1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "LiveIntervalUnion.h"
17 #include "RegAllocBase.h"
18 #include "RenderMachineFunction.h"
20 #include "VirtRegRewriter.h"
21 #include "llvm/Function.h"
22 #include "llvm/PassAnalysisSupport.h"
23 #include "llvm/CodeGen/CalcSpillWeights.h"
24 #include "llvm/CodeGen/LiveStackAnalysis.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterCoalescer.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
37 #include "VirtRegMap.h"
38 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
47 static RegisterRegAlloc
basicRegAlloc("basic", "basic register allocator",
48 createBasicRegisterAllocator
);
52 /// RABasic provides a minimal implementation of the basic register allocation
53 /// algorithm. It prioritizes live virtual registers by spill weight and spills
54 /// whenever a register is unavailable. This is not practical in production but
55 /// provides a useful baseline both for measuring other allocators and comparing
56 /// the speed of the basic algorithm against other styles of allocators.
57 class RABasic
: public MachineFunctionPass
, public RegAllocBase
61 const TargetMachine
*tm_
;
62 MachineRegisterInfo
*mri_
;
66 RenderMachineFunction
*rmf_
;
69 std::auto_ptr
<Spiller
> spiller_
;
74 /// Return the pass name.
75 virtual const char* getPassName() const {
76 return "Basic Register Allocator";
79 /// RABasic analysis usage.
80 virtual void getAnalysisUsage(AnalysisUsage
&au
) const;
82 virtual void releaseMemory();
84 virtual unsigned selectOrSplit(LiveInterval
&lvr
,
85 SmallVectorImpl
<LiveInterval
*> &splitLVRs
);
87 /// Perform register allocation.
88 virtual bool runOnMachineFunction(MachineFunction
&mf
);
95 } // end anonymous namespace
97 // We should not need to publish the initializer as long as no other passes
99 #if 0 // disable INITIALIZE_PASS
100 INITIALIZE_PASS_BEGIN(RABasic
, "basic-regalloc",
101 "Basic Register Allocator", false, false)
102 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
103 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
104 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer
)
105 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights
)
106 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
107 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
108 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
110 INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction
)
112 INITIALIZE_PASS_END(RABasic
, "basic-regalloc",
113 "Basic Register Allocator", false, false)
114 #endif // disable INITIALIZE_PASS
116 RABasic::RABasic(): MachineFunctionPass(ID
) {
117 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
118 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
119 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
120 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
121 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
122 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
123 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
124 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
125 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
126 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
129 void RABasic::getAnalysisUsage(AnalysisUsage
&au
) const {
130 au
.setPreservesCFG();
131 au
.addRequired
<LiveIntervals
>();
132 au
.addPreserved
<SlotIndexes
>();
134 au
.addRequiredID(StrongPHIEliminationID
);
135 au
.addRequiredTransitive
<RegisterCoalescer
>();
136 au
.addRequired
<CalculateSpillWeights
>();
137 au
.addRequired
<LiveStacks
>();
138 au
.addPreserved
<LiveStacks
>();
139 au
.addRequiredID(MachineDominatorsID
);
140 au
.addPreservedID(MachineDominatorsID
);
141 au
.addRequired
<MachineLoopInfo
>();
142 au
.addPreserved
<MachineLoopInfo
>();
143 au
.addRequired
<VirtRegMap
>();
144 au
.addPreserved
<VirtRegMap
>();
145 DEBUG(au
.addRequired
<RenderMachineFunction
>());
146 MachineFunctionPass::getAnalysisUsage(au
);
149 void RABasic::releaseMemory() {
151 RegAllocBase::releaseMemory();
154 //===----------------------------------------------------------------------===//
155 // RegAllocBase Implementation
156 //===----------------------------------------------------------------------===//
158 // Instantiate a LiveIntervalUnion for each physical register.
159 void RegAllocBase::LIUArray::init(unsigned nRegs
) {
160 array_
.reset(new LiveIntervalUnion
[nRegs
]);
162 for (unsigned pr
= 0; pr
< nRegs
; ++pr
) {
167 void RegAllocBase::init(const TargetRegisterInfo
&tri
, VirtRegMap
&vrm
,
168 LiveIntervals
&lis
) {
172 physReg2liu_
.init(tri_
->getNumRegs());
175 void RegAllocBase::LIUArray::clear() {
180 void RegAllocBase::releaseMemory() {
181 physReg2liu_
.clear();
185 /// This class defines a queue of live virtual registers prioritized by spill
186 /// weight. The heaviest vreg is popped first.
188 /// Currently, this is trivial wrapper that gives us an opaque type in the
189 /// header, but we may later give it a virtual interface for register allocators
190 /// to override the priority queue comparator.
191 class LiveVirtRegQueue
{
192 typedef std::priority_queue
193 <LiveInterval
*, std::vector
<LiveInterval
*>, LessSpillWeightPriority
> PQ
;
197 // Is the queue empty?
198 bool empty() { return pq_
.empty(); }
200 // Get the highest priority lvr (top + pop)
201 LiveInterval
*get() {
202 LiveInterval
*lvr
= pq_
.top();
206 // Add this lvr to the queue
207 void push(LiveInterval
*lvr
) {
211 } // end namespace llvm
213 // Visit all the live virtual registers. If they are already assigned to a
214 // physical register, unify them with the corresponding LiveIntervalUnion,
215 // otherwise push them on the priority queue for later assignment.
216 void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue
&lvrQ
) {
217 for (LiveIntervals::iterator liItr
= lis_
->begin(), liEnd
= lis_
->end();
218 liItr
!= liEnd
; ++liItr
) {
219 unsigned reg
= liItr
->first
;
220 LiveInterval
&li
= *liItr
->second
;
221 if (TargetRegisterInfo::isPhysicalRegister(reg
)) {
222 physReg2liu_
[reg
].unify(li
);
230 // Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
231 // selectOrSplit implementation.
232 void RegAllocBase::allocatePhysRegs() {
233 LiveVirtRegQueue lvrQ
;
234 seedLiveVirtRegs(lvrQ
);
235 while (!lvrQ
.empty()) {
236 LiveInterval
*lvr
= lvrQ
.get();
237 typedef SmallVector
<LiveInterval
*, 4> LVRVec
;
239 unsigned availablePhysReg
= selectOrSplit(*lvr
, splitLVRs
);
240 if (availablePhysReg
) {
241 assert(splitLVRs
.empty() && "inconsistent splitting");
242 assert(!vrm_
->hasPhys(lvr
->reg
) && "duplicate vreg in interval unions");
243 vrm_
->assignVirt2Phys(lvr
->reg
, availablePhysReg
);
244 physReg2liu_
[availablePhysReg
].unify(*lvr
);
247 for (LVRVec::iterator lvrI
= splitLVRs
.begin(), lvrEnd
= splitLVRs
.end();
248 lvrI
!= lvrEnd
; ++lvrI
) {
249 assert(TargetRegisterInfo::isVirtualRegister((*lvrI
)->reg
) &&
250 "expect split value in virtual register");
257 // Check if this live virtual reg interferes with a physical register. If not,
258 // then check for interference on each register that aliases with the physical
260 bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query
&query
,
262 if (query
.checkInterference())
264 for (const unsigned *asI
= tri_
->getAliasSet(preg
); *asI
; ++asI
) {
265 // We assume it's very unlikely for a register in the alias set to also be
266 // in the original register class. So we don't bother caching the
268 LiveIntervalUnion::Query
subQuery(query
.lvr(), physReg2liu_
[*asI
] );
269 if (subQuery
.checkInterference())
275 //===----------------------------------------------------------------------===//
276 // RABasic Implementation
277 //===----------------------------------------------------------------------===//
279 // Driver for the register assignment and splitting heuristics.
280 // Manages iteration over the LiveIntervalUnions.
282 // Minimal implementation of register assignment and splitting--spills whenever
283 // we run out of registers.
285 // selectOrSplit can only be called once per live virtual register. We then do a
286 // single interference test for each register the correct class until we find an
287 // available register. So, the number of interference tests in the worst case is
288 // |vregs| * |machineregs|. And since the number of interference tests is
289 // minimal, there is no value in caching them.
290 unsigned RABasic::selectOrSplit(LiveInterval
&lvr
,
291 SmallVectorImpl
<LiveInterval
*> &splitLVRs
) {
292 // Check for an available reg in this class.
293 const TargetRegisterClass
*trc
= mri_
->getRegClass(lvr
.reg
);
294 for (TargetRegisterClass::iterator trcI
= trc
->allocation_order_begin(*mf_
),
295 trcEnd
= trc
->allocation_order_end(*mf_
);
296 trcI
!= trcEnd
; ++trcI
) {
297 unsigned preg
= *trcI
;
298 LiveIntervalUnion::Query
query(lvr
, physReg2liu_
[preg
]);
299 if (!checkPhysRegInterference(query
, preg
)) {
300 DEBUG(dbgs() << "\tallocating: " << tri_
->getName(preg
) << lvr
<< '\n');
304 DEBUG(dbgs() << "\tspilling: " << lvr
<< '\n');
305 SmallVector
<LiveInterval
*, 1> spillIs
; // ignored
306 spiller_
->spill(&lvr
, splitLVRs
, spillIs
);
308 // FIXME: update LiveStacks
312 bool RABasic::runOnMachineFunction(MachineFunction
&mf
) {
313 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
314 << "********** Function: "
315 << ((Value
*)mf
.getFunction())->getName() << '\n');
318 tm_
= &mf
.getTarget();
319 mri_
= &mf
.getRegInfo();
321 DEBUG(rmf_
= &getAnalysis
<RenderMachineFunction
>());
323 RegAllocBase::init(*tm_
->getRegisterInfo(), getAnalysis
<VirtRegMap
>(),
324 getAnalysis
<LiveIntervals
>());
326 spiller_
.reset(createSpiller(*this, *mf_
, *vrm_
));
330 // Diagnostic output before rewriting
331 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_
<< "\n");
333 // optional HTML output
334 DEBUG(rmf_
->renderMachineFunction("After basic register allocation.", vrm_
));
337 std::auto_ptr
<VirtRegRewriter
> rewriter(createVirtRegRewriter());
338 rewriter
->runOnMachineFunction(*mf_
, *vrm_
, lis_
);
340 // The pass output is in VirtRegMap. Release all the transient data.
346 FunctionPass
* llvm::createBasicRegisterAllocator()
348 return new RABasic();