1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
33 class MachineFunction
;
34 class MachineRegisterInfo
;
35 class TargetInstrInfo
;
36 class TargetRegisterInfo
;
39 class VirtRegMap
: public MachineFunctionPass
{
43 NO_STACK_SLOT
= (1L << 30)-1,
44 MAX_STACK_SLOT
= (1L << 18)-1
47 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
48 typedef std::multimap
<MachineInstr
*,
49 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
52 MachineRegisterInfo
*MRI
;
53 const TargetInstrInfo
*TII
;
54 const TargetRegisterInfo
*TRI
;
57 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
59 /// Virt2PhysMap - This is a virtual to physical register
60 /// mapping. Each virtual register is required to have an entry in
61 /// it; even spilled virtual registers (the register mapped to a
62 /// spilled register is the temporary used to load it from the
64 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
66 /// Virt2StackSlotMap - This is virtual register to stack slot
67 /// mapping. Each spilled virtual register has an entry in it
68 /// which corresponds to the stack slot this register is spilled
70 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
72 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
73 /// mapping. Each spilled virtual register that should be remat'd has an
74 /// entry in it which corresponds to the remat id.
75 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
77 /// Virt2SplitMap - This is virtual register to splitted virtual register
79 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
81 /// Virt2SplitKillMap - This is splitted virtual register to its last use
82 /// (kill) index mapping.
83 IndexedMap
<SlotIndex
> Virt2SplitKillMap
;
85 /// ReMatMap - This is virtual register to re-materialized instruction
86 /// mapping. Each virtual register whose definition is going to be
87 /// re-materialized has an entry in it.
88 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
90 /// MI2VirtMap - This is MachineInstr to virtual register
91 /// mapping. In the case of memory spill code being folded into
92 /// instructions, we need to know which virtual register was
93 /// read/written by this instruction.
94 MI2VirtMapTy MI2VirtMap
;
96 /// SpillPt2VirtMap - This records the virtual registers which should
97 /// be spilled right after the MachineInstr due to live interval
99 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
102 /// RestorePt2VirtMap - This records the virtual registers which should
103 /// be restored right before the MachineInstr due to live interval
105 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
107 /// EmergencySpillMap - This records the physical registers that should
108 /// be spilled / restored around the MachineInstr since the register
109 /// allocator has run out of registers.
110 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
112 /// EmergencySpillSlots - This records emergency spill slots used to
113 /// spill physical registers when the register allocator runs out of
114 /// registers. Ideally only one stack slot is used per function per
116 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
118 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
119 /// virtual register, an unique id is being assigned. This keeps track of
120 /// the highest id used so far. Note, this starts at (1<<18) to avoid
121 /// conflicts with stack slot numbers.
124 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
125 int LowSpillSlot
, HighSpillSlot
;
127 /// SpillSlotToUsesMap - Records uses for each register spill slot.
128 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
130 /// ImplicitDefed - One bit for each virtual register. If set it indicates
131 /// the register is implicitly defined.
132 BitVector ImplicitDefed
;
134 /// UnusedRegs - A list of physical registers that have not been used.
135 BitVector UnusedRegs
;
137 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
138 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
142 VirtRegMap() : MachineFunctionPass(ID
), Virt2PhysMap(NO_PHYS_REG
),
143 Virt2StackSlotMap(NO_STACK_SLOT
),
144 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
145 Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL
),
146 ReMatId(MAX_STACK_SLOT
+1),
147 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
148 virtual bool runOnMachineFunction(MachineFunction
&MF
);
150 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
151 AU
.setPreservesAll();
152 MachineFunctionPass::getAnalysisUsage(AU
);
155 MachineFunction
&getMachineFunction() const {
156 assert(MF
&& "getMachineFunction called before runOnMAchineFunction");
162 /// @brief returns true if the specified virtual register is
163 /// mapped to a physical register
164 bool hasPhys(unsigned virtReg
) const {
165 return getPhys(virtReg
) != NO_PHYS_REG
;
168 /// @brief returns the physical register mapped to the specified
170 unsigned getPhys(unsigned virtReg
) const {
171 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
172 return Virt2PhysMap
[virtReg
];
175 /// @brief creates a mapping for the specified virtual register to
176 /// the specified physical register
177 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
178 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
179 TargetRegisterInfo::isPhysicalRegister(physReg
));
180 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
181 "attempt to assign physical register to already mapped "
183 Virt2PhysMap
[virtReg
] = physReg
;
186 /// @brief clears the specified virtual register's, physical
188 void clearVirt(unsigned virtReg
) {
189 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
190 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
191 "attempt to clear a not assigned virtual register");
192 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
195 /// @brief clears all virtual to physical register mappings
196 void clearAllVirt() {
197 Virt2PhysMap
.clear();
201 /// @brief returns the register allocation preference.
202 unsigned getRegAllocPref(unsigned virtReg
);
204 /// @brief records virtReg is a split live interval from SReg.
205 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
206 Virt2SplitMap
[virtReg
] = SReg
;
209 /// @brief returns the live interval virtReg is split from.
210 unsigned getPreSplitReg(unsigned virtReg
) {
211 return Virt2SplitMap
[virtReg
];
214 /// @brief returns true if the specified virtual register is not
215 /// mapped to a stack slot or rematerialized.
216 bool isAssignedReg(unsigned virtReg
) const {
217 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
218 getReMatId(virtReg
) == NO_STACK_SLOT
)
220 // Split register can be assigned a physical register as well as a
221 // stack slot or remat id.
222 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
225 /// @brief returns the stack slot mapped to the specified virtual
227 int getStackSlot(unsigned virtReg
) const {
228 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
229 return Virt2StackSlotMap
[virtReg
];
232 /// @brief returns the rematerialization id mapped to the specified virtual
234 int getReMatId(unsigned virtReg
) const {
235 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
236 return Virt2ReMatIdMap
[virtReg
];
239 /// @brief create a mapping for the specifed virtual register to
240 /// the next available stack slot
241 int assignVirt2StackSlot(unsigned virtReg
);
242 /// @brief create a mapping for the specified virtual register to
243 /// the specified stack slot
244 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
246 /// @brief assign an unique re-materialization id to the specified
247 /// virtual register.
248 int assignVirtReMatId(unsigned virtReg
);
249 /// @brief assign an unique re-materialization id to the specified
250 /// virtual register.
251 void assignVirtReMatId(unsigned virtReg
, int id
);
253 /// @brief returns true if the specified virtual register is being
255 bool isReMaterialized(unsigned virtReg
) const {
256 return ReMatMap
[virtReg
] != NULL
;
259 /// @brief returns the original machine instruction being re-issued
260 /// to re-materialize the specified virtual register.
261 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
262 return ReMatMap
[virtReg
];
265 /// @brief records the specified virtual register will be
266 /// re-materialized and the original instruction which will be re-issed
267 /// for this purpose. If parameter all is true, then all uses of the
268 /// registers are rematerialized and it's safe to delete the definition.
269 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
270 ReMatMap
[virtReg
] = def
;
273 /// @brief record the last use (kill) of a split virtual register.
274 void addKillPoint(unsigned virtReg
, SlotIndex index
) {
275 Virt2SplitKillMap
[virtReg
] = index
;
278 SlotIndex
getKillPoint(unsigned virtReg
) const {
279 return Virt2SplitKillMap
[virtReg
];
282 /// @brief remove the last use (kill) of a split virtual register.
283 void removeKillPoint(unsigned virtReg
) {
284 Virt2SplitKillMap
[virtReg
] = SlotIndex();
287 /// @brief returns true if the specified MachineInstr is a spill point.
288 bool isSpillPt(MachineInstr
*Pt
) const {
289 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
292 /// @brief returns the virtual registers that should be spilled due to
293 /// splitting right after the specified MachineInstr.
294 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
295 return SpillPt2VirtMap
[Pt
];
298 /// @brief records the specified MachineInstr as a spill point for virtReg.
299 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
300 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
301 I
= SpillPt2VirtMap
.find(Pt
);
302 if (I
!= SpillPt2VirtMap
.end())
303 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
305 std::vector
<std::pair
<unsigned,bool> > Virts
;
306 Virts
.push_back(std::make_pair(virtReg
, isKill
));
307 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
311 /// @brief - transfer spill point information from one instruction to
313 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
314 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
315 I
= SpillPt2VirtMap
.find(Old
);
316 if (I
== SpillPt2VirtMap
.end())
318 while (!I
->second
.empty()) {
319 unsigned virtReg
= I
->second
.back().first
;
320 bool isKill
= I
->second
.back().second
;
321 I
->second
.pop_back();
322 addSpillPoint(virtReg
, isKill
, New
);
324 SpillPt2VirtMap
.erase(I
);
327 /// @brief returns true if the specified MachineInstr is a restore point.
328 bool isRestorePt(MachineInstr
*Pt
) const {
329 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
332 /// @brief returns the virtual registers that should be restoreed due to
333 /// splitting right after the specified MachineInstr.
334 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
335 return RestorePt2VirtMap
[Pt
];
338 /// @brief records the specified MachineInstr as a restore point for virtReg.
339 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
340 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
341 RestorePt2VirtMap
.find(Pt
);
342 if (I
!= RestorePt2VirtMap
.end())
343 I
->second
.push_back(virtReg
);
345 std::vector
<unsigned> Virts
;
346 Virts
.push_back(virtReg
);
347 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
351 /// @brief - transfer restore point information from one instruction to
353 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
354 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
355 RestorePt2VirtMap
.find(Old
);
356 if (I
== RestorePt2VirtMap
.end())
358 while (!I
->second
.empty()) {
359 unsigned virtReg
= I
->second
.back();
360 I
->second
.pop_back();
361 addRestorePoint(virtReg
, New
);
363 RestorePt2VirtMap
.erase(I
);
366 /// @brief records that the specified physical register must be spilled
367 /// around the specified machine instr.
368 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
369 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
370 EmergencySpillMap
[MI
].push_back(PhysReg
);
372 std::vector
<unsigned> PhysRegs
;
373 PhysRegs
.push_back(PhysReg
);
374 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
378 /// @brief returns true if one or more physical registers must be spilled
379 /// around the specified instruction.
380 bool hasEmergencySpills(MachineInstr
*MI
) const {
381 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
384 /// @brief returns the physical registers to be spilled and restored around
386 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
387 return EmergencySpillMap
[MI
];
390 /// @brief - transfer emergency spill information from one instruction to
392 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
393 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
394 EmergencySpillMap
.find(Old
);
395 if (I
== EmergencySpillMap
.end())
397 while (!I
->second
.empty()) {
398 unsigned virtReg
= I
->second
.back();
399 I
->second
.pop_back();
400 addEmergencySpill(virtReg
, New
);
402 EmergencySpillMap
.erase(I
);
405 /// @brief return or get a emergency spill slot for the register class.
406 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
408 /// @brief Return lowest spill slot index.
409 int getLowSpillSlot() const {
413 /// @brief Return highest spill slot index.
414 int getHighSpillSlot() const {
415 return HighSpillSlot
;
418 /// @brief Records a spill slot use.
419 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
421 /// @brief Returns true if spill slot has been used.
422 bool isSpillSlotUsed(int FrameIndex
) const {
423 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
424 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
427 /// @brief Mark the specified register as being implicitly defined.
428 void setIsImplicitlyDefined(unsigned VirtReg
) {
429 ImplicitDefed
.set(VirtReg
-TargetRegisterInfo::FirstVirtualRegister
);
432 /// @brief Returns true if the virtual register is implicitly defined.
433 bool isImplicitlyDefined(unsigned VirtReg
) const {
434 return ImplicitDefed
[VirtReg
-TargetRegisterInfo::FirstVirtualRegister
];
437 /// @brief Updates information about the specified virtual register's value
438 /// folded into newMI machine instruction.
439 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
442 /// @brief Updates information about the specified virtual register's value
443 /// folded into the specified machine instruction.
444 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
446 /// @brief returns the virtual registers' values folded in memory
447 /// operands of this instruction
448 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
449 getFoldedVirts(MachineInstr
* MI
) const {
450 return MI2VirtMap
.equal_range(MI
);
453 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
454 /// the folded instruction map and spill point map.
455 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
457 /// FindUnusedRegisters - Gather a list of allocatable registers that
458 /// have not been allocated to any virtual register.
459 bool FindUnusedRegisters(LiveIntervals
* LIs
);
461 /// HasUnusedRegisters - Return true if there are any allocatable registers
462 /// that have not been allocated to any virtual register.
463 bool HasUnusedRegisters() const {
464 return !UnusedRegs
.none();
467 /// setRegisterUsed - Remember the physical register is now used.
468 void setRegisterUsed(unsigned Reg
) {
469 UnusedRegs
.reset(Reg
);
472 /// isRegisterUnused - Return true if the physical register has not been
474 bool isRegisterUnused(unsigned Reg
) const {
475 return UnusedRegs
[Reg
];
478 /// getFirstUnusedRegister - Return the first physical register that has not
480 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
481 int Reg
= UnusedRegs
.find_first();
483 if (allocatableRCRegs
[RC
][Reg
])
484 return (unsigned)Reg
;
485 Reg
= UnusedRegs
.find_next(Reg
);
490 void print(raw_ostream
&OS
, const Module
* M
= 0) const;
494 inline raw_ostream
&operator<<(raw_ostream
&OS
, const VirtRegMap
&VRM
) {
498 } // End llvm namespace