1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIElimination.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
37 STATISTIC(NumAtomic
, "Number of atomic phis lowered");
38 STATISTIC(NumReused
, "Number of reused lowered phis");
40 char PHIElimination::ID
= 0;
41 INITIALIZE_PASS(PHIElimination
, "phi-node-elimination",
42 "Eliminate PHI nodes for register allocation", false, false)
44 char &llvm::PHIEliminationID
= PHIElimination::ID
;
46 void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
47 AU
.addPreserved
<LiveVariables
>();
48 AU
.addPreserved
<MachineDominatorTree
>();
49 AU
.addPreserved
<MachineLoopInfo
>();
50 MachineFunctionPass::getAnalysisUsage(AU
);
53 bool llvm::PHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
54 MRI
= &MF
.getRegInfo();
58 // Split critical edges to help the coalescer
59 if (LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>()) {
60 MachineLoopInfo
*MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
61 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
62 Changed
|= SplitPHIEdges(MF
, *I
, *LV
, MLI
);
65 // Populate VRegPHIUseCount
68 // Eliminate PHI instructions by inserting copies into predecessor blocks.
69 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
70 Changed
|= EliminatePHINodes(MF
, *I
);
72 // Remove dead IMPLICIT_DEF instructions.
73 for (SmallPtrSet
<MachineInstr
*, 4>::iterator I
= ImpDefs
.begin(),
74 E
= ImpDefs
.end(); I
!= E
; ++I
) {
75 MachineInstr
*DefMI
= *I
;
76 unsigned DefReg
= DefMI
->getOperand(0).getReg();
77 if (MRI
->use_nodbg_empty(DefReg
))
78 DefMI
->eraseFromParent();
81 // Clean up the lowered PHI instructions.
82 for (LoweredPHIMap::iterator I
= LoweredPHIs
.begin(), E
= LoweredPHIs
.end();
84 MF
.DeleteMachineInstr(I
->first
);
88 VRegPHIUseCount
.clear();
93 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
94 /// predecessor basic blocks.
96 bool llvm::PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
97 MachineBasicBlock
&MBB
) {
98 if (MBB
.empty() || !MBB
.front().isPHI())
99 return false; // Quick exit for basic blocks without PHIs.
101 // Get an iterator to the first instruction after the last PHI node (this may
102 // also be the end of the basic block).
103 MachineBasicBlock::iterator AfterPHIsIt
= SkipPHIsAndLabels(MBB
, MBB
.begin());
105 while (MBB
.front().isPHI())
106 LowerAtomicPHINode(MBB
, AfterPHIsIt
);
111 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
112 /// are implicit_def's.
113 static bool isSourceDefinedByImplicitDef(const MachineInstr
*MPhi
,
114 const MachineRegisterInfo
*MRI
) {
115 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2) {
116 unsigned SrcReg
= MPhi
->getOperand(i
).getReg();
117 const MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
118 if (!DefMI
|| !DefMI
->isImplicitDef())
124 // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
125 // when following the CFG edge to SuccMBB. This needs to be after any def of
126 // SrcReg, but before any subsequent point where control flow might jump out of
128 MachineBasicBlock::iterator
129 llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock
&MBB
,
130 MachineBasicBlock
&SuccMBB
,
132 // Handle the trivial case trivially.
136 // Usually, we just want to insert the copy before the first terminator
137 // instruction. However, for the edge going to a landing pad, we must insert
138 // the copy before the call/invoke instruction.
139 if (!SuccMBB
.isLandingPad())
140 return MBB
.getFirstTerminator();
142 // Discover any defs/uses in this basic block.
143 SmallPtrSet
<MachineInstr
*, 8> DefUsesInMBB
;
144 for (MachineRegisterInfo::reg_iterator RI
= MRI
->reg_begin(SrcReg
),
145 RE
= MRI
->reg_end(); RI
!= RE
; ++RI
) {
146 MachineInstr
*DefUseMI
= &*RI
;
147 if (DefUseMI
->getParent() == &MBB
)
148 DefUsesInMBB
.insert(DefUseMI
);
151 MachineBasicBlock::iterator InsertPoint
;
152 if (DefUsesInMBB
.empty()) {
153 // No defs. Insert the copy at the start of the basic block.
154 InsertPoint
= MBB
.begin();
155 } else if (DefUsesInMBB
.size() == 1) {
156 // Insert the copy immediately after the def/use.
157 InsertPoint
= *DefUsesInMBB
.begin();
160 // Insert the copy immediately after the last def/use.
161 InsertPoint
= MBB
.end();
162 while (!DefUsesInMBB
.count(&*--InsertPoint
)) {}
166 // Make sure the copy goes after any phi nodes however.
167 return SkipPHIsAndLabels(MBB
, InsertPoint
);
170 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
171 /// under the assuption that it needs to be lowered in a way that supports
172 /// atomic execution of PHIs. This lowering method is always correct all of the
175 void llvm::PHIElimination::LowerAtomicPHINode(
176 MachineBasicBlock
&MBB
,
177 MachineBasicBlock::iterator AfterPHIsIt
) {
179 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
180 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
182 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
183 unsigned DestReg
= MPhi
->getOperand(0).getReg();
184 assert(MPhi
->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
185 bool isDead
= MPhi
->getOperand(0).isDead();
187 // Create a new register for the incoming PHI arguments.
188 MachineFunction
&MF
= *MBB
.getParent();
189 unsigned IncomingReg
= 0;
190 bool reusedIncoming
= false; // Is IncomingReg reused from an earlier PHI?
192 // Insert a register to register copy at the top of the current block (but
193 // after any remaining phi nodes) which copies the new incoming register
194 // into the phi node destination.
195 const TargetInstrInfo
*TII
= MF
.getTarget().getInstrInfo();
196 if (isSourceDefinedByImplicitDef(MPhi
, MRI
))
197 // If all sources of a PHI node are implicit_def, just emit an
198 // implicit_def instead of a copy.
199 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
200 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
202 // Can we reuse an earlier PHI node? This only happens for critical edges,
203 // typically those created by tail duplication.
204 unsigned &entry
= LoweredPHIs
[MPhi
];
206 // An identical PHI node was already lowered. Reuse the incoming register.
208 reusedIncoming
= true;
210 DEBUG(dbgs() << "Reusing %reg" << IncomingReg
<< " for " << *MPhi
);
212 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
213 entry
= IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
215 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
216 TII
->get(TargetOpcode::COPY
), DestReg
)
217 .addReg(IncomingReg
);
220 // Update live variable information if there is any.
221 LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>();
223 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
226 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(IncomingReg
);
228 // Increment use count of the newly created virtual register.
230 LV
->setPHIJoin(IncomingReg
);
232 // When we are reusing the incoming register, it may already have been
233 // killed in this block. The old kill will also have been inserted at
234 // AfterPHIsIt, so it appears before the current PHICopy.
236 if (MachineInstr
*OldKill
= VI
.findKill(&MBB
)) {
237 DEBUG(dbgs() << "Remove old kill from " << *OldKill
);
238 LV
->removeVirtualRegisterKilled(IncomingReg
, OldKill
);
242 // Add information to LiveVariables to know that the incoming value is
243 // killed. Note that because the value is defined in several places (once
244 // each for each incoming block), the "def" block and instruction fields
245 // for the VarInfo is not filled in.
246 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
249 // Since we are going to be deleting the PHI node, if it is the last use of
250 // any registers, or if the value itself is dead, we need to move this
251 // information over to the new copy we just inserted.
252 LV
->removeVirtualRegistersKilled(MPhi
);
254 // If the result is dead, update LV.
256 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
257 LV
->removeVirtualRegisterDead(DestReg
, MPhi
);
261 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
262 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
263 --VRegPHIUseCount
[BBVRegPair(MPhi
->getOperand(i
+1).getMBB()->getNumber(),
264 MPhi
->getOperand(i
).getReg())];
266 // Now loop over all of the incoming arguments, changing them to copy into the
267 // IncomingReg register in the corresponding predecessor basic block.
268 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
269 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
270 unsigned SrcReg
= MPhi
->getOperand(i
*2+1).getReg();
271 unsigned SrcSubReg
= MPhi
->getOperand(i
*2+1).getSubReg();
273 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
274 "Machine PHI Operands must all be virtual registers!");
276 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
278 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
280 // If source is defined by an implicit def, there is no need to insert a
282 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
283 if (DefMI
->isImplicitDef()) {
284 ImpDefs
.insert(DefMI
);
288 // Check to make sure we haven't already emitted the copy for this block.
289 // This can happen because PHI nodes may have multiple entries for the same
291 if (!MBBsInsertedInto
.insert(&opBlock
))
292 continue; // If the copy has already been emitted, we're done.
294 // Find a safe location to insert the copy, this may be the first terminator
295 // in the block (or end()).
296 MachineBasicBlock::iterator InsertPos
=
297 FindCopyInsertPoint(opBlock
, MBB
, SrcReg
);
300 if (!reusedIncoming
&& IncomingReg
)
301 BuildMI(opBlock
, InsertPos
, MPhi
->getDebugLoc(),
302 TII
->get(TargetOpcode::COPY
), IncomingReg
).addReg(SrcReg
, 0, SrcSubReg
);
304 // Now update live variable information if we have it. Otherwise we're done
307 // We want to be able to insert a kill of the register if this PHI (aka, the
308 // copy we just inserted) is the last use of the source value. Live
309 // variable analysis conservatively handles this by saying that the value is
310 // live until the end of the block the PHI entry lives in. If the value
311 // really is dead at the PHI copy, there will be no successor blocks which
312 // have the value live-in.
314 // Also check to see if this register is in use by another PHI node which
315 // has not yet been eliminated. If so, it will be killed at an appropriate
318 // Is it used by any PHI instructions in this block?
319 bool ValueIsUsed
= VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)];
321 // Okay, if we now know that the value is not live out of the block, we can
322 // add a kill marker in this block saying that it kills the incoming value!
323 if (!ValueIsUsed
&& !LV
->isLiveOut(SrcReg
, opBlock
)) {
324 // In our final twist, we have to decide which instruction kills the
325 // register. In most cases this is the copy, however, the first
326 // terminator instruction at the end of the block may also use the value.
327 // In this case, we should mark *it* as being the killing block, not the
329 MachineBasicBlock::iterator KillInst
;
330 MachineBasicBlock::iterator Term
= opBlock
.getFirstTerminator();
331 if (Term
!= opBlock
.end() && Term
->readsRegister(SrcReg
)) {
334 // Check that no other terminators use values.
336 for (MachineBasicBlock::iterator TI
= llvm::next(Term
);
337 TI
!= opBlock
.end(); ++TI
) {
338 assert(!TI
->readsRegister(SrcReg
) &&
339 "Terminator instructions cannot use virtual registers unless"
340 "they are the first terminator in a block!");
343 } else if (reusedIncoming
|| !IncomingReg
) {
344 // We may have to rewind a bit if we didn't insert a copy this time.
346 while (KillInst
!= opBlock
.begin())
347 if ((--KillInst
)->readsRegister(SrcReg
))
350 // We just inserted this copy.
351 KillInst
= prior(InsertPos
);
353 assert(KillInst
->readsRegister(SrcReg
) && "Cannot find kill instruction");
355 // Finally, mark it killed.
356 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
358 // This vreg no longer lives all of the way through opBlock.
359 unsigned opBlockNum
= opBlock
.getNumber();
360 LV
->getVarInfo(SrcReg
).AliveBlocks
.reset(opBlockNum
);
364 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
365 if (reusedIncoming
|| !IncomingReg
)
366 MF
.DeleteMachineInstr(MPhi
);
369 /// analyzePHINodes - Gather information about the PHI nodes in here. In
370 /// particular, we want to map the number of uses of a virtual register which is
371 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
372 /// used later to determine when the vreg is killed in the BB.
374 void llvm::PHIElimination::analyzePHINodes(const MachineFunction
& MF
) {
375 for (MachineFunction::const_iterator I
= MF
.begin(), E
= MF
.end();
377 for (MachineBasicBlock::const_iterator BBI
= I
->begin(), BBE
= I
->end();
378 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
)
379 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
380 ++VRegPHIUseCount
[BBVRegPair(BBI
->getOperand(i
+1).getMBB()->getNumber(),
381 BBI
->getOperand(i
).getReg())];
384 bool llvm::PHIElimination::SplitPHIEdges(MachineFunction
&MF
,
385 MachineBasicBlock
&MBB
,
387 MachineLoopInfo
*MLI
) {
388 if (MBB
.empty() || !MBB
.front().isPHI() || MBB
.isLandingPad())
389 return false; // Quick exit for basic blocks without PHIs.
391 bool Changed
= false;
392 for (MachineBasicBlock::const_iterator BBI
= MBB
.begin(), BBE
= MBB
.end();
393 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
394 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2) {
395 unsigned Reg
= BBI
->getOperand(i
).getReg();
396 MachineBasicBlock
*PreMBB
= BBI
->getOperand(i
+1).getMBB();
397 // We break edges when registers are live out from the predecessor block
398 // (not considering PHI nodes). If the register is live in to this block
399 // anyway, we would gain nothing from splitting.
400 // Avoid splitting backedges of loops. It would introduce small
401 // out-of-line blocks into the loop which is very bad for code placement.
402 if (PreMBB
!= &MBB
&&
403 !LV
.isLiveIn(Reg
, MBB
) && LV
.isLiveOut(Reg
, *PreMBB
)) {
405 !(MLI
->getLoopFor(PreMBB
) == MLI
->getLoopFor(&MBB
) &&
406 MLI
->isLoopHeader(&MBB
)))
407 Changed
|= PreMBB
->SplitCriticalEdge(&MBB
, this) != 0;