zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / VirtRegMap.h
blob8b6082d18193285a244f99ba3898d88d931c7dd5
1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include <map>
30 namespace llvm {
31 class LiveIntervals;
32 class MachineInstr;
33 class MachineFunction;
34 class MachineRegisterInfo;
35 class TargetInstrInfo;
36 class TargetRegisterInfo;
37 class raw_ostream;
39 class VirtRegMap : public MachineFunctionPass {
40 public:
41 enum {
42 NO_PHYS_REG = 0,
43 NO_STACK_SLOT = (1L << 30)-1,
44 MAX_STACK_SLOT = (1L << 18)-1
47 enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
48 typedef std::multimap<MachineInstr*,
49 std::pair<unsigned, ModRef> > MI2VirtMapTy;
51 private:
52 MachineRegisterInfo *MRI;
53 const TargetInstrInfo *TII;
54 const TargetRegisterInfo *TRI;
55 MachineFunction *MF;
57 DenseMap<const TargetRegisterClass*, BitVector> allocatableRCRegs;
59 /// Virt2PhysMap - This is a virtual to physical register
60 /// mapping. Each virtual register is required to have an entry in
61 /// it; even spilled virtual registers (the register mapped to a
62 /// spilled register is the temporary used to load it from the
63 /// stack).
64 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap;
66 /// Virt2StackSlotMap - This is virtual register to stack slot
67 /// mapping. Each spilled virtual register has an entry in it
68 /// which corresponds to the stack slot this register is spilled
69 /// at.
70 IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
72 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
73 /// mapping. Each spilled virtual register that should be remat'd has an
74 /// entry in it which corresponds to the remat id.
75 IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
77 /// Virt2SplitMap - This is virtual register to splitted virtual register
78 /// mapping.
79 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap;
81 /// Virt2SplitKillMap - This is splitted virtual register to its last use
82 /// (kill) index mapping.
83 IndexedMap<SlotIndex> Virt2SplitKillMap;
85 /// ReMatMap - This is virtual register to re-materialized instruction
86 /// mapping. Each virtual register whose definition is going to be
87 /// re-materialized has an entry in it.
88 IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
90 /// MI2VirtMap - This is MachineInstr to virtual register
91 /// mapping. In the case of memory spill code being folded into
92 /// instructions, we need to know which virtual register was
93 /// read/written by this instruction.
94 MI2VirtMapTy MI2VirtMap;
96 /// SpillPt2VirtMap - This records the virtual registers which should
97 /// be spilled right after the MachineInstr due to live interval
98 /// splitting.
99 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >
100 SpillPt2VirtMap;
102 /// RestorePt2VirtMap - This records the virtual registers which should
103 /// be restored right before the MachineInstr due to live interval
104 /// splitting.
105 std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap;
107 /// EmergencySpillMap - This records the physical registers that should
108 /// be spilled / restored around the MachineInstr since the register
109 /// allocator has run out of registers.
110 std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap;
112 /// EmergencySpillSlots - This records emergency spill slots used to
113 /// spill physical registers when the register allocator runs out of
114 /// registers. Ideally only one stack slot is used per function per
115 /// register class.
116 std::map<const TargetRegisterClass*, int> EmergencySpillSlots;
118 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
119 /// virtual register, an unique id is being assigned. This keeps track of
120 /// the highest id used so far. Note, this starts at (1<<18) to avoid
121 /// conflicts with stack slot numbers.
122 int ReMatId;
124 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
125 int LowSpillSlot, HighSpillSlot;
127 /// SpillSlotToUsesMap - Records uses for each register spill slot.
128 SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap;
130 /// ImplicitDefed - One bit for each virtual register. If set it indicates
131 /// the register is implicitly defined.
132 BitVector ImplicitDefed;
134 /// UnusedRegs - A list of physical registers that have not been used.
135 BitVector UnusedRegs;
137 VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT
138 void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
140 public:
141 static char ID;
142 VirtRegMap() : MachineFunctionPass(ID), Virt2PhysMap(NO_PHYS_REG),
143 Virt2StackSlotMap(NO_STACK_SLOT),
144 Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
145 Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL),
146 ReMatId(MAX_STACK_SLOT+1),
147 LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
148 virtual bool runOnMachineFunction(MachineFunction &MF);
150 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151 AU.setPreservesAll();
152 MachineFunctionPass::getAnalysisUsage(AU);
155 MachineFunction &getMachineFunction() const {
156 assert(MF && "getMachineFunction called before runOnMAchineFunction");
157 return *MF;
160 void grow();
162 /// @brief returns true if the specified virtual register is
163 /// mapped to a physical register
164 bool hasPhys(unsigned virtReg) const {
165 return getPhys(virtReg) != NO_PHYS_REG;
168 /// @brief returns the physical register mapped to the specified
169 /// virtual register
170 unsigned getPhys(unsigned virtReg) const {
171 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
172 return Virt2PhysMap[virtReg];
175 /// @brief creates a mapping for the specified virtual register to
176 /// the specified physical register
177 void assignVirt2Phys(unsigned virtReg, unsigned physReg) {
178 assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
179 TargetRegisterInfo::isPhysicalRegister(physReg));
180 assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
181 "attempt to assign physical register to already mapped "
182 "virtual register");
183 Virt2PhysMap[virtReg] = physReg;
186 /// @brief clears the specified virtual register's, physical
187 /// register mapping
188 void clearVirt(unsigned virtReg) {
189 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
190 assert(Virt2PhysMap[virtReg] != NO_PHYS_REG &&
191 "attempt to clear a not assigned virtual register");
192 Virt2PhysMap[virtReg] = NO_PHYS_REG;
195 /// @brief clears all virtual to physical register mappings
196 void clearAllVirt() {
197 Virt2PhysMap.clear();
198 grow();
201 /// @brief returns the register allocation preference.
202 unsigned getRegAllocPref(unsigned virtReg);
204 /// @brief records virtReg is a split live interval from SReg.
205 void setIsSplitFromReg(unsigned virtReg, unsigned SReg) {
206 Virt2SplitMap[virtReg] = SReg;
209 /// @brief returns the live interval virtReg is split from.
210 unsigned getPreSplitReg(unsigned virtReg) {
211 return Virt2SplitMap[virtReg];
214 /// @brief returns true if the specified virtual register is not
215 /// mapped to a stack slot or rematerialized.
216 bool isAssignedReg(unsigned virtReg) const {
217 if (getStackSlot(virtReg) == NO_STACK_SLOT &&
218 getReMatId(virtReg) == NO_STACK_SLOT)
219 return true;
220 // Split register can be assigned a physical register as well as a
221 // stack slot or remat id.
222 return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG);
225 /// @brief returns the stack slot mapped to the specified virtual
226 /// register
227 int getStackSlot(unsigned virtReg) const {
228 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
229 return Virt2StackSlotMap[virtReg];
232 /// @brief returns the rematerialization id mapped to the specified virtual
233 /// register
234 int getReMatId(unsigned virtReg) const {
235 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
236 return Virt2ReMatIdMap[virtReg];
239 /// @brief create a mapping for the specifed virtual register to
240 /// the next available stack slot
241 int assignVirt2StackSlot(unsigned virtReg);
242 /// @brief create a mapping for the specified virtual register to
243 /// the specified stack slot
244 void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
246 /// @brief assign an unique re-materialization id to the specified
247 /// virtual register.
248 int assignVirtReMatId(unsigned virtReg);
249 /// @brief assign an unique re-materialization id to the specified
250 /// virtual register.
251 void assignVirtReMatId(unsigned virtReg, int id);
253 /// @brief returns true if the specified virtual register is being
254 /// re-materialized.
255 bool isReMaterialized(unsigned virtReg) const {
256 return ReMatMap[virtReg] != NULL;
259 /// @brief returns the original machine instruction being re-issued
260 /// to re-materialize the specified virtual register.
261 MachineInstr *getReMaterializedMI(unsigned virtReg) const {
262 return ReMatMap[virtReg];
265 /// @brief records the specified virtual register will be
266 /// re-materialized and the original instruction which will be re-issed
267 /// for this purpose. If parameter all is true, then all uses of the
268 /// registers are rematerialized and it's safe to delete the definition.
269 void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
270 ReMatMap[virtReg] = def;
273 /// @brief record the last use (kill) of a split virtual register.
274 void addKillPoint(unsigned virtReg, SlotIndex index) {
275 Virt2SplitKillMap[virtReg] = index;
278 SlotIndex getKillPoint(unsigned virtReg) const {
279 return Virt2SplitKillMap[virtReg];
282 /// @brief remove the last use (kill) of a split virtual register.
283 void removeKillPoint(unsigned virtReg) {
284 Virt2SplitKillMap[virtReg] = SlotIndex();
287 /// @brief returns true if the specified MachineInstr is a spill point.
288 bool isSpillPt(MachineInstr *Pt) const {
289 return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end();
292 /// @brief returns the virtual registers that should be spilled due to
293 /// splitting right after the specified MachineInstr.
294 std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) {
295 return SpillPt2VirtMap[Pt];
298 /// @brief records the specified MachineInstr as a spill point for virtReg.
299 void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) {
300 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
301 I = SpillPt2VirtMap.find(Pt);
302 if (I != SpillPt2VirtMap.end())
303 I->second.push_back(std::make_pair(virtReg, isKill));
304 else {
305 std::vector<std::pair<unsigned,bool> > Virts;
306 Virts.push_back(std::make_pair(virtReg, isKill));
307 SpillPt2VirtMap.insert(std::make_pair(Pt, Virts));
311 /// @brief - transfer spill point information from one instruction to
312 /// another.
313 void transferSpillPts(MachineInstr *Old, MachineInstr *New) {
314 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
315 I = SpillPt2VirtMap.find(Old);
316 if (I == SpillPt2VirtMap.end())
317 return;
318 while (!I->second.empty()) {
319 unsigned virtReg = I->second.back().first;
320 bool isKill = I->second.back().second;
321 I->second.pop_back();
322 addSpillPoint(virtReg, isKill, New);
324 SpillPt2VirtMap.erase(I);
327 /// @brief returns true if the specified MachineInstr is a restore point.
328 bool isRestorePt(MachineInstr *Pt) const {
329 return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end();
332 /// @brief returns the virtual registers that should be restoreed due to
333 /// splitting right after the specified MachineInstr.
334 std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) {
335 return RestorePt2VirtMap[Pt];
338 /// @brief records the specified MachineInstr as a restore point for virtReg.
339 void addRestorePoint(unsigned virtReg, MachineInstr *Pt) {
340 std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
341 RestorePt2VirtMap.find(Pt);
342 if (I != RestorePt2VirtMap.end())
343 I->second.push_back(virtReg);
344 else {
345 std::vector<unsigned> Virts;
346 Virts.push_back(virtReg);
347 RestorePt2VirtMap.insert(std::make_pair(Pt, Virts));
351 /// @brief - transfer restore point information from one instruction to
352 /// another.
353 void transferRestorePts(MachineInstr *Old, MachineInstr *New) {
354 std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
355 RestorePt2VirtMap.find(Old);
356 if (I == RestorePt2VirtMap.end())
357 return;
358 while (!I->second.empty()) {
359 unsigned virtReg = I->second.back();
360 I->second.pop_back();
361 addRestorePoint(virtReg, New);
363 RestorePt2VirtMap.erase(I);
366 /// @brief records that the specified physical register must be spilled
367 /// around the specified machine instr.
368 void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) {
369 if (EmergencySpillMap.find(MI) != EmergencySpillMap.end())
370 EmergencySpillMap[MI].push_back(PhysReg);
371 else {
372 std::vector<unsigned> PhysRegs;
373 PhysRegs.push_back(PhysReg);
374 EmergencySpillMap.insert(std::make_pair(MI, PhysRegs));
378 /// @brief returns true if one or more physical registers must be spilled
379 /// around the specified instruction.
380 bool hasEmergencySpills(MachineInstr *MI) const {
381 return EmergencySpillMap.find(MI) != EmergencySpillMap.end();
384 /// @brief returns the physical registers to be spilled and restored around
385 /// the instruction.
386 std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) {
387 return EmergencySpillMap[MI];
390 /// @brief - transfer emergency spill information from one instruction to
391 /// another.
392 void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) {
393 std::map<MachineInstr*,std::vector<unsigned> >::iterator I =
394 EmergencySpillMap.find(Old);
395 if (I == EmergencySpillMap.end())
396 return;
397 while (!I->second.empty()) {
398 unsigned virtReg = I->second.back();
399 I->second.pop_back();
400 addEmergencySpill(virtReg, New);
402 EmergencySpillMap.erase(I);
405 /// @brief return or get a emergency spill slot for the register class.
406 int getEmergencySpillSlot(const TargetRegisterClass *RC);
408 /// @brief Return lowest spill slot index.
409 int getLowSpillSlot() const {
410 return LowSpillSlot;
413 /// @brief Return highest spill slot index.
414 int getHighSpillSlot() const {
415 return HighSpillSlot;
418 /// @brief Records a spill slot use.
419 void addSpillSlotUse(int FrameIndex, MachineInstr *MI);
421 /// @brief Returns true if spill slot has been used.
422 bool isSpillSlotUsed(int FrameIndex) const {
423 assert(FrameIndex >= 0 && "Spill slot index should not be negative!");
424 return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty();
427 /// @brief Mark the specified register as being implicitly defined.
428 void setIsImplicitlyDefined(unsigned VirtReg) {
429 ImplicitDefed.set(VirtReg-TargetRegisterInfo::FirstVirtualRegister);
432 /// @brief Returns true if the virtual register is implicitly defined.
433 bool isImplicitlyDefined(unsigned VirtReg) const {
434 return ImplicitDefed[VirtReg-TargetRegisterInfo::FirstVirtualRegister];
437 /// @brief Updates information about the specified virtual register's value
438 /// folded into newMI machine instruction.
439 void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI,
440 ModRef MRInfo);
442 /// @brief Updates information about the specified virtual register's value
443 /// folded into the specified machine instruction.
444 void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo);
446 /// @brief returns the virtual registers' values folded in memory
447 /// operands of this instruction
448 std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
449 getFoldedVirts(MachineInstr* MI) const {
450 return MI2VirtMap.equal_range(MI);
453 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
454 /// the folded instruction map and spill point map.
455 void RemoveMachineInstrFromMaps(MachineInstr *MI);
457 /// FindUnusedRegisters - Gather a list of allocatable registers that
458 /// have not been allocated to any virtual register.
459 bool FindUnusedRegisters(LiveIntervals* LIs);
461 /// HasUnusedRegisters - Return true if there are any allocatable registers
462 /// that have not been allocated to any virtual register.
463 bool HasUnusedRegisters() const {
464 return !UnusedRegs.none();
467 /// setRegisterUsed - Remember the physical register is now used.
468 void setRegisterUsed(unsigned Reg) {
469 UnusedRegs.reset(Reg);
472 /// isRegisterUnused - Return true if the physical register has not been
473 /// used.
474 bool isRegisterUnused(unsigned Reg) const {
475 return UnusedRegs[Reg];
478 /// getFirstUnusedRegister - Return the first physical register that has not
479 /// been used.
480 unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) {
481 int Reg = UnusedRegs.find_first();
482 while (Reg != -1) {
483 if (allocatableRCRegs[RC][Reg])
484 return (unsigned)Reg;
485 Reg = UnusedRegs.find_next(Reg);
487 return 0;
490 void print(raw_ostream &OS, const Module* M = 0) const;
491 void dump() const;
494 inline raw_ostream &operator<<(raw_ostream &OS, const VirtRegMap &VRM) {
495 VRM.print(OS);
496 return OS;
498 } // End llvm namespace
500 #endif