zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / TargetInstrInfoImpl.cpp
blobcb2292d62bef9e90ce0868476d34d465bf7e6315
1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PostRAHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
33 /// after it, replacing it with an unconditional branch to NewDest.
34 void
35 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
36 MachineBasicBlock *NewDest) const {
37 MachineBasicBlock *MBB = Tail->getParent();
39 // Remove all the old successors of MBB from the CFG.
40 while (!MBB->succ_empty())
41 MBB->removeSuccessor(MBB->succ_begin());
43 // Remove all the dead instructions from the end of MBB.
44 MBB->erase(Tail, MBB->end());
46 // If MBB isn't immediately before MBB, insert a branch to it.
47 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
48 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
49 Tail->getDebugLoc());
50 MBB->addSuccessor(NewDest);
53 // commuteInstruction - The default implementation of this method just exchanges
54 // the two operands returned by findCommutedOpIndices.
55 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
56 bool NewMI) const {
57 const TargetInstrDesc &TID = MI->getDesc();
58 bool HasDef = TID.getNumDefs();
59 if (HasDef && !MI->getOperand(0).isReg())
60 // No idea how to commute this instruction. Target should implement its own.
61 return 0;
62 unsigned Idx1, Idx2;
63 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
64 std::string msg;
65 raw_string_ostream Msg(msg);
66 Msg << "Don't know how to commute: " << *MI;
67 report_fatal_error(Msg.str());
70 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
71 "This only knows how to commute register operands so far");
72 unsigned Reg1 = MI->getOperand(Idx1).getReg();
73 unsigned Reg2 = MI->getOperand(Idx2).getReg();
74 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
75 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
76 bool ChangeReg0 = false;
77 if (HasDef && MI->getOperand(0).getReg() == Reg1) {
78 // Must be two address instruction!
79 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
80 "Expecting a two-address instruction!");
81 Reg2IsKill = false;
82 ChangeReg0 = true;
85 if (NewMI) {
86 // Create a new instruction.
87 unsigned Reg0 = HasDef
88 ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
89 bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
90 MachineFunction &MF = *MI->getParent()->getParent();
91 if (HasDef)
92 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
93 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
94 .addReg(Reg2, getKillRegState(Reg2IsKill))
95 .addReg(Reg1, getKillRegState(Reg2IsKill));
96 else
97 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
98 .addReg(Reg2, getKillRegState(Reg2IsKill))
99 .addReg(Reg1, getKillRegState(Reg2IsKill));
102 if (ChangeReg0)
103 MI->getOperand(0).setReg(Reg2);
104 MI->getOperand(Idx2).setReg(Reg1);
105 MI->getOperand(Idx1).setReg(Reg2);
106 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
107 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
108 return MI;
111 /// findCommutedOpIndices - If specified MI is commutable, return the two
112 /// operand indices that would swap value. Return true if the instruction
113 /// is not in a form which this routine understands.
114 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
115 unsigned &SrcOpIdx1,
116 unsigned &SrcOpIdx2) const {
117 const TargetInstrDesc &TID = MI->getDesc();
118 if (!TID.isCommutable())
119 return false;
120 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
121 // is not true, then the target must implement this.
122 SrcOpIdx1 = TID.getNumDefs();
123 SrcOpIdx2 = SrcOpIdx1 + 1;
124 if (!MI->getOperand(SrcOpIdx1).isReg() ||
125 !MI->getOperand(SrcOpIdx2).isReg())
126 // No idea.
127 return false;
128 return true;
132 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
133 const SmallVectorImpl<MachineOperand> &Pred) const {
134 bool MadeChange = false;
135 const TargetInstrDesc &TID = MI->getDesc();
136 if (!TID.isPredicable())
137 return false;
139 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
140 if (TID.OpInfo[i].isPredicate()) {
141 MachineOperand &MO = MI->getOperand(i);
142 if (MO.isReg()) {
143 MO.setReg(Pred[j].getReg());
144 MadeChange = true;
145 } else if (MO.isImm()) {
146 MO.setImm(Pred[j].getImm());
147 MadeChange = true;
148 } else if (MO.isMBB()) {
149 MO.setMBB(Pred[j].getMBB());
150 MadeChange = true;
152 ++j;
155 return MadeChange;
158 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
159 MachineBasicBlock::iterator I,
160 unsigned DestReg,
161 unsigned SubIdx,
162 const MachineInstr *Orig,
163 const TargetRegisterInfo &TRI) const {
164 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
165 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
166 MBB.insert(I, MI);
169 bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
170 const MachineInstr *MI1) const {
171 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
174 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
175 MachineFunction &MF) const {
176 assert(!Orig->getDesc().isNotDuplicable() &&
177 "Instruction cannot be duplicated");
178 return MF.CloneMachineInstr(Orig);
181 // If the COPY instruction in MI can be folded to a stack operation, return
182 // the register class to use.
183 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
184 unsigned FoldIdx) {
185 assert(MI->isCopy() && "MI must be a COPY instruction");
186 if (MI->getNumOperands() != 2)
187 return 0;
188 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
190 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
191 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
193 if (FoldOp.getSubReg() || LiveOp.getSubReg())
194 return 0;
196 unsigned FoldReg = FoldOp.getReg();
197 unsigned LiveReg = LiveOp.getReg();
199 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
200 "Cannot fold physregs");
202 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
203 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
205 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
206 return RC->contains(LiveOp.getReg()) ? RC : 0;
208 const TargetRegisterClass *LiveRC = MRI.getRegClass(LiveReg);
209 if (RC == LiveRC || RC->hasSubClass(LiveRC))
210 return RC;
212 // FIXME: Allow folding when register classes are memory compatible.
213 return 0;
216 bool TargetInstrInfoImpl::
217 canFoldMemoryOperand(const MachineInstr *MI,
218 const SmallVectorImpl<unsigned> &Ops) const {
219 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
222 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
223 /// slot into the specified machine instruction for the specified operand(s).
224 /// If this is possible, a new instruction is returned with the specified
225 /// operand folded, otherwise NULL is returned. The client is responsible for
226 /// removing the old instruction and adding the new one in the instruction
227 /// stream.
228 MachineInstr*
229 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
230 const SmallVectorImpl<unsigned> &Ops,
231 int FI) const {
232 unsigned Flags = 0;
233 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
234 if (MI->getOperand(Ops[i]).isDef())
235 Flags |= MachineMemOperand::MOStore;
236 else
237 Flags |= MachineMemOperand::MOLoad;
239 MachineBasicBlock *MBB = MI->getParent();
240 assert(MBB && "foldMemoryOperand needs an inserted instruction");
241 MachineFunction &MF = *MBB->getParent();
243 // Ask the target to do the actual folding.
244 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
245 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
246 assert((!(Flags & MachineMemOperand::MOStore) ||
247 NewMI->getDesc().mayStore()) &&
248 "Folded a def to a non-store!");
249 assert((!(Flags & MachineMemOperand::MOLoad) ||
250 NewMI->getDesc().mayLoad()) &&
251 "Folded a use to a non-load!");
252 const MachineFrameInfo &MFI = *MF.getFrameInfo();
253 assert(MFI.getObjectOffset(FI) != -1);
254 MachineMemOperand *MMO =
255 MF.getMachineMemOperand(
256 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
257 Flags, MFI.getObjectSize(FI),
258 MFI.getObjectAlignment(FI));
259 NewMI->addMemOperand(MF, MMO);
261 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
262 return MBB->insert(MI, NewMI);
265 // Straight COPY may fold as load/store.
266 if (!MI->isCopy() || Ops.size() != 1)
267 return 0;
269 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
270 if (!RC)
271 return 0;
273 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
274 MachineBasicBlock::iterator Pos = MI;
275 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
277 if (Flags == MachineMemOperand::MOStore)
278 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
279 else
280 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
281 return --Pos;
284 /// foldMemoryOperand - Same as the previous version except it allows folding
285 /// of any load and store from / to any address, not just from a specific
286 /// stack slot.
287 MachineInstr*
288 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
289 const SmallVectorImpl<unsigned> &Ops,
290 MachineInstr* LoadMI) const {
291 assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
292 #ifndef NDEBUG
293 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
294 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
295 #endif
296 MachineBasicBlock &MBB = *MI->getParent();
297 MachineFunction &MF = *MBB.getParent();
299 // Ask the target to do the actual folding.
300 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
301 if (!NewMI) return 0;
303 NewMI = MBB.insert(MI, NewMI);
305 // Copy the memoperands from the load to the folded instruction.
306 NewMI->setMemRefs(LoadMI->memoperands_begin(),
307 LoadMI->memoperands_end());
309 return NewMI;
312 bool TargetInstrInfo::
313 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
314 AliasAnalysis *AA) const {
315 const MachineFunction &MF = *MI->getParent()->getParent();
316 const MachineRegisterInfo &MRI = MF.getRegInfo();
317 const TargetMachine &TM = MF.getTarget();
318 const TargetInstrInfo &TII = *TM.getInstrInfo();
319 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
321 // A load from a fixed stack slot can be rematerialized. This may be
322 // redundant with subsequent checks, but it's target-independent,
323 // simple, and a common case.
324 int FrameIdx = 0;
325 if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
326 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
327 return true;
329 const TargetInstrDesc &TID = MI->getDesc();
331 // Avoid instructions obviously unsafe for remat.
332 if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
333 TID.mayStore())
334 return false;
336 // Avoid instructions which load from potentially varying memory.
337 if (TID.mayLoad() && !MI->isInvariantLoad(AA))
338 return false;
340 // If any of the registers accessed are non-constant, conservatively assume
341 // the instruction is not rematerializable.
342 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
343 const MachineOperand &MO = MI->getOperand(i);
344 if (!MO.isReg()) continue;
345 unsigned Reg = MO.getReg();
346 if (Reg == 0)
347 continue;
349 // Check for a well-behaved physical register.
350 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
351 if (MO.isUse()) {
352 // If the physreg has no defs anywhere, it's just an ambient register
353 // and we can freely move its uses. Alternatively, if it's allocatable,
354 // it could get allocated to something with a def during allocation.
355 if (!MRI.def_empty(Reg))
356 return false;
357 BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
358 if (AllocatableRegs.test(Reg))
359 return false;
360 // Check for a def among the register's aliases too.
361 for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
362 unsigned AliasReg = *Alias;
363 if (!MRI.def_empty(AliasReg))
364 return false;
365 if (AllocatableRegs.test(AliasReg))
366 return false;
368 } else {
369 // A physreg def. We can't remat it.
370 return false;
372 continue;
375 // Only allow one virtual-register def, and that in the first operand.
376 if (MO.isDef() != (i == 0))
377 return false;
379 // For the def, it should be the only def of that register.
380 if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() ||
381 MRI.isLiveIn(Reg)))
382 return false;
384 // Don't allow any virtual-register uses. Rematting an instruction with
385 // virtual register uses would length the live ranges of the uses, which
386 // is not necessarily a good idea, certainly not "trivial".
387 if (MO.isUse())
388 return false;
391 // Everything checked out.
392 return true;
395 /// isSchedulingBoundary - Test if the given instruction should be
396 /// considered a scheduling boundary. This primarily includes labels
397 /// and terminators.
398 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
399 const MachineBasicBlock *MBB,
400 const MachineFunction &MF) const{
401 // Terminators and labels can't be scheduled around.
402 if (MI->getDesc().isTerminator() || MI->isLabel())
403 return true;
405 // Don't attempt to schedule around any instruction that defines
406 // a stack-oriented pointer, as it's unlikely to be profitable. This
407 // saves compile time, because it doesn't require every single
408 // stack slot reference to depend on the instruction that does the
409 // modification.
410 const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
411 if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
412 return true;
414 return false;
417 // Default implementation of CreateTargetPostRAHazardRecognizer.
418 ScheduleHazardRecognizer *TargetInstrInfoImpl::
419 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II) const {
420 return (ScheduleHazardRecognizer *)new PostRAHazardRecognizer(II);