("Bad add type!");
701 case Type::IntegerTyID:
702 switch (CE->getOpcode()) {
703 default: llvm_unreachable("Invalid integer opcode");
704 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
705 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
706 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
707 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
708 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
709 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
710 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
711 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
712 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
713 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
715 break;
716 case Type::FloatTyID:
717 switch (CE->getOpcode()) {
718 default: llvm_unreachable("Invalid float opcode");
719 case Instruction::FAdd:
720 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
721 case Instruction::FSub:
722 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
723 case Instruction::FMul:
724 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
725 case Instruction::FDiv:
726 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
727 case Instruction::FRem:
728 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
730 break;
731 case Type::DoubleTyID:
732 switch (CE->getOpcode()) {
733 default: llvm_unreachable("Invalid double opcode");
734 case Instruction::FAdd:
735 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
736 case Instruction::FSub:
737 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
738 case Instruction::FMul:
739 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
740 case Instruction::FDiv:
741 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
742 case Instruction::FRem:
743 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
745 break;
746 case Type::X86_FP80TyID:
747 case Type::PPC_FP128TyID:
748 case Type::FP128TyID: {
749 APFloat apfLHS = APFloat(LHS.IntVal);
750 switch (CE->getOpcode()) {
751 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
752 case Instruction::FAdd:
753 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
754 GV.IntVal = apfLHS.bitcastToAPInt();
755 break;
756 case Instruction::FSub:
757 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
758 GV.IntVal = apfLHS.bitcastToAPInt();
759 break;
760 case Instruction::FMul:
761 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
762 GV.IntVal = apfLHS.bitcastToAPInt();
763 break;
764 case Instruction::FDiv:
765 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
766 GV.IntVal = apfLHS.bitcastToAPInt();
767 break;
768 case Instruction::FRem:
769 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
770 GV.IntVal = apfLHS.bitcastToAPInt();
771 break;
774 break;
776 return GV;
778 default:
779 break;
781 std::string msg;
782 raw_string_ostream Msg(msg);
783 Msg << "ConstantExpr not handled: " << *CE;
784 report_fatal_error(Msg.str());
787 GenericValue Result;
788 switch (C->getType()->getTypeID()) {
789 case Type::FloatTyID:
790 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
791 break;
792 case Type::DoubleTyID:
793 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
794 break;
795 case Type::X86_FP80TyID:
796 case Type::FP128TyID:
797 case Type::PPC_FP128TyID:
798 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
799 break;
800 case Type::IntegerTyID:
801 Result.IntVal = cast<ConstantInt>(C)->getValue();
802 break;
803 case Type::PointerTyID:
804 if (isa<ConstantPointerNull>(C))
805 Result.PointerVal = 0;
806 else if (const Function *F = dyn_cast<Function>(C))
807 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
808 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
809 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
810 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
811 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
812 BA->getBasicBlock())));
813 else
814 llvm_unreachable("Unknown constant pointer type!");
815 break;
816 default:
817 std::string msg;
818 raw_string_ostream Msg(msg);
819 Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
820 report_fatal_error(Msg.str());
822 return Result;
825 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
826 /// with the integer held in IntVal.
827 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
828 unsigned StoreBytes) {
829 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
830 uint8_t *Src = (uint8_t *)IntVal.getRawData();
832 if (sys::isLittleEndianHost())
833 // Little-endian host - the source is ordered from LSB to MSB. Order the
834 // destination from LSB to MSB: Do a straight copy.
835 memcpy(Dst, Src, StoreBytes);
836 else {
837 // Big-endian host - the source is an array of 64 bit words ordered from
838 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
839 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
840 while (StoreBytes > sizeof(uint64_t)) {
841 StoreBytes -= sizeof(uint64_t);
842 // May not be aligned so use memcpy.
843 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
844 Src += sizeof(uint64_t);
847 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
851 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
852 /// is the address of the memory at which to store Val, cast to GenericValue *.
853 /// It is not a pointer to a GenericValue containing the address at which to
854 /// store Val.
855 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
856 GenericValue *Ptr, const Type *Ty) {
857 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
859 switch (Ty->getTypeID()) {
860 case Type::IntegerTyID:
861 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
862 break;
863 case Type::FloatTyID:
864 *((float*)Ptr) = Val.FloatVal;
865 break;
866 case Type::DoubleTyID:
867 *((double*)Ptr) = Val.DoubleVal;
868 break;
869 case Type::X86_FP80TyID:
870 memcpy(Ptr, Val.IntVal.getRawData(), 10);
871 break;
872 case Type::PointerTyID:
873 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
874 if (StoreBytes != sizeof(PointerTy))
875 memset(Ptr, 0, StoreBytes);
877 *((PointerTy*)Ptr) = Val.PointerVal;
878 break;
879 default:
880 dbgs() << "Cannot store value of type " << *Ty << "!\n";
883 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
884 // Host and target are different endian - reverse the stored bytes.
885 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
888 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
889 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
890 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
891 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
892 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
894 if (sys::isLittleEndianHost())
895 // Little-endian host - the destination must be ordered from LSB to MSB.
896 // The source is ordered from LSB to MSB: Do a straight copy.
897 memcpy(Dst, Src, LoadBytes);
898 else {
899 // Big-endian - the destination is an array of 64 bit words ordered from
900 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
901 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
902 // a word.
903 while (LoadBytes > sizeof(uint64_t)) {
904 LoadBytes -= sizeof(uint64_t);
905 // May not be aligned so use memcpy.
906 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
907 Dst += sizeof(uint64_t);
910 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
914 /// FIXME: document
916 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
917 GenericValue *Ptr,
918 const Type *Ty) {
919 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
921 switch (Ty->getTypeID()) {
922 case Type::IntegerTyID:
923 // An APInt with all words initially zero.
924 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
925 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
926 break;
927 case Type::FloatTyID:
928 Result.FloatVal = *((float*)Ptr);
929 break;
930 case Type::DoubleTyID:
931 Result.DoubleVal = *((double*)Ptr);
932 break;
933 case Type::PointerTyID:
934 Result.PointerVal = *((PointerTy*)Ptr);
935 break;
936 case Type::X86_FP80TyID: {
937 // This is endian dependent, but it will only work on x86 anyway.
938 // FIXME: Will not trap if loading a signaling NaN.
939 uint64_t y[2];
940 memcpy(y, Ptr, 10);
941 Result.IntVal = APInt(80, 2, y);
942 break;
944 default:
945 std::string msg;
946 raw_string_ostream Msg(msg);
947 Msg << "Cannot load value of type " << *Ty << "!";
948 report_fatal_error(Msg.str());
952 // InitializeMemory - Recursive function to apply a Constant value into the
953 // specified memory location...
955 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
956 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
957 DEBUG(Init->dump());
958 if (isa<UndefValue>(Init)) {
959 return;
960 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
961 unsigned ElementSize =
962 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
963 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
964 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
965 return;
966 } else if (isa<ConstantAggregateZero>(Init)) {
967 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
968 return;
969 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
970 unsigned ElementSize =
971 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
972 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
973 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
974 return;
975 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
976 const StructLayout *SL =
977 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
978 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
979 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
980 return;
981 } else if (Init->getType()->isFirstClassType()) {
982 GenericValue Val = getConstantValue(Init);
983 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
984 return;
987 dbgs() << "Bad Type: " << *Init->getType() << "\n";
988 llvm_unreachable("Unknown constant type to initialize memory with!");
991 /// EmitGlobals - Emit all of the global variables to memory, storing their
992 /// addresses into GlobalAddress. This must make sure to copy the contents of
993 /// their initializers into the memory.
995 void ExecutionEngine::emitGlobals() {
997 // Loop over all of the global variables in the program, allocating the memory
998 // to hold them. If there is more than one module, do a prepass over globals
999 // to figure out how the different modules should link together.
1001 std::map<std::pair<std::string, const Type*>,
1002 const GlobalValue*> LinkedGlobalsMap;
1004 if (Modules.size() != 1) {
1005 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1006 Module &M = *Modules[m];
1007 for (Module::const_global_iterator I = M.global_begin(),
1008 E = M.global_end(); I != E; ++I) {
1009 const GlobalValue *GV = I;
1010 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
1011 GV->hasAppendingLinkage() || !GV->hasName())
1012 continue;// Ignore external globals and globals with internal linkage.
1014 const GlobalValue *&GVEntry =
1015 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1017 // If this is the first time we've seen this global, it is the canonical
1018 // version.
1019 if (!GVEntry) {
1020 GVEntry = GV;
1021 continue;
1024 // If the existing global is strong, never replace it.
1025 if (GVEntry->hasExternalLinkage() ||
1026 GVEntry->hasDLLImportLinkage() ||
1027 GVEntry->hasDLLExportLinkage())
1028 continue;
1030 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1031 // symbol. FIXME is this right for common?
1032 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1033 GVEntry = GV;
1038 std::vector<const GlobalValue*> NonCanonicalGlobals;
1039 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1040 Module &M = *Modules[m];
1041 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1042 I != E; ++I) {
1043 // In the multi-module case, see what this global maps to.
1044 if (!LinkedGlobalsMap.empty()) {
1045 if (const GlobalValue *GVEntry =
1046 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1047 // If something else is the canonical global, ignore this one.
1048 if (GVEntry != &*I) {
1049 NonCanonicalGlobals.push_back(I);
1050 continue;
1055 if (!I->isDeclaration()) {
1056 addGlobalMapping(I, getMemoryForGV(I));
1057 } else {
1058 // External variable reference. Try to use the dynamic loader to
1059 // get a pointer to it.
1060 if (void *SymAddr =
1061 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1062 addGlobalMapping(I, SymAddr);
1063 else {
1064 report_fatal_error("Could not resolve external global address: "
1065 +I->getName());
1070 // If there are multiple modules, map the non-canonical globals to their
1071 // canonical location.
1072 if (!NonCanonicalGlobals.empty()) {
1073 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1074 const GlobalValue *GV = NonCanonicalGlobals[i];
1075 const GlobalValue *CGV =
1076 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1077 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1078 assert(Ptr && "Canonical global wasn't codegen'd!");
1079 addGlobalMapping(GV, Ptr);
1083 // Now that all of the globals are set up in memory, loop through them all
1084 // and initialize their contents.
1085 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1086 I != E; ++I) {
1087 if (!I->isDeclaration()) {
1088 if (!LinkedGlobalsMap.empty()) {
1089 if (const GlobalValue *GVEntry =
1090 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1091 if (GVEntry != &*I) // Not the canonical variable.
1092 continue;
1094 EmitGlobalVariable(I);
1100 // EmitGlobalVariable - This method emits the specified global variable to the
1101 // address specified in GlobalAddresses, or allocates new memory if it's not
1102 // already in the map.
1103 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1104 void *GA = getPointerToGlobalIfAvailable(GV);
1106 if (GA == 0) {
1107 // If it's not already specified, allocate memory for the global.
1108 GA = getMemoryForGV(GV);
1109 addGlobalMapping(GV, GA);
1112 // Don't initialize if it's thread local, let the client do it.
1113 if (!GV->isThreadLocal())
1114 InitializeMemory(GV->getInitializer(), GA);
1116 const Type *ElTy = GV->getType()->getElementType();
1117 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1118 NumInitBytes += (unsigned)GVSize;
1119 ++NumGlobals;
1122 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1123 : EE(EE), GlobalAddressMap(this) {
1126 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
1127 ExecutionEngineState *EES) {
1128 return &EES->EE.lock;
1130 void ExecutionEngineState::AddressMapConfig::onDelete(
1131 ExecutionEngineState *EES, const GlobalValue *Old) {
1132 void *OldVal = EES->GlobalAddressMap.lookup(Old);
1133 EES->GlobalAddressReverseMap.erase(OldVal);
1136 void ExecutionEngineState::AddressMapConfig::onRAUW(
1137 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
1138 assert(false && "The ExecutionEngine doesn't know how to handle a"
1139 " RAUW on a value it has a global mapping for.");