zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / PHIElimination.cpp
blob03673b82418a9197b3317d4e8472a8b5ca8d7a1d
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIElimination.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include <algorithm>
34 #include <map>
35 using namespace llvm;
37 STATISTIC(NumAtomic, "Number of atomic phis lowered");
38 STATISTIC(NumReused, "Number of reused lowered phis");
40 char PHIElimination::ID = 0;
41 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
42 "Eliminate PHI nodes for register allocation", false, false)
44 char &llvm::PHIEliminationID = PHIElimination::ID;
46 void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addPreserved<LiveVariables>();
48 AU.addPreserved<MachineDominatorTree>();
49 AU.addPreserved<MachineLoopInfo>();
50 MachineFunctionPass::getAnalysisUsage(AU);
53 bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) {
54 MRI = &MF.getRegInfo();
56 bool Changed = false;
58 // Split critical edges to help the coalescer
59 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
60 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
61 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
62 Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
65 // Populate VRegPHIUseCount
66 analyzePHINodes(MF);
68 // Eliminate PHI instructions by inserting copies into predecessor blocks.
69 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
70 Changed |= EliminatePHINodes(MF, *I);
72 // Remove dead IMPLICIT_DEF instructions.
73 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
74 E = ImpDefs.end(); I != E; ++I) {
75 MachineInstr *DefMI = *I;
76 unsigned DefReg = DefMI->getOperand(0).getReg();
77 if (MRI->use_nodbg_empty(DefReg))
78 DefMI->eraseFromParent();
81 // Clean up the lowered PHI instructions.
82 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
83 I != E; ++I)
84 MF.DeleteMachineInstr(I->first);
86 LoweredPHIs.clear();
87 ImpDefs.clear();
88 VRegPHIUseCount.clear();
90 return Changed;
93 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
94 /// predecessor basic blocks.
95 ///
96 bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
97 MachineBasicBlock &MBB) {
98 if (MBB.empty() || !MBB.front().isPHI())
99 return false; // Quick exit for basic blocks without PHIs.
101 // Get an iterator to the first instruction after the last PHI node (this may
102 // also be the end of the basic block).
103 MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
105 while (MBB.front().isPHI())
106 LowerAtomicPHINode(MBB, AfterPHIsIt);
108 return true;
111 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
112 /// are implicit_def's.
113 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
114 const MachineRegisterInfo *MRI) {
115 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
116 unsigned SrcReg = MPhi->getOperand(i).getReg();
117 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
118 if (!DefMI || !DefMI->isImplicitDef())
119 return false;
121 return true;
124 // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
125 // when following the CFG edge to SuccMBB. This needs to be after any def of
126 // SrcReg, but before any subsequent point where control flow might jump out of
127 // the basic block.
128 MachineBasicBlock::iterator
129 llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
130 MachineBasicBlock &SuccMBB,
131 unsigned SrcReg) {
132 // Handle the trivial case trivially.
133 if (MBB.empty())
134 return MBB.begin();
136 // Usually, we just want to insert the copy before the first terminator
137 // instruction. However, for the edge going to a landing pad, we must insert
138 // the copy before the call/invoke instruction.
139 if (!SuccMBB.isLandingPad())
140 return MBB.getFirstTerminator();
142 // Discover any defs/uses in this basic block.
143 SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
144 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
145 RE = MRI->reg_end(); RI != RE; ++RI) {
146 MachineInstr *DefUseMI = &*RI;
147 if (DefUseMI->getParent() == &MBB)
148 DefUsesInMBB.insert(DefUseMI);
151 MachineBasicBlock::iterator InsertPoint;
152 if (DefUsesInMBB.empty()) {
153 // No defs. Insert the copy at the start of the basic block.
154 InsertPoint = MBB.begin();
155 } else if (DefUsesInMBB.size() == 1) {
156 // Insert the copy immediately after the def/use.
157 InsertPoint = *DefUsesInMBB.begin();
158 ++InsertPoint;
159 } else {
160 // Insert the copy immediately after the last def/use.
161 InsertPoint = MBB.end();
162 while (!DefUsesInMBB.count(&*--InsertPoint)) {}
163 ++InsertPoint;
166 // Make sure the copy goes after any phi nodes however.
167 return SkipPHIsAndLabels(MBB, InsertPoint);
170 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
171 /// under the assuption that it needs to be lowered in a way that supports
172 /// atomic execution of PHIs. This lowering method is always correct all of the
173 /// time.
175 void llvm::PHIElimination::LowerAtomicPHINode(
176 MachineBasicBlock &MBB,
177 MachineBasicBlock::iterator AfterPHIsIt) {
178 ++NumAtomic;
179 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
180 MachineInstr *MPhi = MBB.remove(MBB.begin());
182 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
183 unsigned DestReg = MPhi->getOperand(0).getReg();
184 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
185 bool isDead = MPhi->getOperand(0).isDead();
187 // Create a new register for the incoming PHI arguments.
188 MachineFunction &MF = *MBB.getParent();
189 unsigned IncomingReg = 0;
190 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
192 // Insert a register to register copy at the top of the current block (but
193 // after any remaining phi nodes) which copies the new incoming register
194 // into the phi node destination.
195 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
196 if (isSourceDefinedByImplicitDef(MPhi, MRI))
197 // If all sources of a PHI node are implicit_def, just emit an
198 // implicit_def instead of a copy.
199 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
200 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
201 else {
202 // Can we reuse an earlier PHI node? This only happens for critical edges,
203 // typically those created by tail duplication.
204 unsigned &entry = LoweredPHIs[MPhi];
205 if (entry) {
206 // An identical PHI node was already lowered. Reuse the incoming register.
207 IncomingReg = entry;
208 reusedIncoming = true;
209 ++NumReused;
210 DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
211 } else {
212 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
213 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
215 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
216 TII->get(TargetOpcode::COPY), DestReg)
217 .addReg(IncomingReg);
220 // Update live variable information if there is any.
221 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
222 if (LV) {
223 MachineInstr *PHICopy = prior(AfterPHIsIt);
225 if (IncomingReg) {
226 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
228 // Increment use count of the newly created virtual register.
229 VI.NumUses++;
230 LV->setPHIJoin(IncomingReg);
232 // When we are reusing the incoming register, it may already have been
233 // killed in this block. The old kill will also have been inserted at
234 // AfterPHIsIt, so it appears before the current PHICopy.
235 if (reusedIncoming)
236 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
237 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
238 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
239 DEBUG(MBB.dump());
242 // Add information to LiveVariables to know that the incoming value is
243 // killed. Note that because the value is defined in several places (once
244 // each for each incoming block), the "def" block and instruction fields
245 // for the VarInfo is not filled in.
246 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
249 // Since we are going to be deleting the PHI node, if it is the last use of
250 // any registers, or if the value itself is dead, we need to move this
251 // information over to the new copy we just inserted.
252 LV->removeVirtualRegistersKilled(MPhi);
254 // If the result is dead, update LV.
255 if (isDead) {
256 LV->addVirtualRegisterDead(DestReg, PHICopy);
257 LV->removeVirtualRegisterDead(DestReg, MPhi);
261 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
262 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
263 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
264 MPhi->getOperand(i).getReg())];
266 // Now loop over all of the incoming arguments, changing them to copy into the
267 // IncomingReg register in the corresponding predecessor basic block.
268 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
269 for (int i = NumSrcs - 1; i >= 0; --i) {
270 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
271 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
273 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
274 "Machine PHI Operands must all be virtual registers!");
276 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
277 // path the PHI.
278 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
280 // If source is defined by an implicit def, there is no need to insert a
281 // copy.
282 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
283 if (DefMI->isImplicitDef()) {
284 ImpDefs.insert(DefMI);
285 continue;
288 // Check to make sure we haven't already emitted the copy for this block.
289 // This can happen because PHI nodes may have multiple entries for the same
290 // basic block.
291 if (!MBBsInsertedInto.insert(&opBlock))
292 continue; // If the copy has already been emitted, we're done.
294 // Find a safe location to insert the copy, this may be the first terminator
295 // in the block (or end()).
296 MachineBasicBlock::iterator InsertPos =
297 FindCopyInsertPoint(opBlock, MBB, SrcReg);
299 // Insert the copy.
300 if (!reusedIncoming && IncomingReg)
301 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
302 TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
304 // Now update live variable information if we have it. Otherwise we're done
305 if (!LV) continue;
307 // We want to be able to insert a kill of the register if this PHI (aka, the
308 // copy we just inserted) is the last use of the source value. Live
309 // variable analysis conservatively handles this by saying that the value is
310 // live until the end of the block the PHI entry lives in. If the value
311 // really is dead at the PHI copy, there will be no successor blocks which
312 // have the value live-in.
314 // Also check to see if this register is in use by another PHI node which
315 // has not yet been eliminated. If so, it will be killed at an appropriate
316 // point later.
318 // Is it used by any PHI instructions in this block?
319 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
321 // Okay, if we now know that the value is not live out of the block, we can
322 // add a kill marker in this block saying that it kills the incoming value!
323 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
324 // In our final twist, we have to decide which instruction kills the
325 // register. In most cases this is the copy, however, the first
326 // terminator instruction at the end of the block may also use the value.
327 // In this case, we should mark *it* as being the killing block, not the
328 // copy.
329 MachineBasicBlock::iterator KillInst;
330 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
331 if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
332 KillInst = Term;
334 // Check that no other terminators use values.
335 #ifndef NDEBUG
336 for (MachineBasicBlock::iterator TI = llvm::next(Term);
337 TI != opBlock.end(); ++TI) {
338 assert(!TI->readsRegister(SrcReg) &&
339 "Terminator instructions cannot use virtual registers unless"
340 "they are the first terminator in a block!");
342 #endif
343 } else if (reusedIncoming || !IncomingReg) {
344 // We may have to rewind a bit if we didn't insert a copy this time.
345 KillInst = Term;
346 while (KillInst != opBlock.begin())
347 if ((--KillInst)->readsRegister(SrcReg))
348 break;
349 } else {
350 // We just inserted this copy.
351 KillInst = prior(InsertPos);
353 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
355 // Finally, mark it killed.
356 LV->addVirtualRegisterKilled(SrcReg, KillInst);
358 // This vreg no longer lives all of the way through opBlock.
359 unsigned opBlockNum = opBlock.getNumber();
360 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
364 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
365 if (reusedIncoming || !IncomingReg)
366 MF.DeleteMachineInstr(MPhi);
369 /// analyzePHINodes - Gather information about the PHI nodes in here. In
370 /// particular, we want to map the number of uses of a virtual register which is
371 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
372 /// used later to determine when the vreg is killed in the BB.
374 void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) {
375 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
376 I != E; ++I)
377 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
378 BBI != BBE && BBI->isPHI(); ++BBI)
379 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
380 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
381 BBI->getOperand(i).getReg())];
384 bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
385 MachineBasicBlock &MBB,
386 LiveVariables &LV,
387 MachineLoopInfo *MLI) {
388 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
389 return false; // Quick exit for basic blocks without PHIs.
391 bool Changed = false;
392 for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
393 BBI != BBE && BBI->isPHI(); ++BBI) {
394 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
395 unsigned Reg = BBI->getOperand(i).getReg();
396 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
397 // We break edges when registers are live out from the predecessor block
398 // (not considering PHI nodes). If the register is live in to this block
399 // anyway, we would gain nothing from splitting.
400 // Avoid splitting backedges of loops. It would introduce small
401 // out-of-line blocks into the loop which is very bad for code placement.
402 if (PreMBB != &MBB &&
403 !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
404 if (!MLI ||
405 !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
406 MLI->isLoopHeader(&MBB)))
407 Changed |= PreMBB->SplitCriticalEdge(&MBB, this) != 0;
411 return true;