1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "VirtRegMap.h"
13 #include "llvm/Function.h"
14 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/Statistic.h"
29 STATISTIC(NumDSE
, "Number of dead stores elided");
30 STATISTIC(NumDSS
, "Number of dead spill slots removed");
31 STATISTIC(NumCommutes
, "Number of instructions commuted");
32 STATISTIC(NumDRM
, "Number of re-materializable defs elided");
33 STATISTIC(NumStores
, "Number of stores added");
34 STATISTIC(NumPSpills
, "Number of physical register spills");
35 STATISTIC(NumOmitted
, "Number of reloads omited");
36 STATISTIC(NumAvoided
, "Number of reloads deemed unnecessary");
37 STATISTIC(NumCopified
, "Number of available reloads turned into copies");
38 STATISTIC(NumReMats
, "Number of re-materialization");
39 STATISTIC(NumLoads
, "Number of loads added");
40 STATISTIC(NumReused
, "Number of values reused");
41 STATISTIC(NumDCE
, "Number of copies elided");
42 STATISTIC(NumSUnfold
, "Number of stores unfolded");
43 STATISTIC(NumModRefUnfold
, "Number of modref unfolded");
46 enum RewriterName
{ local
, trivial
};
49 static cl::opt
<RewriterName
>
50 RewriterOpt("rewriter",
51 cl::desc("Rewriter to use (default=local)"),
53 cl::values(clEnumVal(local
, "local rewriter"),
54 clEnumVal(trivial
, "trivial rewriter"),
59 ScheduleSpills("schedule-spills",
60 cl::desc("Schedule spill code"),
63 VirtRegRewriter::~VirtRegRewriter() {}
65 /// substitutePhysReg - Replace virtual register in MachineOperand with a
66 /// physical register. Do the right thing with the sub-register index.
67 /// Note that operands may be added, so the MO reference is no longer valid.
68 static void substitutePhysReg(MachineOperand
&MO
, unsigned Reg
,
69 const TargetRegisterInfo
&TRI
) {
71 MO
.substPhysReg(Reg
, TRI
);
73 // Any kill flags apply to the full virtual register, so they also apply to
74 // the full physical register.
75 // We assume that partial defs have already been decorated with a super-reg
76 // <imp-def> operand by LiveIntervals.
77 MachineInstr
&MI
= *MO
.getParent();
78 if (MO
.isUse() && !MO
.isUndef() &&
79 (MO
.isKill() || MI
.isRegTiedToDefOperand(&MO
-&MI
.getOperand(0))))
80 MI
.addRegisterKilled(Reg
, &TRI
, /*AddIfNotFound=*/ true);
88 /// This class is intended for use with the new spilling framework only. It
89 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
91 struct TrivialRewriter
: public VirtRegRewriter
{
93 bool runOnMachineFunction(MachineFunction
&MF
, VirtRegMap
&VRM
,
95 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
96 DEBUG(dbgs() << "********** Function: "
97 << MF
.getFunction()->getName() << '\n');
98 DEBUG(dbgs() << "**** Machine Instrs"
99 << "(NOTE! Does not include spills and reloads!) ****\n");
102 MachineRegisterInfo
*mri
= &MF
.getRegInfo();
103 const TargetRegisterInfo
*tri
= MF
.getTarget().getRegisterInfo();
105 bool changed
= false;
107 for (LiveIntervals::iterator liItr
= LIs
->begin(), liEnd
= LIs
->end();
108 liItr
!= liEnd
; ++liItr
) {
110 const LiveInterval
*li
= liItr
->second
;
111 unsigned reg
= li
->reg
;
113 if (TargetRegisterInfo::isPhysicalRegister(reg
)) {
115 mri
->setPhysRegUsed(reg
);
118 if (!VRM
.hasPhys(reg
))
120 unsigned pReg
= VRM
.getPhys(reg
);
121 mri
->setPhysRegUsed(pReg
);
122 // Copy the register use-list before traversing it.
123 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 32> reglist
;
124 for (MachineRegisterInfo::reg_iterator I
= mri
->reg_begin(reg
),
125 E
= mri
->reg_end(); I
!= E
; ++I
)
126 reglist
.push_back(std::make_pair(&*I
, I
.getOperandNo()));
127 for (unsigned N
=0; N
!= reglist
.size(); ++N
)
128 substitutePhysReg(reglist
[N
].first
->getOperand(reglist
[N
].second
),
130 changed
|= !reglist
.empty();
134 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
144 // ************************************************************************ //
148 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
149 /// from top down, keep track of which spill slots or remat are available in
152 /// Note that not all physregs are created equal here. In particular, some
153 /// physregs are reloads that we are allowed to clobber or ignore at any time.
154 /// Other physregs are values that the register allocated program is using
155 /// that we cannot CHANGE, but we can read if we like. We keep track of this
156 /// on a per-stack-slot / remat id basis as the low bit in the value of the
157 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
158 /// this bit and addAvailable sets it if.
159 class AvailableSpills
{
160 const TargetRegisterInfo
*TRI
;
161 const TargetInstrInfo
*TII
;
163 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
164 // or remat'ed virtual register values that are still available, due to
165 // being loaded or stored to, but not invalidated yet.
166 std::map
<int, unsigned> SpillSlotsOrReMatsAvailable
;
168 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
169 // indicating which stack slot values are currently held by a physreg. This
170 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
171 // physreg is modified.
172 std::multimap
<unsigned, int> PhysRegsAvailable
;
174 void disallowClobberPhysRegOnly(unsigned PhysReg
);
176 void ClobberPhysRegOnly(unsigned PhysReg
);
178 AvailableSpills(const TargetRegisterInfo
*tri
, const TargetInstrInfo
*tii
)
179 : TRI(tri
), TII(tii
) {
182 /// clear - Reset the state.
184 SpillSlotsOrReMatsAvailable
.clear();
185 PhysRegsAvailable
.clear();
188 const TargetRegisterInfo
*getRegInfo() const { return TRI
; }
190 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
191 /// available in a physical register, return that PhysReg, otherwise
193 unsigned getSpillSlotOrReMatPhysReg(int Slot
) const {
194 std::map
<int, unsigned>::const_iterator I
=
195 SpillSlotsOrReMatsAvailable
.find(Slot
);
196 if (I
!= SpillSlotsOrReMatsAvailable
.end()) {
197 return I
->second
>> 1; // Remove the CanClobber bit.
202 /// addAvailable - Mark that the specified stack slot / remat is available
203 /// in the specified physreg. If CanClobber is true, the physreg can be
204 /// modified at any time without changing the semantics of the program.
205 void addAvailable(int SlotOrReMat
, unsigned Reg
, bool CanClobber
= true) {
206 // If this stack slot is thought to be available in some other physreg,
207 // remove its record.
208 ModifyStackSlotOrReMat(SlotOrReMat
);
210 PhysRegsAvailable
.insert(std::make_pair(Reg
, SlotOrReMat
));
211 SpillSlotsOrReMatsAvailable
[SlotOrReMat
]= (Reg
<< 1) |
212 (unsigned)CanClobber
;
214 if (SlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
)
215 DEBUG(dbgs() << "Remembering RM#"
216 << SlotOrReMat
-VirtRegMap::MAX_STACK_SLOT
-1);
218 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat
);
219 DEBUG(dbgs() << " in physreg " << TRI
->getName(Reg
) << "\n");
222 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
223 /// the value of the specified stackslot register if it desires. The
224 /// specified stack slot must be available in a physreg for this query to
226 bool canClobberPhysRegForSS(int SlotOrReMat
) const {
227 assert(SpillSlotsOrReMatsAvailable
.count(SlotOrReMat
) &&
228 "Value not available!");
229 return SpillSlotsOrReMatsAvailable
.find(SlotOrReMat
)->second
& 1;
232 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
233 /// physical register where values for some stack slot(s) might be
235 bool canClobberPhysReg(unsigned PhysReg
) const {
236 std::multimap
<unsigned, int>::const_iterator I
=
237 PhysRegsAvailable
.lower_bound(PhysReg
);
238 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
239 int SlotOrReMat
= I
->second
;
241 if (!canClobberPhysRegForSS(SlotOrReMat
))
247 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
248 /// stackslot register. The register is still available but is no longer
249 /// allowed to be modifed.
250 void disallowClobberPhysReg(unsigned PhysReg
);
252 /// ClobberPhysReg - This is called when the specified physreg changes
253 /// value. We use this to invalidate any info about stuff that lives in
254 /// it and any of its aliases.
255 void ClobberPhysReg(unsigned PhysReg
);
257 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
258 /// slot changes. This removes information about which register the
259 /// previous value for this slot lives in (as the previous value is dead
261 void ModifyStackSlotOrReMat(int SlotOrReMat
);
263 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
264 /// into the specified MBB. Add available physical registers as potential
265 /// live-in's. If they are reused in the MBB, they will be added to the
266 /// live-in set to make register scavenger and post-allocation scheduler.
267 void AddAvailableRegsToLiveIn(MachineBasicBlock
&MBB
, BitVector
&RegKills
,
268 std::vector
<MachineOperand
*> &KillOps
);
273 // ************************************************************************ //
275 // Given a location where a reload of a spilled register or a remat of
276 // a constant is to be inserted, attempt to find a safe location to
277 // insert the load at an earlier point in the basic-block, to hide
278 // latency of the load and to avoid address-generation interlock
280 static MachineBasicBlock::iterator
281 ComputeReloadLoc(MachineBasicBlock::iterator
const InsertLoc
,
282 MachineBasicBlock::iterator
const Begin
,
284 const TargetRegisterInfo
*TRI
,
287 const TargetInstrInfo
*TII
,
288 const MachineFunction
&MF
)
293 // Spill backscheduling is of primary interest to addresses, so
294 // don't do anything if the register isn't in the register class
295 // used for pointers.
297 const TargetLowering
*TL
= MF
.getTarget().getTargetLowering();
299 if (!TL
->isTypeLegal(TL
->getPointerTy()))
300 // Believe it or not, this is true on 16-bit targets like PIC16.
303 const TargetRegisterClass
*ptrRegClass
=
304 TL
->getRegClassFor(TL
->getPointerTy());
305 if (!ptrRegClass
->contains(PhysReg
))
308 // Scan upwards through the preceding instructions. If an instruction doesn't
309 // reference the stack slot or the register we're loading, we can
310 // backschedule the reload up past it.
311 MachineBasicBlock::iterator NewInsertLoc
= InsertLoc
;
312 while (NewInsertLoc
!= Begin
) {
313 MachineBasicBlock::iterator Prev
= prior(NewInsertLoc
);
314 for (unsigned i
= 0; i
< Prev
->getNumOperands(); ++i
) {
315 MachineOperand
&Op
= Prev
->getOperand(i
);
316 if (!DoReMat
&& Op
.isFI() && Op
.getIndex() == SSorRMId
)
319 if (Prev
->findRegisterUseOperandIdx(PhysReg
) != -1 ||
320 Prev
->findRegisterDefOperand(PhysReg
))
322 for (const unsigned *Alias
= TRI
->getAliasSet(PhysReg
); *Alias
; ++Alias
)
323 if (Prev
->findRegisterUseOperandIdx(*Alias
) != -1 ||
324 Prev
->findRegisterDefOperand(*Alias
))
330 // If we made it to the beginning of the block, turn around and move back
331 // down just past any existing reloads. They're likely to be reloads/remats
332 // for instructions earlier than what our current reload/remat is for, so
333 // they should be scheduled earlier.
334 if (NewInsertLoc
== Begin
) {
336 while (InsertLoc
!= NewInsertLoc
&&
337 (TII
->isLoadFromStackSlot(NewInsertLoc
, FrameIdx
) ||
338 TII
->isTriviallyReMaterializable(NewInsertLoc
)))
347 // ReusedOp - For each reused operand, we keep track of a bit of information,
348 // in case we need to rollback upon processing a new operand. See comments
351 // The MachineInstr operand that reused an available value.
354 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
355 unsigned StackSlotOrReMat
;
357 // PhysRegReused - The physical register the value was available in.
358 unsigned PhysRegReused
;
360 // AssignedPhysReg - The physreg that was assigned for use by the reload.
361 unsigned AssignedPhysReg
;
363 // VirtReg - The virtual register itself.
366 ReusedOp(unsigned o
, unsigned ss
, unsigned prr
, unsigned apr
,
368 : Operand(o
), StackSlotOrReMat(ss
), PhysRegReused(prr
),
369 AssignedPhysReg(apr
), VirtReg(vreg
) {}
372 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
373 /// is reused instead of reloaded.
376 std::vector
<ReusedOp
> Reuses
;
377 BitVector PhysRegsClobbered
;
379 ReuseInfo(MachineInstr
&mi
, const TargetRegisterInfo
*tri
) : MI(mi
) {
380 PhysRegsClobbered
.resize(tri
->getNumRegs());
383 bool hasReuses() const {
384 return !Reuses
.empty();
387 /// addReuse - If we choose to reuse a virtual register that is already
388 /// available instead of reloading it, remember that we did so.
389 void addReuse(unsigned OpNo
, unsigned StackSlotOrReMat
,
390 unsigned PhysRegReused
, unsigned AssignedPhysReg
,
392 // If the reload is to the assigned register anyway, no undo will be
394 if (PhysRegReused
== AssignedPhysReg
) return;
396 // Otherwise, remember this.
397 Reuses
.push_back(ReusedOp(OpNo
, StackSlotOrReMat
, PhysRegReused
,
398 AssignedPhysReg
, VirtReg
));
401 void markClobbered(unsigned PhysReg
) {
402 PhysRegsClobbered
.set(PhysReg
);
405 bool isClobbered(unsigned PhysReg
) const {
406 return PhysRegsClobbered
.test(PhysReg
);
409 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
410 /// is some other operand that is using the specified register, either pick
411 /// a new register to use, or evict the previous reload and use this reg.
412 unsigned GetRegForReload(const TargetRegisterClass
*RC
, unsigned PhysReg
,
413 MachineFunction
&MF
, MachineInstr
*MI
,
414 AvailableSpills
&Spills
,
415 std::vector
<MachineInstr
*> &MaybeDeadStores
,
416 SmallSet
<unsigned, 8> &Rejected
,
418 std::vector
<MachineOperand
*> &KillOps
,
421 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
422 /// 'Rejected' set to remember which registers have been considered and
423 /// rejected for the reload. This avoids infinite looping in case like
426 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
427 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
429 /// sees r1 is taken by t2, tries t2's reload register r0
430 /// sees r0 is taken by t3, tries t3's reload register r1
431 /// sees r1 is taken by t2, tries t2's reload register r0 ...
432 unsigned GetRegForReload(unsigned VirtReg
, unsigned PhysReg
, MachineInstr
*MI
,
433 AvailableSpills
&Spills
,
434 std::vector
<MachineInstr
*> &MaybeDeadStores
,
436 std::vector
<MachineOperand
*> &KillOps
,
438 SmallSet
<unsigned, 8> Rejected
;
439 MachineFunction
&MF
= *MI
->getParent()->getParent();
440 const TargetRegisterClass
* RC
= MF
.getRegInfo().getRegClass(VirtReg
);
441 return GetRegForReload(RC
, PhysReg
, MF
, MI
, Spills
, MaybeDeadStores
,
442 Rejected
, RegKills
, KillOps
, VRM
);
448 // ****************** //
449 // Utility Functions //
450 // ****************** //
452 /// findSinglePredSuccessor - Return via reference a vector of machine basic
453 /// blocks each of which is a successor of the specified BB and has no other
455 static void findSinglePredSuccessor(MachineBasicBlock
*MBB
,
456 SmallVectorImpl
<MachineBasicBlock
*> &Succs
){
457 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
458 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
459 MachineBasicBlock
*SuccMBB
= *SI
;
460 if (SuccMBB
->pred_size() == 1)
461 Succs
.push_back(SuccMBB
);
465 /// InvalidateKill - Invalidate register kill information for a specific
466 /// register. This also unsets the kills marker on the last kill operand.
467 static void InvalidateKill(unsigned Reg
,
468 const TargetRegisterInfo
* TRI
,
470 std::vector
<MachineOperand
*> &KillOps
) {
472 KillOps
[Reg
]->setIsKill(false);
473 // KillOps[Reg] might be a def of a super-register.
474 unsigned KReg
= KillOps
[Reg
]->getReg();
475 KillOps
[KReg
] = NULL
;
476 RegKills
.reset(KReg
);
477 for (const unsigned *SR
= TRI
->getSubRegisters(KReg
); *SR
; ++SR
) {
479 KillOps
[*SR
]->setIsKill(false);
487 /// InvalidateKills - MI is going to be deleted. If any of its operands are
488 /// marked kill, then invalidate the information.
489 static void InvalidateKills(MachineInstr
&MI
,
490 const TargetRegisterInfo
* TRI
,
492 std::vector
<MachineOperand
*> &KillOps
,
493 SmallVector
<unsigned, 2> *KillRegs
= NULL
) {
494 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
495 MachineOperand
&MO
= MI
.getOperand(i
);
496 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill() || MO
.isUndef())
498 unsigned Reg
= MO
.getReg();
499 if (TargetRegisterInfo::isVirtualRegister(Reg
))
502 KillRegs
->push_back(Reg
);
503 assert(Reg
< KillOps
.size());
504 if (KillOps
[Reg
] == &MO
) {
507 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
517 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
518 /// (since its spill instruction is removed), mark it isDead. Also checks if
519 /// the def MI has other definition operands that are not dead. Returns it by
521 static bool InvalidateRegDef(MachineBasicBlock::iterator I
,
522 MachineInstr
&NewDef
, unsigned Reg
,
524 const TargetRegisterInfo
*TRI
) {
525 // Due to remat, it's possible this reg isn't being reused. That is,
526 // the def of this reg (by prev MI) is now dead.
527 MachineInstr
*DefMI
= I
;
528 MachineOperand
*DefOp
= NULL
;
529 for (unsigned i
= 0, e
= DefMI
->getNumOperands(); i
!= e
; ++i
) {
530 MachineOperand
&MO
= DefMI
->getOperand(i
);
531 if (!MO
.isReg() || !MO
.isDef() || !MO
.isKill() || MO
.isUndef())
533 if (MO
.getReg() == Reg
)
535 else if (!MO
.isDead())
541 bool FoundUse
= false, Done
= false;
542 MachineBasicBlock::iterator E
= &NewDef
;
544 for (; !Done
&& I
!= E
; ++I
) {
545 MachineInstr
*NMI
= I
;
546 for (unsigned j
= 0, ee
= NMI
->getNumOperands(); j
!= ee
; ++j
) {
547 MachineOperand
&MO
= NMI
->getOperand(j
);
548 if (!MO
.isReg() || MO
.getReg() == 0 ||
549 (MO
.getReg() != Reg
&& !TRI
->isSubRegister(Reg
, MO
.getReg())))
553 Done
= true; // Stop after scanning all the operands of this MI.
564 /// UpdateKills - Track and update kill info. If a MI reads a register that is
565 /// marked kill, then it must be due to register reuse. Transfer the kill info
567 static void UpdateKills(MachineInstr
&MI
, const TargetRegisterInfo
* TRI
,
569 std::vector
<MachineOperand
*> &KillOps
) {
570 // These do not affect kill info at all.
571 if (MI
.isDebugValue())
573 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
574 MachineOperand
&MO
= MI
.getOperand(i
);
575 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
577 unsigned Reg
= MO
.getReg();
581 if (RegKills
[Reg
] && KillOps
[Reg
]->getParent() != &MI
) {
582 // That can't be right. Register is killed but not re-defined and it's
583 // being reused. Let's fix that.
584 KillOps
[Reg
]->setIsKill(false);
585 // KillOps[Reg] might be a def of a super-register.
586 unsigned KReg
= KillOps
[Reg
]->getReg();
587 KillOps
[KReg
] = NULL
;
588 RegKills
.reset(KReg
);
590 // Must be a def of a super-register. Its other sub-regsters are no
591 // longer killed as well.
592 for (const unsigned *SR
= TRI
->getSubRegisters(KReg
); *SR
; ++SR
) {
597 // Check for subreg kills as well.
603 // = d4 <avoiding reload>
604 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
606 if (RegKills
[SReg
] && KillOps
[SReg
]->getParent() != &MI
) {
607 KillOps
[SReg
]->setIsKill(false);
608 unsigned KReg
= KillOps
[SReg
]->getReg();
609 KillOps
[KReg
] = NULL
;
610 RegKills
.reset(KReg
);
612 for (const unsigned *SSR
= TRI
->getSubRegisters(KReg
); *SSR
; ++SSR
) {
613 KillOps
[*SSR
] = NULL
;
614 RegKills
.reset(*SSR
);
623 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
630 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
631 const MachineOperand
&MO
= MI
.getOperand(i
);
632 if (!MO
.isReg() || !MO
.getReg() || !MO
.isDef())
634 unsigned Reg
= MO
.getReg();
637 // It also defines (or partially define) aliases.
638 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
642 for (const unsigned *SR
= TRI
->getSuperRegisters(Reg
); *SR
; ++SR
) {
649 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
651 static void ReMaterialize(MachineBasicBlock
&MBB
,
652 MachineBasicBlock::iterator
&MII
,
653 unsigned DestReg
, unsigned Reg
,
654 const TargetInstrInfo
*TII
,
655 const TargetRegisterInfo
*TRI
,
657 MachineInstr
*ReMatDefMI
= VRM
.getReMaterializedMI(Reg
);
659 const TargetInstrDesc
&TID
= ReMatDefMI
->getDesc();
660 assert(TID
.getNumDefs() == 1 &&
661 "Don't know how to remat instructions that define > 1 values!");
663 TII
->reMaterialize(MBB
, MII
, DestReg
, 0, ReMatDefMI
, *TRI
);
664 MachineInstr
*NewMI
= prior(MII
);
665 for (unsigned i
= 0, e
= NewMI
->getNumOperands(); i
!= e
; ++i
) {
666 MachineOperand
&MO
= NewMI
->getOperand(i
);
667 if (!MO
.isReg() || MO
.getReg() == 0)
669 unsigned VirtReg
= MO
.getReg();
670 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
))
673 unsigned Phys
= VRM
.getPhys(VirtReg
);
674 assert(Phys
&& "Virtual register is not assigned a register?");
675 substitutePhysReg(MO
, Phys
, *TRI
);
680 /// findSuperReg - Find the SubReg's super-register of given register class
681 /// where its SubIdx sub-register is SubReg.
682 static unsigned findSuperReg(const TargetRegisterClass
*RC
, unsigned SubReg
,
683 unsigned SubIdx
, const TargetRegisterInfo
*TRI
) {
684 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
687 if (TRI
->getSubReg(Reg
, SubIdx
) == SubReg
)
693 // ******************************** //
694 // Available Spills Implementation //
695 // ******************************** //
697 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
698 /// stackslot register. The register is still available but is no longer
699 /// allowed to be modifed.
700 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg
) {
701 std::multimap
<unsigned, int>::iterator I
=
702 PhysRegsAvailable
.lower_bound(PhysReg
);
703 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
704 int SlotOrReMat
= I
->second
;
706 assert((SpillSlotsOrReMatsAvailable
[SlotOrReMat
] >> 1) == PhysReg
&&
707 "Bidirectional map mismatch!");
708 SpillSlotsOrReMatsAvailable
[SlotOrReMat
] &= ~1;
709 DEBUG(dbgs() << "PhysReg " << TRI
->getName(PhysReg
)
710 << " copied, it is available for use but can no longer be modified\n");
714 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
715 /// stackslot register and its aliases. The register and its aliases may
716 /// still available but is no longer allowed to be modifed.
717 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg
) {
718 for (const unsigned *AS
= TRI
->getAliasSet(PhysReg
); *AS
; ++AS
)
719 disallowClobberPhysRegOnly(*AS
);
720 disallowClobberPhysRegOnly(PhysReg
);
723 /// ClobberPhysRegOnly - This is called when the specified physreg changes
724 /// value. We use this to invalidate any info about stuff we thing lives in it.
725 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg
) {
726 std::multimap
<unsigned, int>::iterator I
=
727 PhysRegsAvailable
.lower_bound(PhysReg
);
728 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
729 int SlotOrReMat
= I
->second
;
730 PhysRegsAvailable
.erase(I
++);
731 assert((SpillSlotsOrReMatsAvailable
[SlotOrReMat
] >> 1) == PhysReg
&&
732 "Bidirectional map mismatch!");
733 SpillSlotsOrReMatsAvailable
.erase(SlotOrReMat
);
734 DEBUG(dbgs() << "PhysReg " << TRI
->getName(PhysReg
)
735 << " clobbered, invalidating ");
736 if (SlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
)
737 DEBUG(dbgs() << "RM#" << SlotOrReMat
-VirtRegMap::MAX_STACK_SLOT
-1 <<"\n");
739 DEBUG(dbgs() << "SS#" << SlotOrReMat
<< "\n");
743 /// ClobberPhysReg - This is called when the specified physreg changes
744 /// value. We use this to invalidate any info about stuff we thing lives in
745 /// it and any of its aliases.
746 void AvailableSpills::ClobberPhysReg(unsigned PhysReg
) {
747 for (const unsigned *AS
= TRI
->getAliasSet(PhysReg
); *AS
; ++AS
)
748 ClobberPhysRegOnly(*AS
);
749 ClobberPhysRegOnly(PhysReg
);
752 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
753 /// into the specified MBB. Add available physical registers as potential
754 /// live-in's. If they are reused in the MBB, they will be added to the
755 /// live-in set to make register scavenger and post-allocation scheduler.
756 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock
&MBB
,
758 std::vector
<MachineOperand
*> &KillOps
) {
759 std::set
<unsigned> NotAvailable
;
760 for (std::multimap
<unsigned, int>::iterator
761 I
= PhysRegsAvailable
.begin(), E
= PhysRegsAvailable
.end();
763 unsigned Reg
= I
->first
;
764 const TargetRegisterClass
* RC
= TRI
->getMinimalPhysRegClass(Reg
);
765 // FIXME: A temporary workaround. We can't reuse available value if it's
766 // not safe to move the def of the virtual register's class. e.g.
767 // X86::RFP* register classes. Do not add it as a live-in.
768 if (!TII
->isSafeToMoveRegClassDefs(RC
))
769 // This is no longer available.
770 NotAvailable
.insert(Reg
);
773 InvalidateKill(Reg
, TRI
, RegKills
, KillOps
);
776 // Skip over the same register.
777 std::multimap
<unsigned, int>::iterator NI
= llvm::next(I
);
778 while (NI
!= E
&& NI
->first
== Reg
) {
784 for (std::set
<unsigned>::iterator I
= NotAvailable
.begin(),
785 E
= NotAvailable
.end(); I
!= E
; ++I
) {
787 for (const unsigned *SubRegs
= TRI
->getSubRegisters(*I
);
789 ClobberPhysReg(*SubRegs
);
793 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
794 /// slot changes. This removes information about which register the previous
795 /// value for this slot lives in (as the previous value is dead now).
796 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat
) {
797 std::map
<int, unsigned>::iterator It
=
798 SpillSlotsOrReMatsAvailable
.find(SlotOrReMat
);
799 if (It
== SpillSlotsOrReMatsAvailable
.end()) return;
800 unsigned Reg
= It
->second
>> 1;
801 SpillSlotsOrReMatsAvailable
.erase(It
);
803 // This register may hold the value of multiple stack slots, only remove this
804 // stack slot from the set of values the register contains.
805 std::multimap
<unsigned, int>::iterator I
= PhysRegsAvailable
.lower_bound(Reg
);
807 assert(I
!= PhysRegsAvailable
.end() && I
->first
== Reg
&&
808 "Map inverse broken!");
809 if (I
->second
== SlotOrReMat
) break;
811 PhysRegsAvailable
.erase(I
);
814 // ************************** //
815 // Reuse Info Implementation //
816 // ************************** //
818 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
819 /// is some other operand that is using the specified register, either pick
820 /// a new register to use, or evict the previous reload and use this reg.
821 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass
*RC
,
824 MachineInstr
*MI
, AvailableSpills
&Spills
,
825 std::vector
<MachineInstr
*> &MaybeDeadStores
,
826 SmallSet
<unsigned, 8> &Rejected
,
828 std::vector
<MachineOperand
*> &KillOps
,
830 const TargetInstrInfo
* TII
= MF
.getTarget().getInstrInfo();
831 const TargetRegisterInfo
*TRI
= Spills
.getRegInfo();
833 if (Reuses
.empty()) return PhysReg
; // This is most often empty.
835 for (unsigned ro
= 0, e
= Reuses
.size(); ro
!= e
; ++ro
) {
836 ReusedOp
&Op
= Reuses
[ro
];
837 // If we find some other reuse that was supposed to use this register
838 // exactly for its reload, we can change this reload to use ITS reload
839 // register. That is, unless its reload register has already been
840 // considered and subsequently rejected because it has also been reused
841 // by another operand.
842 if (Op
.PhysRegReused
== PhysReg
&&
843 Rejected
.count(Op
.AssignedPhysReg
) == 0 &&
844 RC
->contains(Op
.AssignedPhysReg
)) {
845 // Yup, use the reload register that we didn't use before.
846 unsigned NewReg
= Op
.AssignedPhysReg
;
847 Rejected
.insert(PhysReg
);
848 return GetRegForReload(RC
, NewReg
, MF
, MI
, Spills
, MaybeDeadStores
,
849 Rejected
, RegKills
, KillOps
, VRM
);
851 // Otherwise, we might also have a problem if a previously reused
852 // value aliases the new register. If so, codegen the previous reload
854 unsigned PRRU
= Op
.PhysRegReused
;
855 if (TRI
->regsOverlap(PRRU
, PhysReg
)) {
856 // Okay, we found out that an alias of a reused register
857 // was used. This isn't good because it means we have
858 // to undo a previous reuse.
859 MachineBasicBlock
*MBB
= MI
->getParent();
860 const TargetRegisterClass
*AliasRC
=
861 MBB
->getParent()->getRegInfo().getRegClass(Op
.VirtReg
);
863 // Copy Op out of the vector and remove it, we're going to insert an
864 // explicit load for it.
866 Reuses
.erase(Reuses
.begin()+ro
);
868 // MI may be using only a sub-register of PhysRegUsed.
869 unsigned RealPhysRegUsed
= MI
->getOperand(NewOp
.Operand
).getReg();
871 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed
) &&
872 "A reuse cannot be a virtual register");
873 if (PRRU
!= RealPhysRegUsed
) {
874 // What was the sub-register index?
875 SubIdx
= TRI
->getSubRegIndex(PRRU
, RealPhysRegUsed
);
877 "Operand physreg is not a sub-register of PhysRegUsed");
880 // Ok, we're going to try to reload the assigned physreg into the
881 // slot that we were supposed to in the first place. However, that
882 // register could hold a reuse. Check to see if it conflicts or
883 // would prefer us to use a different register.
884 unsigned NewPhysReg
= GetRegForReload(RC
, NewOp
.AssignedPhysReg
,
885 MF
, MI
, Spills
, MaybeDeadStores
,
886 Rejected
, RegKills
, KillOps
, VRM
);
888 bool DoReMat
= NewOp
.StackSlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
;
889 int SSorRMId
= DoReMat
890 ? VRM
.getReMatId(NewOp
.VirtReg
) : (int) NewOp
.StackSlotOrReMat
;
892 // Back-schedule reloads and remats.
893 MachineBasicBlock::iterator InsertLoc
=
894 ComputeReloadLoc(MI
, MBB
->begin(), PhysReg
, TRI
,
895 DoReMat
, SSorRMId
, TII
, MF
);
898 ReMaterialize(*MBB
, InsertLoc
, NewPhysReg
, NewOp
.VirtReg
, TII
,
901 TII
->loadRegFromStackSlot(*MBB
, InsertLoc
, NewPhysReg
,
902 NewOp
.StackSlotOrReMat
, AliasRC
, TRI
);
903 MachineInstr
*LoadMI
= prior(InsertLoc
);
904 VRM
.addSpillSlotUse(NewOp
.StackSlotOrReMat
, LoadMI
);
905 // Any stores to this stack slot are not dead anymore.
906 MaybeDeadStores
[NewOp
.StackSlotOrReMat
] = NULL
;
909 Spills
.ClobberPhysReg(NewPhysReg
);
910 Spills
.ClobberPhysReg(NewOp
.PhysRegReused
);
912 unsigned RReg
= SubIdx
? TRI
->getSubReg(NewPhysReg
, SubIdx
) :NewPhysReg
;
913 MI
->getOperand(NewOp
.Operand
).setReg(RReg
);
914 MI
->getOperand(NewOp
.Operand
).setSubReg(0);
916 Spills
.addAvailable(NewOp
.StackSlotOrReMat
, NewPhysReg
);
917 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
918 DEBUG(dbgs() << '\t' << *prior(InsertLoc
));
920 DEBUG(dbgs() << "Reuse undone!\n");
923 // Finally, PhysReg is now available, go ahead and use it.
931 // ************************************************************************ //
933 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
934 /// stack slot mod/ref. It also checks if it's possible to unfold the
935 /// instruction by having it define a specified physical register instead.
936 static bool FoldsStackSlotModRef(MachineInstr
&MI
, int SS
, unsigned PhysReg
,
937 const TargetInstrInfo
*TII
,
938 const TargetRegisterInfo
*TRI
,
940 if (VRM
.hasEmergencySpills(&MI
) || VRM
.isSpillPt(&MI
))
944 VirtRegMap::MI2VirtMapTy::const_iterator I
, End
;
945 for (tie(I
, End
) = VRM
.getFoldedVirts(&MI
); I
!= End
; ++I
) {
946 unsigned VirtReg
= I
->second
.first
;
947 VirtRegMap::ModRef MR
= I
->second
.second
;
948 if (MR
& VirtRegMap::isModRef
)
949 if (VRM
.getStackSlot(VirtReg
) == SS
) {
950 Found
= TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(), true, true) != 0;
957 // Does the instruction uses a register that overlaps the scratch register?
958 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
959 MachineOperand
&MO
= MI
.getOperand(i
);
960 if (!MO
.isReg() || MO
.getReg() == 0)
962 unsigned Reg
= MO
.getReg();
963 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
964 if (!VRM
.hasPhys(Reg
))
966 Reg
= VRM
.getPhys(Reg
);
968 if (TRI
->regsOverlap(PhysReg
, Reg
))
974 /// FindFreeRegister - Find a free register of a given register class by looking
975 /// at (at most) the last two machine instructions.
976 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII
,
977 MachineBasicBlock
&MBB
,
978 const TargetRegisterClass
*RC
,
979 const TargetRegisterInfo
*TRI
,
980 BitVector
&AllocatableRegs
) {
981 BitVector
Defs(TRI
->getNumRegs());
982 BitVector
Uses(TRI
->getNumRegs());
983 SmallVector
<unsigned, 4> LocalUses
;
984 SmallVector
<unsigned, 4> Kills
;
986 // Take a look at 2 instructions at most.
989 if (MII
== MBB
.begin())
991 MachineInstr
*PrevMI
= prior(MII
);
994 if (PrevMI
->isDebugValue())
995 continue; // Skip over dbg_value instructions.
998 for (unsigned i
= 0, e
= PrevMI
->getNumOperands(); i
!= e
; ++i
) {
999 MachineOperand
&MO
= PrevMI
->getOperand(i
);
1000 if (!MO
.isReg() || MO
.getReg() == 0)
1002 unsigned Reg
= MO
.getReg();
1005 for (const unsigned *AS
= TRI
->getAliasSet(Reg
); *AS
; ++AS
)
1008 LocalUses
.push_back(Reg
);
1009 if (MO
.isKill() && AllocatableRegs
[Reg
])
1010 Kills
.push_back(Reg
);
1014 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
) {
1015 unsigned Kill
= Kills
[i
];
1016 if (!Defs
[Kill
] && !Uses
[Kill
] &&
1020 for (unsigned i
= 0, e
= LocalUses
.size(); i
!= e
; ++i
) {
1021 unsigned Reg
= LocalUses
[i
];
1023 for (const unsigned *AS
= TRI
->getAliasSet(Reg
); *AS
; ++AS
)
1032 void AssignPhysToVirtReg(MachineInstr
*MI
, unsigned VirtReg
, unsigned PhysReg
,
1033 const TargetRegisterInfo
&TRI
) {
1034 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1035 MachineOperand
&MO
= MI
->getOperand(i
);
1036 if (MO
.isReg() && MO
.getReg() == VirtReg
)
1037 substitutePhysReg(MO
, PhysReg
, TRI
);
1044 bool operator()(const std::pair
<MachineInstr
*, int> &A
,
1045 const std::pair
<MachineInstr
*, int> &B
) {
1046 return A
.second
< B
.second
;
1050 // ***************************** //
1051 // Local Spiller Implementation //
1052 // ***************************** //
1054 class LocalRewriter
: public VirtRegRewriter
{
1055 MachineRegisterInfo
*MRI
;
1056 const TargetRegisterInfo
*TRI
;
1057 const TargetInstrInfo
*TII
;
1059 BitVector AllocatableRegs
;
1060 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
1061 DenseMap
<int, SmallVector
<MachineInstr
*,4> > Slot2DbgValues
;
1063 MachineBasicBlock
*MBB
; // Basic block currently being processed.
1067 bool runOnMachineFunction(MachineFunction
&MF
, VirtRegMap
&VRM
,
1068 LiveIntervals
* LIs
);
1072 bool OptimizeByUnfold2(unsigned VirtReg
, int SS
,
1073 MachineBasicBlock::iterator
&MII
,
1074 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1075 AvailableSpills
&Spills
,
1076 BitVector
&RegKills
,
1077 std::vector
<MachineOperand
*> &KillOps
);
1079 bool OptimizeByUnfold(MachineBasicBlock::iterator
&MII
,
1080 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1081 AvailableSpills
&Spills
,
1082 BitVector
&RegKills
,
1083 std::vector
<MachineOperand
*> &KillOps
);
1085 bool CommuteToFoldReload(MachineBasicBlock::iterator
&MII
,
1086 unsigned VirtReg
, unsigned SrcReg
, int SS
,
1087 AvailableSpills
&Spills
,
1088 BitVector
&RegKills
,
1089 std::vector
<MachineOperand
*> &KillOps
,
1090 const TargetRegisterInfo
*TRI
);
1092 void SpillRegToStackSlot(MachineBasicBlock::iterator
&MII
,
1093 int Idx
, unsigned PhysReg
, int StackSlot
,
1094 const TargetRegisterClass
*RC
,
1095 bool isAvailable
, MachineInstr
*&LastStore
,
1096 AvailableSpills
&Spills
,
1097 SmallSet
<MachineInstr
*, 4> &ReMatDefs
,
1098 BitVector
&RegKills
,
1099 std::vector
<MachineOperand
*> &KillOps
);
1101 void TransferDeadness(unsigned Reg
, BitVector
&RegKills
,
1102 std::vector
<MachineOperand
*> &KillOps
);
1104 bool InsertEmergencySpills(MachineInstr
*MI
);
1106 bool InsertRestores(MachineInstr
*MI
,
1107 AvailableSpills
&Spills
,
1108 BitVector
&RegKills
,
1109 std::vector
<MachineOperand
*> &KillOps
);
1111 bool InsertSpills(MachineInstr
*MI
);
1113 void ProcessUses(MachineInstr
&MI
, AvailableSpills
&Spills
,
1114 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1115 BitVector
&RegKills
,
1116 ReuseInfo
&ReusedOperands
,
1117 std::vector
<MachineOperand
*> &KillOps
);
1119 void RewriteMBB(LiveIntervals
*LIs
,
1120 AvailableSpills
&Spills
, BitVector
&RegKills
,
1121 std::vector
<MachineOperand
*> &KillOps
);
1125 bool LocalRewriter::runOnMachineFunction(MachineFunction
&MF
, VirtRegMap
&vrm
,
1126 LiveIntervals
* LIs
) {
1127 MRI
= &MF
.getRegInfo();
1128 TRI
= MF
.getTarget().getRegisterInfo();
1129 TII
= MF
.getTarget().getInstrInfo();
1131 AllocatableRegs
= TRI
->getAllocatableSet(MF
);
1132 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1133 << MF
.getFunction()->getName() << "':\n");
1134 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1135 " reloads!) ****\n");
1138 // Spills - Keep track of which spilled values are available in physregs
1139 // so that we can choose to reuse the physregs instead of emitting
1140 // reloads. This is usually refreshed per basic block.
1141 AvailableSpills
Spills(TRI
, TII
);
1143 // Keep track of kill information.
1144 BitVector
RegKills(TRI
->getNumRegs());
1145 std::vector
<MachineOperand
*> KillOps
;
1146 KillOps
.resize(TRI
->getNumRegs(), NULL
);
1148 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1149 SmallVector
<MachineBasicBlock
*, 4> SinglePredSuccs
;
1150 SmallPtrSet
<MachineBasicBlock
*,16> EarlyVisited
;
1152 // Traverse the basic blocks depth first.
1153 MachineBasicBlock
*Entry
= MF
.begin();
1154 SmallPtrSet
<MachineBasicBlock
*,16> Visited
;
1155 for (df_ext_iterator
<MachineBasicBlock
*,
1156 SmallPtrSet
<MachineBasicBlock
*,16> >
1157 DFI
= df_ext_begin(Entry
, Visited
), E
= df_ext_end(Entry
, Visited
);
1160 if (!EarlyVisited
.count(MBB
))
1161 RewriteMBB(LIs
, Spills
, RegKills
, KillOps
);
1163 // If this MBB is the only predecessor of a successor. Keep the
1164 // availability information and visit it next.
1166 // Keep visiting single predecessor successor as long as possible.
1167 SinglePredSuccs
.clear();
1168 findSinglePredSuccessor(MBB
, SinglePredSuccs
);
1169 if (SinglePredSuccs
.empty())
1172 // FIXME: More than one successors, each of which has MBB has
1173 // the only predecessor.
1174 MBB
= SinglePredSuccs
[0];
1175 if (!Visited
.count(MBB
) && EarlyVisited
.insert(MBB
)) {
1176 Spills
.AddAvailableRegsToLiveIn(*MBB
, RegKills
, KillOps
);
1177 RewriteMBB(LIs
, Spills
, RegKills
, KillOps
);
1182 // Clear the availability info.
1186 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1189 // Mark unused spill slots.
1190 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1191 int SS
= VRM
->getLowSpillSlot();
1192 if (SS
!= VirtRegMap::NO_STACK_SLOT
) {
1193 for (int e
= VRM
->getHighSpillSlot(); SS
<= e
; ++SS
) {
1194 SmallVector
<MachineInstr
*, 4> &DbgValues
= Slot2DbgValues
[SS
];
1195 if (!VRM
->isSpillSlotUsed(SS
)) {
1196 MFI
->RemoveStackObject(SS
);
1197 for (unsigned j
= 0, ee
= DbgValues
.size(); j
!= ee
; ++j
) {
1198 MachineInstr
*DVMI
= DbgValues
[j
];
1199 MachineBasicBlock
*DVMBB
= DVMI
->getParent();
1200 DEBUG(dbgs() << "Removing debug info referencing FI#" << SS
<< '\n');
1201 VRM
->RemoveMachineInstrFromMaps(DVMI
);
1209 Slot2DbgValues
.clear();
1214 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1215 /// a scratch register is available.
1216 /// xorq %r12<kill>, %r13
1217 /// addq %rax, -184(%rbp)
1218 /// addq %r13, -184(%rbp)
1220 /// xorq %r12<kill>, %r13
1221 /// movq -184(%rbp), %r12
1224 /// movq %r12, -184(%rbp)
1225 bool LocalRewriter::
1226 OptimizeByUnfold2(unsigned VirtReg
, int SS
,
1227 MachineBasicBlock::iterator
&MII
,
1228 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1229 AvailableSpills
&Spills
,
1230 BitVector
&RegKills
,
1231 std::vector
<MachineOperand
*> &KillOps
) {
1233 MachineBasicBlock::iterator NextMII
= llvm::next(MII
);
1234 // Skip over dbg_value instructions.
1235 while (NextMII
!= MBB
->end() && NextMII
->isDebugValue())
1236 NextMII
= llvm::next(NextMII
);
1237 if (NextMII
== MBB
->end())
1240 if (TII
->getOpcodeAfterMemoryUnfold(MII
->getOpcode(), true, true) == 0)
1243 // Now let's see if the last couple of instructions happens to have freed up
1245 const TargetRegisterClass
* RC
= MRI
->getRegClass(VirtReg
);
1246 unsigned PhysReg
= FindFreeRegister(MII
, *MBB
, RC
, TRI
, AllocatableRegs
);
1250 MachineFunction
&MF
= *MBB
->getParent();
1251 TRI
= MF
.getTarget().getRegisterInfo();
1252 MachineInstr
&MI
= *MII
;
1253 if (!FoldsStackSlotModRef(MI
, SS
, PhysReg
, TII
, TRI
, *VRM
))
1256 // If the next instruction also folds the same SS modref and can be unfoled,
1257 // then it's worthwhile to issue a load from SS into the free register and
1258 // then unfold these instructions.
1259 if (!FoldsStackSlotModRef(*NextMII
, SS
, PhysReg
, TII
, TRI
, *VRM
))
1262 // Back-schedule reloads and remats.
1263 ComputeReloadLoc(MII
, MBB
->begin(), PhysReg
, TRI
, false, SS
, TII
, MF
);
1265 // Load from SS to the spare physical register.
1266 TII
->loadRegFromStackSlot(*MBB
, MII
, PhysReg
, SS
, RC
, TRI
);
1267 // This invalidates Phys.
1268 Spills
.ClobberPhysReg(PhysReg
);
1269 // Remember it's available.
1270 Spills
.addAvailable(SS
, PhysReg
);
1271 MaybeDeadStores
[SS
] = NULL
;
1273 // Unfold current MI.
1274 SmallVector
<MachineInstr
*, 4> NewMIs
;
1275 if (!TII
->unfoldMemoryOperand(MF
, &MI
, VirtReg
, false, false, NewMIs
))
1276 llvm_unreachable("Unable unfold the load / store folding instruction!");
1277 assert(NewMIs
.size() == 1);
1278 AssignPhysToVirtReg(NewMIs
[0], VirtReg
, PhysReg
, *TRI
);
1279 VRM
->transferRestorePts(&MI
, NewMIs
[0]);
1280 MII
= MBB
->insert(MII
, NewMIs
[0]);
1281 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1282 VRM
->RemoveMachineInstrFromMaps(&MI
);
1286 // Unfold next instructions that fold the same SS.
1288 MachineInstr
&NextMI
= *NextMII
;
1289 NextMII
= llvm::next(NextMII
);
1291 if (!TII
->unfoldMemoryOperand(MF
, &NextMI
, VirtReg
, false, false, NewMIs
))
1292 llvm_unreachable("Unable unfold the load / store folding instruction!");
1293 assert(NewMIs
.size() == 1);
1294 AssignPhysToVirtReg(NewMIs
[0], VirtReg
, PhysReg
, *TRI
);
1295 VRM
->transferRestorePts(&NextMI
, NewMIs
[0]);
1296 MBB
->insert(NextMII
, NewMIs
[0]);
1297 InvalidateKills(NextMI
, TRI
, RegKills
, KillOps
);
1298 VRM
->RemoveMachineInstrFromMaps(&NextMI
);
1299 MBB
->erase(&NextMI
);
1301 // Skip over dbg_value instructions.
1302 while (NextMII
!= MBB
->end() && NextMII
->isDebugValue())
1303 NextMII
= llvm::next(NextMII
);
1304 if (NextMII
== MBB
->end())
1306 } while (FoldsStackSlotModRef(*NextMII
, SS
, PhysReg
, TII
, TRI
, *VRM
));
1308 // Store the value back into SS.
1309 TII
->storeRegToStackSlot(*MBB
, NextMII
, PhysReg
, true, SS
, RC
, TRI
);
1310 MachineInstr
*StoreMI
= prior(NextMII
);
1311 VRM
->addSpillSlotUse(SS
, StoreMI
);
1312 VRM
->virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1317 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1318 /// instruction. e.g.
1320 /// movl %eax, -32(%ebp)
1321 /// movl -36(%ebp), %eax
1322 /// orl %eax, -32(%ebp)
1325 /// orl -36(%ebp), %eax
1326 /// mov %eax, -32(%ebp)
1327 /// This enables unfolding optimization for a subsequent instruction which will
1328 /// also eliminate the newly introduced store instruction.
1329 bool LocalRewriter::
1330 OptimizeByUnfold(MachineBasicBlock::iterator
&MII
,
1331 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1332 AvailableSpills
&Spills
,
1333 BitVector
&RegKills
,
1334 std::vector
<MachineOperand
*> &KillOps
) {
1335 MachineFunction
&MF
= *MBB
->getParent();
1336 MachineInstr
&MI
= *MII
;
1337 unsigned UnfoldedOpc
= 0;
1338 unsigned UnfoldPR
= 0;
1339 unsigned UnfoldVR
= 0;
1340 int FoldedSS
= VirtRegMap::NO_STACK_SLOT
;
1341 VirtRegMap::MI2VirtMapTy::const_iterator I
, End
;
1342 for (tie(I
, End
) = VRM
->getFoldedVirts(&MI
); I
!= End
; ) {
1343 // Only transform a MI that folds a single register.
1346 UnfoldVR
= I
->second
.first
;
1347 VirtRegMap::ModRef MR
= I
->second
.second
;
1348 // MI2VirtMap be can updated which invalidate the iterator.
1349 // Increment the iterator first.
1351 if (VRM
->isAssignedReg(UnfoldVR
))
1353 // If this reference is not a use, any previous store is now dead.
1354 // Otherwise, the store to this stack slot is not dead anymore.
1355 FoldedSS
= VRM
->getStackSlot(UnfoldVR
);
1356 MachineInstr
* DeadStore
= MaybeDeadStores
[FoldedSS
];
1357 if (DeadStore
&& (MR
& VirtRegMap::isModRef
)) {
1358 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(FoldedSS
);
1359 if (!PhysReg
|| !DeadStore
->readsRegister(PhysReg
))
1362 UnfoldedOpc
= TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(),
1371 // Look for other unfolding opportunities.
1372 return OptimizeByUnfold2(UnfoldVR
, FoldedSS
, MII
, MaybeDeadStores
, Spills
,
1376 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1377 MachineOperand
&MO
= MI
.getOperand(i
);
1378 if (!MO
.isReg() || MO
.getReg() == 0 || !MO
.isUse())
1380 unsigned VirtReg
= MO
.getReg();
1381 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
) || MO
.getSubReg())
1383 if (VRM
->isAssignedReg(VirtReg
)) {
1384 unsigned PhysReg
= VRM
->getPhys(VirtReg
);
1385 if (PhysReg
&& TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1387 } else if (VRM
->isReMaterialized(VirtReg
))
1389 int SS
= VRM
->getStackSlot(VirtReg
);
1390 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
1392 if (TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1396 if (VRM
->hasPhys(VirtReg
)) {
1397 PhysReg
= VRM
->getPhys(VirtReg
);
1398 if (!TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1402 // Ok, we'll need to reload the value into a register which makes
1403 // it impossible to perform the store unfolding optimization later.
1404 // Let's see if it is possible to fold the load if the store is
1405 // unfolded. This allows us to perform the store unfolding
1407 SmallVector
<MachineInstr
*, 4> NewMIs
;
1408 if (TII
->unfoldMemoryOperand(MF
, &MI
, UnfoldVR
, false, false, NewMIs
)) {
1409 assert(NewMIs
.size() == 1);
1410 MachineInstr
*NewMI
= NewMIs
.back();
1411 MBB
->insert(MII
, NewMI
);
1413 int Idx
= NewMI
->findRegisterUseOperandIdx(VirtReg
, false);
1415 SmallVector
<unsigned, 1> Ops
;
1417 MachineInstr
*FoldedMI
= TII
->foldMemoryOperand(NewMI
, Ops
, SS
);
1418 NewMI
->eraseFromParent();
1420 VRM
->addSpillSlotUse(SS
, FoldedMI
);
1421 if (!VRM
->hasPhys(UnfoldVR
))
1422 VRM
->assignVirt2Phys(UnfoldVR
, UnfoldPR
);
1423 VRM
->virtFolded(VirtReg
, FoldedMI
, VirtRegMap::isRef
);
1425 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1426 VRM
->RemoveMachineInstrFromMaps(&MI
);
1436 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1437 /// where SrcReg is r1 and it is tied to r0. Return true if after
1438 /// commuting this instruction it will be r0 = op r2, r1.
1439 static bool CommuteChangesDestination(MachineInstr
*DefMI
,
1440 const TargetInstrDesc
&TID
,
1442 const TargetInstrInfo
*TII
,
1444 if (TID
.getNumDefs() != 1 && TID
.getNumOperands() != 3)
1446 if (!DefMI
->getOperand(1).isReg() ||
1447 DefMI
->getOperand(1).getReg() != SrcReg
)
1450 if (!DefMI
->isRegTiedToDefOperand(1, &DefIdx
) || DefIdx
!= 0)
1452 unsigned SrcIdx1
, SrcIdx2
;
1453 if (!TII
->findCommutedOpIndices(DefMI
, SrcIdx1
, SrcIdx2
))
1455 if (SrcIdx1
== 1 && SrcIdx2
== 2) {
1462 /// CommuteToFoldReload -
1465 /// r1 = op r1, r2<kill>
1468 /// If op is commutable and r2 is killed, then we can xform these to
1469 /// r2 = op r2, fi#1
1471 bool LocalRewriter::
1472 CommuteToFoldReload(MachineBasicBlock::iterator
&MII
,
1473 unsigned VirtReg
, unsigned SrcReg
, int SS
,
1474 AvailableSpills
&Spills
,
1475 BitVector
&RegKills
,
1476 std::vector
<MachineOperand
*> &KillOps
,
1477 const TargetRegisterInfo
*TRI
) {
1478 if (MII
== MBB
->begin() || !MII
->killsRegister(SrcReg
))
1481 MachineInstr
&MI
= *MII
;
1482 MachineBasicBlock::iterator DefMII
= prior(MII
);
1483 MachineInstr
*DefMI
= DefMII
;
1484 const TargetInstrDesc
&TID
= DefMI
->getDesc();
1486 if (DefMII
!= MBB
->begin() &&
1487 TID
.isCommutable() &&
1488 CommuteChangesDestination(DefMI
, TID
, SrcReg
, TII
, NewDstIdx
)) {
1489 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
1490 unsigned NewReg
= NewDstMO
.getReg();
1491 if (!NewDstMO
.isKill() || TRI
->regsOverlap(NewReg
, SrcReg
))
1493 MachineInstr
*ReloadMI
= prior(DefMII
);
1495 unsigned DestReg
= TII
->isLoadFromStackSlot(ReloadMI
, FrameIdx
);
1496 if (DestReg
!= SrcReg
|| FrameIdx
!= SS
)
1498 int UseIdx
= DefMI
->findRegisterUseOperandIdx(DestReg
, false);
1502 if (!MI
.isRegTiedToDefOperand(UseIdx
, &DefIdx
))
1504 assert(DefMI
->getOperand(DefIdx
).isReg() &&
1505 DefMI
->getOperand(DefIdx
).getReg() == SrcReg
);
1507 // Now commute def instruction.
1508 MachineInstr
*CommutedMI
= TII
->commuteInstruction(DefMI
, true);
1511 MBB
->insert(MII
, CommutedMI
);
1512 SmallVector
<unsigned, 1> Ops
;
1513 Ops
.push_back(NewDstIdx
);
1514 MachineInstr
*FoldedMI
= TII
->foldMemoryOperand(CommutedMI
, Ops
, SS
);
1515 // Not needed since foldMemoryOperand returns new MI.
1516 CommutedMI
->eraseFromParent();
1520 VRM
->addSpillSlotUse(SS
, FoldedMI
);
1521 VRM
->virtFolded(VirtReg
, FoldedMI
, VirtRegMap::isRef
);
1522 // Insert new def MI and spill MI.
1523 const TargetRegisterClass
* RC
= MRI
->getRegClass(VirtReg
);
1524 TII
->storeRegToStackSlot(*MBB
, &MI
, NewReg
, true, SS
, RC
, TRI
);
1526 MachineInstr
*StoreMI
= MII
;
1527 VRM
->addSpillSlotUse(SS
, StoreMI
);
1528 VRM
->virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1529 MII
= FoldedMI
; // Update MII to backtrack.
1531 // Delete all 3 old instructions.
1532 InvalidateKills(*ReloadMI
, TRI
, RegKills
, KillOps
);
1533 VRM
->RemoveMachineInstrFromMaps(ReloadMI
);
1534 MBB
->erase(ReloadMI
);
1535 InvalidateKills(*DefMI
, TRI
, RegKills
, KillOps
);
1536 VRM
->RemoveMachineInstrFromMaps(DefMI
);
1538 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1539 VRM
->RemoveMachineInstrFromMaps(&MI
);
1542 // If NewReg was previously holding value of some SS, it's now clobbered.
1543 // This has to be done now because it's a physical register. When this
1544 // instruction is re-visited, it's ignored.
1545 Spills
.ClobberPhysReg(NewReg
);
1554 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1555 /// the last store to the same slot is now dead. If so, remove the last store.
1556 void LocalRewriter::
1557 SpillRegToStackSlot(MachineBasicBlock::iterator
&MII
,
1558 int Idx
, unsigned PhysReg
, int StackSlot
,
1559 const TargetRegisterClass
*RC
,
1560 bool isAvailable
, MachineInstr
*&LastStore
,
1561 AvailableSpills
&Spills
,
1562 SmallSet
<MachineInstr
*, 4> &ReMatDefs
,
1563 BitVector
&RegKills
,
1564 std::vector
<MachineOperand
*> &KillOps
) {
1566 MachineBasicBlock::iterator oldNextMII
= llvm::next(MII
);
1567 TII
->storeRegToStackSlot(*MBB
, llvm::next(MII
), PhysReg
, true, StackSlot
, RC
,
1569 MachineInstr
*StoreMI
= prior(oldNextMII
);
1570 VRM
->addSpillSlotUse(StackSlot
, StoreMI
);
1571 DEBUG(dbgs() << "Store:\t" << *StoreMI
);
1573 // If there is a dead store to this stack slot, nuke it now.
1575 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore
);
1577 SmallVector
<unsigned, 2> KillRegs
;
1578 InvalidateKills(*LastStore
, TRI
, RegKills
, KillOps
, &KillRegs
);
1579 MachineBasicBlock::iterator PrevMII
= LastStore
;
1580 bool CheckDef
= PrevMII
!= MBB
->begin();
1583 VRM
->RemoveMachineInstrFromMaps(LastStore
);
1584 MBB
->erase(LastStore
);
1586 // Look at defs of killed registers on the store. Mark the defs
1587 // as dead since the store has been deleted and they aren't
1589 for (unsigned j
= 0, ee
= KillRegs
.size(); j
!= ee
; ++j
) {
1590 bool HasOtherDef
= false;
1591 if (InvalidateRegDef(PrevMII
, *MII
, KillRegs
[j
], HasOtherDef
, TRI
)) {
1592 MachineInstr
*DeadDef
= PrevMII
;
1593 if (ReMatDefs
.count(DeadDef
) && !HasOtherDef
) {
1594 // FIXME: This assumes a remat def does not have side effects.
1595 VRM
->RemoveMachineInstrFromMaps(DeadDef
);
1596 MBB
->erase(DeadDef
);
1604 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1605 // the last of multiple instructions is the actual store.
1606 LastStore
= prior(oldNextMII
);
1608 // If the stack slot value was previously available in some other
1609 // register, change it now. Otherwise, make the register available,
1611 Spills
.ModifyStackSlotOrReMat(StackSlot
);
1612 Spills
.ClobberPhysReg(PhysReg
);
1613 Spills
.addAvailable(StackSlot
, PhysReg
, isAvailable
);
1617 /// isSafeToDelete - Return true if this instruction doesn't produce any side
1618 /// effect and all of its defs are dead.
1619 static bool isSafeToDelete(MachineInstr
&MI
) {
1620 const TargetInstrDesc
&TID
= MI
.getDesc();
1621 if (TID
.mayLoad() || TID
.mayStore() || TID
.isCall() || TID
.isTerminator() ||
1622 TID
.isCall() || TID
.isBarrier() || TID
.isReturn() ||
1623 TID
.hasUnmodeledSideEffects())
1625 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1626 MachineOperand
&MO
= MI
.getOperand(i
);
1627 if (!MO
.isReg() || !MO
.getReg())
1629 if (MO
.isDef() && !MO
.isDead())
1631 if (MO
.isUse() && MO
.isKill())
1632 // FIXME: We can't remove kill markers or else the scavenger will assert.
1633 // An alternative is to add a ADD pseudo instruction to replace kill
1640 /// TransferDeadness - A identity copy definition is dead and it's being
1641 /// removed. Find the last def or use and mark it as dead / kill.
1642 void LocalRewriter::
1643 TransferDeadness(unsigned Reg
, BitVector
&RegKills
,
1644 std::vector
<MachineOperand
*> &KillOps
) {
1645 SmallPtrSet
<MachineInstr
*, 4> Seens
;
1646 SmallVector
<std::pair
<MachineInstr
*, int>,8> Refs
;
1647 for (MachineRegisterInfo::reg_iterator RI
= MRI
->reg_begin(Reg
),
1648 RE
= MRI
->reg_end(); RI
!= RE
; ++RI
) {
1649 MachineInstr
*UDMI
= &*RI
;
1650 if (UDMI
->isDebugValue() || UDMI
->getParent() != MBB
)
1652 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UDMI
);
1653 if (DI
== DistanceMap
.end())
1655 if (Seens
.insert(UDMI
))
1656 Refs
.push_back(std::make_pair(UDMI
, DI
->second
));
1661 std::sort(Refs
.begin(), Refs
.end(), RefSorter());
1663 while (!Refs
.empty()) {
1664 MachineInstr
*LastUDMI
= Refs
.back().first
;
1667 MachineOperand
*LastUD
= NULL
;
1668 for (unsigned i
= 0, e
= LastUDMI
->getNumOperands(); i
!= e
; ++i
) {
1669 MachineOperand
&MO
= LastUDMI
->getOperand(i
);
1670 if (!MO
.isReg() || MO
.getReg() != Reg
)
1672 if (!LastUD
|| (LastUD
->isUse() && MO
.isDef()))
1674 if (LastUDMI
->isRegTiedToDefOperand(i
))
1677 if (LastUD
->isDef()) {
1678 // If the instruction has no side effect, delete it and propagate
1679 // backward further. Otherwise, mark is dead and we are done.
1680 if (!isSafeToDelete(*LastUDMI
)) {
1681 LastUD
->setIsDead();
1684 VRM
->RemoveMachineInstrFromMaps(LastUDMI
);
1685 MBB
->erase(LastUDMI
);
1687 LastUD
->setIsKill();
1689 KillOps
[Reg
] = LastUD
;
1695 /// InsertEmergencySpills - Insert emergency spills before MI if requested by
1696 /// VRM. Return true if spills were inserted.
1697 bool LocalRewriter::InsertEmergencySpills(MachineInstr
*MI
) {
1698 if (!VRM
->hasEmergencySpills(MI
))
1700 MachineBasicBlock::iterator MII
= MI
;
1701 SmallSet
<int, 4> UsedSS
;
1702 std::vector
<unsigned> &EmSpills
= VRM
->getEmergencySpills(MI
);
1703 for (unsigned i
= 0, e
= EmSpills
.size(); i
!= e
; ++i
) {
1704 unsigned PhysReg
= EmSpills
[i
];
1705 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(PhysReg
);
1706 assert(RC
&& "Unable to determine register class!");
1707 int SS
= VRM
->getEmergencySpillSlot(RC
);
1708 if (UsedSS
.count(SS
))
1709 llvm_unreachable("Need to spill more than one physical registers!");
1711 TII
->storeRegToStackSlot(*MBB
, MII
, PhysReg
, true, SS
, RC
, TRI
);
1712 MachineInstr
*StoreMI
= prior(MII
);
1713 VRM
->addSpillSlotUse(SS
, StoreMI
);
1715 // Back-schedule reloads and remats.
1716 MachineBasicBlock::iterator InsertLoc
=
1717 ComputeReloadLoc(llvm::next(MII
), MBB
->begin(), PhysReg
, TRI
, false, SS
,
1718 TII
, *MBB
->getParent());
1720 TII
->loadRegFromStackSlot(*MBB
, InsertLoc
, PhysReg
, SS
, RC
, TRI
);
1722 MachineInstr
*LoadMI
= prior(InsertLoc
);
1723 VRM
->addSpillSlotUse(SS
, LoadMI
);
1725 DistanceMap
.insert(std::make_pair(LoadMI
, DistanceMap
.size()));
1730 /// InsertRestores - Restore registers before MI is requested by VRM. Return
1731 /// true is any instructions were inserted.
1732 bool LocalRewriter::InsertRestores(MachineInstr
*MI
,
1733 AvailableSpills
&Spills
,
1734 BitVector
&RegKills
,
1735 std::vector
<MachineOperand
*> &KillOps
) {
1736 if (!VRM
->isRestorePt(MI
))
1738 MachineBasicBlock::iterator MII
= MI
;
1739 std::vector
<unsigned> &RestoreRegs
= VRM
->getRestorePtRestores(MI
);
1740 for (unsigned i
= 0, e
= RestoreRegs
.size(); i
!= e
; ++i
) {
1741 unsigned VirtReg
= RestoreRegs
[e
-i
-1]; // Reverse order.
1742 if (!VRM
->getPreSplitReg(VirtReg
))
1743 continue; // Split interval spilled again.
1744 unsigned Phys
= VRM
->getPhys(VirtReg
);
1745 MRI
->setPhysRegUsed(Phys
);
1747 // Check if the value being restored if available. If so, it must be
1748 // from a predecessor BB that fallthrough into this BB. We do not
1754 // ... # r1 not clobbered
1757 bool DoReMat
= VRM
->isReMaterialized(VirtReg
);
1758 int SSorRMId
= DoReMat
1759 ? VRM
->getReMatId(VirtReg
) : VRM
->getStackSlot(VirtReg
);
1760 unsigned InReg
= Spills
.getSpillSlotOrReMatPhysReg(SSorRMId
);
1761 if (InReg
== Phys
) {
1762 // If the value is already available in the expected register, save
1763 // a reload / remat.
1765 DEBUG(dbgs() << "Reusing RM#"
1766 << SSorRMId
-VirtRegMap::MAX_STACK_SLOT
-1);
1768 DEBUG(dbgs() << "Reusing SS#" << SSorRMId
);
1769 DEBUG(dbgs() << " from physreg "
1770 << TRI
->getName(InReg
) << " for vreg"
1771 << VirtReg
<<" instead of reloading into physreg "
1772 << TRI
->getName(Phys
) << '\n');
1775 } else if (InReg
&& InReg
!= Phys
) {
1777 DEBUG(dbgs() << "Reusing RM#"
1778 << SSorRMId
-VirtRegMap::MAX_STACK_SLOT
-1);
1780 DEBUG(dbgs() << "Reusing SS#" << SSorRMId
);
1781 DEBUG(dbgs() << " from physreg "
1782 << TRI
->getName(InReg
) << " for vreg"
1783 << VirtReg
<<" by copying it into physreg "
1784 << TRI
->getName(Phys
) << '\n');
1786 // If the reloaded / remat value is available in another register,
1787 // copy it to the desired register.
1789 // Back-schedule reloads and remats.
1790 MachineBasicBlock::iterator InsertLoc
=
1791 ComputeReloadLoc(MII
, MBB
->begin(), Phys
, TRI
, DoReMat
, SSorRMId
, TII
,
1793 MachineInstr
*CopyMI
= BuildMI(*MBB
, InsertLoc
, MI
->getDebugLoc(),
1794 TII
->get(TargetOpcode::COPY
), Phys
)
1795 .addReg(InReg
, RegState::Kill
);
1797 // This invalidates Phys.
1798 Spills
.ClobberPhysReg(Phys
);
1799 // Remember it's available.
1800 Spills
.addAvailable(SSorRMId
, Phys
);
1802 CopyMI
->setAsmPrinterFlag(MachineInstr::ReloadReuse
);
1803 UpdateKills(*CopyMI
, TRI
, RegKills
, KillOps
);
1805 DEBUG(dbgs() << '\t' << *CopyMI
);
1810 // Back-schedule reloads and remats.
1811 MachineBasicBlock::iterator InsertLoc
=
1812 ComputeReloadLoc(MII
, MBB
->begin(), Phys
, TRI
, DoReMat
, SSorRMId
, TII
,
1815 if (VRM
->isReMaterialized(VirtReg
)) {
1816 ReMaterialize(*MBB
, InsertLoc
, Phys
, VirtReg
, TII
, TRI
, *VRM
);
1818 const TargetRegisterClass
* RC
= MRI
->getRegClass(VirtReg
);
1819 TII
->loadRegFromStackSlot(*MBB
, InsertLoc
, Phys
, SSorRMId
, RC
, TRI
);
1820 MachineInstr
*LoadMI
= prior(InsertLoc
);
1821 VRM
->addSpillSlotUse(SSorRMId
, LoadMI
);
1823 DistanceMap
.insert(std::make_pair(LoadMI
, DistanceMap
.size()));
1826 // This invalidates Phys.
1827 Spills
.ClobberPhysReg(Phys
);
1828 // Remember it's available.
1829 Spills
.addAvailable(SSorRMId
, Phys
);
1831 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
1832 DEBUG(dbgs() << '\t' << *prior(MII
));
1837 /// InsertSpills - Insert spills after MI if requested by VRM. Return
1838 /// true if spills were inserted.
1839 bool LocalRewriter::InsertSpills(MachineInstr
*MI
) {
1840 if (!VRM
->isSpillPt(MI
))
1842 MachineBasicBlock::iterator MII
= MI
;
1843 std::vector
<std::pair
<unsigned,bool> > &SpillRegs
=
1844 VRM
->getSpillPtSpills(MI
);
1845 for (unsigned i
= 0, e
= SpillRegs
.size(); i
!= e
; ++i
) {
1846 unsigned VirtReg
= SpillRegs
[i
].first
;
1847 bool isKill
= SpillRegs
[i
].second
;
1848 if (!VRM
->getPreSplitReg(VirtReg
))
1849 continue; // Split interval spilled again.
1850 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
);
1851 unsigned Phys
= VRM
->getPhys(VirtReg
);
1852 int StackSlot
= VRM
->getStackSlot(VirtReg
);
1853 MachineBasicBlock::iterator oldNextMII
= llvm::next(MII
);
1854 TII
->storeRegToStackSlot(*MBB
, llvm::next(MII
), Phys
, isKill
, StackSlot
,
1856 MachineInstr
*StoreMI
= prior(oldNextMII
);
1857 VRM
->addSpillSlotUse(StackSlot
, StoreMI
);
1858 DEBUG(dbgs() << "Store:\t" << *StoreMI
);
1859 VRM
->virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1865 /// ProcessUses - Process all of MI's spilled operands and all available
1867 void LocalRewriter::ProcessUses(MachineInstr
&MI
, AvailableSpills
&Spills
,
1868 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1869 BitVector
&RegKills
,
1870 ReuseInfo
&ReusedOperands
,
1871 std::vector
<MachineOperand
*> &KillOps
) {
1873 SmallSet
<unsigned, 2> KilledMIRegs
;
1874 SmallVector
<unsigned, 4> VirtUseOps
;
1875 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1876 MachineOperand
&MO
= MI
.getOperand(i
);
1877 if (!MO
.isReg() || MO
.getReg() == 0)
1878 continue; // Ignore non-register operands.
1880 unsigned VirtReg
= MO
.getReg();
1881 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
)) {
1882 // Ignore physregs for spilling, but remember that it is used by this
1884 MRI
->setPhysRegUsed(VirtReg
);
1888 // We want to process implicit virtual register uses first.
1889 if (MO
.isImplicit())
1890 // If the virtual register is implicitly defined, emit a implicit_def
1891 // before so scavenger knows it's "defined".
1892 // FIXME: This is a horrible hack done the by register allocator to
1893 // remat a definition with virtual register operand.
1894 VirtUseOps
.insert(VirtUseOps
.begin(), i
);
1896 VirtUseOps
.push_back(i
);
1898 // A partial def causes problems because the same operand both reads and
1899 // writes the register. This rewriter is designed to rewrite uses and defs
1900 // separately, so a partial def would already have been rewritten to a
1901 // physreg by the time we get to processing defs.
1902 // Add an implicit use operand to model the partial def.
1903 if (MO
.isDef() && MO
.getSubReg() && MI
.readsVirtualRegister(VirtReg
) &&
1904 MI
.findRegisterUseOperandIdx(VirtReg
) == -1) {
1905 VirtUseOps
.insert(VirtUseOps
.begin(), MI
.getNumOperands());
1906 MI
.addOperand(MachineOperand::CreateReg(VirtReg
,
1908 true)); // isImplicit
1909 DEBUG(dbgs() << "Partial redef: " << MI
);
1913 // Process all of the spilled uses and all non spilled reg references.
1914 SmallVector
<int, 2> PotentialDeadStoreSlots
;
1915 KilledMIRegs
.clear();
1916 for (unsigned j
= 0, e
= VirtUseOps
.size(); j
!= e
; ++j
) {
1917 unsigned i
= VirtUseOps
[j
];
1918 unsigned VirtReg
= MI
.getOperand(i
).getReg();
1919 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
1920 "Not a virtual register?");
1922 unsigned SubIdx
= MI
.getOperand(i
).getSubReg();
1923 if (VRM
->isAssignedReg(VirtReg
)) {
1924 // This virtual register was assigned a physreg!
1925 unsigned Phys
= VRM
->getPhys(VirtReg
);
1926 MRI
->setPhysRegUsed(Phys
);
1927 if (MI
.getOperand(i
).isDef())
1928 ReusedOperands
.markClobbered(Phys
);
1929 substitutePhysReg(MI
.getOperand(i
), Phys
, *TRI
);
1930 if (VRM
->isImplicitlyDefined(VirtReg
))
1931 // FIXME: Is this needed?
1932 BuildMI(*MBB
, &MI
, MI
.getDebugLoc(),
1933 TII
->get(TargetOpcode::IMPLICIT_DEF
), Phys
);
1937 // This virtual register is now known to be a spilled value.
1938 if (!MI
.getOperand(i
).isUse())
1939 continue; // Handle defs in the loop below (handle use&def here though)
1941 bool AvoidReload
= MI
.getOperand(i
).isUndef();
1942 // Check if it is defined by an implicit def. It should not be spilled.
1943 // Note, this is for correctness reason. e.g.
1944 // 8 %reg1024<def> = IMPLICIT_DEF
1945 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1946 // The live range [12, 14) are not part of the r1024 live interval since
1947 // it's defined by an implicit def. It will not conflicts with live
1948 // interval of r1025. Now suppose both registers are spilled, you can
1949 // easily see a situation where both registers are reloaded before
1950 // the INSERT_SUBREG and both target registers that would overlap.
1951 bool DoReMat
= VRM
->isReMaterialized(VirtReg
);
1952 int SSorRMId
= DoReMat
1953 ? VRM
->getReMatId(VirtReg
) : VRM
->getStackSlot(VirtReg
);
1954 int ReuseSlot
= SSorRMId
;
1956 // Check to see if this stack slot is available.
1957 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SSorRMId
);
1959 // If this is a sub-register use, make sure the reuse register is in the
1960 // right register class. For example, for x86 not all of the 32-bit
1961 // registers have accessible sub-registers.
1962 // Similarly so for EXTRACT_SUBREG. Consider this:
1964 // MOV32_mr fi#1, EDI
1966 // = EXTRACT_SUBREG fi#1
1967 // fi#1 is available in EDI, but it cannot be reused because it's not in
1968 // the right register file.
1969 if (PhysReg
&& !AvoidReload
&& SubIdx
) {
1970 const TargetRegisterClass
* RC
= MRI
->getRegClass(VirtReg
);
1971 if (!RC
->contains(PhysReg
))
1975 if (PhysReg
&& !AvoidReload
) {
1976 // This spilled operand might be part of a two-address operand. If this
1977 // is the case, then changing it will necessarily require changing the
1978 // def part of the instruction as well. However, in some cases, we
1979 // aren't allowed to modify the reused register. If none of these cases
1981 bool CanReuse
= true;
1982 bool isTied
= MI
.isRegTiedToDefOperand(i
);
1984 // Okay, we have a two address operand. We can reuse this physreg as
1985 // long as we are allowed to clobber the value and there isn't an
1986 // earlier def that has already clobbered the physreg.
1987 CanReuse
= !ReusedOperands
.isClobbered(PhysReg
) &&
1988 Spills
.canClobberPhysReg(PhysReg
);
1990 // If this is an asm, and a PhysReg alias is used elsewhere as an
1991 // earlyclobber operand, we can't also use it as an input.
1992 if (MI
.isInlineAsm()) {
1993 for (unsigned k
= 0, e
= MI
.getNumOperands(); k
!= e
; ++k
) {
1994 MachineOperand
&MOk
= MI
.getOperand(k
);
1995 if (MOk
.isReg() && MOk
.isEarlyClobber() &&
1996 TRI
->regsOverlap(MOk
.getReg(), PhysReg
)) {
1998 DEBUG(dbgs() << "Not reusing physreg " << TRI
->getName(PhysReg
)
1999 << " for vreg" << VirtReg
<< ": " << MOk
<< '\n');
2006 // If this stack slot value is already available, reuse it!
2007 if (ReuseSlot
> VirtRegMap::MAX_STACK_SLOT
)
2008 DEBUG(dbgs() << "Reusing RM#"
2009 << ReuseSlot
-VirtRegMap::MAX_STACK_SLOT
-1);
2011 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot
);
2012 DEBUG(dbgs() << " from physreg "
2013 << TRI
->getName(PhysReg
) << " for vreg"
2014 << VirtReg
<<" instead of reloading into physreg "
2015 << TRI
->getName(VRM
->getPhys(VirtReg
)) << '\n');
2016 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
2017 MI
.getOperand(i
).setReg(RReg
);
2018 MI
.getOperand(i
).setSubReg(0);
2020 // The only technical detail we have is that we don't know that
2021 // PhysReg won't be clobbered by a reloaded stack slot that occurs
2022 // later in the instruction. In particular, consider 'op V1, V2'.
2023 // If V1 is available in physreg R0, we would choose to reuse it
2024 // here, instead of reloading it into the register the allocator
2025 // indicated (say R1). However, V2 might have to be reloaded
2026 // later, and it might indicate that it needs to live in R0. When
2027 // this occurs, we need to have information available that
2028 // indicates it is safe to use R1 for the reload instead of R0.
2030 // To further complicate matters, we might conflict with an alias,
2031 // or R0 and R1 might not be compatible with each other. In this
2032 // case, we actually insert a reload for V1 in R1, ensuring that
2033 // we can get at R0 or its alias.
2034 ReusedOperands
.addReuse(i
, ReuseSlot
, PhysReg
,
2035 VRM
->getPhys(VirtReg
), VirtReg
);
2037 // Only mark it clobbered if this is a use&def operand.
2038 ReusedOperands
.markClobbered(PhysReg
);
2041 if (MI
.getOperand(i
).isKill() &&
2042 ReuseSlot
<= VirtRegMap::MAX_STACK_SLOT
) {
2044 // The store of this spilled value is potentially dead, but we
2045 // won't know for certain until we've confirmed that the re-use
2046 // above is valid, which means waiting until the other operands
2047 // are processed. For now we just track the spill slot, we'll
2048 // remove it after the other operands are processed if valid.
2050 PotentialDeadStoreSlots
.push_back(ReuseSlot
);
2053 // Mark is isKill if it's there no other uses of the same virtual
2054 // register and it's not a two-address operand. IsKill will be
2055 // unset if reg is reused.
2056 if (!isTied
&& KilledMIRegs
.count(VirtReg
) == 0) {
2057 MI
.getOperand(i
).setIsKill();
2058 KilledMIRegs
.insert(VirtReg
);
2064 // Otherwise we have a situation where we have a two-address instruction
2065 // whose mod/ref operand needs to be reloaded. This reload is already
2066 // available in some register "PhysReg", but if we used PhysReg as the
2067 // operand to our 2-addr instruction, the instruction would modify
2068 // PhysReg. This isn't cool if something later uses PhysReg and expects
2069 // to get its initial value.
2071 // To avoid this problem, and to avoid doing a load right after a store,
2072 // we emit a copy from PhysReg into the designated register for this
2075 // This case also applies to an earlyclobber'd PhysReg.
2076 unsigned DesignatedReg
= VRM
->getPhys(VirtReg
);
2077 assert(DesignatedReg
&& "Must map virtreg to physreg!");
2079 // Note that, if we reused a register for a previous operand, the
2080 // register we want to reload into might not actually be
2081 // available. If this occurs, use the register indicated by the
2083 if (ReusedOperands
.hasReuses())
2084 DesignatedReg
= ReusedOperands
.
2085 GetRegForReload(VirtReg
, DesignatedReg
, &MI
, Spills
,
2086 MaybeDeadStores
, RegKills
, KillOps
, *VRM
);
2088 // If the mapped designated register is actually the physreg we have
2089 // incoming, we don't need to inserted a dead copy.
2090 if (DesignatedReg
== PhysReg
) {
2091 // If this stack slot value is already available, reuse it!
2092 if (ReuseSlot
> VirtRegMap::MAX_STACK_SLOT
)
2093 DEBUG(dbgs() << "Reusing RM#"
2094 << ReuseSlot
-VirtRegMap::MAX_STACK_SLOT
-1);
2096 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot
);
2097 DEBUG(dbgs() << " from physreg " << TRI
->getName(PhysReg
)
2098 << " for vreg" << VirtReg
2099 << " instead of reloading into same physreg.\n");
2100 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
2101 MI
.getOperand(i
).setReg(RReg
);
2102 MI
.getOperand(i
).setSubReg(0);
2103 ReusedOperands
.markClobbered(RReg
);
2108 MRI
->setPhysRegUsed(DesignatedReg
);
2109 ReusedOperands
.markClobbered(DesignatedReg
);
2111 // Back-schedule reloads and remats.
2112 MachineBasicBlock::iterator InsertLoc
=
2113 ComputeReloadLoc(&MI
, MBB
->begin(), PhysReg
, TRI
, DoReMat
,
2114 SSorRMId
, TII
, *MBB
->getParent());
2115 MachineInstr
*CopyMI
= BuildMI(*MBB
, InsertLoc
, MI
.getDebugLoc(),
2116 TII
->get(TargetOpcode::COPY
),
2117 DesignatedReg
).addReg(PhysReg
);
2118 CopyMI
->setAsmPrinterFlag(MachineInstr::ReloadReuse
);
2119 UpdateKills(*CopyMI
, TRI
, RegKills
, KillOps
);
2121 // This invalidates DesignatedReg.
2122 Spills
.ClobberPhysReg(DesignatedReg
);
2124 Spills
.addAvailable(ReuseSlot
, DesignatedReg
);
2126 SubIdx
? TRI
->getSubReg(DesignatedReg
, SubIdx
) : DesignatedReg
;
2127 MI
.getOperand(i
).setReg(RReg
);
2128 MI
.getOperand(i
).setSubReg(0);
2129 DEBUG(dbgs() << '\t' << *prior(InsertLoc
));
2134 // Otherwise, reload it and remember that we have it.
2135 PhysReg
= VRM
->getPhys(VirtReg
);
2136 assert(PhysReg
&& "Must map virtreg to physreg!");
2138 // Note that, if we reused a register for a previous operand, the
2139 // register we want to reload into might not actually be
2140 // available. If this occurs, use the register indicated by the
2142 if (ReusedOperands
.hasReuses())
2143 PhysReg
= ReusedOperands
.GetRegForReload(VirtReg
, PhysReg
, &MI
,
2144 Spills
, MaybeDeadStores
, RegKills
, KillOps
, *VRM
);
2146 MRI
->setPhysRegUsed(PhysReg
);
2147 ReusedOperands
.markClobbered(PhysReg
);
2151 // Back-schedule reloads and remats.
2152 MachineBasicBlock::iterator InsertLoc
=
2153 ComputeReloadLoc(MI
, MBB
->begin(), PhysReg
, TRI
, DoReMat
,
2154 SSorRMId
, TII
, *MBB
->getParent());
2157 ReMaterialize(*MBB
, InsertLoc
, PhysReg
, VirtReg
, TII
, TRI
, *VRM
);
2159 const TargetRegisterClass
* RC
= MRI
->getRegClass(VirtReg
);
2160 TII
->loadRegFromStackSlot(*MBB
, InsertLoc
, PhysReg
, SSorRMId
, RC
,TRI
);
2161 MachineInstr
*LoadMI
= prior(InsertLoc
);
2162 VRM
->addSpillSlotUse(SSorRMId
, LoadMI
);
2164 DistanceMap
.insert(std::make_pair(LoadMI
, DistanceMap
.size()));
2166 // This invalidates PhysReg.
2167 Spills
.ClobberPhysReg(PhysReg
);
2169 // Any stores to this stack slot are not dead anymore.
2171 MaybeDeadStores
[SSorRMId
] = NULL
;
2172 Spills
.addAvailable(SSorRMId
, PhysReg
);
2173 // Assumes this is the last use. IsKill will be unset if reg is reused
2174 // unless it's a two-address operand.
2175 if (!MI
.isRegTiedToDefOperand(i
) &&
2176 KilledMIRegs
.count(VirtReg
) == 0) {
2177 MI
.getOperand(i
).setIsKill();
2178 KilledMIRegs
.insert(VirtReg
);
2181 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
2182 DEBUG(dbgs() << '\t' << *prior(InsertLoc
));
2184 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
2185 MI
.getOperand(i
).setReg(RReg
);
2186 MI
.getOperand(i
).setSubReg(0);
2189 // Ok - now we can remove stores that have been confirmed dead.
2190 for (unsigned j
= 0, e
= PotentialDeadStoreSlots
.size(); j
!= e
; ++j
) {
2191 // This was the last use and the spilled value is still available
2192 // for reuse. That means the spill was unnecessary!
2193 int PDSSlot
= PotentialDeadStoreSlots
[j
];
2194 MachineInstr
* DeadStore
= MaybeDeadStores
[PDSSlot
];
2196 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore
);
2197 InvalidateKills(*DeadStore
, TRI
, RegKills
, KillOps
);
2198 VRM
->RemoveMachineInstrFromMaps(DeadStore
);
2199 MBB
->erase(DeadStore
);
2200 MaybeDeadStores
[PDSSlot
] = NULL
;
2207 /// rewriteMBB - Keep track of which spills are available even after the
2208 /// register allocator is done with them. If possible, avoid reloading vregs.
2210 LocalRewriter::RewriteMBB(LiveIntervals
*LIs
,
2211 AvailableSpills
&Spills
, BitVector
&RegKills
,
2212 std::vector
<MachineOperand
*> &KillOps
) {
2214 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
2215 << MBB
->getName() << "':\n");
2217 MachineFunction
&MF
= *MBB
->getParent();
2219 // MaybeDeadStores - When we need to write a value back into a stack slot,
2220 // keep track of the inserted store. If the stack slot value is never read
2221 // (because the value was used from some available register, for example), and
2222 // subsequently stored to, the original store is dead. This map keeps track
2223 // of inserted stores that are not used. If we see a subsequent store to the
2224 // same stack slot, the original store is deleted.
2225 std::vector
<MachineInstr
*> MaybeDeadStores
;
2226 MaybeDeadStores
.resize(MF
.getFrameInfo()->getObjectIndexEnd(), NULL
);
2228 // ReMatDefs - These are rematerializable def MIs which are not deleted.
2229 SmallSet
<MachineInstr
*, 4> ReMatDefs
;
2231 // Keep track of the registers we have already spilled in case there are
2232 // multiple defs of the same register in MI.
2233 SmallSet
<unsigned, 8> SpilledMIRegs
;
2237 KillOps
.resize(TRI
->getNumRegs(), NULL
);
2239 DistanceMap
.clear();
2240 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2242 MachineBasicBlock::iterator NextMII
= llvm::next(MII
);
2244 if (OptimizeByUnfold(MII
, MaybeDeadStores
, Spills
, RegKills
, KillOps
))
2245 NextMII
= llvm::next(MII
);
2247 if (InsertEmergencySpills(MII
))
2248 NextMII
= llvm::next(MII
);
2250 InsertRestores(MII
, Spills
, RegKills
, KillOps
);
2252 if (InsertSpills(MII
))
2253 NextMII
= llvm::next(MII
);
2255 bool Erased
= false;
2256 bool BackTracked
= false;
2257 MachineInstr
&MI
= *MII
;
2259 // Remember DbgValue's which reference stack slots.
2260 if (MI
.isDebugValue() && MI
.getOperand(0).isFI())
2261 Slot2DbgValues
[MI
.getOperand(0).getIndex()].push_back(&MI
);
2263 /// ReusedOperands - Keep track of operand reuse in case we need to undo
2265 ReuseInfo
ReusedOperands(MI
, TRI
);
2267 ProcessUses(MI
, Spills
, MaybeDeadStores
, RegKills
, ReusedOperands
, KillOps
);
2269 DEBUG(dbgs() << '\t' << MI
);
2272 // If we have folded references to memory operands, make sure we clear all
2273 // physical registers that may contain the value of the spilled virtual
2276 // Copy the folded virts to a small vector, we may change MI2VirtMap.
2277 SmallVector
<std::pair
<unsigned, VirtRegMap::ModRef
>, 4> FoldedVirts
;
2279 for (std::pair
<VirtRegMap::MI2VirtMapTy::const_iterator
,
2280 VirtRegMap::MI2VirtMapTy::const_iterator
> FVRange
=
2281 VRM
->getFoldedVirts(&MI
);
2282 FVRange
.first
!= FVRange
.second
; ++FVRange
.first
)
2283 FoldedVirts
.push_back(FVRange
.first
->second
);
2285 SmallSet
<int, 2> FoldedSS
;
2286 for (unsigned FVI
= 0, FVE
= FoldedVirts
.size(); FVI
!= FVE
; ++FVI
) {
2287 unsigned VirtReg
= FoldedVirts
[FVI
].first
;
2288 VirtRegMap::ModRef MR
= FoldedVirts
[FVI
].second
;
2289 DEBUG(dbgs() << "Folded vreg: " << VirtReg
<< " MR: " << MR
);
2291 int SS
= VRM
->getStackSlot(VirtReg
);
2292 if (SS
== VirtRegMap::NO_STACK_SLOT
)
2294 FoldedSS
.insert(SS
);
2295 DEBUG(dbgs() << " - StackSlot: " << SS
<< "\n");
2297 // If this folded instruction is just a use, check to see if it's a
2298 // straight load from the virt reg slot.
2299 if ((MR
& VirtRegMap::isRef
) && !(MR
& VirtRegMap::isMod
)) {
2301 unsigned DestReg
= TII
->isLoadFromStackSlot(&MI
, FrameIdx
);
2302 if (DestReg
&& FrameIdx
== SS
) {
2303 // If this spill slot is available, turn it into a copy (or nothing)
2304 // instead of leaving it as a load!
2305 if (unsigned InReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
)) {
2306 DEBUG(dbgs() << "Promoted Load To Copy: " << MI
);
2307 if (DestReg
!= InReg
) {
2308 MachineOperand
*DefMO
= MI
.findRegisterDefOperand(DestReg
);
2309 MachineInstr
*CopyMI
= BuildMI(*MBB
, &MI
, MI
.getDebugLoc(),
2310 TII
->get(TargetOpcode::COPY
))
2311 .addReg(DestReg
, RegState::Define
, DefMO
->getSubReg())
2312 .addReg(InReg
, RegState::Kill
);
2313 // Revisit the copy so we make sure to notice the effects of the
2314 // operation on the destreg (either needing to RA it if it's
2315 // virtual or needing to clobber any values if it's physical).
2317 NextMII
->setAsmPrinterFlag(MachineInstr::ReloadReuse
);
2320 DEBUG(dbgs() << "Removing now-noop copy: " << MI
);
2321 // Unset last kill since it's being reused.
2322 InvalidateKill(InReg
, TRI
, RegKills
, KillOps
);
2323 Spills
.disallowClobberPhysReg(InReg
);
2326 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2327 VRM
->RemoveMachineInstrFromMaps(&MI
);
2330 goto ProcessNextInst
;
2333 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
2334 SmallVector
<MachineInstr
*, 4> NewMIs
;
2336 TII
->unfoldMemoryOperand(MF
, &MI
, PhysReg
, false, false, NewMIs
)){
2337 MBB
->insert(MII
, NewMIs
[0]);
2338 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2339 VRM
->RemoveMachineInstrFromMaps(&MI
);
2342 --NextMII
; // backtrack to the unfolded instruction.
2344 goto ProcessNextInst
;
2349 // If this reference is not a use, any previous store is now dead.
2350 // Otherwise, the store to this stack slot is not dead anymore.
2351 MachineInstr
* DeadStore
= MaybeDeadStores
[SS
];
2353 bool isDead
= !(MR
& VirtRegMap::isRef
);
2354 MachineInstr
*NewStore
= NULL
;
2355 if (MR
& VirtRegMap::isModRef
) {
2356 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
2357 SmallVector
<MachineInstr
*, 4> NewMIs
;
2358 // We can reuse this physreg as long as we are allowed to clobber
2359 // the value and there isn't an earlier def that has already clobbered
2362 !ReusedOperands
.isClobbered(PhysReg
) &&
2363 Spills
.canClobberPhysReg(PhysReg
) &&
2364 !TII
->isStoreToStackSlot(&MI
, SS
)) { // Not profitable!
2365 MachineOperand
*KillOpnd
=
2366 DeadStore
->findRegisterUseOperand(PhysReg
, true);
2367 // Note, if the store is storing a sub-register, it's possible the
2368 // super-register is needed below.
2369 if (KillOpnd
&& !KillOpnd
->getSubReg() &&
2370 TII
->unfoldMemoryOperand(MF
, &MI
, PhysReg
, false, true,NewMIs
)){
2371 MBB
->insert(MII
, NewMIs
[0]);
2372 NewStore
= NewMIs
[1];
2373 MBB
->insert(MII
, NewStore
);
2374 VRM
->addSpillSlotUse(SS
, NewStore
);
2375 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2376 VRM
->RemoveMachineInstrFromMaps(&MI
);
2380 --NextMII
; // backtrack to the unfolded instruction.
2388 if (isDead
) { // Previous store is dead.
2389 // If we get here, the store is dead, nuke it now.
2390 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore
);
2391 InvalidateKills(*DeadStore
, TRI
, RegKills
, KillOps
);
2392 VRM
->RemoveMachineInstrFromMaps(DeadStore
);
2393 MBB
->erase(DeadStore
);
2398 MaybeDeadStores
[SS
] = NULL
;
2400 // Treat this store as a spill merged into a copy. That makes the
2401 // stack slot value available.
2402 VRM
->virtFolded(VirtReg
, NewStore
, VirtRegMap::isMod
);
2403 goto ProcessNextInst
;
2407 // If the spill slot value is available, and this is a new definition of
2408 // the value, the value is not available anymore.
2409 if (MR
& VirtRegMap::isMod
) {
2410 // Notice that the value in this stack slot has been modified.
2411 Spills
.ModifyStackSlotOrReMat(SS
);
2413 // If this is *just* a mod of the value, check to see if this is just a
2414 // store to the spill slot (i.e. the spill got merged into the copy). If
2415 // so, realize that the vreg is available now, and add the store to the
2416 // MaybeDeadStore info.
2418 if (!(MR
& VirtRegMap::isRef
)) {
2419 if (unsigned SrcReg
= TII
->isStoreToStackSlot(&MI
, StackSlot
)) {
2420 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg
) &&
2421 "Src hasn't been allocated yet?");
2423 if (CommuteToFoldReload(MII
, VirtReg
, SrcReg
, StackSlot
,
2424 Spills
, RegKills
, KillOps
, TRI
)) {
2425 NextMII
= llvm::next(MII
);
2427 goto ProcessNextInst
;
2430 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2431 // this as a potentially dead store in case there is a subsequent
2432 // store into the stack slot without a read from it.
2433 MaybeDeadStores
[StackSlot
] = &MI
;
2435 // If the stack slot value was previously available in some other
2436 // register, change it now. Otherwise, make the register
2437 // available in PhysReg.
2438 Spills
.addAvailable(StackSlot
, SrcReg
, MI
.killsRegister(SrcReg
));
2444 // Process all of the spilled defs.
2445 SpilledMIRegs
.clear();
2446 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
2447 MachineOperand
&MO
= MI
.getOperand(i
);
2448 if (!(MO
.isReg() && MO
.getReg() && MO
.isDef()))
2451 unsigned VirtReg
= MO
.getReg();
2452 if (!TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
2453 // Check to see if this is a noop copy. If so, eliminate the
2454 // instruction before considering the dest reg to be changed.
2455 // Also check if it's copying from an "undef", if so, we can't
2456 // eliminate this or else the undef marker is lost and it will
2457 // confuses the scavenger. This is extremely rare.
2458 if (MI
.isIdentityCopy() && !MI
.getOperand(1).isUndef() &&
2459 MI
.getNumOperands() == 2) {
2461 DEBUG(dbgs() << "Removing now-noop copy: " << MI
);
2462 SmallVector
<unsigned, 2> KillRegs
;
2463 InvalidateKills(MI
, TRI
, RegKills
, KillOps
, &KillRegs
);
2464 if (MO
.isDead() && !KillRegs
.empty()) {
2465 // Source register or an implicit super/sub-register use is killed.
2466 assert(TRI
->regsOverlap(KillRegs
[0], MI
.getOperand(0).getReg()));
2467 // Last def is now dead.
2468 TransferDeadness(MI
.getOperand(1).getReg(), RegKills
, KillOps
);
2470 VRM
->RemoveMachineInstrFromMaps(&MI
);
2473 Spills
.disallowClobberPhysReg(VirtReg
);
2474 goto ProcessNextInst
;
2477 // If it's not a no-op copy, it clobbers the value in the destreg.
2478 Spills
.ClobberPhysReg(VirtReg
);
2479 ReusedOperands
.markClobbered(VirtReg
);
2481 // Check to see if this instruction is a load from a stack slot into
2482 // a register. If so, this provides the stack slot value in the reg.
2484 if (unsigned DestReg
= TII
->isLoadFromStackSlot(&MI
, FrameIdx
)) {
2485 assert(DestReg
== VirtReg
&& "Unknown load situation!");
2487 // If it is a folded reference, then it's not safe to clobber.
2488 bool Folded
= FoldedSS
.count(FrameIdx
);
2489 // Otherwise, if it wasn't available, remember that it is now!
2490 Spills
.addAvailable(FrameIdx
, DestReg
, !Folded
);
2491 goto ProcessNextInst
;
2497 unsigned SubIdx
= MO
.getSubReg();
2498 bool DoReMat
= VRM
->isReMaterialized(VirtReg
);
2500 ReMatDefs
.insert(&MI
);
2502 // The only vregs left are stack slot definitions.
2503 int StackSlot
= VRM
->getStackSlot(VirtReg
);
2504 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
);
2506 // If this def is part of a two-address operand, make sure to execute
2507 // the store from the correct physical register.
2510 if (MI
.isRegTiedToUseOperand(i
, &TiedOp
)) {
2511 PhysReg
= MI
.getOperand(TiedOp
).getReg();
2513 unsigned SuperReg
= findSuperReg(RC
, PhysReg
, SubIdx
, TRI
);
2514 assert(SuperReg
&& TRI
->getSubReg(SuperReg
, SubIdx
) == PhysReg
&&
2515 "Can't find corresponding super-register!");
2519 PhysReg
= VRM
->getPhys(VirtReg
);
2520 if (ReusedOperands
.isClobbered(PhysReg
)) {
2521 // Another def has taken the assigned physreg. It must have been a
2522 // use&def which got it due to reuse. Undo the reuse!
2523 PhysReg
= ReusedOperands
.GetRegForReload(VirtReg
, PhysReg
, &MI
,
2524 Spills
, MaybeDeadStores
, RegKills
, KillOps
, *VRM
);
2528 assert(PhysReg
&& "VR not assigned a physical register?");
2529 MRI
->setPhysRegUsed(PhysReg
);
2530 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
2531 ReusedOperands
.markClobbered(RReg
);
2532 MI
.getOperand(i
).setReg(RReg
);
2533 MI
.getOperand(i
).setSubReg(0);
2535 if (!MO
.isDead() && SpilledMIRegs
.insert(VirtReg
)) {
2536 MachineInstr
*&LastStore
= MaybeDeadStores
[StackSlot
];
2537 SpillRegToStackSlot(MII
, -1, PhysReg
, StackSlot
, RC
, true,
2538 LastStore
, Spills
, ReMatDefs
, RegKills
, KillOps
);
2539 NextMII
= llvm::next(MII
);
2541 // Check to see if this is a noop copy. If so, eliminate the
2542 // instruction before considering the dest reg to be changed.
2543 if (MI
.isIdentityCopy()) {
2545 DEBUG(dbgs() << "Removing now-noop copy: " << MI
);
2546 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2547 VRM
->RemoveMachineInstrFromMaps(&MI
);
2550 UpdateKills(*LastStore
, TRI
, RegKills
, KillOps
);
2551 goto ProcessNextInst
;
2556 // Delete dead instructions without side effects.
2557 if (!Erased
&& !BackTracked
&& isSafeToDelete(MI
)) {
2558 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2559 VRM
->RemoveMachineInstrFromMaps(&MI
);
2564 DistanceMap
.insert(std::make_pair(&MI
, DistanceMap
.size()));
2565 if (!Erased
&& !BackTracked
) {
2566 for (MachineBasicBlock::iterator II
= &MI
; II
!= NextMII
; ++II
)
2567 UpdateKills(*II
, TRI
, RegKills
, KillOps
);
2574 llvm::VirtRegRewriter
* llvm::createVirtRegRewriter() {
2575 switch (RewriterOpt
) {
2576 default: llvm_unreachable("Unreachable!");
2578 return new LocalRewriter();
2580 return new TrivialRewriter();