zpu: wip eke out some simple instructions for load/store/add
[llvm/zpu.git] / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
blob2186ff1fed54b5db4a77c1068c757aee9150fb93
1 //==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
12 //===----------------------------------------------------------------------===//
14 #include "SystemZ.h"
15 #include "SystemZTargetMachine.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
33 namespace {
34 /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
35 /// instead of register numbers for the leaves of the matched tree.
36 struct SystemZRRIAddressMode {
37 enum {
38 RegBase,
39 FrameIndexBase
40 } BaseType;
42 struct { // This is really a union, discriminated by BaseType!
43 SDValue Reg;
44 int FrameIndex;
45 } Base;
47 SDValue IndexReg;
48 int64_t Disp;
49 bool isRI;
51 SystemZRRIAddressMode(bool RI = false)
52 : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
55 void dump() {
56 errs() << "SystemZRRIAddressMode " << this << '\n';
57 if (BaseType == RegBase) {
58 errs() << "Base.Reg ";
59 if (Base.Reg.getNode() != 0)
60 Base.Reg.getNode()->dump();
61 else
62 errs() << "nul";
63 errs() << '\n';
64 } else {
65 errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
67 if (!isRI) {
68 errs() << "IndexReg ";
69 if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
70 else errs() << "nul";
72 errs() << " Disp " << Disp << '\n';
77 /// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
78 /// instructions for SelectionDAG operations.
79 ///
80 namespace {
81 class SystemZDAGToDAGISel : public SelectionDAGISel {
82 const SystemZTargetLowering &Lowering;
83 const SystemZSubtarget &Subtarget;
85 void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
86 SDValue &Base, SDValue &Disp);
87 void getAddressOperands(const SystemZRRIAddressMode &AM,
88 SDValue &Base, SDValue &Disp,
89 SDValue &Index);
91 public:
92 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
93 : SelectionDAGISel(TM, OptLevel),
94 Lowering(*TM.getTargetLowering()),
95 Subtarget(*TM.getSubtargetImpl()) { }
97 virtual const char *getPassName() const {
98 return "SystemZ DAG->DAG Pattern Instruction Selection";
101 /// getI8Imm - Return a target constant with the specified value, of type
102 /// i8.
103 inline SDValue getI8Imm(uint64_t Imm) {
104 return CurDAG->getTargetConstant(Imm, MVT::i8);
107 /// getI16Imm - Return a target constant with the specified value, of type
108 /// i16.
109 inline SDValue getI16Imm(uint64_t Imm) {
110 return CurDAG->getTargetConstant(Imm, MVT::i16);
113 /// getI32Imm - Return a target constant with the specified value, of type
114 /// i32.
115 inline SDValue getI32Imm(uint64_t Imm) {
116 return CurDAG->getTargetConstant(Imm, MVT::i32);
119 // Include the pieces autogenerated from the target description.
120 #include "SystemZGenDAGISel.inc"
122 private:
123 bool SelectAddrRI12Only(SDValue& Addr,
124 SDValue &Base, SDValue &Disp);
125 bool SelectAddrRI12(SDValue& Addr,
126 SDValue &Base, SDValue &Disp,
127 bool is12BitOnly = false);
128 bool SelectAddrRI(SDValue& Addr, SDValue &Base, SDValue &Disp);
129 bool SelectAddrRRI12(SDValue Addr,
130 SDValue &Base, SDValue &Disp, SDValue &Index);
131 bool SelectAddrRRI20(SDValue Addr,
132 SDValue &Base, SDValue &Disp, SDValue &Index);
133 bool SelectLAAddr(SDValue Addr,
134 SDValue &Base, SDValue &Disp, SDValue &Index);
136 SDNode *Select(SDNode *Node);
138 bool TryFoldLoad(SDNode *P, SDValue N,
139 SDValue &Base, SDValue &Disp, SDValue &Index);
141 bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
142 bool is12Bit, unsigned Depth = 0);
143 bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
145 } // end anonymous namespace
147 /// createSystemZISelDag - This pass converts a legalized DAG into a
148 /// SystemZ-specific DAG, ready for instruction scheduling.
150 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
151 CodeGenOpt::Level OptLevel) {
152 return new SystemZDAGToDAGISel(TM, OptLevel);
155 /// isImmSExt20 - This method tests to see if the node is either a 32-bit
156 /// or 64-bit immediate, and if the value can be accurately represented as a
157 /// sign extension from a 20-bit value. If so, this returns true and the
158 /// immediate.
159 static bool isImmSExt20(int64_t Val, int64_t &Imm) {
160 if (Val >= -524288 && Val <= 524287) {
161 Imm = Val;
162 return true;
164 return false;
167 /// isImmZExt12 - This method tests to see if the node is either a 32-bit
168 /// or 64-bit immediate, and if the value can be accurately represented as a
169 /// zero extension from a 12-bit value. If so, this returns true and the
170 /// immediate.
171 static bool isImmZExt12(int64_t Val, int64_t &Imm) {
172 if (Val >= 0 && Val <= 0xFFF) {
173 Imm = Val;
174 return true;
176 return false;
179 /// MatchAddress - Add the specified node to the specified addressing mode,
180 /// returning true if it cannot be done. This just pattern matches for the
181 /// addressing mode.
182 bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
183 bool is12Bit, unsigned Depth) {
184 DebugLoc dl = N.getDebugLoc();
185 DEBUG(errs() << "MatchAddress: "; AM.dump());
186 // Limit recursion.
187 if (Depth > 5)
188 return MatchAddressBase(N, AM);
190 // FIXME: We can perform better here. If we have something like
191 // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
192 // imm into addressing mode.
193 switch (N.getOpcode()) {
194 default: break;
195 case ISD::Constant: {
196 int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
197 int64_t Imm = 0;
198 bool Match = (is12Bit ?
199 isImmZExt12(AM.Disp + Val, Imm) :
200 isImmSExt20(AM.Disp + Val, Imm));
201 if (Match) {
202 AM.Disp = Imm;
203 return false;
205 break;
208 case ISD::FrameIndex:
209 if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
210 AM.Base.Reg.getNode() == 0) {
211 AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
212 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
213 return false;
215 break;
217 case ISD::SUB: {
218 // Given A-B, if A can be completely folded into the address and
219 // the index field with the index field unused, use -B as the index.
220 // This is a win if a has multiple parts that can be folded into
221 // the address. Also, this saves a mov if the base register has
222 // other uses, since it avoids a two-address sub instruction, however
223 // it costs an additional mov if the index register has other uses.
225 // Test if the LHS of the sub can be folded.
226 SystemZRRIAddressMode Backup = AM;
227 if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
228 AM = Backup;
229 break;
231 // Test if the index field is free for use.
232 if (AM.IndexReg.getNode() || AM.isRI) {
233 AM = Backup;
234 break;
237 // If the base is a register with multiple uses, this transformation may
238 // save a mov. Otherwise it's probably better not to do it.
239 if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
240 (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
241 AM = Backup;
242 break;
245 // Ok, the transformation is legal and appears profitable. Go for it.
246 SDValue RHS = N.getNode()->getOperand(1);
247 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
248 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
249 AM.IndexReg = Neg;
251 // Insert the new nodes into the topological ordering.
252 if (Zero.getNode()->getNodeId() == -1 ||
253 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
254 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
255 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
257 if (Neg.getNode()->getNodeId() == -1 ||
258 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
259 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
260 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
262 return false;
265 case ISD::ADD: {
266 SystemZRRIAddressMode Backup = AM;
267 if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
268 !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
269 return false;
270 AM = Backup;
271 if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
272 !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
273 return false;
274 AM = Backup;
276 // If we couldn't fold both operands into the address at the same time,
277 // see if we can just put each operand into a register and fold at least
278 // the add.
279 if (!AM.isRI &&
280 AM.BaseType == SystemZRRIAddressMode::RegBase &&
281 !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
282 AM.Base.Reg = N.getNode()->getOperand(0);
283 AM.IndexReg = N.getNode()->getOperand(1);
284 return false;
286 break;
289 case ISD::OR:
290 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
291 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
292 SystemZRRIAddressMode Backup = AM;
293 int64_t Offset = CN->getSExtValue();
294 int64_t Imm = 0;
295 bool MatchOffset = (is12Bit ?
296 isImmZExt12(AM.Disp + Offset, Imm) :
297 isImmSExt20(AM.Disp + Offset, Imm));
298 // The resultant disp must fit in 12 or 20-bits.
299 if (MatchOffset &&
300 // LHS should be an addr mode.
301 !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
302 // Check to see if the LHS & C is zero.
303 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
304 AM.Disp = Imm;
305 return false;
307 AM = Backup;
309 break;
312 return MatchAddressBase(N, AM);
315 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
316 /// specified addressing mode without any further recursion.
317 bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
318 SystemZRRIAddressMode &AM) {
319 // Is the base register already occupied?
320 if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
321 // If so, check to see if the index register is set.
322 if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
323 AM.IndexReg = N;
324 return false;
327 // Otherwise, we cannot select it.
328 return true;
331 // Default, generate it as a register.
332 AM.BaseType = SystemZRRIAddressMode::RegBase;
333 AM.Base.Reg = N;
334 return false;
337 void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
338 SDValue &Base, SDValue &Disp) {
339 if (AM.BaseType == SystemZRRIAddressMode::RegBase)
340 Base = AM.Base.Reg;
341 else
342 Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
343 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
346 void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
347 SDValue &Base, SDValue &Disp,
348 SDValue &Index) {
349 getAddressOperandsRI(AM, Base, Disp);
350 Index = AM.IndexReg;
353 /// Returns true if the address can be represented by a base register plus
354 /// an unsigned 12-bit displacement [r+imm].
355 bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue &Addr,
356 SDValue &Base, SDValue &Disp) {
357 return SelectAddrRI12(Addr, Base, Disp, /*is12BitOnly*/true);
360 bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue &Addr,
361 SDValue &Base, SDValue &Disp,
362 bool is12BitOnly) {
363 SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
364 bool Done = false;
366 if (!Addr.hasOneUse()) {
367 unsigned Opcode = Addr.getOpcode();
368 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
369 // If we are able to fold N into addressing mode, then we'll allow it even
370 // if N has multiple uses. In general, addressing computation is used as
371 // addresses by all of its uses. But watch out for CopyToReg uses, that
372 // means the address computation is liveout. It will be computed by a LA
373 // so we want to avoid computing the address twice.
374 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
375 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
376 if (UI->getOpcode() == ISD::CopyToReg) {
377 MatchAddressBase(Addr, AM12);
378 Done = true;
379 break;
384 if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
385 return false;
387 // Check, whether we can match stuff using 20-bit displacements
388 if (!Done && !is12BitOnly &&
389 !MatchAddress(Addr, AM20, /* is12Bit */ false))
390 if (AM12.Disp == 0 && AM20.Disp != 0)
391 return false;
393 DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
395 EVT VT = Addr.getValueType();
396 if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
397 if (!AM12.Base.Reg.getNode())
398 AM12.Base.Reg = CurDAG->getRegister(0, VT);
401 assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
403 getAddressOperandsRI(AM12, Base, Disp);
405 return true;
408 /// Returns true if the address can be represented by a base register plus
409 /// a signed 20-bit displacement [r+imm].
410 bool SystemZDAGToDAGISel::SelectAddrRI(SDValue& Addr,
411 SDValue &Base, SDValue &Disp) {
412 SystemZRRIAddressMode AM(/*isRI*/true);
413 bool Done = false;
415 if (!Addr.hasOneUse()) {
416 unsigned Opcode = Addr.getOpcode();
417 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
418 // If we are able to fold N into addressing mode, then we'll allow it even
419 // if N has multiple uses. In general, addressing computation is used as
420 // addresses by all of its uses. But watch out for CopyToReg uses, that
421 // means the address computation is liveout. It will be computed by a LA
422 // so we want to avoid computing the address twice.
423 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
424 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
425 if (UI->getOpcode() == ISD::CopyToReg) {
426 MatchAddressBase(Addr, AM);
427 Done = true;
428 break;
433 if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
434 return false;
436 DEBUG(errs() << "MatchAddress (final): "; AM.dump());
438 EVT VT = Addr.getValueType();
439 if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
440 if (!AM.Base.Reg.getNode())
441 AM.Base.Reg = CurDAG->getRegister(0, VT);
444 assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
446 getAddressOperandsRI(AM, Base, Disp);
448 return true;
451 /// Returns true if the address can be represented by a base register plus
452 /// index register plus an unsigned 12-bit displacement [base + idx + imm].
453 bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Addr,
454 SDValue &Base, SDValue &Disp, SDValue &Index) {
455 SystemZRRIAddressMode AM20, AM12;
456 bool Done = false;
458 if (!Addr.hasOneUse()) {
459 unsigned Opcode = Addr.getOpcode();
460 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
461 // If we are able to fold N into addressing mode, then we'll allow it even
462 // if N has multiple uses. In general, addressing computation is used as
463 // addresses by all of its uses. But watch out for CopyToReg uses, that
464 // means the address computation is liveout. It will be computed by a LA
465 // so we want to avoid computing the address twice.
466 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
467 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
468 if (UI->getOpcode() == ISD::CopyToReg) {
469 MatchAddressBase(Addr, AM12);
470 Done = true;
471 break;
476 if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
477 return false;
479 // Check, whether we can match stuff using 20-bit displacements
480 if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
481 if (AM12.Disp == 0 && AM20.Disp != 0)
482 return false;
484 DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
486 EVT VT = Addr.getValueType();
487 if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
488 if (!AM12.Base.Reg.getNode())
489 AM12.Base.Reg = CurDAG->getRegister(0, VT);
492 if (!AM12.IndexReg.getNode())
493 AM12.IndexReg = CurDAG->getRegister(0, VT);
495 getAddressOperands(AM12, Base, Disp, Index);
497 return true;
500 /// Returns true if the address can be represented by a base register plus
501 /// index register plus a signed 20-bit displacement [base + idx + imm].
502 bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Addr,
503 SDValue &Base, SDValue &Disp, SDValue &Index) {
504 SystemZRRIAddressMode AM;
505 bool Done = false;
507 if (!Addr.hasOneUse()) {
508 unsigned Opcode = Addr.getOpcode();
509 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
510 // If we are able to fold N into addressing mode, then we'll allow it even
511 // if N has multiple uses. In general, addressing computation is used as
512 // addresses by all of its uses. But watch out for CopyToReg uses, that
513 // means the address computation is liveout. It will be computed by a LA
514 // so we want to avoid computing the address twice.
515 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
516 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
517 if (UI->getOpcode() == ISD::CopyToReg) {
518 MatchAddressBase(Addr, AM);
519 Done = true;
520 break;
525 if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
526 return false;
528 DEBUG(errs() << "MatchAddress (final): "; AM.dump());
530 EVT VT = Addr.getValueType();
531 if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
532 if (!AM.Base.Reg.getNode())
533 AM.Base.Reg = CurDAG->getRegister(0, VT);
536 if (!AM.IndexReg.getNode())
537 AM.IndexReg = CurDAG->getRegister(0, VT);
539 getAddressOperands(AM, Base, Disp, Index);
541 return true;
544 /// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
545 /// mode it matches can be cost effectively emitted as an LA/LAY instruction.
546 bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Addr,
547 SDValue &Base, SDValue &Disp, SDValue &Index) {
548 SystemZRRIAddressMode AM;
550 if (MatchAddress(Addr, AM, false))
551 return false;
553 EVT VT = Addr.getValueType();
554 unsigned Complexity = 0;
555 if (AM.BaseType == SystemZRRIAddressMode::RegBase)
556 if (AM.Base.Reg.getNode())
557 Complexity = 1;
558 else
559 AM.Base.Reg = CurDAG->getRegister(0, VT);
560 else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
561 Complexity = 4;
563 if (AM.IndexReg.getNode())
564 Complexity += 1;
565 else
566 AM.IndexReg = CurDAG->getRegister(0, VT);
568 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
569 Complexity += 1;
571 if (Complexity > 2) {
572 getAddressOperands(AM, Base, Disp, Index);
573 return true;
576 return false;
579 bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
580 SDValue &Base, SDValue &Disp, SDValue &Index) {
581 if (ISD::isNON_EXTLoad(N.getNode()) &&
582 IsLegalToFold(N, P, P, OptLevel))
583 return SelectAddrRRI20(N.getOperand(1), Base, Disp, Index);
584 return false;
587 SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
588 EVT NVT = Node->getValueType(0);
589 DebugLoc dl = Node->getDebugLoc();
590 unsigned Opcode = Node->getOpcode();
592 // Dump information about the Node being selected
593 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
595 // If we have a custom node, we already have selected!
596 if (Node->isMachineOpcode()) {
597 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
598 return NULL; // Already selected.
601 switch (Opcode) {
602 default: break;
603 case ISD::SDIVREM: {
604 unsigned Opc, MOpc;
605 SDValue N0 = Node->getOperand(0);
606 SDValue N1 = Node->getOperand(1);
608 EVT ResVT;
609 bool is32Bit = false;
610 switch (NVT.getSimpleVT().SimpleTy) {
611 default: assert(0 && "Unsupported VT!");
612 case MVT::i32:
613 Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
614 ResVT = MVT::v2i64;
615 is32Bit = true;
616 break;
617 case MVT::i64:
618 Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
619 ResVT = MVT::v2i64;
620 break;
623 SDValue Tmp0, Tmp1, Tmp2;
624 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
626 // Prepare the dividend
627 SDNode *Dividend;
628 if (is32Bit)
629 Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
630 else
631 Dividend = N0.getNode();
633 // Insert prepared dividend into suitable 'subreg'
634 SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
635 dl, ResVT);
636 Dividend =
637 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
638 SDValue(Tmp, 0), SDValue(Dividend, 0),
639 CurDAG->getTargetConstant(SystemZ::subreg_odd, MVT::i32));
641 SDNode *Result;
642 SDValue DivVal = SDValue(Dividend, 0);
643 if (foldedLoad) {
644 SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
645 Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
646 Ops, array_lengthof(Ops));
647 // Update the chain.
648 ReplaceUses(N1.getValue(1), SDValue(Result, 1));
649 } else {
650 Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
653 // Copy the division (odd subreg) result, if it is needed.
654 if (!SDValue(Node, 0).use_empty()) {
655 unsigned SubRegIdx = (is32Bit ?
656 SystemZ::subreg_odd32 : SystemZ::subreg_odd);
657 SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
658 dl, NVT,
659 SDValue(Result, 0),
660 CurDAG->getTargetConstant(SubRegIdx,
661 MVT::i32));
663 ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
664 DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
667 // Copy the remainder (even subreg) result, if it is needed.
668 if (!SDValue(Node, 1).use_empty()) {
669 unsigned SubRegIdx = (is32Bit ?
670 SystemZ::subreg_32bit : SystemZ::subreg_even);
671 SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
672 dl, NVT,
673 SDValue(Result, 0),
674 CurDAG->getTargetConstant(SubRegIdx,
675 MVT::i32));
677 ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
678 DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
681 return NULL;
683 case ISD::UDIVREM: {
684 unsigned Opc, MOpc, ClrOpc;
685 SDValue N0 = Node->getOperand(0);
686 SDValue N1 = Node->getOperand(1);
687 EVT ResVT;
689 bool is32Bit = false;
690 switch (NVT.getSimpleVT().SimpleTy) {
691 default: assert(0 && "Unsupported VT!");
692 case MVT::i32:
693 Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
694 ClrOpc = SystemZ::MOV64Pr0_even;
695 ResVT = MVT::v2i32;
696 is32Bit = true;
697 break;
698 case MVT::i64:
699 Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
700 ClrOpc = SystemZ::MOV128r0_even;
701 ResVT = MVT::v2i64;
702 break;
705 SDValue Tmp0, Tmp1, Tmp2;
706 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
708 // Prepare the dividend
709 SDNode *Dividend = N0.getNode();
711 // Insert prepared dividend into suitable 'subreg'
712 SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
713 dl, ResVT);
715 unsigned SubRegIdx = (is32Bit ?
716 SystemZ::subreg_odd32 : SystemZ::subreg_odd);
717 Dividend =
718 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
719 SDValue(Tmp, 0), SDValue(Dividend, 0),
720 CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
723 // Zero out even subreg
724 Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
726 SDValue DivVal = SDValue(Dividend, 0);
727 SDNode *Result;
728 if (foldedLoad) {
729 SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
730 Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
731 Ops, array_lengthof(Ops));
732 // Update the chain.
733 ReplaceUses(N1.getValue(1), SDValue(Result, 1));
734 } else {
735 Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
738 // Copy the division (odd subreg) result, if it is needed.
739 if (!SDValue(Node, 0).use_empty()) {
740 unsigned SubRegIdx = (is32Bit ?
741 SystemZ::subreg_odd32 : SystemZ::subreg_odd);
742 SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
743 dl, NVT,
744 SDValue(Result, 0),
745 CurDAG->getTargetConstant(SubRegIdx,
746 MVT::i32));
747 ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
748 DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
751 // Copy the remainder (even subreg) result, if it is needed.
752 if (!SDValue(Node, 1).use_empty()) {
753 unsigned SubRegIdx = (is32Bit ?
754 SystemZ::subreg_32bit : SystemZ::subreg_even);
755 SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
756 dl, NVT,
757 SDValue(Result, 0),
758 CurDAG->getTargetConstant(SubRegIdx,
759 MVT::i32));
760 ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
761 DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
764 return NULL;
768 // Select the default instruction
769 SDNode *ResNode = SelectCode(Node);
771 DEBUG(errs() << "=> ";
772 if (ResNode == NULL || ResNode == Node)
773 Node->dump(CurDAG);
774 else
775 ResNode->dump(CurDAG);
776 errs() << "\n";
778 return ResNode;