zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blobe86a78c691957d1af8c98597c9a03a605594c2b9
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/PseudoSourceValue.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetSubtarget.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/ADT/SmallSet.h"
30 using namespace llvm;
32 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33 const MachineLoopInfo &mli,
34 const MachineDominatorTree &mdt)
35 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
36 InstrItins(mf.getTarget().getInstrItineraryData()),
37 Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
38 DbgValueVec.clear();
41 /// Run - perform scheduling.
42 ///
43 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
44 MachineBasicBlock::iterator begin,
45 MachineBasicBlock::iterator end,
46 unsigned endcount) {
47 BB = bb;
48 Begin = begin;
49 InsertPosIndex = endcount;
51 ScheduleDAG::Run(bb, end);
54 /// getUnderlyingObjectFromInt - This is the function that does the work of
55 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
56 static const Value *getUnderlyingObjectFromInt(const Value *V) {
57 do {
58 if (const Operator *U = dyn_cast<Operator>(V)) {
59 // If we find a ptrtoint, we can transfer control back to the
60 // regular getUnderlyingObjectFromInt.
61 if (U->getOpcode() == Instruction::PtrToInt)
62 return U->getOperand(0);
63 // If we find an add of a constant or a multiplied value, it's
64 // likely that the other operand will lead us to the base
65 // object. We don't have to worry about the case where the
66 // object address is somehow being computed by the multiply,
67 // because our callers only care when the result is an
68 // identifibale object.
69 if (U->getOpcode() != Instruction::Add ||
70 (!isa<ConstantInt>(U->getOperand(1)) &&
71 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
72 return V;
73 V = U->getOperand(0);
74 } else {
75 return V;
77 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
78 } while (1);
81 /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
82 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
83 static const Value *getUnderlyingObject(const Value *V) {
84 // First just call Value::getUnderlyingObject to let it do what it does.
85 do {
86 V = V->getUnderlyingObject();
87 // If it found an inttoptr, use special code to continue climing.
88 if (Operator::getOpcode(V) != Instruction::IntToPtr)
89 break;
90 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
91 // If that succeeded in finding a pointer, continue the search.
92 if (!O->getType()->isPointerTy())
93 break;
94 V = O;
95 } while (1);
96 return V;
99 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
100 /// information and it can be tracked to a normal reference to a known
101 /// object, return the Value for that object. Otherwise return null.
102 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
103 const MachineFrameInfo *MFI,
104 bool &MayAlias) {
105 MayAlias = true;
106 if (!MI->hasOneMemOperand() ||
107 !(*MI->memoperands_begin())->getValue() ||
108 (*MI->memoperands_begin())->isVolatile())
109 return 0;
111 const Value *V = (*MI->memoperands_begin())->getValue();
112 if (!V)
113 return 0;
115 V = getUnderlyingObject(V);
116 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
117 // For now, ignore PseudoSourceValues which may alias LLVM IR values
118 // because the code that uses this function has no way to cope with
119 // such aliases.
120 if (PSV->isAliased(MFI))
121 return 0;
123 MayAlias = PSV->mayAlias(MFI);
124 return V;
127 if (isIdentifiedObject(V))
128 return V;
130 return 0;
133 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
134 if (MachineLoop *ML = MLI.getLoopFor(BB))
135 if (BB == ML->getLoopLatch()) {
136 MachineBasicBlock *Header = ML->getHeader();
137 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
138 E = Header->livein_end(); I != E; ++I)
139 LoopLiveInRegs.insert(*I);
140 LoopRegs.VisitLoop(ML);
144 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
145 /// list of instructions being scheduled to scheduling barrier by adding
146 /// the exit SU to the register defs and use list. This is because we want to
147 /// make sure instructions which define registers that are either used by
148 /// the terminator or are live-out are properly scheduled. This is
149 /// especially important when the definition latency of the return value(s)
150 /// are too high to be hidden by the branch or when the liveout registers
151 /// used by instructions in the fallthrough block.
152 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
153 MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
154 ExitSU.setInstr(ExitMI);
155 bool AllDepKnown = ExitMI &&
156 (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
157 if (ExitMI && AllDepKnown) {
158 // If it's a call or a barrier, add dependencies on the defs and uses of
159 // instruction.
160 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
161 const MachineOperand &MO = ExitMI->getOperand(i);
162 if (!MO.isReg() || MO.isDef()) continue;
163 unsigned Reg = MO.getReg();
164 if (Reg == 0) continue;
166 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
167 Uses[Reg].push_back(&ExitSU);
169 } else {
170 // For others, e.g. fallthrough, conditional branch, assume the exit
171 // uses all the registers that are livein to the successor blocks.
172 SmallSet<unsigned, 8> Seen;
173 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
174 SE = BB->succ_end(); SI != SE; ++SI)
175 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
176 E = (*SI)->livein_end(); I != E; ++I) {
177 unsigned Reg = *I;
178 if (Seen.insert(Reg))
179 Uses[Reg].push_back(&ExitSU);
184 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
185 // We'll be allocating one SUnit for each instruction, plus one for
186 // the region exit node.
187 SUnits.reserve(BB->size());
189 // We build scheduling units by walking a block's instruction list from bottom
190 // to top.
192 // Remember where a generic side-effecting instruction is as we procede.
193 SUnit *BarrierChain = 0, *AliasChain = 0;
195 // Memory references to specific known memory locations are tracked
196 // so that they can be given more precise dependencies. We track
197 // separately the known memory locations that may alias and those
198 // that are known not to alias
199 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
200 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
202 // Keep track of dangling debug references to registers.
203 std::vector<std::pair<MachineInstr*, unsigned> >
204 DanglingDebugValue(TRI->getNumRegs(),
205 std::make_pair(static_cast<MachineInstr*>(0), 0));
207 // Check to see if the scheduler cares about latencies.
208 bool UnitLatencies = ForceUnitLatencies();
210 // Ask the target if address-backscheduling is desirable, and if so how much.
211 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
212 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
214 // Remove any stale debug info; sometimes BuildSchedGraph is called again
215 // without emitting the info from the previous call.
216 DbgValueVec.clear();
218 // Model data dependencies between instructions being scheduled and the
219 // ExitSU.
220 AddSchedBarrierDeps();
222 // Walk the list of instructions, from bottom moving up.
223 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
224 MII != MIE; --MII) {
225 MachineInstr *MI = prior(MII);
226 // DBG_VALUE does not have SUnit's built, so just remember these for later
227 // reinsertion.
228 if (MI->isDebugValue()) {
229 if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
230 MI->getOperand(0).getReg())
231 DanglingDebugValue[MI->getOperand(0).getReg()] =
232 std::make_pair(MI, DbgValueVec.size());
233 DbgValueVec.push_back(MI);
234 continue;
236 const TargetInstrDesc &TID = MI->getDesc();
237 assert(!TID.isTerminator() && !MI->isLabel() &&
238 "Cannot schedule terminators or labels!");
239 // Create the SUnit for this MI.
240 SUnit *SU = NewSUnit(MI);
241 SU->isCall = TID.isCall();
242 SU->isCommutable = TID.isCommutable();
244 // Assign the Latency field of SU using target-provided information.
245 if (UnitLatencies)
246 SU->Latency = 1;
247 else
248 ComputeLatency(SU);
250 // Add register-based dependencies (data, anti, and output).
251 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
252 const MachineOperand &MO = MI->getOperand(j);
253 if (!MO.isReg()) continue;
254 unsigned Reg = MO.getReg();
255 if (Reg == 0) continue;
257 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
259 if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
260 SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
261 DbgValueVec[DanglingDebugValue[Reg].second] = 0;
262 DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
265 std::vector<SUnit *> &UseList = Uses[Reg];
266 std::vector<SUnit *> &DefList = Defs[Reg];
267 // Optionally add output and anti dependencies. For anti
268 // dependencies we use a latency of 0 because for a multi-issue
269 // target we want to allow the defining instruction to issue
270 // in the same cycle as the using instruction.
271 // TODO: Using a latency of 1 here for output dependencies assumes
272 // there's no cost for reusing registers.
273 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
274 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
275 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
276 SUnit *DefSU = DefList[i];
277 if (DefSU == &ExitSU)
278 continue;
279 if (DefSU != SU &&
280 (Kind != SDep::Output || !MO.isDead() ||
281 !DefSU->getInstr()->registerDefIsDead(Reg)))
282 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
284 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
285 std::vector<SUnit *> &DefList = Defs[*Alias];
286 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
287 SUnit *DefSU = DefList[i];
288 if (DefSU == &ExitSU)
289 continue;
290 if (DefSU != SU &&
291 (Kind != SDep::Output || !MO.isDead() ||
292 !DefSU->getInstr()->registerDefIsDead(*Alias)))
293 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
297 if (MO.isDef()) {
298 // Add any data dependencies.
299 unsigned DataLatency = SU->Latency;
300 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
301 SUnit *UseSU = UseList[i];
302 if (UseSU == SU)
303 continue;
304 unsigned LDataLatency = DataLatency;
305 // Optionally add in a special extra latency for nodes that
306 // feed addresses.
307 // TODO: Do this for register aliases too.
308 // TODO: Perhaps we should get rid of
309 // SpecialAddressLatency and just move this into
310 // adjustSchedDependency for the targets that care about it.
311 if (SpecialAddressLatency != 0 && !UnitLatencies &&
312 UseSU != &ExitSU) {
313 MachineInstr *UseMI = UseSU->getInstr();
314 const TargetInstrDesc &UseTID = UseMI->getDesc();
315 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
316 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
317 if (RegUseIndex >= 0 &&
318 (UseTID.mayLoad() || UseTID.mayStore()) &&
319 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
320 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
321 LDataLatency += SpecialAddressLatency;
323 // Adjust the dependence latency using operand def/use
324 // information (if any), and then allow the target to
325 // perform its own adjustments.
326 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
327 if (!UnitLatencies) {
328 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
329 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
331 UseSU->addPred(dep);
333 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
334 std::vector<SUnit *> &UseList = Uses[*Alias];
335 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
336 SUnit *UseSU = UseList[i];
337 if (UseSU == SU)
338 continue;
339 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
340 if (!UnitLatencies) {
341 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
342 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
344 UseSU->addPred(dep);
348 // If a def is going to wrap back around to the top of the loop,
349 // backschedule it.
350 if (!UnitLatencies && DefList.empty()) {
351 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
352 if (I != LoopRegs.Deps.end()) {
353 const MachineOperand *UseMO = I->second.first;
354 unsigned Count = I->second.second;
355 const MachineInstr *UseMI = UseMO->getParent();
356 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
357 const TargetInstrDesc &UseTID = UseMI->getDesc();
358 // TODO: If we knew the total depth of the region here, we could
359 // handle the case where the whole loop is inside the region but
360 // is large enough that the isScheduleHigh trick isn't needed.
361 if (UseMOIdx < UseTID.getNumOperands()) {
362 // Currently, we only support scheduling regions consisting of
363 // single basic blocks. Check to see if the instruction is in
364 // the same region by checking to see if it has the same parent.
365 if (UseMI->getParent() != MI->getParent()) {
366 unsigned Latency = SU->Latency;
367 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
368 Latency += SpecialAddressLatency;
369 // This is a wild guess as to the portion of the latency which
370 // will be overlapped by work done outside the current
371 // scheduling region.
372 Latency -= std::min(Latency, Count);
373 // Add the artifical edge.
374 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
375 /*Reg=*/0, /*isNormalMemory=*/false,
376 /*isMustAlias=*/false,
377 /*isArtificial=*/true));
378 } else if (SpecialAddressLatency > 0 &&
379 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
380 // The entire loop body is within the current scheduling region
381 // and the latency of this operation is assumed to be greater
382 // than the latency of the loop.
383 // TODO: Recursively mark data-edge predecessors as
384 // isScheduleHigh too.
385 SU->isScheduleHigh = true;
388 LoopRegs.Deps.erase(I);
392 UseList.clear();
393 if (!MO.isDead())
394 DefList.clear();
395 DefList.push_back(SU);
396 } else {
397 UseList.push_back(SU);
401 // Add chain dependencies.
402 // Chain dependencies used to enforce memory order should have
403 // latency of 0 (except for true dependency of Store followed by
404 // aliased Load... we estimate that with a single cycle of latency
405 // assuming the hardware will bypass)
406 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
407 // after stack slots are lowered to actual addresses.
408 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
409 // produce more precise dependence information.
410 #define STORE_LOAD_LATENCY 1
411 unsigned TrueMemOrderLatency = 0;
412 if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
413 (MI->hasVolatileMemoryRef() &&
414 (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
415 // Be conservative with these and add dependencies on all memory
416 // references, even those that are known to not alias.
417 for (std::map<const Value *, SUnit *>::iterator I =
418 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
419 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
421 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
422 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
423 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
424 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
426 NonAliasMemDefs.clear();
427 NonAliasMemUses.clear();
428 // Add SU to the barrier chain.
429 if (BarrierChain)
430 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
431 BarrierChain = SU;
433 // fall-through
434 new_alias_chain:
435 // Chain all possibly aliasing memory references though SU.
436 if (AliasChain)
437 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
438 AliasChain = SU;
439 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
440 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
441 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
442 E = AliasMemDefs.end(); I != E; ++I) {
443 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
445 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
446 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
447 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
448 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
450 PendingLoads.clear();
451 AliasMemDefs.clear();
452 AliasMemUses.clear();
453 } else if (TID.mayStore()) {
454 bool MayAlias = true;
455 TrueMemOrderLatency = STORE_LOAD_LATENCY;
456 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
457 // A store to a specific PseudoSourceValue. Add precise dependencies.
458 // Record the def in MemDefs, first adding a dep if there is
459 // an existing def.
460 std::map<const Value *, SUnit *>::iterator I =
461 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
462 std::map<const Value *, SUnit *>::iterator IE =
463 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
464 if (I != IE) {
465 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
466 /*isNormalMemory=*/true));
467 I->second = SU;
468 } else {
469 if (MayAlias)
470 AliasMemDefs[V] = SU;
471 else
472 NonAliasMemDefs[V] = SU;
474 // Handle the uses in MemUses, if there are any.
475 std::map<const Value *, std::vector<SUnit *> >::iterator J =
476 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
477 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
478 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
479 if (J != JE) {
480 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
481 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
482 /*Reg=*/0, /*isNormalMemory=*/true));
483 J->second.clear();
485 if (MayAlias) {
486 // Add dependencies from all the PendingLoads, i.e. loads
487 // with no underlying object.
488 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
489 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
490 // Add dependence on alias chain, if needed.
491 if (AliasChain)
492 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
494 // Add dependence on barrier chain, if needed.
495 if (BarrierChain)
496 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
497 } else {
498 // Treat all other stores conservatively.
499 goto new_alias_chain;
502 if (!ExitSU.isPred(SU))
503 // Push store's up a bit to avoid them getting in between cmp
504 // and branches.
505 ExitSU.addPred(SDep(SU, SDep::Order, 0,
506 /*Reg=*/0, /*isNormalMemory=*/false,
507 /*isMustAlias=*/false,
508 /*isArtificial=*/true));
509 } else if (TID.mayLoad()) {
510 bool MayAlias = true;
511 TrueMemOrderLatency = 0;
512 if (MI->isInvariantLoad(AA)) {
513 // Invariant load, no chain dependencies needed!
514 } else {
515 if (const Value *V =
516 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
517 // A load from a specific PseudoSourceValue. Add precise dependencies.
518 std::map<const Value *, SUnit *>::iterator I =
519 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
520 std::map<const Value *, SUnit *>::iterator IE =
521 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
522 if (I != IE)
523 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
524 /*isNormalMemory=*/true));
525 if (MayAlias)
526 AliasMemUses[V].push_back(SU);
527 else
528 NonAliasMemUses[V].push_back(SU);
529 } else {
530 // A load with no underlying object. Depend on all
531 // potentially aliasing stores.
532 for (std::map<const Value *, SUnit *>::iterator I =
533 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
534 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
536 PendingLoads.push_back(SU);
537 MayAlias = true;
540 // Add dependencies on alias and barrier chains, if needed.
541 if (MayAlias && AliasChain)
542 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
543 if (BarrierChain)
544 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
549 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
550 Defs[i].clear();
551 Uses[i].clear();
553 PendingLoads.clear();
556 void ScheduleDAGInstrs::FinishBlock() {
557 // Nothing to do.
560 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
561 // Compute the latency for the node.
562 if (!InstrItins || InstrItins->isEmpty()) {
563 SU->Latency = 1;
565 // Simplistic target-independent heuristic: assume that loads take
566 // extra time.
567 if (SU->getInstr()->getDesc().mayLoad())
568 SU->Latency += 2;
569 } else {
570 SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
574 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
575 SDep& dep) const {
576 if (!InstrItins || InstrItins->isEmpty())
577 return;
579 // For a data dependency with a known register...
580 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
581 return;
583 const unsigned Reg = dep.getReg();
585 // ... find the definition of the register in the defining
586 // instruction
587 MachineInstr *DefMI = Def->getInstr();
588 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
589 if (DefIdx != -1) {
590 const MachineOperand &MO = DefMI->getOperand(DefIdx);
591 if (MO.isReg() && MO.isImplicit() &&
592 DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
593 // This is an implicit def, getOperandLatency() won't return the correct
594 // latency. e.g.
595 // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
596 // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
597 // What we want is to compute latency between def of %D6/%D7 and use of
598 // %Q3 instead.
599 DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
601 MachineInstr *UseMI = Use->getInstr();
602 // For all uses of the register, calculate the maxmimum latency
603 int Latency = -1;
604 if (UseMI) {
605 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
606 const MachineOperand &MO = UseMI->getOperand(i);
607 if (!MO.isReg() || !MO.isUse())
608 continue;
609 unsigned MOReg = MO.getReg();
610 if (MOReg != Reg)
611 continue;
613 int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
614 UseMI, i);
615 Latency = std::max(Latency, UseCycle);
617 } else {
618 // UseMI is null, then it must be a scheduling barrier.
619 if (!InstrItins || InstrItins->isEmpty())
620 return;
621 unsigned DefClass = DefMI->getDesc().getSchedClass();
622 Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
625 // If we found a latency, then replace the existing dependence latency.
626 if (Latency >= 0)
627 dep.setLatency(Latency);
631 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
632 SU->getInstr()->dump();
635 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
636 std::string s;
637 raw_string_ostream oss(s);
638 if (SU == &EntrySU)
639 oss << "<entry>";
640 else if (SU == &ExitSU)
641 oss << "<exit>";
642 else
643 SU->getInstr()->print(oss);
644 return oss.str();
647 // EmitSchedule - Emit the machine code in scheduled order.
648 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
649 // For MachineInstr-based scheduling, we're rescheduling the instructions in
650 // the block, so start by removing them from the block.
651 while (Begin != InsertPos) {
652 MachineBasicBlock::iterator I = Begin;
653 ++Begin;
654 BB->remove(I);
657 // First reinsert any remaining debug_values; these are either constants,
658 // or refer to live-in registers. The beginning of the block is the right
659 // place for the latter. The former might reasonably be placed elsewhere
660 // using some kind of ordering algorithm, but right now it doesn't matter.
661 for (int i = DbgValueVec.size()-1; i>=0; --i)
662 if (DbgValueVec[i])
663 BB->insert(InsertPos, DbgValueVec[i]);
665 // Then re-insert them according to the given schedule.
666 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
667 SUnit *SU = Sequence[i];
668 if (!SU) {
669 // Null SUnit* is a noop.
670 EmitNoop();
671 continue;
674 BB->insert(InsertPos, SU->getInstr());
675 for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
676 BB->insert(InsertPos, SU->DbgInstrList[i]);
679 // Update the Begin iterator, as the first instruction in the block
680 // may have been scheduled later.
681 if (!DbgValueVec.empty()) {
682 for (int i = DbgValueVec.size()-1; i>=0; --i)
683 if (DbgValueVec[i]!=0) {
684 Begin = DbgValueVec[DbgValueVec.size()-1];
685 break;
687 } else if (!Sequence.empty())
688 Begin = Sequence[0]->getInstr();
690 DbgValueVec.clear();
691 return BB;