zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / PostRASchedulerList.cpp
blobbd5b2b898b23d4c91f3b1b1df0603d49fe248f6e
1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "post-RA-sched"
22 #include "AntiDepBreaker.h"
23 #include "AggressiveAntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "ScheduleDAGInstrs.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/LatencyPriorityQueue.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Target/TargetLowering.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtarget.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include <set>
48 using namespace llvm;
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54 // Post-RA scheduling is enabled with
55 // TargetSubtarget.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59 cl::desc("Enable scheduling after register allocation"),
60 cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63 cl::desc("Break post-RA scheduling anti-dependencies: "
64 "\"critical\", \"all\", or \"none\""),
65 cl::init("none"), cl::Hidden);
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70 cl::desc("Debug control MBBs that are scheduled"),
71 cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74 cl::desc("Debug control MBBs that are scheduled"),
75 cl::init(0), cl::Hidden);
77 AntiDepBreaker::~AntiDepBreaker() { }
79 namespace {
80 class PostRAScheduler : public MachineFunctionPass {
81 AliasAnalysis *AA;
82 const TargetInstrInfo *TII;
83 CodeGenOpt::Level OptLevel;
85 public:
86 static char ID;
87 PostRAScheduler(CodeGenOpt::Level ol) :
88 MachineFunctionPass(ID), OptLevel(ol) {}
90 void getAnalysisUsage(AnalysisUsage &AU) const {
91 AU.setPreservesCFG();
92 AU.addRequired<AliasAnalysis>();
93 AU.addRequired<MachineDominatorTree>();
94 AU.addPreserved<MachineDominatorTree>();
95 AU.addRequired<MachineLoopInfo>();
96 AU.addPreserved<MachineLoopInfo>();
97 MachineFunctionPass::getAnalysisUsage(AU);
100 const char *getPassName() const {
101 return "Post RA top-down list latency scheduler";
104 bool runOnMachineFunction(MachineFunction &Fn);
106 char PostRAScheduler::ID = 0;
108 class SchedulePostRATDList : public ScheduleDAGInstrs {
109 /// AvailableQueue - The priority queue to use for the available SUnits.
111 LatencyPriorityQueue AvailableQueue;
113 /// PendingQueue - This contains all of the instructions whose operands have
114 /// been issued, but their results are not ready yet (due to the latency of
115 /// the operation). Once the operands becomes available, the instruction is
116 /// added to the AvailableQueue.
117 std::vector<SUnit*> PendingQueue;
119 /// Topo - A topological ordering for SUnits.
120 ScheduleDAGTopologicalSort Topo;
122 /// HazardRec - The hazard recognizer to use.
123 ScheduleHazardRecognizer *HazardRec;
125 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
126 AntiDepBreaker *AntiDepBreak;
128 /// AA - AliasAnalysis for making memory reference queries.
129 AliasAnalysis *AA;
131 /// KillIndices - The index of the most recent kill (proceding bottom-up),
132 /// or ~0u if the register is not live.
133 std::vector<unsigned> KillIndices;
135 public:
136 SchedulePostRATDList(MachineFunction &MF,
137 const MachineLoopInfo &MLI,
138 const MachineDominatorTree &MDT,
139 ScheduleHazardRecognizer *HR,
140 AntiDepBreaker *ADB,
141 AliasAnalysis *aa)
142 : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
143 HazardRec(HR), AntiDepBreak(ADB), AA(aa),
144 KillIndices(TRI->getNumRegs()) {}
146 ~SchedulePostRATDList() {
149 /// StartBlock - Initialize register live-range state for scheduling in
150 /// this block.
152 void StartBlock(MachineBasicBlock *BB);
154 /// Schedule - Schedule the instruction range using list scheduling.
156 void Schedule();
158 /// Observe - Update liveness information to account for the current
159 /// instruction, which will not be scheduled.
161 void Observe(MachineInstr *MI, unsigned Count);
163 /// FinishBlock - Clean up register live-range state.
165 void FinishBlock();
167 /// FixupKills - Fix register kill flags that have been made
168 /// invalid due to scheduling
170 void FixupKills(MachineBasicBlock *MBB);
172 private:
173 void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
174 void ReleaseSuccessors(SUnit *SU);
175 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
176 void ListScheduleTopDown();
177 void StartBlockForKills(MachineBasicBlock *BB);
179 // ToggleKillFlag - Toggle a register operand kill flag. Other
180 // adjustments may be made to the instruction if necessary. Return
181 // true if the operand has been deleted, false if not.
182 bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
186 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
187 AA = &getAnalysis<AliasAnalysis>();
188 TII = Fn.getTarget().getInstrInfo();
190 // Check for explicit enable/disable of post-ra scheduling.
191 TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
192 SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
193 if (EnablePostRAScheduler.getPosition() > 0) {
194 if (!EnablePostRAScheduler)
195 return false;
196 } else {
197 // Check that post-RA scheduling is enabled for this target.
198 const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
199 if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
200 return false;
203 // Check for antidep breaking override...
204 if (EnableAntiDepBreaking.getPosition() > 0) {
205 AntiDepMode = (EnableAntiDepBreaking == "all") ?
206 TargetSubtarget::ANTIDEP_ALL :
207 (EnableAntiDepBreaking == "critical")
208 ? TargetSubtarget::ANTIDEP_CRITICAL : TargetSubtarget::ANTIDEP_NONE;
211 DEBUG(dbgs() << "PostRAScheduler\n");
213 const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
214 const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
215 const TargetMachine &TM = Fn.getTarget();
216 const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
217 ScheduleHazardRecognizer *HR =
218 TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins);
219 AntiDepBreaker *ADB =
220 ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
221 (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
222 ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
223 (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
225 SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
227 // Loop over all of the basic blocks
228 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
229 MBB != MBBe; ++MBB) {
230 #ifndef NDEBUG
231 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
232 if (DebugDiv > 0) {
233 static int bbcnt = 0;
234 if (bbcnt++ % DebugDiv != DebugMod)
235 continue;
236 dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
237 ":BB#" << MBB->getNumber() << " ***\n";
239 #endif
241 // Initialize register live-range state for scheduling in this block.
242 Scheduler.StartBlock(MBB);
244 // Schedule each sequence of instructions not interrupted by a label
245 // or anything else that effectively needs to shut down scheduling.
246 MachineBasicBlock::iterator Current = MBB->end();
247 unsigned Count = MBB->size(), CurrentCount = Count;
248 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
249 MachineInstr *MI = llvm::prior(I);
250 if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
251 Scheduler.Run(MBB, I, Current, CurrentCount);
252 Scheduler.EmitSchedule();
253 Current = MI;
254 CurrentCount = Count - 1;
255 Scheduler.Observe(MI, CurrentCount);
257 I = MI;
258 --Count;
260 assert(Count == 0 && "Instruction count mismatch!");
261 assert((MBB->begin() == Current || CurrentCount != 0) &&
262 "Instruction count mismatch!");
263 Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
264 Scheduler.EmitSchedule();
266 // Clean up register live-range state.
267 Scheduler.FinishBlock();
269 // Update register kills
270 Scheduler.FixupKills(MBB);
273 delete HR;
274 delete ADB;
276 return true;
279 /// StartBlock - Initialize register live-range state for scheduling in
280 /// this block.
282 void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
283 // Call the superclass.
284 ScheduleDAGInstrs::StartBlock(BB);
286 // Reset the hazard recognizer and anti-dep breaker.
287 HazardRec->Reset();
288 if (AntiDepBreak != NULL)
289 AntiDepBreak->StartBlock(BB);
292 /// Schedule - Schedule the instruction range using list scheduling.
294 void SchedulePostRATDList::Schedule() {
295 // Build the scheduling graph.
296 BuildSchedGraph(AA);
298 if (AntiDepBreak != NULL) {
299 unsigned Broken =
300 AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
301 InsertPosIndex);
303 if (Broken != 0) {
304 // We made changes. Update the dependency graph.
305 // Theoretically we could update the graph in place:
306 // When a live range is changed to use a different register, remove
307 // the def's anti-dependence *and* output-dependence edges due to
308 // that register, and add new anti-dependence and output-dependence
309 // edges based on the next live range of the register.
310 SUnits.clear();
311 Sequence.clear();
312 EntrySU = SUnit();
313 ExitSU = SUnit();
314 BuildSchedGraph(AA);
316 NumFixedAnti += Broken;
320 DEBUG(dbgs() << "********** List Scheduling **********\n");
321 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
322 SUnits[su].dumpAll(this));
324 AvailableQueue.initNodes(SUnits);
325 ListScheduleTopDown();
326 AvailableQueue.releaseState();
329 /// Observe - Update liveness information to account for the current
330 /// instruction, which will not be scheduled.
332 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
333 if (AntiDepBreak != NULL)
334 AntiDepBreak->Observe(MI, Count, InsertPosIndex);
337 /// FinishBlock - Clean up register live-range state.
339 void SchedulePostRATDList::FinishBlock() {
340 if (AntiDepBreak != NULL)
341 AntiDepBreak->FinishBlock();
343 // Call the superclass.
344 ScheduleDAGInstrs::FinishBlock();
347 /// StartBlockForKills - Initialize register live-range state for updating kills
349 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
350 // Initialize the indices to indicate that no registers are live.
351 for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
352 KillIndices[i] = ~0u;
354 // Determine the live-out physregs for this block.
355 if (!BB->empty() && BB->back().getDesc().isReturn()) {
356 // In a return block, examine the function live-out regs.
357 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
358 E = MRI.liveout_end(); I != E; ++I) {
359 unsigned Reg = *I;
360 KillIndices[Reg] = BB->size();
361 // Repeat, for all subregs.
362 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
363 *Subreg; ++Subreg) {
364 KillIndices[*Subreg] = BB->size();
368 else {
369 // In a non-return block, examine the live-in regs of all successors.
370 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
371 SE = BB->succ_end(); SI != SE; ++SI) {
372 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
373 E = (*SI)->livein_end(); I != E; ++I) {
374 unsigned Reg = *I;
375 KillIndices[Reg] = BB->size();
376 // Repeat, for all subregs.
377 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
378 *Subreg; ++Subreg) {
379 KillIndices[*Subreg] = BB->size();
386 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
387 MachineOperand &MO) {
388 // Setting kill flag...
389 if (!MO.isKill()) {
390 MO.setIsKill(true);
391 return false;
394 // If MO itself is live, clear the kill flag...
395 if (KillIndices[MO.getReg()] != ~0u) {
396 MO.setIsKill(false);
397 return false;
400 // If any subreg of MO is live, then create an imp-def for that
401 // subreg and keep MO marked as killed.
402 MO.setIsKill(false);
403 bool AllDead = true;
404 const unsigned SuperReg = MO.getReg();
405 for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
406 *Subreg; ++Subreg) {
407 if (KillIndices[*Subreg] != ~0u) {
408 MI->addOperand(MachineOperand::CreateReg(*Subreg,
409 true /*IsDef*/,
410 true /*IsImp*/,
411 false /*IsKill*/,
412 false /*IsDead*/));
413 AllDead = false;
417 if(AllDead)
418 MO.setIsKill(true);
419 return false;
422 /// FixupKills - Fix the register kill flags, they may have been made
423 /// incorrect by instruction reordering.
425 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
426 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
428 std::set<unsigned> killedRegs;
429 BitVector ReservedRegs = TRI->getReservedRegs(MF);
431 StartBlockForKills(MBB);
433 // Examine block from end to start...
434 unsigned Count = MBB->size();
435 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
436 I != E; --Count) {
437 MachineInstr *MI = --I;
438 if (MI->isDebugValue())
439 continue;
441 // Update liveness. Registers that are defed but not used in this
442 // instruction are now dead. Mark register and all subregs as they
443 // are completely defined.
444 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
445 MachineOperand &MO = MI->getOperand(i);
446 if (!MO.isReg()) continue;
447 unsigned Reg = MO.getReg();
448 if (Reg == 0) continue;
449 if (!MO.isDef()) continue;
450 // Ignore two-addr defs.
451 if (MI->isRegTiedToUseOperand(i)) continue;
453 KillIndices[Reg] = ~0u;
455 // Repeat for all subregs.
456 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
457 *Subreg; ++Subreg) {
458 KillIndices[*Subreg] = ~0u;
462 // Examine all used registers and set/clear kill flag. When a
463 // register is used multiple times we only set the kill flag on
464 // the first use.
465 killedRegs.clear();
466 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
467 MachineOperand &MO = MI->getOperand(i);
468 if (!MO.isReg() || !MO.isUse()) continue;
469 unsigned Reg = MO.getReg();
470 if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
472 bool kill = false;
473 if (killedRegs.find(Reg) == killedRegs.end()) {
474 kill = true;
475 // A register is not killed if any subregs are live...
476 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
477 *Subreg; ++Subreg) {
478 if (KillIndices[*Subreg] != ~0u) {
479 kill = false;
480 break;
484 // If subreg is not live, then register is killed if it became
485 // live in this instruction
486 if (kill)
487 kill = (KillIndices[Reg] == ~0u);
490 if (MO.isKill() != kill) {
491 DEBUG(dbgs() << "Fixing " << MO << " in ");
492 // Warning: ToggleKillFlag may invalidate MO.
493 ToggleKillFlag(MI, MO);
494 DEBUG(MI->dump());
497 killedRegs.insert(Reg);
500 // Mark any used register (that is not using undef) and subregs as
501 // now live...
502 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
503 MachineOperand &MO = MI->getOperand(i);
504 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
505 unsigned Reg = MO.getReg();
506 if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
508 KillIndices[Reg] = Count;
510 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
511 *Subreg; ++Subreg) {
512 KillIndices[*Subreg] = Count;
518 //===----------------------------------------------------------------------===//
519 // Top-Down Scheduling
520 //===----------------------------------------------------------------------===//
522 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
523 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
524 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
525 SUnit *SuccSU = SuccEdge->getSUnit();
527 #ifndef NDEBUG
528 if (SuccSU->NumPredsLeft == 0) {
529 dbgs() << "*** Scheduling failed! ***\n";
530 SuccSU->dump(this);
531 dbgs() << " has been released too many times!\n";
532 llvm_unreachable(0);
534 #endif
535 --SuccSU->NumPredsLeft;
537 // Compute how many cycles it will be before this actually becomes
538 // available. This is the max of the start time of all predecessors plus
539 // their latencies.
540 SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
542 // If all the node's predecessors are scheduled, this node is ready
543 // to be scheduled. Ignore the special ExitSU node.
544 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
545 PendingQueue.push_back(SuccSU);
548 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
549 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
550 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
551 I != E; ++I) {
552 ReleaseSucc(SU, &*I);
556 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
557 /// count of its successors. If a successor pending count is zero, add it to
558 /// the Available queue.
559 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
560 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
561 DEBUG(SU->dump(this));
563 Sequence.push_back(SU);
564 assert(CurCycle >= SU->getDepth() &&
565 "Node scheduled above its depth!");
566 SU->setDepthToAtLeast(CurCycle);
568 ReleaseSuccessors(SU);
569 SU->isScheduled = true;
570 AvailableQueue.ScheduledNode(SU);
573 /// ListScheduleTopDown - The main loop of list scheduling for top-down
574 /// schedulers.
575 void SchedulePostRATDList::ListScheduleTopDown() {
576 unsigned CurCycle = 0;
578 // We're scheduling top-down but we're visiting the regions in
579 // bottom-up order, so we don't know the hazards at the start of a
580 // region. So assume no hazards (this should usually be ok as most
581 // blocks are a single region).
582 HazardRec->Reset();
584 // Release any successors of the special Entry node.
585 ReleaseSuccessors(&EntrySU);
587 // Add all leaves to Available queue.
588 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
589 // It is available if it has no predecessors.
590 bool available = SUnits[i].Preds.empty();
591 if (available) {
592 AvailableQueue.push(&SUnits[i]);
593 SUnits[i].isAvailable = true;
597 // In any cycle where we can't schedule any instructions, we must
598 // stall or emit a noop, depending on the target.
599 bool CycleHasInsts = false;
601 // While Available queue is not empty, grab the node with the highest
602 // priority. If it is not ready put it back. Schedule the node.
603 std::vector<SUnit*> NotReady;
604 Sequence.reserve(SUnits.size());
605 while (!AvailableQueue.empty() || !PendingQueue.empty()) {
606 // Check to see if any of the pending instructions are ready to issue. If
607 // so, add them to the available queue.
608 unsigned MinDepth = ~0u;
609 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
610 if (PendingQueue[i]->getDepth() <= CurCycle) {
611 AvailableQueue.push(PendingQueue[i]);
612 PendingQueue[i]->isAvailable = true;
613 PendingQueue[i] = PendingQueue.back();
614 PendingQueue.pop_back();
615 --i; --e;
616 } else if (PendingQueue[i]->getDepth() < MinDepth)
617 MinDepth = PendingQueue[i]->getDepth();
620 DEBUG(dbgs() << "\n*** Examining Available\n";
621 LatencyPriorityQueue q = AvailableQueue;
622 while (!q.empty()) {
623 SUnit *su = q.pop();
624 dbgs() << "Height " << su->getHeight() << ": ";
625 su->dump(this);
628 SUnit *FoundSUnit = 0;
629 bool HasNoopHazards = false;
630 while (!AvailableQueue.empty()) {
631 SUnit *CurSUnit = AvailableQueue.pop();
633 ScheduleHazardRecognizer::HazardType HT =
634 HazardRec->getHazardType(CurSUnit);
635 if (HT == ScheduleHazardRecognizer::NoHazard) {
636 FoundSUnit = CurSUnit;
637 break;
640 // Remember if this is a noop hazard.
641 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
643 NotReady.push_back(CurSUnit);
646 // Add the nodes that aren't ready back onto the available list.
647 if (!NotReady.empty()) {
648 AvailableQueue.push_all(NotReady);
649 NotReady.clear();
652 // If we found a node to schedule...
653 if (FoundSUnit) {
654 // ... schedule the node...
655 ScheduleNodeTopDown(FoundSUnit, CurCycle);
656 HazardRec->EmitInstruction(FoundSUnit);
657 CycleHasInsts = true;
658 } else {
659 if (CycleHasInsts) {
660 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
661 HazardRec->AdvanceCycle();
662 } else if (!HasNoopHazards) {
663 // Otherwise, we have a pipeline stall, but no other problem,
664 // just advance the current cycle and try again.
665 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
666 HazardRec->AdvanceCycle();
667 ++NumStalls;
668 } else {
669 // Otherwise, we have no instructions to issue and we have instructions
670 // that will fault if we don't do this right. This is the case for
671 // processors without pipeline interlocks and other cases.
672 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
673 HazardRec->EmitNoop();
674 Sequence.push_back(0); // NULL here means noop
675 ++NumNoops;
678 ++CurCycle;
679 CycleHasInsts = false;
683 #ifndef NDEBUG
684 VerifySchedule(/*isBottomUp=*/false);
685 #endif
688 //===----------------------------------------------------------------------===//
689 // Public Constructor Functions
690 //===----------------------------------------------------------------------===//
692 FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
693 return new PostRAScheduler(OptLevel);