zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / MachineLICM.cpp
blob811c86cfd8fee79520bc43b0e20b121fb7a96e5e
1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
13 // This pass does not attempt to throttle itself to limit register pressure.
14 // The register allocation phases are expected to perform rematerialization
15 // to recover when register pressure is high.
17 // This pass is not intended to be a replacement or a complete alternative
18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19 // constructs that are not exposed before lowering and instruction selection.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "machine-licm"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/Target/TargetLowering.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetInstrItineraries.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
43 using namespace llvm;
45 STATISTIC(NumHoisted,
46 "Number of machine instructions hoisted out of loops");
47 STATISTIC(NumLowRP,
48 "Number of instructions hoisted in low reg pressure situation");
49 STATISTIC(NumHighLatency,
50 "Number of high latency instructions hoisted");
51 STATISTIC(NumCSEed,
52 "Number of hoisted machine instructions CSEed");
53 STATISTIC(NumPostRAHoisted,
54 "Number of machine instructions hoisted out of loops post regalloc");
56 namespace {
57 class MachineLICM : public MachineFunctionPass {
58 bool PreRegAlloc;
60 const TargetMachine *TM;
61 const TargetInstrInfo *TII;
62 const TargetLowering *TLI;
63 const TargetRegisterInfo *TRI;
64 const MachineFrameInfo *MFI;
65 MachineRegisterInfo *MRI;
66 const InstrItineraryData *InstrItins;
68 // Various analyses that we use...
69 AliasAnalysis *AA; // Alias analysis info.
70 MachineLoopInfo *MLI; // Current MachineLoopInfo
71 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
73 // State that is updated as we process loops
74 bool Changed; // True if a loop is changed.
75 bool FirstInLoop; // True if it's the first LICM in the loop.
76 MachineLoop *CurLoop; // The current loop we are working on.
77 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
79 BitVector AllocatableSet;
81 // Track 'estimated' register pressure.
82 SmallSet<unsigned, 32> RegSeen;
83 SmallVector<unsigned, 8> RegPressure;
85 // Register pressure "limit" per register class. If the pressure
86 // is higher than the limit, then it's considered high.
87 SmallVector<unsigned, 8> RegLimit;
89 // Register pressure on path leading from loop preheader to current BB.
90 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
92 // For each opcode, keep a list of potential CSE instructions.
93 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
95 public:
96 static char ID; // Pass identification, replacement for typeid
97 MachineLICM() :
98 MachineFunctionPass(ID), PreRegAlloc(true) {
99 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
102 explicit MachineLICM(bool PreRA) :
103 MachineFunctionPass(ID), PreRegAlloc(PreRA) {
104 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
107 virtual bool runOnMachineFunction(MachineFunction &MF);
109 const char *getPassName() const { return "Machine Instruction LICM"; }
111 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
112 AU.addRequired<MachineLoopInfo>();
113 AU.addRequired<MachineDominatorTree>();
114 AU.addRequired<AliasAnalysis>();
115 AU.addPreserved<MachineLoopInfo>();
116 AU.addPreserved<MachineDominatorTree>();
117 MachineFunctionPass::getAnalysisUsage(AU);
120 virtual void releaseMemory() {
121 RegSeen.clear();
122 RegPressure.clear();
123 RegLimit.clear();
124 BackTrace.clear();
125 for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
126 CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
127 CI->second.clear();
128 CSEMap.clear();
131 private:
132 /// CandidateInfo - Keep track of information about hoisting candidates.
133 struct CandidateInfo {
134 MachineInstr *MI;
135 unsigned Def;
136 int FI;
137 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
138 : MI(mi), Def(def), FI(fi) {}
141 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
142 /// invariants out to the preheader.
143 void HoistRegionPostRA();
145 /// HoistPostRA - When an instruction is found to only use loop invariant
146 /// operands that is safe to hoist, this instruction is called to do the
147 /// dirty work.
148 void HoistPostRA(MachineInstr *MI, unsigned Def);
150 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
151 /// gather register def and frame object update information.
152 void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
153 SmallSet<int, 32> &StoredFIs,
154 SmallVector<CandidateInfo, 32> &Candidates);
156 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
157 /// current loop.
158 void AddToLiveIns(unsigned Reg);
160 /// IsLICMCandidate - Returns true if the instruction may be a suitable
161 /// candidate for LICM. e.g. If the instruction is a call, then it's
162 /// obviously not safe to hoist it.
163 bool IsLICMCandidate(MachineInstr &I);
165 /// IsLoopInvariantInst - Returns true if the instruction is loop
166 /// invariant. I.e., all virtual register operands are defined outside of
167 /// the loop, physical registers aren't accessed (explicitly or implicitly),
168 /// and the instruction is hoistable.
169 ///
170 bool IsLoopInvariantInst(MachineInstr &I);
172 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
173 /// and an use in the current loop, return true if the target considered
174 /// it 'high'.
175 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
176 unsigned Reg) const;
178 bool IsCheapInstruction(MachineInstr &MI) const;
180 /// CanCauseHighRegPressure - Visit BBs from header to current BB,
181 /// check if hoisting an instruction of the given cost matrix can cause high
182 /// register pressure.
183 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
185 /// UpdateBackTraceRegPressure - Traverse the back trace from header to
186 /// the current block and update their register pressures to reflect the
187 /// effect of hoisting MI from the current block to the preheader.
188 void UpdateBackTraceRegPressure(const MachineInstr *MI);
190 /// IsProfitableToHoist - Return true if it is potentially profitable to
191 /// hoist the given loop invariant.
192 bool IsProfitableToHoist(MachineInstr &MI);
194 /// HoistRegion - Walk the specified region of the CFG (defined by all
195 /// blocks dominated by the specified block, and that are in the current
196 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
197 /// visit definitions before uses, allowing us to hoist a loop body in one
198 /// pass without iteration.
200 void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
202 /// InitRegPressure - Find all virtual register references that are liveout
203 /// of the preheader to initialize the starting "register pressure". Note
204 /// this does not count live through (livein but not used) registers.
205 void InitRegPressure(MachineBasicBlock *BB);
207 /// UpdateRegPressure - Update estimate of register pressure after the
208 /// specified instruction.
209 void UpdateRegPressure(const MachineInstr *MI);
211 /// isLoadFromConstantMemory - Return true if the given instruction is a
212 /// load from constant memory.
213 bool isLoadFromConstantMemory(MachineInstr *MI);
215 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
216 /// the load itself could be hoisted. Return the unfolded and hoistable
217 /// load, or null if the load couldn't be unfolded or if it wouldn't
218 /// be hoistable.
219 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
221 /// LookForDuplicate - Find an instruction amount PrevMIs that is a
222 /// duplicate of MI. Return this instruction if it's found.
223 const MachineInstr *LookForDuplicate(const MachineInstr *MI,
224 std::vector<const MachineInstr*> &PrevMIs);
226 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
227 /// the preheader that compute the same value. If it's found, do a RAU on
228 /// with the definition of the existing instruction rather than hoisting
229 /// the instruction to the preheader.
230 bool EliminateCSE(MachineInstr *MI,
231 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
233 /// Hoist - When an instruction is found to only use loop invariant operands
234 /// that is safe to hoist, this instruction is called to do the dirty work.
235 /// It returns true if the instruction is hoisted.
236 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
238 /// InitCSEMap - Initialize the CSE map with instructions that are in the
239 /// current loop preheader that may become duplicates of instructions that
240 /// are hoisted out of the loop.
241 void InitCSEMap(MachineBasicBlock *BB);
243 /// getCurPreheader - Get the preheader for the current loop, splitting
244 /// a critical edge if needed.
245 MachineBasicBlock *getCurPreheader();
247 } // end anonymous namespace
249 char MachineLICM::ID = 0;
250 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
251 "Machine Loop Invariant Code Motion", false, false)
252 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
255 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
256 "Machine Loop Invariant Code Motion", false, false)
258 FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
259 return new MachineLICM(PreRegAlloc);
262 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
263 /// loop that has a unique predecessor.
264 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
265 // Check whether this loop even has a unique predecessor.
266 if (!CurLoop->getLoopPredecessor())
267 return false;
268 // Ok, now check to see if any of its outer loops do.
269 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
270 if (L->getLoopPredecessor())
271 return false;
272 // None of them did, so this is the outermost with a unique predecessor.
273 return true;
276 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
277 if (PreRegAlloc)
278 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
279 else
280 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
281 DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
283 Changed = FirstInLoop = false;
284 TM = &MF.getTarget();
285 TII = TM->getInstrInfo();
286 TLI = TM->getTargetLowering();
287 TRI = TM->getRegisterInfo();
288 MFI = MF.getFrameInfo();
289 MRI = &MF.getRegInfo();
290 InstrItins = TM->getInstrItineraryData();
291 AllocatableSet = TRI->getAllocatableSet(MF);
293 if (PreRegAlloc) {
294 // Estimate register pressure during pre-regalloc pass.
295 unsigned NumRC = TRI->getNumRegClasses();
296 RegPressure.resize(NumRC);
297 std::fill(RegPressure.begin(), RegPressure.end(), 0);
298 RegLimit.resize(NumRC);
299 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
300 E = TRI->regclass_end(); I != E; ++I)
301 RegLimit[(*I)->getID()] = TLI->getRegPressureLimit(*I, MF);
304 // Get our Loop information...
305 MLI = &getAnalysis<MachineLoopInfo>();
306 DT = &getAnalysis<MachineDominatorTree>();
307 AA = &getAnalysis<AliasAnalysis>();
309 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
310 while (!Worklist.empty()) {
311 CurLoop = Worklist.pop_back_val();
312 CurPreheader = 0;
314 // If this is done before regalloc, only visit outer-most preheader-sporting
315 // loops.
316 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
317 Worklist.append(CurLoop->begin(), CurLoop->end());
318 continue;
321 if (!PreRegAlloc)
322 HoistRegionPostRA();
323 else {
324 // CSEMap is initialized for loop header when the first instruction is
325 // being hoisted.
326 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
327 FirstInLoop = true;
328 HoistRegion(N, true);
329 CSEMap.clear();
333 return Changed;
336 /// InstructionStoresToFI - Return true if instruction stores to the
337 /// specified frame.
338 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
339 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
340 oe = MI->memoperands_end(); o != oe; ++o) {
341 if (!(*o)->isStore() || !(*o)->getValue())
342 continue;
343 if (const FixedStackPseudoSourceValue *Value =
344 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
345 if (Value->getFrameIndex() == FI)
346 return true;
349 return false;
352 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
353 /// gather register def and frame object update information.
354 void MachineLICM::ProcessMI(MachineInstr *MI,
355 unsigned *PhysRegDefs,
356 SmallSet<int, 32> &StoredFIs,
357 SmallVector<CandidateInfo, 32> &Candidates) {
358 bool RuledOut = false;
359 bool HasNonInvariantUse = false;
360 unsigned Def = 0;
361 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
362 const MachineOperand &MO = MI->getOperand(i);
363 if (MO.isFI()) {
364 // Remember if the instruction stores to the frame index.
365 int FI = MO.getIndex();
366 if (!StoredFIs.count(FI) &&
367 MFI->isSpillSlotObjectIndex(FI) &&
368 InstructionStoresToFI(MI, FI))
369 StoredFIs.insert(FI);
370 HasNonInvariantUse = true;
371 continue;
374 if (!MO.isReg())
375 continue;
376 unsigned Reg = MO.getReg();
377 if (!Reg)
378 continue;
379 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
380 "Not expecting virtual register!");
382 if (!MO.isDef()) {
383 if (Reg && PhysRegDefs[Reg])
384 // If it's using a non-loop-invariant register, then it's obviously not
385 // safe to hoist.
386 HasNonInvariantUse = true;
387 continue;
390 if (MO.isImplicit()) {
391 ++PhysRegDefs[Reg];
392 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
393 ++PhysRegDefs[*AS];
394 if (!MO.isDead())
395 // Non-dead implicit def? This cannot be hoisted.
396 RuledOut = true;
397 // No need to check if a dead implicit def is also defined by
398 // another instruction.
399 continue;
402 // FIXME: For now, avoid instructions with multiple defs, unless
403 // it's a dead implicit def.
404 if (Def)
405 RuledOut = true;
406 else
407 Def = Reg;
409 // If we have already seen another instruction that defines the same
410 // register, then this is not safe.
411 if (++PhysRegDefs[Reg] > 1)
412 // MI defined register is seen defined by another instruction in
413 // the loop, it cannot be a LICM candidate.
414 RuledOut = true;
415 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
416 if (++PhysRegDefs[*AS] > 1)
417 RuledOut = true;
420 // Only consider reloads for now and remats which do not have register
421 // operands. FIXME: Consider unfold load folding instructions.
422 if (Def && !RuledOut) {
423 int FI = INT_MIN;
424 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
425 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
426 Candidates.push_back(CandidateInfo(MI, Def, FI));
430 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
431 /// invariants out to the preheader.
432 void MachineLICM::HoistRegionPostRA() {
433 unsigned NumRegs = TRI->getNumRegs();
434 unsigned *PhysRegDefs = new unsigned[NumRegs];
435 std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
437 SmallVector<CandidateInfo, 32> Candidates;
438 SmallSet<int, 32> StoredFIs;
440 // Walk the entire region, count number of defs for each register, and
441 // collect potential LICM candidates.
442 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
443 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
444 MachineBasicBlock *BB = Blocks[i];
445 // Conservatively treat live-in's as an external def.
446 // FIXME: That means a reload that're reused in successor block(s) will not
447 // be LICM'ed.
448 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
449 E = BB->livein_end(); I != E; ++I) {
450 unsigned Reg = *I;
451 ++PhysRegDefs[Reg];
452 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
453 ++PhysRegDefs[*AS];
456 for (MachineBasicBlock::iterator
457 MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
458 MachineInstr *MI = &*MII;
459 ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
463 // Now evaluate whether the potential candidates qualify.
464 // 1. Check if the candidate defined register is defined by another
465 // instruction in the loop.
466 // 2. If the candidate is a load from stack slot (always true for now),
467 // check if the slot is stored anywhere in the loop.
468 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
469 if (Candidates[i].FI != INT_MIN &&
470 StoredFIs.count(Candidates[i].FI))
471 continue;
473 if (PhysRegDefs[Candidates[i].Def] == 1) {
474 bool Safe = true;
475 MachineInstr *MI = Candidates[i].MI;
476 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
477 const MachineOperand &MO = MI->getOperand(j);
478 if (!MO.isReg() || MO.isDef() || !MO.getReg())
479 continue;
480 if (PhysRegDefs[MO.getReg()]) {
481 // If it's using a non-loop-invariant register, then it's obviously
482 // not safe to hoist.
483 Safe = false;
484 break;
487 if (Safe)
488 HoistPostRA(MI, Candidates[i].Def);
492 delete[] PhysRegDefs;
495 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
496 /// loop, and make sure it is not killed by any instructions in the loop.
497 void MachineLICM::AddToLiveIns(unsigned Reg) {
498 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
499 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
500 MachineBasicBlock *BB = Blocks[i];
501 if (!BB->isLiveIn(Reg))
502 BB->addLiveIn(Reg);
503 for (MachineBasicBlock::iterator
504 MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
505 MachineInstr *MI = &*MII;
506 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
507 MachineOperand &MO = MI->getOperand(i);
508 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
509 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
510 MO.setIsKill(false);
516 /// HoistPostRA - When an instruction is found to only use loop invariant
517 /// operands that is safe to hoist, this instruction is called to do the
518 /// dirty work.
519 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
520 MachineBasicBlock *Preheader = getCurPreheader();
521 if (!Preheader) return;
523 // Now move the instructions to the predecessor, inserting it before any
524 // terminator instructions.
525 DEBUG({
526 dbgs() << "Hoisting " << *MI;
527 if (Preheader->getBasicBlock())
528 dbgs() << " to MachineBasicBlock "
529 << Preheader->getName();
530 if (MI->getParent()->getBasicBlock())
531 dbgs() << " from MachineBasicBlock "
532 << MI->getParent()->getName();
533 dbgs() << "\n";
536 // Splice the instruction to the preheader.
537 MachineBasicBlock *MBB = MI->getParent();
538 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
540 // Add register to livein list to all the BBs in the current loop since a
541 // loop invariant must be kept live throughout the whole loop. This is
542 // important to ensure later passes do not scavenge the def register.
543 AddToLiveIns(Def);
545 ++NumPostRAHoisted;
546 Changed = true;
549 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
550 /// dominated by the specified block, and that are in the current loop) in depth
551 /// first order w.r.t the DominatorTree. This allows us to visit definitions
552 /// before uses, allowing us to hoist a loop body in one pass without iteration.
554 void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
555 assert(N != 0 && "Null dominator tree node?");
556 MachineBasicBlock *BB = N->getBlock();
558 // If this subregion is not in the top level loop at all, exit.
559 if (!CurLoop->contains(BB)) return;
561 MachineBasicBlock *Preheader = getCurPreheader();
562 if (!Preheader)
563 return;
565 if (IsHeader) {
566 // Compute registers which are livein into the loop headers.
567 RegSeen.clear();
568 BackTrace.clear();
569 InitRegPressure(Preheader);
572 // Remember livein register pressure.
573 BackTrace.push_back(RegPressure);
575 for (MachineBasicBlock::iterator
576 MII = BB->begin(), E = BB->end(); MII != E; ) {
577 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
578 MachineInstr *MI = &*MII;
579 if (!Hoist(MI, Preheader))
580 UpdateRegPressure(MI);
581 MII = NextMII;
584 // Don't hoist things out of a large switch statement. This often causes
585 // code to be hoisted that wasn't going to be executed, and increases
586 // register pressure in a situation where it's likely to matter.
587 if (BB->succ_size() < 25) {
588 const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
589 for (unsigned I = 0, E = Children.size(); I != E; ++I)
590 HoistRegion(Children[I]);
593 BackTrace.pop_back();
596 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
597 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
600 /// InitRegPressure - Find all virtual register references that are liveout of
601 /// the preheader to initialize the starting "register pressure". Note this
602 /// does not count live through (livein but not used) registers.
603 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
604 std::fill(RegPressure.begin(), RegPressure.end(), 0);
606 // If the preheader has only a single predecessor and it ends with a
607 // fallthrough or an unconditional branch, then scan its predecessor for live
608 // defs as well. This happens whenever the preheader is created by splitting
609 // the critical edge from the loop predecessor to the loop header.
610 if (BB->pred_size() == 1) {
611 MachineBasicBlock *TBB = 0, *FBB = 0;
612 SmallVector<MachineOperand, 4> Cond;
613 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
614 InitRegPressure(*BB->pred_begin());
617 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
618 MII != E; ++MII) {
619 MachineInstr *MI = &*MII;
620 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
621 const MachineOperand &MO = MI->getOperand(i);
622 if (!MO.isReg() || MO.isImplicit())
623 continue;
624 unsigned Reg = MO.getReg();
625 if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
626 continue;
628 bool isNew = RegSeen.insert(Reg);
629 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
630 EVT VT = *RC->vt_begin();
631 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
632 if (MO.isDef())
633 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
634 else {
635 bool isKill = isOperandKill(MO, MRI);
636 if (isNew && !isKill)
637 // Haven't seen this, it must be a livein.
638 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
639 else if (!isNew && isKill)
640 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
646 /// UpdateRegPressure - Update estimate of register pressure after the
647 /// specified instruction.
648 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
649 if (MI->isImplicitDef())
650 return;
652 SmallVector<unsigned, 4> Defs;
653 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
654 const MachineOperand &MO = MI->getOperand(i);
655 if (!MO.isReg() || MO.isImplicit())
656 continue;
657 unsigned Reg = MO.getReg();
658 if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
659 continue;
661 bool isNew = RegSeen.insert(Reg);
662 if (MO.isDef())
663 Defs.push_back(Reg);
664 else if (!isNew && isOperandKill(MO, MRI)) {
665 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
666 EVT VT = *RC->vt_begin();
667 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
668 unsigned RCCost = TLI->getRepRegClassCostFor(VT);
670 if (RCCost > RegPressure[RCId])
671 RegPressure[RCId] = 0;
672 else
673 RegPressure[RCId] -= RCCost;
677 while (!Defs.empty()) {
678 unsigned Reg = Defs.pop_back_val();
679 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
680 EVT VT = *RC->vt_begin();
681 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
682 unsigned RCCost = TLI->getRepRegClassCostFor(VT);
683 RegPressure[RCId] += RCCost;
687 /// IsLICMCandidate - Returns true if the instruction may be a suitable
688 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
689 /// not safe to hoist it.
690 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
691 // Check if it's safe to move the instruction.
692 bool DontMoveAcrossStore = true;
693 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
694 return false;
696 return true;
699 /// IsLoopInvariantInst - Returns true if the instruction is loop
700 /// invariant. I.e., all virtual register operands are defined outside of the
701 /// loop, physical registers aren't accessed explicitly, and there are no side
702 /// effects that aren't captured by the operands or other flags.
703 ///
704 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
705 if (!IsLICMCandidate(I))
706 return false;
708 // The instruction is loop invariant if all of its operands are.
709 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
710 const MachineOperand &MO = I.getOperand(i);
712 if (!MO.isReg())
713 continue;
715 unsigned Reg = MO.getReg();
716 if (Reg == 0) continue;
718 // Don't hoist an instruction that uses or defines a physical register.
719 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
720 if (MO.isUse()) {
721 // If the physreg has no defs anywhere, it's just an ambient register
722 // and we can freely move its uses. Alternatively, if it's allocatable,
723 // it could get allocated to something with a def during allocation.
724 if (!MRI->def_empty(Reg))
725 return false;
726 if (AllocatableSet.test(Reg))
727 return false;
728 // Check for a def among the register's aliases too.
729 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
730 unsigned AliasReg = *Alias;
731 if (!MRI->def_empty(AliasReg))
732 return false;
733 if (AllocatableSet.test(AliasReg))
734 return false;
736 // Otherwise it's safe to move.
737 continue;
738 } else if (!MO.isDead()) {
739 // A def that isn't dead. We can't move it.
740 return false;
741 } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
742 // If the reg is live into the loop, we can't hoist an instruction
743 // which would clobber it.
744 return false;
748 if (!MO.isUse())
749 continue;
751 assert(MRI->getVRegDef(Reg) &&
752 "Machine instr not mapped for this vreg?!");
754 // If the loop contains the definition of an operand, then the instruction
755 // isn't loop invariant.
756 if (CurLoop->contains(MRI->getVRegDef(Reg)))
757 return false;
760 // If we got this far, the instruction is loop invariant!
761 return true;
765 /// HasPHIUses - Return true if the specified register has any PHI use.
766 static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *MRI) {
767 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
768 UE = MRI->use_end(); UI != UE; ++UI) {
769 MachineInstr *UseMI = &*UI;
770 if (UseMI->isPHI())
771 return true;
773 return false;
776 /// isLoadFromConstantMemory - Return true if the given instruction is a
777 /// load from constant memory. Machine LICM will hoist these even if they are
778 /// not re-materializable.
779 bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
780 if (!MI->getDesc().mayLoad()) return false;
781 if (!MI->hasOneMemOperand()) return false;
782 MachineMemOperand *MMO = *MI->memoperands_begin();
783 if (MMO->isVolatile()) return false;
784 if (!MMO->getValue()) return false;
785 const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
786 if (PSV) {
787 MachineFunction &MF = *MI->getParent()->getParent();
788 return PSV->isConstant(MF.getFrameInfo());
789 } else {
790 return AA->pointsToConstantMemory(AliasAnalysis::Location(MMO->getValue(),
791 MMO->getSize(),
792 MMO->getTBAAInfo()));
796 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
797 /// and an use in the current loop, return true if the target considered
798 /// it 'high'.
799 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
800 unsigned DefIdx, unsigned Reg) const {
801 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
802 return false;
804 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
805 E = MRI->use_nodbg_end(); I != E; ++I) {
806 MachineInstr *UseMI = &*I;
807 if (UseMI->isCopyLike())
808 continue;
809 if (!CurLoop->contains(UseMI->getParent()))
810 continue;
811 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
812 const MachineOperand &MO = UseMI->getOperand(i);
813 if (!MO.isReg() || !MO.isUse())
814 continue;
815 unsigned MOReg = MO.getReg();
816 if (MOReg != Reg)
817 continue;
819 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
820 return true;
823 // Only look at the first in loop use.
824 break;
827 return false;
830 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
831 /// the operand latency between its def and a use is one or less.
832 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
833 if (MI.getDesc().isAsCheapAsAMove() || MI.isCopyLike())
834 return true;
835 if (!InstrItins || InstrItins->isEmpty())
836 return false;
838 bool isCheap = false;
839 unsigned NumDefs = MI.getDesc().getNumDefs();
840 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
841 MachineOperand &DefMO = MI.getOperand(i);
842 if (!DefMO.isReg() || !DefMO.isDef())
843 continue;
844 --NumDefs;
845 unsigned Reg = DefMO.getReg();
846 if (TargetRegisterInfo::isPhysicalRegister(Reg))
847 continue;
849 if (!TII->hasLowDefLatency(InstrItins, &MI, i))
850 return false;
851 isCheap = true;
854 return isCheap;
857 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
858 /// if hoisting an instruction of the given cost matrix can cause high
859 /// register pressure.
860 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
861 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
862 CI != CE; ++CI) {
863 if (CI->second <= 0)
864 continue;
866 unsigned RCId = CI->first;
867 for (unsigned i = BackTrace.size(); i != 0; --i) {
868 SmallVector<unsigned, 8> &RP = BackTrace[i-1];
869 if (RP[RCId] + CI->second >= RegLimit[RCId])
870 return true;
874 return false;
877 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
878 /// current block and update their register pressures to reflect the effect
879 /// of hoisting MI from the current block to the preheader.
880 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
881 if (MI->isImplicitDef())
882 return;
884 // First compute the 'cost' of the instruction, i.e. its contribution
885 // to register pressure.
886 DenseMap<unsigned, int> Cost;
887 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
888 const MachineOperand &MO = MI->getOperand(i);
889 if (!MO.isReg() || MO.isImplicit())
890 continue;
891 unsigned Reg = MO.getReg();
892 if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
893 continue;
895 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
896 EVT VT = *RC->vt_begin();
897 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
898 unsigned RCCost = TLI->getRepRegClassCostFor(VT);
899 if (MO.isDef()) {
900 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
901 if (CI != Cost.end())
902 CI->second += RCCost;
903 else
904 Cost.insert(std::make_pair(RCId, RCCost));
905 } else if (isOperandKill(MO, MRI)) {
906 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
907 if (CI != Cost.end())
908 CI->second -= RCCost;
909 else
910 Cost.insert(std::make_pair(RCId, -RCCost));
914 // Update register pressure of blocks from loop header to current block.
915 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
916 SmallVector<unsigned, 8> &RP = BackTrace[i];
917 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
918 CI != CE; ++CI) {
919 unsigned RCId = CI->first;
920 RP[RCId] += CI->second;
925 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
926 /// the given loop invariant.
927 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
928 if (MI.isImplicitDef())
929 return true;
931 // If the instruction is cheap, only hoist if it is re-materilizable. LICM
932 // will increase register pressure. It's probably not worth it if the
933 // instruction is cheap.
934 // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
935 // these tend to help performance in low register pressure situation. The
936 // trade off is it may cause spill in high pressure situation. It will end up
937 // adding a store in the loop preheader. But the reload is no more expensive.
938 // The side benefit is these loads are frequently CSE'ed.
939 if (IsCheapInstruction(MI)) {
940 if (!TII->isTriviallyReMaterializable(&MI, AA))
941 return false;
942 } else {
943 // Estimate register pressure to determine whether to LICM the instruction.
944 // In low register pressure situation, we can be more aggressive about
945 // hoisting. Also, favors hoisting long latency instructions even in
946 // moderately high pressure situation.
947 DenseMap<unsigned, int> Cost;
948 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
949 const MachineOperand &MO = MI.getOperand(i);
950 if (!MO.isReg() || MO.isImplicit())
951 continue;
952 unsigned Reg = MO.getReg();
953 if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
954 continue;
955 if (MO.isDef()) {
956 if (HasHighOperandLatency(MI, i, Reg)) {
957 ++NumHighLatency;
958 return true;
961 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
962 EVT VT = *RC->vt_begin();
963 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
964 unsigned RCCost = TLI->getRepRegClassCostFor(VT);
965 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
966 if (CI != Cost.end())
967 CI->second += RCCost;
968 else
969 Cost.insert(std::make_pair(RCId, RCCost));
970 } else if (isOperandKill(MO, MRI)) {
971 // Is a virtual register use is a kill, hoisting it out of the loop
972 // may actually reduce register pressure or be register pressure
973 // neutral.
974 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
975 EVT VT = *RC->vt_begin();
976 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
977 unsigned RCCost = TLI->getRepRegClassCostFor(VT);
978 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
979 if (CI != Cost.end())
980 CI->second -= RCCost;
981 else
982 Cost.insert(std::make_pair(RCId, -RCCost));
986 // Visit BBs from header to current BB, if hoisting this doesn't cause
987 // high register pressure, then it's safe to proceed.
988 if (!CanCauseHighRegPressure(Cost)) {
989 ++NumLowRP;
990 return true;
993 // High register pressure situation, only hoist if the instruction is going to
994 // be remat'ed.
995 if (!TII->isTriviallyReMaterializable(&MI, AA) &&
996 !isLoadFromConstantMemory(&MI))
997 return false;
1000 // If result(s) of this instruction is used by PHIs, then don't hoist it.
1001 // The presence of joins makes it difficult for current register allocator
1002 // implementation to perform remat.
1003 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1004 const MachineOperand &MO = MI.getOperand(i);
1005 if (!MO.isReg() || !MO.isDef())
1006 continue;
1007 if (HasPHIUses(MO.getReg(), MRI))
1008 return false;
1011 return true;
1014 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1015 // Don't unfold simple loads.
1016 if (MI->getDesc().canFoldAsLoad())
1017 return 0;
1019 // If not, we may be able to unfold a load and hoist that.
1020 // First test whether the instruction is loading from an amenable
1021 // memory location.
1022 if (!isLoadFromConstantMemory(MI))
1023 return 0;
1025 // Next determine the register class for a temporary register.
1026 unsigned LoadRegIndex;
1027 unsigned NewOpc =
1028 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1029 /*UnfoldLoad=*/true,
1030 /*UnfoldStore=*/false,
1031 &LoadRegIndex);
1032 if (NewOpc == 0) return 0;
1033 const TargetInstrDesc &TID = TII->get(NewOpc);
1034 if (TID.getNumDefs() != 1) return 0;
1035 const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
1036 // Ok, we're unfolding. Create a temporary register and do the unfold.
1037 unsigned Reg = MRI->createVirtualRegister(RC);
1039 MachineFunction &MF = *MI->getParent()->getParent();
1040 SmallVector<MachineInstr *, 2> NewMIs;
1041 bool Success =
1042 TII->unfoldMemoryOperand(MF, MI, Reg,
1043 /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1044 NewMIs);
1045 (void)Success;
1046 assert(Success &&
1047 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1048 "succeeded!");
1049 assert(NewMIs.size() == 2 &&
1050 "Unfolded a load into multiple instructions!");
1051 MachineBasicBlock *MBB = MI->getParent();
1052 MBB->insert(MI, NewMIs[0]);
1053 MBB->insert(MI, NewMIs[1]);
1054 // If unfolding produced a load that wasn't loop-invariant or profitable to
1055 // hoist, discard the new instructions and bail.
1056 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1057 NewMIs[0]->eraseFromParent();
1058 NewMIs[1]->eraseFromParent();
1059 return 0;
1062 // Update register pressure for the unfolded instruction.
1063 UpdateRegPressure(NewMIs[1]);
1065 // Otherwise we successfully unfolded a load that we can hoist.
1066 MI->eraseFromParent();
1067 return NewMIs[0];
1070 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1071 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1072 const MachineInstr *MI = &*I;
1073 // FIXME: For now, only hoist re-materilizable instructions. LICM will
1074 // increase register pressure. We want to make sure it doesn't increase
1075 // spilling.
1076 if (TII->isTriviallyReMaterializable(MI, AA)) {
1077 unsigned Opcode = MI->getOpcode();
1078 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1079 CI = CSEMap.find(Opcode);
1080 if (CI != CSEMap.end())
1081 CI->second.push_back(MI);
1082 else {
1083 std::vector<const MachineInstr*> CSEMIs;
1084 CSEMIs.push_back(MI);
1085 CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1091 const MachineInstr*
1092 MachineLICM::LookForDuplicate(const MachineInstr *MI,
1093 std::vector<const MachineInstr*> &PrevMIs) {
1094 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1095 const MachineInstr *PrevMI = PrevMIs[i];
1096 if (TII->produceSameValue(MI, PrevMI))
1097 return PrevMI;
1099 return 0;
1102 bool MachineLICM::EliminateCSE(MachineInstr *MI,
1103 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1104 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1105 // the undef property onto uses.
1106 if (CI == CSEMap.end() || MI->isImplicitDef())
1107 return false;
1109 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1110 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1112 // Replace virtual registers defined by MI by their counterparts defined
1113 // by Dup.
1114 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1115 const MachineOperand &MO = MI->getOperand(i);
1117 // Physical registers may not differ here.
1118 assert((!MO.isReg() || MO.getReg() == 0 ||
1119 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1120 MO.getReg() == Dup->getOperand(i).getReg()) &&
1121 "Instructions with different phys regs are not identical!");
1123 if (MO.isReg() && MO.isDef() &&
1124 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1125 MRI->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
1126 MRI->clearKillFlags(Dup->getOperand(i).getReg());
1129 MI->eraseFromParent();
1130 ++NumCSEed;
1131 return true;
1133 return false;
1136 /// Hoist - When an instruction is found to use only loop invariant operands
1137 /// that are safe to hoist, this instruction is called to do the dirty work.
1139 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1140 // First check whether we should hoist this instruction.
1141 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1142 // If not, try unfolding a hoistable load.
1143 MI = ExtractHoistableLoad(MI);
1144 if (!MI) return false;
1147 // Now move the instructions to the predecessor, inserting it before any
1148 // terminator instructions.
1149 DEBUG({
1150 dbgs() << "Hoisting " << *MI;
1151 if (Preheader->getBasicBlock())
1152 dbgs() << " to MachineBasicBlock "
1153 << Preheader->getName();
1154 if (MI->getParent()->getBasicBlock())
1155 dbgs() << " from MachineBasicBlock "
1156 << MI->getParent()->getName();
1157 dbgs() << "\n";
1160 // If this is the first instruction being hoisted to the preheader,
1161 // initialize the CSE map with potential common expressions.
1162 if (FirstInLoop) {
1163 InitCSEMap(Preheader);
1164 FirstInLoop = false;
1167 // Look for opportunity to CSE the hoisted instruction.
1168 unsigned Opcode = MI->getOpcode();
1169 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1170 CI = CSEMap.find(Opcode);
1171 if (!EliminateCSE(MI, CI)) {
1172 // Otherwise, splice the instruction to the preheader.
1173 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1175 // Update register pressure for BBs from header to this block.
1176 UpdateBackTraceRegPressure(MI);
1178 // Clear the kill flags of any register this instruction defines,
1179 // since they may need to be live throughout the entire loop
1180 // rather than just live for part of it.
1181 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1182 MachineOperand &MO = MI->getOperand(i);
1183 if (MO.isReg() && MO.isDef() && !MO.isDead())
1184 MRI->clearKillFlags(MO.getReg());
1187 // Add to the CSE map.
1188 if (CI != CSEMap.end())
1189 CI->second.push_back(MI);
1190 else {
1191 std::vector<const MachineInstr*> CSEMIs;
1192 CSEMIs.push_back(MI);
1193 CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1197 ++NumHoisted;
1198 Changed = true;
1200 return true;
1203 MachineBasicBlock *MachineLICM::getCurPreheader() {
1204 // Determine the block to which to hoist instructions. If we can't find a
1205 // suitable loop predecessor, we can't do any hoisting.
1207 // If we've tried to get a preheader and failed, don't try again.
1208 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1209 return 0;
1211 if (!CurPreheader) {
1212 CurPreheader = CurLoop->getLoopPreheader();
1213 if (!CurPreheader) {
1214 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1215 if (!Pred) {
1216 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1217 return 0;
1220 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1221 if (!CurPreheader) {
1222 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1223 return 0;
1227 return CurPreheader;