zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / ScheduleDAG.cpp
blob7d39dc496afec72ea9079e817fcc0265ff2f672a
1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <climits>
24 using namespace llvm;
26 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
27 : TM(mf.getTarget()),
28 TII(TM.getInstrInfo()),
29 TRI(TM.getRegisterInfo()),
30 MF(mf), MRI(mf.getRegInfo()),
31 EntrySU(), ExitSU() {
34 ScheduleDAG::~ScheduleDAG() {}
36 /// dump - dump the schedule.
37 void ScheduleDAG::dumpSchedule() const {
38 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39 if (SUnit *SU = Sequence[i])
40 SU->dump(this);
41 else
42 dbgs() << "**** NOOP ****\n";
47 /// Run - perform scheduling.
48 ///
49 void ScheduleDAG::Run(MachineBasicBlock *bb,
50 MachineBasicBlock::iterator insertPos) {
51 BB = bb;
52 InsertPos = insertPos;
54 SUnits.clear();
55 Sequence.clear();
56 EntrySU = SUnit();
57 ExitSU = SUnit();
59 Schedule();
61 DEBUG({
62 dbgs() << "*** Final schedule ***\n";
63 dumpSchedule();
64 dbgs() << '\n';
65 });
68 /// addPred - This adds the specified edge as a pred of the current node if
69 /// not already. It also adds the current node as a successor of the
70 /// specified node.
71 void SUnit::addPred(const SDep &D) {
72 // If this node already has this depenence, don't add a redundant one.
73 for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
74 I != E; ++I)
75 if (*I == D)
76 return;
77 // Now add a corresponding succ to N.
78 SDep P = D;
79 P.setSUnit(this);
80 SUnit *N = D.getSUnit();
81 // Update the bookkeeping.
82 if (D.getKind() == SDep::Data) {
83 assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
84 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
85 ++NumPreds;
86 ++N->NumSuccs;
88 if (!N->isScheduled) {
89 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
90 ++NumPredsLeft;
92 if (!isScheduled) {
93 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
94 ++N->NumSuccsLeft;
96 Preds.push_back(D);
97 N->Succs.push_back(P);
98 if (P.getLatency() != 0) {
99 this->setDepthDirty();
100 N->setHeightDirty();
104 /// removePred - This removes the specified edge as a pred of the current
105 /// node if it exists. It also removes the current node as a successor of
106 /// the specified node.
107 void SUnit::removePred(const SDep &D) {
108 // Find the matching predecessor.
109 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
110 I != E; ++I)
111 if (*I == D) {
112 bool FoundSucc = false;
113 // Find the corresponding successor in N.
114 SDep P = D;
115 P.setSUnit(this);
116 SUnit *N = D.getSUnit();
117 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
118 EE = N->Succs.end(); II != EE; ++II)
119 if (*II == P) {
120 FoundSucc = true;
121 N->Succs.erase(II);
122 break;
124 assert(FoundSucc && "Mismatching preds / succs lists!");
125 Preds.erase(I);
126 // Update the bookkeeping.
127 if (P.getKind() == SDep::Data) {
128 assert(NumPreds > 0 && "NumPreds will underflow!");
129 assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
130 --NumPreds;
131 --N->NumSuccs;
133 if (!N->isScheduled) {
134 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
135 --NumPredsLeft;
137 if (!isScheduled) {
138 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
139 --N->NumSuccsLeft;
141 if (P.getLatency() != 0) {
142 this->setDepthDirty();
143 N->setHeightDirty();
145 return;
149 void SUnit::setDepthDirty() {
150 if (!isDepthCurrent) return;
151 SmallVector<SUnit*, 8> WorkList;
152 WorkList.push_back(this);
153 do {
154 SUnit *SU = WorkList.pop_back_val();
155 SU->isDepthCurrent = false;
156 for (SUnit::const_succ_iterator I = SU->Succs.begin(),
157 E = SU->Succs.end(); I != E; ++I) {
158 SUnit *SuccSU = I->getSUnit();
159 if (SuccSU->isDepthCurrent)
160 WorkList.push_back(SuccSU);
162 } while (!WorkList.empty());
165 void SUnit::setHeightDirty() {
166 if (!isHeightCurrent) return;
167 SmallVector<SUnit*, 8> WorkList;
168 WorkList.push_back(this);
169 do {
170 SUnit *SU = WorkList.pop_back_val();
171 SU->isHeightCurrent = false;
172 for (SUnit::const_pred_iterator I = SU->Preds.begin(),
173 E = SU->Preds.end(); I != E; ++I) {
174 SUnit *PredSU = I->getSUnit();
175 if (PredSU->isHeightCurrent)
176 WorkList.push_back(PredSU);
178 } while (!WorkList.empty());
181 /// setDepthToAtLeast - Update this node's successors to reflect the
182 /// fact that this node's depth just increased.
184 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
185 if (NewDepth <= getDepth())
186 return;
187 setDepthDirty();
188 Depth = NewDepth;
189 isDepthCurrent = true;
192 /// setHeightToAtLeast - Update this node's predecessors to reflect the
193 /// fact that this node's height just increased.
195 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
196 if (NewHeight <= getHeight())
197 return;
198 setHeightDirty();
199 Height = NewHeight;
200 isHeightCurrent = true;
203 /// ComputeDepth - Calculate the maximal path from the node to the exit.
205 void SUnit::ComputeDepth() {
206 SmallVector<SUnit*, 8> WorkList;
207 WorkList.push_back(this);
208 do {
209 SUnit *Cur = WorkList.back();
211 bool Done = true;
212 unsigned MaxPredDepth = 0;
213 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
214 E = Cur->Preds.end(); I != E; ++I) {
215 SUnit *PredSU = I->getSUnit();
216 if (PredSU->isDepthCurrent)
217 MaxPredDepth = std::max(MaxPredDepth,
218 PredSU->Depth + I->getLatency());
219 else {
220 Done = false;
221 WorkList.push_back(PredSU);
225 if (Done) {
226 WorkList.pop_back();
227 if (MaxPredDepth != Cur->Depth) {
228 Cur->setDepthDirty();
229 Cur->Depth = MaxPredDepth;
231 Cur->isDepthCurrent = true;
233 } while (!WorkList.empty());
236 /// ComputeHeight - Calculate the maximal path from the node to the entry.
238 void SUnit::ComputeHeight() {
239 SmallVector<SUnit*, 8> WorkList;
240 WorkList.push_back(this);
241 do {
242 SUnit *Cur = WorkList.back();
244 bool Done = true;
245 unsigned MaxSuccHeight = 0;
246 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
247 E = Cur->Succs.end(); I != E; ++I) {
248 SUnit *SuccSU = I->getSUnit();
249 if (SuccSU->isHeightCurrent)
250 MaxSuccHeight = std::max(MaxSuccHeight,
251 SuccSU->Height + I->getLatency());
252 else {
253 Done = false;
254 WorkList.push_back(SuccSU);
258 if (Done) {
259 WorkList.pop_back();
260 if (MaxSuccHeight != Cur->Height) {
261 Cur->setHeightDirty();
262 Cur->Height = MaxSuccHeight;
264 Cur->isHeightCurrent = true;
266 } while (!WorkList.empty());
269 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
270 /// a group of nodes flagged together.
271 void SUnit::dump(const ScheduleDAG *G) const {
272 dbgs() << "SU(" << NodeNum << "): ";
273 G->dumpNode(this);
276 void SUnit::dumpAll(const ScheduleDAG *G) const {
277 dump(G);
279 dbgs() << " # preds left : " << NumPredsLeft << "\n";
280 dbgs() << " # succs left : " << NumSuccsLeft << "\n";
281 dbgs() << " Latency : " << Latency << "\n";
282 dbgs() << " Depth : " << Depth << "\n";
283 dbgs() << " Height : " << Height << "\n";
285 if (Preds.size() != 0) {
286 dbgs() << " Predecessors:\n";
287 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
288 I != E; ++I) {
289 dbgs() << " ";
290 switch (I->getKind()) {
291 case SDep::Data: dbgs() << "val "; break;
292 case SDep::Anti: dbgs() << "anti"; break;
293 case SDep::Output: dbgs() << "out "; break;
294 case SDep::Order: dbgs() << "ch "; break;
296 dbgs() << "#";
297 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
298 if (I->isArtificial())
299 dbgs() << " *";
300 dbgs() << ": Latency=" << I->getLatency();
301 dbgs() << "\n";
304 if (Succs.size() != 0) {
305 dbgs() << " Successors:\n";
306 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
307 I != E; ++I) {
308 dbgs() << " ";
309 switch (I->getKind()) {
310 case SDep::Data: dbgs() << "val "; break;
311 case SDep::Anti: dbgs() << "anti"; break;
312 case SDep::Output: dbgs() << "out "; break;
313 case SDep::Order: dbgs() << "ch "; break;
315 dbgs() << "#";
316 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
317 if (I->isArtificial())
318 dbgs() << " *";
319 dbgs() << ": Latency=" << I->getLatency();
320 dbgs() << "\n";
323 dbgs() << "\n";
326 #ifndef NDEBUG
327 /// VerifySchedule - Verify that all SUnits were scheduled and that
328 /// their state is consistent.
330 void ScheduleDAG::VerifySchedule(bool isBottomUp) {
331 bool AnyNotSched = false;
332 unsigned DeadNodes = 0;
333 unsigned Noops = 0;
334 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
335 if (!SUnits[i].isScheduled) {
336 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
337 ++DeadNodes;
338 continue;
340 if (!AnyNotSched)
341 dbgs() << "*** Scheduling failed! ***\n";
342 SUnits[i].dump(this);
343 dbgs() << "has not been scheduled!\n";
344 AnyNotSched = true;
346 if (SUnits[i].isScheduled &&
347 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
348 unsigned(INT_MAX)) {
349 if (!AnyNotSched)
350 dbgs() << "*** Scheduling failed! ***\n";
351 SUnits[i].dump(this);
352 dbgs() << "has an unexpected "
353 << (isBottomUp ? "Height" : "Depth") << " value!\n";
354 AnyNotSched = true;
356 if (isBottomUp) {
357 if (SUnits[i].NumSuccsLeft != 0) {
358 if (!AnyNotSched)
359 dbgs() << "*** Scheduling failed! ***\n";
360 SUnits[i].dump(this);
361 dbgs() << "has successors left!\n";
362 AnyNotSched = true;
364 } else {
365 if (SUnits[i].NumPredsLeft != 0) {
366 if (!AnyNotSched)
367 dbgs() << "*** Scheduling failed! ***\n";
368 SUnits[i].dump(this);
369 dbgs() << "has predecessors left!\n";
370 AnyNotSched = true;
374 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
375 if (!Sequence[i])
376 ++Noops;
377 assert(!AnyNotSched);
378 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
379 "The number of nodes scheduled doesn't match the expected number!");
381 #endif
383 /// InitDAGTopologicalSorting - create the initial topological
384 /// ordering from the DAG to be scheduled.
386 /// The idea of the algorithm is taken from
387 /// "Online algorithms for managing the topological order of
388 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
389 /// This is the MNR algorithm, which was first introduced by
390 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
391 /// "Maintaining a topological order under edge insertions".
393 /// Short description of the algorithm:
395 /// Topological ordering, ord, of a DAG maps each node to a topological
396 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
398 /// This means that if there is a path from the node X to the node Z,
399 /// then ord(X) < ord(Z).
401 /// This property can be used to check for reachability of nodes:
402 /// if Z is reachable from X, then an insertion of the edge Z->X would
403 /// create a cycle.
405 /// The algorithm first computes a topological ordering for the DAG by
406 /// initializing the Index2Node and Node2Index arrays and then tries to keep
407 /// the ordering up-to-date after edge insertions by reordering the DAG.
409 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
410 /// the nodes reachable from Y, and then shifts them using Shift to lie
411 /// immediately after X in Index2Node.
412 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
413 unsigned DAGSize = SUnits.size();
414 std::vector<SUnit*> WorkList;
415 WorkList.reserve(DAGSize);
417 Index2Node.resize(DAGSize);
418 Node2Index.resize(DAGSize);
420 // Initialize the data structures.
421 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
422 SUnit *SU = &SUnits[i];
423 int NodeNum = SU->NodeNum;
424 unsigned Degree = SU->Succs.size();
425 // Temporarily use the Node2Index array as scratch space for degree counts.
426 Node2Index[NodeNum] = Degree;
428 // Is it a node without dependencies?
429 if (Degree == 0) {
430 assert(SU->Succs.empty() && "SUnit should have no successors");
431 // Collect leaf nodes.
432 WorkList.push_back(SU);
436 int Id = DAGSize;
437 while (!WorkList.empty()) {
438 SUnit *SU = WorkList.back();
439 WorkList.pop_back();
440 Allocate(SU->NodeNum, --Id);
441 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
442 I != E; ++I) {
443 SUnit *SU = I->getSUnit();
444 if (!--Node2Index[SU->NodeNum])
445 // If all dependencies of the node are processed already,
446 // then the node can be computed now.
447 WorkList.push_back(SU);
451 Visited.resize(DAGSize);
453 #ifndef NDEBUG
454 // Check correctness of the ordering
455 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
456 SUnit *SU = &SUnits[i];
457 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
458 I != E; ++I) {
459 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
460 "Wrong topological sorting");
463 #endif
466 /// AddPred - Updates the topological ordering to accomodate an edge
467 /// to be added from SUnit X to SUnit Y.
468 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
469 int UpperBound, LowerBound;
470 LowerBound = Node2Index[Y->NodeNum];
471 UpperBound = Node2Index[X->NodeNum];
472 bool HasLoop = false;
473 // Is Ord(X) < Ord(Y) ?
474 if (LowerBound < UpperBound) {
475 // Update the topological order.
476 Visited.reset();
477 DFS(Y, UpperBound, HasLoop);
478 assert(!HasLoop && "Inserted edge creates a loop!");
479 // Recompute topological indexes.
480 Shift(Visited, LowerBound, UpperBound);
484 /// RemovePred - Updates the topological ordering to accomodate an
485 /// an edge to be removed from the specified node N from the predecessors
486 /// of the current node M.
487 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
488 // InitDAGTopologicalSorting();
491 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
492 /// all nodes affected by the edge insertion. These nodes will later get new
493 /// topological indexes by means of the Shift method.
494 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
495 bool& HasLoop) {
496 std::vector<const SUnit*> WorkList;
497 WorkList.reserve(SUnits.size());
499 WorkList.push_back(SU);
500 do {
501 SU = WorkList.back();
502 WorkList.pop_back();
503 Visited.set(SU->NodeNum);
504 for (int I = SU->Succs.size()-1; I >= 0; --I) {
505 int s = SU->Succs[I].getSUnit()->NodeNum;
506 if (Node2Index[s] == UpperBound) {
507 HasLoop = true;
508 return;
510 // Visit successors if not already and in affected region.
511 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
512 WorkList.push_back(SU->Succs[I].getSUnit());
515 } while (!WorkList.empty());
518 /// Shift - Renumber the nodes so that the topological ordering is
519 /// preserved.
520 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
521 int UpperBound) {
522 std::vector<int> L;
523 int shift = 0;
524 int i;
526 for (i = LowerBound; i <= UpperBound; ++i) {
527 // w is node at topological index i.
528 int w = Index2Node[i];
529 if (Visited.test(w)) {
530 // Unmark.
531 Visited.reset(w);
532 L.push_back(w);
533 shift = shift + 1;
534 } else {
535 Allocate(w, i - shift);
539 for (unsigned j = 0; j < L.size(); ++j) {
540 Allocate(L[j], i - shift);
541 i = i + 1;
546 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
547 /// create a cycle.
548 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
549 if (IsReachable(TargetSU, SU))
550 return true;
551 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
552 I != E; ++I)
553 if (I->isAssignedRegDep() &&
554 IsReachable(TargetSU, I->getSUnit()))
555 return true;
556 return false;
559 /// IsReachable - Checks if SU is reachable from TargetSU.
560 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
561 const SUnit *TargetSU) {
562 // If insertion of the edge SU->TargetSU would create a cycle
563 // then there is a path from TargetSU to SU.
564 int UpperBound, LowerBound;
565 LowerBound = Node2Index[TargetSU->NodeNum];
566 UpperBound = Node2Index[SU->NodeNum];
567 bool HasLoop = false;
568 // Is Ord(TargetSU) < Ord(SU) ?
569 if (LowerBound < UpperBound) {
570 Visited.reset();
571 // There may be a path from TargetSU to SU. Check for it.
572 DFS(TargetSU, UpperBound, HasLoop);
574 return HasLoop;
577 /// Allocate - assign the topological index to the node n.
578 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
579 Node2Index[n] = index;
580 Index2Node[index] = n;
583 ScheduleDAGTopologicalSort::
584 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
586 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}