1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
29 CriticalAntiDepBreaker::
30 CriticalAntiDepBreaker(MachineFunction
& MFi
) :
31 AntiDepBreaker(), MF(MFi
),
33 TII(MF
.getTarget().getInstrInfo()),
34 TRI(MF
.getTarget().getRegisterInfo()),
35 AllocatableSet(TRI
->getAllocatableSet(MF
)),
36 Classes(TRI
->getNumRegs(), static_cast<const TargetRegisterClass
*>(0)),
37 KillIndices(TRI
->getNumRegs(), 0),
38 DefIndices(TRI
->getNumRegs(), 0) {}
40 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock
*BB
) {
44 const unsigned BBSize
= BB
->size();
45 for (unsigned i
= 0, e
= TRI
->getNumRegs(); i
!= e
; ++i
) {
46 // Clear out the register class data.
47 Classes
[i
] = static_cast<const TargetRegisterClass
*>(0);
49 // Initialize the indices to indicate that no registers are live.
51 DefIndices
[i
] = BBSize
;
54 // Clear "do not change" set.
57 bool IsReturnBlock
= (!BB
->empty() && BB
->back().getDesc().isReturn());
59 // Determine the live-out physregs for this block.
61 // In a return block, examine the function live-out regs.
62 for (MachineRegisterInfo::liveout_iterator I
= MRI
.liveout_begin(),
63 E
= MRI
.liveout_end(); I
!= E
; ++I
) {
65 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
66 KillIndices
[Reg
] = BB
->size();
67 DefIndices
[Reg
] = ~0u;
69 // Repeat, for all aliases.
70 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
71 unsigned AliasReg
= *Alias
;
72 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
73 KillIndices
[AliasReg
] = BB
->size();
74 DefIndices
[AliasReg
] = ~0u;
79 // In a non-return block, examine the live-in regs of all successors.
80 // Note a return block can have successors if the return instruction is
82 for (MachineBasicBlock::succ_iterator SI
= BB
->succ_begin(),
83 SE
= BB
->succ_end(); SI
!= SE
; ++SI
)
84 for (MachineBasicBlock::livein_iterator I
= (*SI
)->livein_begin(),
85 E
= (*SI
)->livein_end(); I
!= E
; ++I
) {
87 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
88 KillIndices
[Reg
] = BB
->size();
89 DefIndices
[Reg
] = ~0u;
91 // Repeat, for all aliases.
92 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
93 unsigned AliasReg
= *Alias
;
94 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
95 KillIndices
[AliasReg
] = BB
->size();
96 DefIndices
[AliasReg
] = ~0u;
100 // Mark live-out callee-saved registers. In a return block this is
101 // all callee-saved registers. In non-return this is any
102 // callee-saved register that is not saved in the prolog.
103 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
104 BitVector Pristine
= MFI
->getPristineRegs(BB
);
105 for (const unsigned *I
= TRI
->getCalleeSavedRegs(); *I
; ++I
) {
107 if (!IsReturnBlock
&& !Pristine
.test(Reg
)) continue;
108 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
109 KillIndices
[Reg
] = BB
->size();
110 DefIndices
[Reg
] = ~0u;
112 // Repeat, for all aliases.
113 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
114 unsigned AliasReg
= *Alias
;
115 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
116 KillIndices
[AliasReg
] = BB
->size();
117 DefIndices
[AliasReg
] = ~0u;
122 void CriticalAntiDepBreaker::FinishBlock() {
127 void CriticalAntiDepBreaker::Observe(MachineInstr
*MI
, unsigned Count
,
128 unsigned InsertPosIndex
) {
129 if (MI
->isDebugValue())
131 assert(Count
< InsertPosIndex
&& "Instruction index out of expected range!");
133 for (unsigned Reg
= 0; Reg
!= TRI
->getNumRegs(); ++Reg
) {
134 if (KillIndices
[Reg
] != ~0u) {
135 // If Reg is currently live, then mark that it can't be renamed as
136 // we don't know the extent of its live-range anymore (now that it
137 // has been scheduled).
138 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
139 KillIndices
[Reg
] = Count
;
140 } else if (DefIndices
[Reg
] < InsertPosIndex
&& DefIndices
[Reg
] >= Count
) {
141 // Any register which was defined within the previous scheduling region
142 // may have been rescheduled and its lifetime may overlap with registers
143 // in ways not reflected in our current liveness state. For each such
144 // register, adjust the liveness state to be conservatively correct.
145 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
147 // Move the def index to the end of the previous region, to reflect
148 // that the def could theoretically have been scheduled at the end.
149 DefIndices
[Reg
] = InsertPosIndex
;
153 PrescanInstruction(MI
);
154 ScanInstruction(MI
, Count
);
157 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
159 static const SDep
*CriticalPathStep(const SUnit
*SU
) {
160 const SDep
*Next
= 0;
161 unsigned NextDepth
= 0;
162 // Find the predecessor edge with the greatest depth.
163 for (SUnit::const_pred_iterator P
= SU
->Preds
.begin(), PE
= SU
->Preds
.end();
165 const SUnit
*PredSU
= P
->getSUnit();
166 unsigned PredLatency
= P
->getLatency();
167 unsigned PredTotalLatency
= PredSU
->getDepth() + PredLatency
;
168 // In the case of a latency tie, prefer an anti-dependency edge over
169 // other types of edges.
170 if (NextDepth
< PredTotalLatency
||
171 (NextDepth
== PredTotalLatency
&& P
->getKind() == SDep::Anti
)) {
172 NextDepth
= PredTotalLatency
;
179 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr
*MI
) {
180 // It's not safe to change register allocation for source operands of
181 // that have special allocation requirements. Also assume all registers
182 // used in a call must not be changed (ABI).
183 // FIXME: The issue with predicated instruction is more complex. We are being
184 // conservative here because the kill markers cannot be trusted after
186 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
188 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
189 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
190 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
192 // The first R6 kill is not really a kill since it's killed by a predicated
193 // instruction which may not be executed. The second R6 def may or may not
194 // re-define R6 so it's not safe to change it since the last R6 use cannot be
196 bool Special
= MI
->getDesc().isCall() ||
197 MI
->getDesc().hasExtraSrcRegAllocReq() ||
198 TII
->isPredicated(MI
);
200 // Scan the register operands for this instruction and update
201 // Classes and RegRefs.
202 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
203 MachineOperand
&MO
= MI
->getOperand(i
);
204 if (!MO
.isReg()) continue;
205 unsigned Reg
= MO
.getReg();
206 if (Reg
== 0) continue;
207 const TargetRegisterClass
*NewRC
= 0;
209 if (i
< MI
->getDesc().getNumOperands())
210 NewRC
= MI
->getDesc().OpInfo
[i
].getRegClass(TRI
);
212 // For now, only allow the register to be changed if its register
213 // class is consistent across all uses.
214 if (!Classes
[Reg
] && NewRC
)
215 Classes
[Reg
] = NewRC
;
216 else if (!NewRC
|| Classes
[Reg
] != NewRC
)
217 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
219 // Now check for aliases.
220 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
221 // If an alias of the reg is used during the live range, give up.
222 // Note that this allows us to skip checking if AntiDepReg
223 // overlaps with any of the aliases, among other things.
224 unsigned AliasReg
= *Alias
;
225 if (Classes
[AliasReg
]) {
226 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
227 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
231 // If we're still willing to consider this register, note the reference.
232 if (Classes
[Reg
] != reinterpret_cast<TargetRegisterClass
*>(-1))
233 RegRefs
.insert(std::make_pair(Reg
, &MO
));
235 if (MO
.isUse() && Special
) {
236 if (KeepRegs
.insert(Reg
)) {
237 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
239 KeepRegs
.insert(*Subreg
);
245 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr
*MI
,
248 // Proceding upwards, registers that are defed but not used in this
249 // instruction are now dead.
251 if (!TII
->isPredicated(MI
)) {
252 // Predicated defs are modeled as read + write, i.e. similar to two
254 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
255 MachineOperand
&MO
= MI
->getOperand(i
);
256 if (!MO
.isReg()) continue;
257 unsigned Reg
= MO
.getReg();
258 if (Reg
== 0) continue;
259 if (!MO
.isDef()) continue;
260 // Ignore two-addr defs.
261 if (MI
->isRegTiedToUseOperand(i
)) continue;
263 DefIndices
[Reg
] = Count
;
264 KillIndices
[Reg
] = ~0u;
265 assert(((KillIndices
[Reg
] == ~0u) !=
266 (DefIndices
[Reg
] == ~0u)) &&
267 "Kill and Def maps aren't consistent for Reg!");
271 // Repeat, for all subregs.
272 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
274 unsigned SubregReg
= *Subreg
;
275 DefIndices
[SubregReg
] = Count
;
276 KillIndices
[SubregReg
] = ~0u;
277 KeepRegs
.erase(SubregReg
);
278 Classes
[SubregReg
] = 0;
279 RegRefs
.erase(SubregReg
);
281 // Conservatively mark super-registers as unusable.
282 for (const unsigned *Super
= TRI
->getSuperRegisters(Reg
);
284 unsigned SuperReg
= *Super
;
285 Classes
[SuperReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
289 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
290 MachineOperand
&MO
= MI
->getOperand(i
);
291 if (!MO
.isReg()) continue;
292 unsigned Reg
= MO
.getReg();
293 if (Reg
== 0) continue;
294 if (!MO
.isUse()) continue;
296 const TargetRegisterClass
*NewRC
= 0;
297 if (i
< MI
->getDesc().getNumOperands())
298 NewRC
= MI
->getDesc().OpInfo
[i
].getRegClass(TRI
);
300 // For now, only allow the register to be changed if its register
301 // class is consistent across all uses.
302 if (!Classes
[Reg
] && NewRC
)
303 Classes
[Reg
] = NewRC
;
304 else if (!NewRC
|| Classes
[Reg
] != NewRC
)
305 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
307 RegRefs
.insert(std::make_pair(Reg
, &MO
));
309 // It wasn't previously live but now it is, this is a kill.
310 if (KillIndices
[Reg
] == ~0u) {
311 KillIndices
[Reg
] = Count
;
312 DefIndices
[Reg
] = ~0u;
313 assert(((KillIndices
[Reg
] == ~0u) !=
314 (DefIndices
[Reg
] == ~0u)) &&
315 "Kill and Def maps aren't consistent for Reg!");
317 // Repeat, for all aliases.
318 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
319 unsigned AliasReg
= *Alias
;
320 if (KillIndices
[AliasReg
] == ~0u) {
321 KillIndices
[AliasReg
] = Count
;
322 DefIndices
[AliasReg
] = ~0u;
328 // Check all machine instructions that define the antidependent register.
329 // Return true if any of these instructions define the new register.
331 CriticalAntiDepBreaker::isNewRegModifiedByRefs(RegRefIter RegRefBegin
,
332 RegRefIter RegRefEnd
,
335 for (RegRefIter I
= RegRefBegin
; I
!= RegRefEnd
; ++I
) {
336 MachineOperand
*MO
= I
->second
;
337 if (MO
->isDef()) continue;
338 if (MO
->getParent()->modifiesRegister(NewReg
, TRI
))
345 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin
,
346 RegRefIter RegRefEnd
,
349 const TargetRegisterClass
*RC
)
351 for (TargetRegisterClass::iterator R
= RC
->allocation_order_begin(MF
),
352 RE
= RC
->allocation_order_end(MF
); R
!= RE
; ++R
) {
353 unsigned NewReg
= *R
;
354 // Don't consider non-allocatable registers
355 if (!AllocatableSet
.test(NewReg
)) continue;
356 // Don't replace a register with itself.
357 if (NewReg
== AntiDepReg
) continue;
358 // Don't replace a register with one that was recently used to repair
359 // an anti-dependence with this AntiDepReg, because that would
360 // re-introduce that anti-dependence.
361 if (NewReg
== LastNewReg
) continue;
362 // If any instructions that define AntiDepReg also define the NewReg, it's
363 // not suitable. For example, Instruction with multiple definitions can
364 // result in this condition.
365 if (isNewRegModifiedByRefs(RegRefBegin
, RegRefEnd
, NewReg
)) continue;
366 // If NewReg is dead and NewReg's most recent def is not before
367 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
368 assert(((KillIndices
[AntiDepReg
] == ~0u) != (DefIndices
[AntiDepReg
] == ~0u))
369 && "Kill and Def maps aren't consistent for AntiDepReg!");
370 assert(((KillIndices
[NewReg
] == ~0u) != (DefIndices
[NewReg
] == ~0u))
371 && "Kill and Def maps aren't consistent for NewReg!");
372 if (KillIndices
[NewReg
] != ~0u ||
373 Classes
[NewReg
] == reinterpret_cast<TargetRegisterClass
*>(-1) ||
374 KillIndices
[AntiDepReg
] > DefIndices
[NewReg
])
379 // No registers are free and available!
383 unsigned CriticalAntiDepBreaker::
384 BreakAntiDependencies(const std::vector
<SUnit
>& SUnits
,
385 MachineBasicBlock::iterator Begin
,
386 MachineBasicBlock::iterator End
,
387 unsigned InsertPosIndex
) {
388 // The code below assumes that there is at least one instruction,
389 // so just duck out immediately if the block is empty.
390 if (SUnits
.empty()) return 0;
392 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
393 // This is used for updating debug information.
394 DenseMap
<MachineInstr
*,const SUnit
*> MISUnitMap
;
396 // Find the node at the bottom of the critical path.
397 const SUnit
*Max
= 0;
398 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
399 const SUnit
*SU
= &SUnits
[i
];
400 MISUnitMap
[SU
->getInstr()] = SU
;
401 if (!Max
|| SU
->getDepth() + SU
->Latency
> Max
->getDepth() + Max
->Latency
)
407 DEBUG(dbgs() << "Critical path has total latency "
408 << (Max
->getDepth() + Max
->Latency
) << "\n");
409 DEBUG(dbgs() << "Available regs:");
410 for (unsigned Reg
= 0; Reg
< TRI
->getNumRegs(); ++Reg
) {
411 if (KillIndices
[Reg
] == ~0u)
412 DEBUG(dbgs() << " " << TRI
->getName(Reg
));
414 DEBUG(dbgs() << '\n');
418 // Track progress along the critical path through the SUnit graph as we walk
420 const SUnit
*CriticalPathSU
= Max
;
421 MachineInstr
*CriticalPathMI
= CriticalPathSU
->getInstr();
423 // Consider this pattern:
432 // There are three anti-dependencies here, and without special care,
433 // we'd break all of them using the same register:
442 // because at each anti-dependence, B is the first register that
443 // isn't A which is free. This re-introduces anti-dependencies
444 // at all but one of the original anti-dependencies that we were
445 // trying to break. To avoid this, keep track of the most recent
446 // register that each register was replaced with, avoid
447 // using it to repair an anti-dependence on the same register.
448 // This lets us produce this:
457 // This still has an anti-dependence on B, but at least it isn't on the
458 // original critical path.
460 // TODO: If we tracked more than one register here, we could potentially
461 // fix that remaining critical edge too. This is a little more involved,
462 // because unlike the most recent register, less recent registers should
463 // still be considered, though only if no other registers are available.
464 std::vector
<unsigned> LastNewReg(TRI
->getNumRegs(), 0);
466 // Attempt to break anti-dependence edges on the critical path. Walk the
467 // instructions from the bottom up, tracking information about liveness
468 // as we go to help determine which registers are available.
470 unsigned Count
= InsertPosIndex
- 1;
471 for (MachineBasicBlock::iterator I
= End
, E
= Begin
;
473 MachineInstr
*MI
= --I
;
474 if (MI
->isDebugValue())
477 // Check if this instruction has a dependence on the critical path that
478 // is an anti-dependence that we may be able to break. If it is, set
479 // AntiDepReg to the non-zero register associated with the anti-dependence.
481 // We limit our attention to the critical path as a heuristic to avoid
482 // breaking anti-dependence edges that aren't going to significantly
483 // impact the overall schedule. There are a limited number of registers
484 // and we want to save them for the important edges.
486 // TODO: Instructions with multiple defs could have multiple
487 // anti-dependencies. The current code here only knows how to break one
488 // edge per instruction. Note that we'd have to be able to break all of
489 // the anti-dependencies in an instruction in order to be effective.
490 unsigned AntiDepReg
= 0;
491 if (MI
== CriticalPathMI
) {
492 if (const SDep
*Edge
= CriticalPathStep(CriticalPathSU
)) {
493 const SUnit
*NextSU
= Edge
->getSUnit();
495 // Only consider anti-dependence edges.
496 if (Edge
->getKind() == SDep::Anti
) {
497 AntiDepReg
= Edge
->getReg();
498 assert(AntiDepReg
!= 0 && "Anti-dependence on reg0?");
499 if (!AllocatableSet
.test(AntiDepReg
))
500 // Don't break anti-dependencies on non-allocatable registers.
502 else if (KeepRegs
.count(AntiDepReg
))
503 // Don't break anti-dependencies if an use down below requires
504 // this exact register.
507 // If the SUnit has other dependencies on the SUnit that it
508 // anti-depends on, don't bother breaking the anti-dependency
509 // since those edges would prevent such units from being
510 // scheduled past each other regardless.
512 // Also, if there are dependencies on other SUnits with the
513 // same register as the anti-dependency, don't attempt to
515 for (SUnit::const_pred_iterator P
= CriticalPathSU
->Preds
.begin(),
516 PE
= CriticalPathSU
->Preds
.end(); P
!= PE
; ++P
)
517 if (P
->getSUnit() == NextSU
?
518 (P
->getKind() != SDep::Anti
|| P
->getReg() != AntiDepReg
) :
519 (P
->getKind() == SDep::Data
&& P
->getReg() == AntiDepReg
)) {
525 CriticalPathSU
= NextSU
;
526 CriticalPathMI
= CriticalPathSU
->getInstr();
528 // We've reached the end of the critical path.
534 PrescanInstruction(MI
);
536 // If MI's defs have a special allocation requirement, don't allow
537 // any def registers to be changed. Also assume all registers
538 // defined in a call must not be changed (ABI).
539 if (MI
->getDesc().isCall() || MI
->getDesc().hasExtraDefRegAllocReq() ||
540 TII
->isPredicated(MI
))
541 // If this instruction's defs have special allocation requirement, don't
542 // break this anti-dependency.
544 else if (AntiDepReg
) {
545 // If this instruction has a use of AntiDepReg, breaking it
547 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
548 MachineOperand
&MO
= MI
->getOperand(i
);
549 if (!MO
.isReg()) continue;
550 unsigned Reg
= MO
.getReg();
551 if (Reg
== 0) continue;
552 if (MO
.isUse() && TRI
->regsOverlap(AntiDepReg
, Reg
)) {
559 // Determine AntiDepReg's register class, if it is live and is
560 // consistently used within a single class.
561 const TargetRegisterClass
*RC
= AntiDepReg
!= 0 ? Classes
[AntiDepReg
] : 0;
562 assert((AntiDepReg
== 0 || RC
!= NULL
) &&
563 "Register should be live if it's causing an anti-dependence!");
564 if (RC
== reinterpret_cast<TargetRegisterClass
*>(-1))
567 // Look for a suitable register to use to break the anti-depenence.
569 // TODO: Instead of picking the first free register, consider which might
571 if (AntiDepReg
!= 0) {
572 std::pair
<std::multimap
<unsigned, MachineOperand
*>::iterator
,
573 std::multimap
<unsigned, MachineOperand
*>::iterator
>
574 Range
= RegRefs
.equal_range(AntiDepReg
);
575 if (unsigned NewReg
= findSuitableFreeRegister(Range
.first
, Range
.second
,
577 LastNewReg
[AntiDepReg
],
579 DEBUG(dbgs() << "Breaking anti-dependence edge on "
580 << TRI
->getName(AntiDepReg
)
581 << " with " << RegRefs
.count(AntiDepReg
) << " references"
582 << " using " << TRI
->getName(NewReg
) << "!\n");
584 // Update the references to the old register to refer to the new
586 for (std::multimap
<unsigned, MachineOperand
*>::iterator
587 Q
= Range
.first
, QE
= Range
.second
; Q
!= QE
; ++Q
) {
588 Q
->second
->setReg(NewReg
);
589 // If the SU for the instruction being updated has debug information
590 // related to the anti-dependency register, make sure to update that
592 const SUnit
*SU
= MISUnitMap
[Q
->second
->getParent()];
594 for (unsigned i
= 0, e
= SU
->DbgInstrList
.size() ; i
< e
; ++i
) {
595 MachineInstr
*DI
= SU
->DbgInstrList
[i
];
596 assert (DI
->getNumOperands()==3 && DI
->getOperand(0).isReg() &&
597 DI
->getOperand(0).getReg()
598 && "Non register dbg_value attached to SUnit!");
599 if (DI
->getOperand(0).getReg() == AntiDepReg
)
600 DI
->getOperand(0).setReg(NewReg
);
604 // We just went back in time and modified history; the
605 // liveness information for the anti-dependence reg is now
606 // inconsistent. Set the state as if it were dead.
607 Classes
[NewReg
] = Classes
[AntiDepReg
];
608 DefIndices
[NewReg
] = DefIndices
[AntiDepReg
];
609 KillIndices
[NewReg
] = KillIndices
[AntiDepReg
];
610 assert(((KillIndices
[NewReg
] == ~0u) !=
611 (DefIndices
[NewReg
] == ~0u)) &&
612 "Kill and Def maps aren't consistent for NewReg!");
614 Classes
[AntiDepReg
] = 0;
615 DefIndices
[AntiDepReg
] = KillIndices
[AntiDepReg
];
616 KillIndices
[AntiDepReg
] = ~0u;
617 assert(((KillIndices
[AntiDepReg
] == ~0u) !=
618 (DefIndices
[AntiDepReg
] == ~0u)) &&
619 "Kill and Def maps aren't consistent for AntiDepReg!");
621 RegRefs
.erase(AntiDepReg
);
622 LastNewReg
[AntiDepReg
] = NewReg
;
627 ScanInstruction(MI
, Count
);