zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / PreAllocSplitting.cpp
blob837a526537f0394b18058a3302c0d0bb0c858c52
1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveStackAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterCoalescer.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 using namespace llvm;
42 static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
43 static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
44 cl::Hidden);
45 static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
46 cl::Hidden);
48 STATISTIC(NumSplits, "Number of intervals split");
49 STATISTIC(NumRemats, "Number of intervals split by rematerialization");
50 STATISTIC(NumFolds, "Number of intervals split with spill folding");
51 STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
52 STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
53 STATISTIC(NumDeadSpills, "Number of dead spills removed");
55 namespace {
56 class PreAllocSplitting : public MachineFunctionPass {
57 MachineFunction *CurrMF;
58 const TargetMachine *TM;
59 const TargetInstrInfo *TII;
60 const TargetRegisterInfo* TRI;
61 MachineFrameInfo *MFI;
62 MachineRegisterInfo *MRI;
63 SlotIndexes *SIs;
64 LiveIntervals *LIs;
65 LiveStacks *LSs;
66 VirtRegMap *VRM;
68 // Barrier - Current barrier being processed.
69 MachineInstr *Barrier;
71 // BarrierMBB - Basic block where the barrier resides in.
72 MachineBasicBlock *BarrierMBB;
74 // Barrier - Current barrier index.
75 SlotIndex BarrierIdx;
77 // CurrLI - Current live interval being split.
78 LiveInterval *CurrLI;
80 // CurrSLI - Current stack slot live interval.
81 LiveInterval *CurrSLI;
83 // CurrSValNo - Current val# for the stack slot live interval.
84 VNInfo *CurrSValNo;
86 // IntervalSSMap - A map from live interval to spill slots.
87 DenseMap<unsigned, int> IntervalSSMap;
89 // Def2SpillMap - A map from a def instruction index to spill index.
90 DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
92 public:
93 static char ID;
94 PreAllocSplitting() : MachineFunctionPass(ID) {
95 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
98 virtual bool runOnMachineFunction(MachineFunction &MF);
100 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.setPreservesCFG();
102 AU.addRequired<SlotIndexes>();
103 AU.addPreserved<SlotIndexes>();
104 AU.addRequired<LiveIntervals>();
105 AU.addPreserved<LiveIntervals>();
106 AU.addRequired<LiveStacks>();
107 AU.addPreserved<LiveStacks>();
108 AU.addPreserved<RegisterCoalescer>();
109 AU.addPreserved<CalculateSpillWeights>();
110 if (StrongPHIElim)
111 AU.addPreservedID(StrongPHIEliminationID);
112 else
113 AU.addPreservedID(PHIEliminationID);
114 AU.addRequired<MachineDominatorTree>();
115 AU.addRequired<MachineLoopInfo>();
116 AU.addRequired<VirtRegMap>();
117 AU.addPreserved<MachineDominatorTree>();
118 AU.addPreserved<MachineLoopInfo>();
119 AU.addPreserved<VirtRegMap>();
120 MachineFunctionPass::getAnalysisUsage(AU);
123 virtual void releaseMemory() {
124 IntervalSSMap.clear();
125 Def2SpillMap.clear();
128 virtual const char *getPassName() const {
129 return "Pre-Register Allocaton Live Interval Splitting";
132 /// print - Implement the dump method.
133 virtual void print(raw_ostream &O, const Module* M = 0) const {
134 LIs->print(O, M);
138 private:
140 MachineBasicBlock::iterator
141 findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
142 SmallPtrSet<MachineInstr*, 4>&);
144 MachineBasicBlock::iterator
145 findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
146 SmallPtrSet<MachineInstr*, 4>&);
148 int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
150 bool IsAvailableInStack(MachineBasicBlock*, unsigned,
151 SlotIndex, SlotIndex,
152 SlotIndex&, int&) const;
154 void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
156 bool SplitRegLiveInterval(LiveInterval*);
158 bool SplitRegLiveIntervals(const TargetRegisterClass **,
159 SmallPtrSet<LiveInterval*, 8>&);
161 bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
162 MachineBasicBlock* BarrierMBB);
163 bool Rematerialize(unsigned vreg, VNInfo* ValNo,
164 MachineInstr* DefMI,
165 MachineBasicBlock::iterator RestorePt,
166 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
167 MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
168 MachineInstr* DefMI,
169 MachineInstr* Barrier,
170 MachineBasicBlock* MBB,
171 int& SS,
172 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
173 MachineInstr* FoldRestore(unsigned vreg,
174 const TargetRegisterClass* RC,
175 MachineInstr* Barrier,
176 MachineBasicBlock* MBB,
177 int SS,
178 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
179 void RenumberValno(VNInfo* VN);
180 void ReconstructLiveInterval(LiveInterval* LI);
181 bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
182 unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
183 unsigned Reg, int FrameIndex, bool& TwoAddr);
184 VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
185 MachineBasicBlock* MBB, LiveInterval* LI,
186 SmallPtrSet<MachineInstr*, 4>& Visited,
187 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
188 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
189 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
190 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
191 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
192 bool IsTopLevel, bool IsIntraBlock);
193 VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
194 MachineBasicBlock* MBB, LiveInterval* LI,
195 SmallPtrSet<MachineInstr*, 4>& Visited,
196 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
197 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
198 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
199 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
200 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
201 bool IsTopLevel, bool IsIntraBlock);
203 } // end anonymous namespace
205 char PreAllocSplitting::ID = 0;
207 INITIALIZE_PASS_BEGIN(PreAllocSplitting, "pre-alloc-splitting",
208 "Pre-Register Allocation Live Interval Splitting",
209 false, false)
210 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
211 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
212 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
215 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
216 INITIALIZE_PASS_END(PreAllocSplitting, "pre-alloc-splitting",
217 "Pre-Register Allocation Live Interval Splitting",
218 false, false)
220 char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;
222 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
223 /// for spilling the current live interval. The index must be before any
224 /// defs and uses of the live interval register in the mbb. Return begin() if
225 /// none is found.
226 MachineBasicBlock::iterator
227 PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
228 MachineInstr *DefMI,
229 SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
230 MachineBasicBlock::iterator Pt = MBB->begin();
232 MachineBasicBlock::iterator MII = MI;
233 MachineBasicBlock::iterator EndPt = DefMI
234 ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
236 while (MII != EndPt && !RefsInMBB.count(MII) &&
237 MII->getOpcode() != TRI->getCallFrameSetupOpcode())
238 --MII;
239 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
241 while (MII != EndPt && !RefsInMBB.count(MII)) {
242 // We can't insert the spill between the barrier (a call), and its
243 // corresponding call frame setup.
244 if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
245 while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
246 --MII;
247 if (MII == EndPt) {
248 return Pt;
251 continue;
252 } else {
253 Pt = MII;
256 if (RefsInMBB.count(MII))
257 return Pt;
260 --MII;
263 return Pt;
266 /// findRestorePoint - Find a gap in the instruction index map that's suitable
267 /// for restoring the current live interval value. The index must be before any
268 /// uses of the live interval register in the mbb. Return end() if none is
269 /// found.
270 MachineBasicBlock::iterator
271 PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
272 SlotIndex LastIdx,
273 SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
274 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
275 // begin index accordingly.
276 MachineBasicBlock::iterator Pt = MBB->end();
277 MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
279 // We start at the call, so walk forward until we find the call frame teardown
280 // since we can't insert restores before that. Bail if we encounter a use
281 // during this time.
282 MachineBasicBlock::iterator MII = MI;
283 if (MII == EndPt) return Pt;
285 while (MII != EndPt && !RefsInMBB.count(MII) &&
286 MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
287 ++MII;
288 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
289 ++MII;
291 // FIXME: Limit the number of instructions to examine to reduce
292 // compile time?
293 while (MII != EndPt) {
294 SlotIndex Index = LIs->getInstructionIndex(MII);
295 if (Index > LastIdx)
296 break;
298 // We can't insert a restore between the barrier (a call) and its
299 // corresponding call frame teardown.
300 if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
301 do {
302 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
303 ++MII;
304 } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
305 } else {
306 Pt = MII;
309 if (RefsInMBB.count(MII))
310 return Pt;
312 ++MII;
315 return Pt;
318 /// CreateSpillStackSlot - Create a stack slot for the live interval being
319 /// split. If the live interval was previously split, just reuse the same
320 /// slot.
321 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
322 const TargetRegisterClass *RC) {
323 int SS;
324 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
325 if (I != IntervalSSMap.end()) {
326 SS = I->second;
327 } else {
328 SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
329 IntervalSSMap[Reg] = SS;
332 // Create live interval for stack slot.
333 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
334 if (CurrSLI->hasAtLeastOneValue())
335 CurrSValNo = CurrSLI->getValNumInfo(0);
336 else
337 CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
338 LSs->getVNInfoAllocator());
339 return SS;
342 /// IsAvailableInStack - Return true if register is available in a split stack
343 /// slot at the specified index.
344 bool
345 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
346 unsigned Reg, SlotIndex DefIndex,
347 SlotIndex RestoreIndex,
348 SlotIndex &SpillIndex,
349 int& SS) const {
350 if (!DefMBB)
351 return false;
353 DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
354 if (I == IntervalSSMap.end())
355 return false;
356 DenseMap<SlotIndex, SlotIndex>::const_iterator
357 II = Def2SpillMap.find(DefIndex);
358 if (II == Def2SpillMap.end())
359 return false;
361 // If last spill of def is in the same mbb as barrier mbb (where restore will
362 // be), make sure it's not below the intended restore index.
363 // FIXME: Undo the previous spill?
364 assert(LIs->getMBBFromIndex(II->second) == DefMBB);
365 if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
366 return false;
368 SS = I->second;
369 SpillIndex = II->second;
370 return true;
373 /// UpdateSpillSlotInterval - Given the specified val# of the register live
374 /// interval being split, and the spill and restore indicies, update the live
375 /// interval of the spill stack slot.
376 void
377 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
378 SlotIndex RestoreIndex) {
379 assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
380 "Expect restore in the barrier mbb");
382 MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
383 if (MBB == BarrierMBB) {
384 // Intra-block spill + restore. We are done.
385 LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
386 CurrSLI->addRange(SLR);
387 return;
390 SmallPtrSet<MachineBasicBlock*, 4> Processed;
391 SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
392 LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
393 CurrSLI->addRange(SLR);
394 Processed.insert(MBB);
396 // Start from the spill mbb, figure out the extend of the spill slot's
397 // live interval.
398 SmallVector<MachineBasicBlock*, 4> WorkList;
399 const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
400 if (LR->end > EndIdx)
401 // If live range extend beyond end of mbb, add successors to work list.
402 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
403 SE = MBB->succ_end(); SI != SE; ++SI)
404 WorkList.push_back(*SI);
406 while (!WorkList.empty()) {
407 MachineBasicBlock *MBB = WorkList.back();
408 WorkList.pop_back();
409 if (Processed.count(MBB))
410 continue;
411 SlotIndex Idx = LIs->getMBBStartIdx(MBB);
412 LR = CurrLI->getLiveRangeContaining(Idx);
413 if (LR && LR->valno == ValNo) {
414 EndIdx = LIs->getMBBEndIdx(MBB);
415 if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
416 // Spill slot live interval stops at the restore.
417 LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
418 CurrSLI->addRange(SLR);
419 } else if (LR->end > EndIdx) {
420 // Live range extends beyond end of mbb, process successors.
421 LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
422 CurrSLI->addRange(SLR);
423 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
424 SE = MBB->succ_end(); SI != SE; ++SI)
425 WorkList.push_back(*SI);
426 } else {
427 LiveRange SLR(Idx, LR->end, CurrSValNo);
428 CurrSLI->addRange(SLR);
430 Processed.insert(MBB);
435 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
436 /// construction algorithm to compute the ranges and valnos for an interval.
437 VNInfo*
438 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
439 MachineBasicBlock* MBB, LiveInterval* LI,
440 SmallPtrSet<MachineInstr*, 4>& Visited,
441 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
442 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
443 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
444 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
445 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
446 bool IsTopLevel, bool IsIntraBlock) {
447 // Return memoized result if it's available.
448 if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
449 return NewVNs[UseI];
450 else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
451 return NewVNs[UseI];
452 else if (!IsIntraBlock && LiveOut.count(MBB))
453 return LiveOut[MBB];
455 // Check if our block contains any uses or defs.
456 bool ContainsDefs = Defs.count(MBB);
457 bool ContainsUses = Uses.count(MBB);
459 VNInfo* RetVNI = 0;
461 // Enumerate the cases of use/def contaning blocks.
462 if (!ContainsDefs && !ContainsUses) {
463 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
464 NewVNs, LiveOut, Phis,
465 IsTopLevel, IsIntraBlock);
466 } else if (ContainsDefs && !ContainsUses) {
467 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
469 // Search for the def in this block. If we don't find it before the
470 // instruction we care about, go to the fallback case. Note that that
471 // should never happen: this cannot be intrablock, so use should
472 // always be an end() iterator.
473 assert(UseI == MBB->end() && "No use marked in intrablock");
475 MachineBasicBlock::iterator Walker = UseI;
476 --Walker;
477 while (Walker != MBB->begin()) {
478 if (BlockDefs.count(Walker))
479 break;
480 --Walker;
483 // Once we've found it, extend its VNInfo to our instruction.
484 SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
485 DefIndex = DefIndex.getDefIndex();
486 SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
488 RetVNI = NewVNs[Walker];
489 LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
490 } else if (!ContainsDefs && ContainsUses) {
491 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
493 // Search for the use in this block that precedes the instruction we care
494 // about, going to the fallback case if we don't find it.
495 MachineBasicBlock::iterator Walker = UseI;
496 bool found = false;
497 while (Walker != MBB->begin()) {
498 --Walker;
499 if (BlockUses.count(Walker)) {
500 found = true;
501 break;
505 if (!found)
506 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
507 Uses, NewVNs, LiveOut, Phis,
508 IsTopLevel, IsIntraBlock);
510 SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
511 UseIndex = UseIndex.getUseIndex();
512 SlotIndex EndIndex;
513 if (IsIntraBlock) {
514 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
515 } else
516 EndIndex = LIs->getMBBEndIdx(MBB);
518 // Now, recursively phi construct the VNInfo for the use we found,
519 // and then extend it to include the instruction we care about
520 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
521 NewVNs, LiveOut, Phis, false, true);
523 LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
525 // FIXME: Need to set kills properly for inter-block stuff.
526 } else if (ContainsDefs && ContainsUses) {
527 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
528 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
530 // This case is basically a merging of the two preceding case, with the
531 // special note that checking for defs must take precedence over checking
532 // for uses, because of two-address instructions.
533 MachineBasicBlock::iterator Walker = UseI;
534 bool foundDef = false;
535 bool foundUse = false;
536 while (Walker != MBB->begin()) {
537 --Walker;
538 if (BlockDefs.count(Walker)) {
539 foundDef = true;
540 break;
541 } else if (BlockUses.count(Walker)) {
542 foundUse = true;
543 break;
547 if (!foundDef && !foundUse)
548 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
549 Uses, NewVNs, LiveOut, Phis,
550 IsTopLevel, IsIntraBlock);
552 SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
553 StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
554 SlotIndex EndIndex;
555 if (IsIntraBlock) {
556 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
557 } else
558 EndIndex = LIs->getMBBEndIdx(MBB);
560 if (foundDef)
561 RetVNI = NewVNs[Walker];
562 else
563 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
564 NewVNs, LiveOut, Phis, false, true);
566 LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
569 // Memoize results so we don't have to recompute them.
570 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
571 else {
572 if (!NewVNs.count(UseI))
573 NewVNs[UseI] = RetVNI;
574 Visited.insert(UseI);
577 return RetVNI;
580 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
582 VNInfo*
583 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
584 MachineBasicBlock* MBB, LiveInterval* LI,
585 SmallPtrSet<MachineInstr*, 4>& Visited,
586 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
587 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
588 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
589 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
590 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
591 bool IsTopLevel, bool IsIntraBlock) {
592 // NOTE: Because this is the fallback case from other cases, we do NOT
593 // assume that we are not intrablock here.
594 if (Phis.count(MBB)) return Phis[MBB];
596 SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
597 VNInfo *RetVNI = Phis[MBB] =
598 LI->getNextValue(SlotIndex(), /*FIXME*/ 0,
599 LIs->getVNInfoAllocator());
601 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
603 // If there are no uses or defs between our starting point and the
604 // beginning of the block, then recursive perform phi construction
605 // on our predecessors.
606 DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
607 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
608 PE = MBB->pred_end(); PI != PE; ++PI) {
609 VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
610 Visited, Defs, Uses, NewVNs,
611 LiveOut, Phis, false, false);
612 if (Incoming != 0)
613 IncomingVNs[*PI] = Incoming;
616 if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
617 VNInfo* OldVN = RetVNI;
618 VNInfo* NewVN = IncomingVNs.begin()->second;
619 VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
620 if (MergedVN == OldVN) std::swap(OldVN, NewVN);
622 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
623 LOE = LiveOut.end(); LOI != LOE; ++LOI)
624 if (LOI->second == OldVN)
625 LOI->second = MergedVN;
626 for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
627 NVE = NewVNs.end(); NVI != NVE; ++NVI)
628 if (NVI->second == OldVN)
629 NVI->second = MergedVN;
630 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
631 PE = Phis.end(); PI != PE; ++PI)
632 if (PI->second == OldVN)
633 PI->second = MergedVN;
634 RetVNI = MergedVN;
635 } else {
636 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
637 // VNInfo to represent the joined value.
638 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
639 IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
640 I->second->setHasPHIKill(true);
644 SlotIndex EndIndex;
645 if (IsIntraBlock) {
646 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
647 } else
648 EndIndex = LIs->getMBBEndIdx(MBB);
649 LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
651 // Memoize results so we don't have to recompute them.
652 if (!IsIntraBlock)
653 LiveOut[MBB] = RetVNI;
654 else {
655 if (!NewVNs.count(UseI))
656 NewVNs[UseI] = RetVNI;
657 Visited.insert(UseI);
660 return RetVNI;
663 /// ReconstructLiveInterval - Recompute a live interval from scratch.
664 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
665 VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
667 // Clear the old ranges and valnos;
668 LI->clear();
670 // Cache the uses and defs of the register
671 typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
672 RegMap Defs, Uses;
674 // Keep track of the new VNs we're creating.
675 DenseMap<MachineInstr*, VNInfo*> NewVNs;
676 SmallPtrSet<VNInfo*, 2> PhiVNs;
678 // Cache defs, and create a new VNInfo for each def.
679 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
680 DE = MRI->def_end(); DI != DE; ++DI) {
681 Defs[(*DI).getParent()].insert(&*DI);
683 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
684 DefIdx = DefIdx.getDefIndex();
686 assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
687 VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
689 // If the def is a move, set the copy field.
690 if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
691 NewVN->setCopy(&*DI);
693 NewVNs[&*DI] = NewVN;
696 // Cache uses as a separate pass from actually processing them.
697 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
698 UE = MRI->use_end(); UI != UE; ++UI)
699 Uses[(*UI).getParent()].insert(&*UI);
701 // Now, actually process every use and use a phi construction algorithm
702 // to walk from it to its reaching definitions, building VNInfos along
703 // the way.
704 DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
705 DenseMap<MachineBasicBlock*, VNInfo*> Phis;
706 SmallPtrSet<MachineInstr*, 4> Visited;
707 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
708 UE = MRI->use_end(); UI != UE; ++UI) {
709 PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
710 Uses, NewVNs, LiveOut, Phis, true, true);
713 // Add ranges for dead defs
714 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
715 DE = MRI->def_end(); DI != DE; ++DI) {
716 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
717 DefIdx = DefIdx.getDefIndex();
719 if (LI->liveAt(DefIdx)) continue;
721 VNInfo* DeadVN = NewVNs[&*DI];
722 LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
726 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
727 /// be allocated to a different register. This function creates a new vreg,
728 /// copies the valno and its live ranges over to the new vreg's interval,
729 /// removes them from the old interval, and rewrites all uses and defs of
730 /// the original reg to the new vreg within those ranges.
731 void PreAllocSplitting::RenumberValno(VNInfo* VN) {
732 SmallVector<VNInfo*, 4> Stack;
733 SmallVector<VNInfo*, 4> VNsToCopy;
734 Stack.push_back(VN);
736 // Walk through and copy the valno we care about, and any other valnos
737 // that are two-address redefinitions of the one we care about. These
738 // will need to be rewritten as well. We also check for safety of the
739 // renumbering here, by making sure that none of the valno involved has
740 // phi kills.
741 while (!Stack.empty()) {
742 VNInfo* OldVN = Stack.back();
743 Stack.pop_back();
745 // Bail out if we ever encounter a valno that has a PHI kill. We can't
746 // renumber these.
747 if (OldVN->hasPHIKill()) return;
749 VNsToCopy.push_back(OldVN);
751 // Locate two-address redefinitions
752 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
753 DE = MRI->def_end(); DI != DE; ++DI) {
754 if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
755 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
756 VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
757 if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
758 VNsToCopy.end())
759 Stack.push_back(NextVN);
763 // Create the new vreg
764 unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
766 // Create the new live interval
767 LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
769 for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
770 VNsToCopy.end(); OI != OE; ++OI) {
771 VNInfo* OldVN = *OI;
773 // Copy the valno over
774 VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
775 NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
777 // Remove the valno from the old interval
778 CurrLI->removeValNo(OldVN);
781 // Rewrite defs and uses. This is done in two stages to avoid invalidating
782 // the reg_iterator.
783 SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
785 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
786 E = MRI->reg_end(); I != E; ++I) {
787 MachineOperand& MO = I.getOperand();
788 SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
790 if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
791 (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
792 OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
795 for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
796 OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
797 MachineInstr* Inst = I->first;
798 unsigned OpIdx = I->second;
799 MachineOperand& MO = Inst->getOperand(OpIdx);
800 MO.setReg(NewVReg);
803 // Grow the VirtRegMap, since we've created a new vreg.
804 VRM->grow();
806 // The renumbered vreg shares a stack slot with the old register.
807 if (IntervalSSMap.count(CurrLI->reg))
808 IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
810 ++NumRenumbers;
813 bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
814 MachineInstr* DefMI,
815 MachineBasicBlock::iterator RestorePt,
816 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
817 MachineBasicBlock& MBB = *RestorePt->getParent();
819 MachineBasicBlock::iterator KillPt = BarrierMBB->end();
820 if (!DefMI || DefMI->getParent() == BarrierMBB)
821 KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
822 else
823 KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
825 if (KillPt == DefMI->getParent()->end())
826 return false;
828 TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
829 SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
831 ReconstructLiveInterval(CurrLI);
832 RematIdx = RematIdx.getDefIndex();
833 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
835 ++NumSplits;
836 ++NumRemats;
837 return true;
840 MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
841 const TargetRegisterClass* RC,
842 MachineInstr* DefMI,
843 MachineInstr* Barrier,
844 MachineBasicBlock* MBB,
845 int& SS,
846 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
847 // Go top down if RefsInMBB is empty.
848 if (RefsInMBB.empty())
849 return 0;
851 MachineBasicBlock::iterator FoldPt = Barrier;
852 while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
853 !RefsInMBB.count(FoldPt))
854 --FoldPt;
856 int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
857 if (OpIdx == -1)
858 return 0;
860 SmallVector<unsigned, 1> Ops;
861 Ops.push_back(OpIdx);
863 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
864 return 0;
866 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
867 if (I != IntervalSSMap.end()) {
868 SS = I->second;
869 } else {
870 SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
873 MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
875 if (FMI) {
876 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
877 FoldPt->eraseFromParent();
878 ++NumFolds;
880 IntervalSSMap[vreg] = SS;
881 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
882 if (CurrSLI->hasAtLeastOneValue())
883 CurrSValNo = CurrSLI->getValNumInfo(0);
884 else
885 CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
886 LSs->getVNInfoAllocator());
889 return FMI;
892 MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
893 const TargetRegisterClass* RC,
894 MachineInstr* Barrier,
895 MachineBasicBlock* MBB,
896 int SS,
897 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
898 if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
899 return 0;
901 // Go top down if RefsInMBB is empty.
902 if (RefsInMBB.empty())
903 return 0;
905 // Can't fold a restore between a call stack setup and teardown.
906 MachineBasicBlock::iterator FoldPt = Barrier;
908 // Advance from barrier to call frame teardown.
909 while (FoldPt != MBB->getFirstTerminator() &&
910 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
911 if (RefsInMBB.count(FoldPt))
912 return 0;
914 ++FoldPt;
917 if (FoldPt == MBB->getFirstTerminator())
918 return 0;
919 else
920 ++FoldPt;
922 // Now find the restore point.
923 while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
924 if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
925 while (FoldPt != MBB->getFirstTerminator() &&
926 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
927 if (RefsInMBB.count(FoldPt))
928 return 0;
930 ++FoldPt;
933 if (FoldPt == MBB->getFirstTerminator())
934 return 0;
937 ++FoldPt;
940 if (FoldPt == MBB->getFirstTerminator())
941 return 0;
943 int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
944 if (OpIdx == -1)
945 return 0;
947 SmallVector<unsigned, 1> Ops;
948 Ops.push_back(OpIdx);
950 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
951 return 0;
953 MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
955 if (FMI) {
956 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
957 FoldPt->eraseFromParent();
958 ++NumRestoreFolds;
961 return FMI;
964 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
965 /// so it would not cross the barrier that's being processed. Shrink wrap
966 /// (minimize) the live interval to the last uses.
967 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
968 DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
969 << " result: ");
971 CurrLI = LI;
973 // Find live range where current interval cross the barrier.
974 LiveInterval::iterator LR =
975 CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
976 VNInfo *ValNo = LR->valno;
978 assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
980 MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
982 // If this would create a new join point, do not split.
983 if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
984 DEBUG(dbgs() << "FAILED (would create a new join point).\n");
985 return false;
988 // Find all references in the barrier mbb.
989 SmallPtrSet<MachineInstr*, 4> RefsInMBB;
990 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
991 E = MRI->reg_end(); I != E; ++I) {
992 MachineInstr *RefMI = &*I;
993 if (RefMI->getParent() == BarrierMBB)
994 RefsInMBB.insert(RefMI);
997 // Find a point to restore the value after the barrier.
998 MachineBasicBlock::iterator RestorePt =
999 findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
1000 if (RestorePt == BarrierMBB->end()) {
1001 DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
1002 return false;
1005 if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
1006 if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
1007 DEBUG(dbgs() << "success (remat).\n");
1008 return true;
1011 // Add a spill either before the barrier or after the definition.
1012 MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
1013 const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
1014 SlotIndex SpillIndex;
1015 MachineInstr *SpillMI = NULL;
1016 int SS = -1;
1017 if (!DefMI) {
1018 // If we don't know where the def is we must split just before the barrier.
1019 if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
1020 BarrierMBB, SS, RefsInMBB))) {
1021 SpillIndex = LIs->getInstructionIndex(SpillMI);
1022 } else {
1023 MachineBasicBlock::iterator SpillPt =
1024 findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
1025 if (SpillPt == BarrierMBB->begin()) {
1026 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1027 return false; // No gap to insert spill.
1029 // Add spill.
1031 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1032 TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
1033 TRI);
1034 SpillMI = prior(SpillPt);
1035 SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
1037 } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
1038 LIs->getZeroIndex(), SpillIndex, SS)) {
1039 // If it's already split, just restore the value. There is no need to spill
1040 // the def again.
1041 if (!DefMI) {
1042 DEBUG(dbgs() << "FAILED (def is dead).\n");
1043 return false; // Def is dead. Do nothing.
1046 if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
1047 BarrierMBB, SS, RefsInMBB))) {
1048 SpillIndex = LIs->getInstructionIndex(SpillMI);
1049 } else {
1050 // Check if it's possible to insert a spill after the def MI.
1051 MachineBasicBlock::iterator SpillPt;
1052 if (DefMBB == BarrierMBB) {
1053 // Add spill after the def and the last use before the barrier.
1054 SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
1055 RefsInMBB);
1056 if (SpillPt == DefMBB->begin()) {
1057 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1058 return false; // No gap to insert spill.
1060 } else {
1061 SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
1062 if (SpillPt == DefMBB->end()) {
1063 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1064 return false; // No gap to insert spill.
1067 // Add spill.
1068 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1069 TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
1070 TRI);
1071 SpillMI = prior(SpillPt);
1072 SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
1076 // Remember def instruction index to spill index mapping.
1077 if (DefMI && SpillMI)
1078 Def2SpillMap[ValNo->def] = SpillIndex;
1080 // Add restore.
1081 bool FoldedRestore = false;
1082 SlotIndex RestoreIndex;
1083 if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
1084 BarrierMBB, SS, RefsInMBB)) {
1085 RestorePt = LMI;
1086 RestoreIndex = LIs->getInstructionIndex(RestorePt);
1087 FoldedRestore = true;
1088 } else {
1089 TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
1090 MachineInstr *LoadMI = prior(RestorePt);
1091 RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
1094 // Update spill stack slot live interval.
1095 UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
1096 RestoreIndex.getDefIndex());
1098 ReconstructLiveInterval(CurrLI);
1100 if (!FoldedRestore) {
1101 SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
1102 RestoreIdx = RestoreIdx.getDefIndex();
1103 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
1106 ++NumSplits;
1107 DEBUG(dbgs() << "success.\n");
1108 return true;
1111 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1112 /// barrier that's being processed.
1113 bool
1114 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
1115 SmallPtrSet<LiveInterval*, 8>& Split) {
1116 // First find all the virtual registers whose live intervals are intercepted
1117 // by the current barrier.
1118 SmallVector<LiveInterval*, 8> Intervals;
1119 for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
1120 // FIXME: If it's not safe to move any instruction that defines the barrier
1121 // register class, then it means there are some special dependencies which
1122 // codegen is not modelling. Ignore these barriers for now.
1123 if (!TII->isSafeToMoveRegClassDefs(*RC))
1124 continue;
1125 const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
1126 for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
1127 unsigned Reg = VRs[i];
1128 if (!LIs->hasInterval(Reg))
1129 continue;
1130 LiveInterval *LI = &LIs->getInterval(Reg);
1131 if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
1132 // Virtual register live interval is intercepted by the barrier. We
1133 // should split and shrink wrap its interval if possible.
1134 Intervals.push_back(LI);
1138 // Process the affected live intervals.
1139 bool Change = false;
1140 while (!Intervals.empty()) {
1141 if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
1142 break;
1143 LiveInterval *LI = Intervals.back();
1144 Intervals.pop_back();
1145 bool result = SplitRegLiveInterval(LI);
1146 if (result) Split.insert(LI);
1147 Change |= result;
1150 return Change;
1153 unsigned PreAllocSplitting::getNumberOfNonSpills(
1154 SmallPtrSet<MachineInstr*, 4>& MIs,
1155 unsigned Reg, int FrameIndex,
1156 bool& FeedsTwoAddr) {
1157 unsigned NonSpills = 0;
1158 for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
1159 UI != UE; ++UI) {
1160 int StoreFrameIndex;
1161 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1162 if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
1163 ++NonSpills;
1165 int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
1166 if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
1167 FeedsTwoAddr = true;
1170 return NonSpills;
1173 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1174 /// split, and see if any of the spills are unnecessary. If so, remove them.
1175 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
1176 bool changed = false;
1178 // Walk over all of the live intervals that were touched by the splitter,
1179 // and see if we can do any DCE and/or folding.
1180 for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
1181 LE = split.end(); LI != LE; ++LI) {
1182 DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
1184 // First, collect all the uses of the vreg, and sort them by their
1185 // reaching definition (VNInfo).
1186 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
1187 UE = MRI->use_end(); UI != UE; ++UI) {
1188 SlotIndex index = LIs->getInstructionIndex(&*UI);
1189 index = index.getUseIndex();
1191 const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
1192 VNUseCount[LR->valno].insert(&*UI);
1195 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1196 // and/or fold them away.
1197 for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
1198 VE = (*LI)->vni_end(); VI != VE; ++VI) {
1200 if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
1201 return changed;
1203 VNInfo* CurrVN = *VI;
1205 // We don't currently try to handle definitions with PHI kills, because
1206 // it would involve processing more than one VNInfo at once.
1207 if (CurrVN->hasPHIKill()) continue;
1209 // We also don't try to handle the results of PHI joins, since there's
1210 // no defining instruction to analyze.
1211 MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
1212 if (!DefMI || CurrVN->isUnused()) continue;
1214 // We're only interested in eliminating cruft introduced by the splitter,
1215 // is of the form load-use or load-use-store. First, check that the
1216 // definition is a load, and remember what stack slot we loaded it from.
1217 int FrameIndex;
1218 if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
1220 // If the definition has no uses at all, just DCE it.
1221 if (VNUseCount[CurrVN].size() == 0) {
1222 LIs->RemoveMachineInstrFromMaps(DefMI);
1223 (*LI)->removeValNo(CurrVN);
1224 DefMI->eraseFromParent();
1225 VNUseCount.erase(CurrVN);
1226 ++NumDeadSpills;
1227 changed = true;
1228 continue;
1231 // Second, get the number of non-store uses of the definition, as well as
1232 // a flag indicating whether it feeds into a later two-address definition.
1233 bool FeedsTwoAddr = false;
1234 unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
1235 (*LI)->reg, FrameIndex,
1236 FeedsTwoAddr);
1238 // If there's one non-store use and it doesn't feed a two-addr, then
1239 // this is a load-use-store case that we can try to fold.
1240 if (NonSpillCount == 1 && !FeedsTwoAddr) {
1241 // Start by finding the non-store use MachineInstr.
1242 SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
1243 int StoreFrameIndex;
1244 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1245 while (UI != VNUseCount[CurrVN].end() &&
1246 (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
1247 ++UI;
1248 if (UI != VNUseCount[CurrVN].end())
1249 StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1251 if (UI == VNUseCount[CurrVN].end()) continue;
1253 MachineInstr* use = *UI;
1255 // Attempt to fold it away!
1256 int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
1257 if (OpIdx == -1) continue;
1258 SmallVector<unsigned, 1> Ops;
1259 Ops.push_back(OpIdx);
1260 if (!TII->canFoldMemoryOperand(use, Ops)) continue;
1262 MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
1264 if (!NewMI) continue;
1266 // Update relevant analyses.
1267 LIs->RemoveMachineInstrFromMaps(DefMI);
1268 LIs->ReplaceMachineInstrInMaps(use, NewMI);
1269 (*LI)->removeValNo(CurrVN);
1271 DefMI->eraseFromParent();
1272 use->eraseFromParent();
1273 VNUseCount[CurrVN].erase(use);
1275 // Remove deleted instructions. Note that we need to remove them from
1276 // the VNInfo->use map as well, just to be safe.
1277 for (SmallPtrSet<MachineInstr*, 4>::iterator II =
1278 VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
1279 II != IE; ++II) {
1280 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1281 VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
1282 ++VNI)
1283 if (VNI->first != CurrVN)
1284 VNI->second.erase(*II);
1285 LIs->RemoveMachineInstrFromMaps(*II);
1286 (*II)->eraseFromParent();
1289 VNUseCount.erase(CurrVN);
1291 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1292 VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
1293 if (VI->second.erase(use))
1294 VI->second.insert(NewMI);
1296 ++NumDeadSpills;
1297 changed = true;
1298 continue;
1301 // If there's more than one non-store instruction, we can't profitably
1302 // fold it, so bail.
1303 if (NonSpillCount) continue;
1305 // Otherwise, this is a load-store case, so DCE them.
1306 for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
1307 VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
1308 UI != UE; ++UI) {
1309 LIs->RemoveMachineInstrFromMaps(*UI);
1310 (*UI)->eraseFromParent();
1313 VNUseCount.erase(CurrVN);
1315 LIs->RemoveMachineInstrFromMaps(DefMI);
1316 (*LI)->removeValNo(CurrVN);
1317 DefMI->eraseFromParent();
1318 ++NumDeadSpills;
1319 changed = true;
1323 return changed;
1326 bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
1327 MachineBasicBlock* DefMBB,
1328 MachineBasicBlock* BarrierMBB) {
1329 if (DefMBB == BarrierMBB)
1330 return false;
1332 if (LR->valno->hasPHIKill())
1333 return false;
1335 SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
1336 if (LR->end < MBBEnd)
1337 return false;
1339 MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
1340 if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
1341 return true;
1343 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
1344 SmallPtrSet<MachineBasicBlock*, 4> Visited;
1345 typedef std::pair<MachineBasicBlock*,
1346 MachineBasicBlock::succ_iterator> ItPair;
1347 SmallVector<ItPair, 4> Stack;
1348 Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
1350 while (!Stack.empty()) {
1351 ItPair P = Stack.back();
1352 Stack.pop_back();
1354 MachineBasicBlock* PredMBB = P.first;
1355 MachineBasicBlock::succ_iterator S = P.second;
1357 if (S == PredMBB->succ_end())
1358 continue;
1359 else if (Visited.count(*S)) {
1360 Stack.push_back(std::make_pair(PredMBB, ++S));
1361 continue;
1362 } else
1363 Stack.push_back(std::make_pair(PredMBB, S+1));
1365 MachineBasicBlock* MBB = *S;
1366 Visited.insert(MBB);
1368 if (MBB == BarrierMBB)
1369 return true;
1371 MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
1372 MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
1373 MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
1374 while (MDTN) {
1375 if (MDTN == DefMDTN)
1376 return true;
1377 else if (MDTN == BarrierMDTN)
1378 break;
1379 MDTN = MDTN->getIDom();
1382 MBBEnd = LIs->getMBBEndIdx(MBB);
1383 if (LR->end > MBBEnd)
1384 Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
1387 return false;
1391 bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
1392 CurrMF = &MF;
1393 TM = &MF.getTarget();
1394 TRI = TM->getRegisterInfo();
1395 TII = TM->getInstrInfo();
1396 MFI = MF.getFrameInfo();
1397 MRI = &MF.getRegInfo();
1398 SIs = &getAnalysis<SlotIndexes>();
1399 LIs = &getAnalysis<LiveIntervals>();
1400 LSs = &getAnalysis<LiveStacks>();
1401 VRM = &getAnalysis<VirtRegMap>();
1403 bool MadeChange = false;
1405 // Make sure blocks are numbered in order.
1406 MF.RenumberBlocks();
1408 MachineBasicBlock *Entry = MF.begin();
1409 SmallPtrSet<MachineBasicBlock*,16> Visited;
1411 SmallPtrSet<LiveInterval*, 8> Split;
1413 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
1414 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1415 DFI != E; ++DFI) {
1416 BarrierMBB = *DFI;
1417 for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
1418 E = BarrierMBB->end(); I != E; ++I) {
1419 Barrier = &*I;
1420 const TargetRegisterClass **BarrierRCs =
1421 Barrier->getDesc().getRegClassBarriers();
1422 if (!BarrierRCs)
1423 continue;
1424 BarrierIdx = LIs->getInstructionIndex(Barrier);
1425 MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
1429 MadeChange |= removeDeadSpills(Split);
1431 return MadeChange;