zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
blob57d12606bc779dd5c237fbf40a93c54225805f04
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
20 //===----------------------------------------------------------------------===//
22 #include "Interpreter.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Module.h"
25 #include "llvm/Config/config.h" // Detect libffi
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/System/DynamicLibrary.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/System/Mutex.h"
31 #include <csignal>
32 #include <cstdio>
33 #include <map>
34 #include <cmath>
35 #include <cstring>
37 #ifdef HAVE_FFI_CALL
38 #ifdef HAVE_FFI_H
39 #include <ffi.h>
40 #define USE_LIBFFI
41 #elif HAVE_FFI_FFI_H
42 #include <ffi/ffi.h>
43 #define USE_LIBFFI
44 #endif
45 #endif
47 using namespace llvm;
49 static ManagedStatic<sys::Mutex> FunctionsLock;
51 typedef GenericValue (*ExFunc)(const FunctionType *,
52 const std::vector<GenericValue> &);
53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
54 static std::map<std::string, ExFunc> FuncNames;
56 #ifdef USE_LIBFFI
57 typedef void (*RawFunc)();
58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
59 #endif
61 static Interpreter *TheInterpreter;
63 static char getTypeID(const Type *Ty) {
64 switch (Ty->getTypeID()) {
65 case Type::VoidTyID: return 'V';
66 case Type::IntegerTyID:
67 switch (cast<IntegerType>(Ty)->getBitWidth()) {
68 case 1: return 'o';
69 case 8: return 'B';
70 case 16: return 'S';
71 case 32: return 'I';
72 case 64: return 'L';
73 default: return 'N';
75 case Type::FloatTyID: return 'F';
76 case Type::DoubleTyID: return 'D';
77 case Type::PointerTyID: return 'P';
78 case Type::FunctionTyID:return 'M';
79 case Type::StructTyID: return 'T';
80 case Type::ArrayTyID: return 'A';
81 case Type::OpaqueTyID: return 'O';
82 default: return 'U';
86 // Try to find address of external function given a Function object.
87 // Please note, that interpreter doesn't know how to assemble a
88 // real call in general case (this is JIT job), that's why it assumes,
89 // that all external functions has the same (and pretty "general") signature.
90 // The typical example of such functions are "lle_X_" ones.
91 static ExFunc lookupFunction(const Function *F) {
92 // Function not found, look it up... start by figuring out what the
93 // composite function name should be.
94 std::string ExtName = "lle_";
95 const FunctionType *FT = F->getFunctionType();
96 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
97 ExtName += getTypeID(FT->getContainedType(i));
98 ExtName + "_" + F->getNameStr();
100 sys::ScopedLock Writer(*FunctionsLock);
101 ExFunc FnPtr = FuncNames[ExtName];
102 if (FnPtr == 0)
103 FnPtr = FuncNames["lle_X_" + F->getNameStr()];
104 if (FnPtr == 0) // Try calling a generic function... if it exists...
105 FnPtr = (ExFunc)(intptr_t)
106 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr());
107 if (FnPtr != 0)
108 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
109 return FnPtr;
112 #ifdef USE_LIBFFI
113 static ffi_type *ffiTypeFor(const Type *Ty) {
114 switch (Ty->getTypeID()) {
115 case Type::VoidTyID: return &ffi_type_void;
116 case Type::IntegerTyID:
117 switch (cast<IntegerType>(Ty)->getBitWidth()) {
118 case 8: return &ffi_type_sint8;
119 case 16: return &ffi_type_sint16;
120 case 32: return &ffi_type_sint32;
121 case 64: return &ffi_type_sint64;
123 case Type::FloatTyID: return &ffi_type_float;
124 case Type::DoubleTyID: return &ffi_type_double;
125 case Type::PointerTyID: return &ffi_type_pointer;
126 default: break;
128 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
129 report_fatal_error("Type could not be mapped for use with libffi.");
130 return NULL;
133 static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
134 void *ArgDataPtr) {
135 switch (Ty->getTypeID()) {
136 case Type::IntegerTyID:
137 switch (cast<IntegerType>(Ty)->getBitWidth()) {
138 case 8: {
139 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
140 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
141 return ArgDataPtr;
143 case 16: {
144 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
145 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
146 return ArgDataPtr;
148 case 32: {
149 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
150 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
151 return ArgDataPtr;
153 case 64: {
154 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
155 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
156 return ArgDataPtr;
159 case Type::FloatTyID: {
160 float *FloatPtr = (float *) ArgDataPtr;
161 *FloatPtr = AV.FloatVal;
162 return ArgDataPtr;
164 case Type::DoubleTyID: {
165 double *DoublePtr = (double *) ArgDataPtr;
166 *DoublePtr = AV.DoubleVal;
167 return ArgDataPtr;
169 case Type::PointerTyID: {
170 void **PtrPtr = (void **) ArgDataPtr;
171 *PtrPtr = GVTOP(AV);
172 return ArgDataPtr;
174 default: break;
176 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
177 report_fatal_error("Type value could not be mapped for use with libffi.");
178 return NULL;
181 static bool ffiInvoke(RawFunc Fn, Function *F,
182 const std::vector<GenericValue> &ArgVals,
183 const TargetData *TD, GenericValue &Result) {
184 ffi_cif cif;
185 const FunctionType *FTy = F->getFunctionType();
186 const unsigned NumArgs = F->arg_size();
188 // TODO: We don't have type information about the remaining arguments, because
189 // this information is never passed into ExecutionEngine::runFunction().
190 if (ArgVals.size() > NumArgs && F->isVarArg()) {
191 report_fatal_error("Calling external var arg function '" + F->getName()
192 + "' is not supported by the Interpreter.");
195 unsigned ArgBytes = 0;
197 std::vector<ffi_type*> args(NumArgs);
198 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
199 A != E; ++A) {
200 const unsigned ArgNo = A->getArgNo();
201 const Type *ArgTy = FTy->getParamType(ArgNo);
202 args[ArgNo] = ffiTypeFor(ArgTy);
203 ArgBytes += TD->getTypeStoreSize(ArgTy);
206 SmallVector<uint8_t, 128> ArgData;
207 ArgData.resize(ArgBytes);
208 uint8_t *ArgDataPtr = ArgData.data();
209 SmallVector<void*, 16> values(NumArgs);
210 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
211 A != E; ++A) {
212 const unsigned ArgNo = A->getArgNo();
213 const Type *ArgTy = FTy->getParamType(ArgNo);
214 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
215 ArgDataPtr += TD->getTypeStoreSize(ArgTy);
218 const Type *RetTy = FTy->getReturnType();
219 ffi_type *rtype = ffiTypeFor(RetTy);
221 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
222 SmallVector<uint8_t, 128> ret;
223 if (RetTy->getTypeID() != Type::VoidTyID)
224 ret.resize(TD->getTypeStoreSize(RetTy));
225 ffi_call(&cif, Fn, ret.data(), values.data());
226 switch (RetTy->getTypeID()) {
227 case Type::IntegerTyID:
228 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
229 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
230 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
231 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
232 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
234 break;
235 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
236 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
237 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
238 default: break;
240 return true;
243 return false;
245 #endif // USE_LIBFFI
247 GenericValue Interpreter::callExternalFunction(Function *F,
248 const std::vector<GenericValue> &ArgVals) {
249 TheInterpreter = this;
251 FunctionsLock->acquire();
253 // Do a lookup to see if the function is in our cache... this should just be a
254 // deferred annotation!
255 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
256 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
257 : FI->second) {
258 FunctionsLock->release();
259 return Fn(F->getFunctionType(), ArgVals);
262 #ifdef USE_LIBFFI
263 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
264 RawFunc RawFn;
265 if (RF == RawFunctions->end()) {
266 RawFn = (RawFunc)(intptr_t)
267 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
268 if (!RawFn)
269 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
270 if (RawFn != 0)
271 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
272 } else {
273 RawFn = RF->second;
276 FunctionsLock->release();
278 GenericValue Result;
279 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
280 return Result;
281 #endif // USE_LIBFFI
283 if (F->getName() == "__main")
284 errs() << "Tried to execute an unknown external function: "
285 << F->getType()->getDescription() << " __main\n";
286 else
287 report_fatal_error("Tried to execute an unknown external function: " +
288 F->getType()->getDescription() + " " +F->getName());
289 #ifndef USE_LIBFFI
290 errs() << "Recompiling LLVM with --enable-libffi might help.\n";
291 #endif
292 return GenericValue();
296 //===----------------------------------------------------------------------===//
297 // Functions "exported" to the running application...
300 // Visual Studio warns about returning GenericValue in extern "C" linkage
301 #ifdef _MSC_VER
302 #pragma warning(disable : 4190)
303 #endif
305 extern "C" { // Don't add C++ manglings to llvm mangling :)
307 // void atexit(Function*)
308 GenericValue lle_X_atexit(const FunctionType *FT,
309 const std::vector<GenericValue> &Args) {
310 assert(Args.size() == 1);
311 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
312 GenericValue GV;
313 GV.IntVal = 0;
314 return GV;
317 // void exit(int)
318 GenericValue lle_X_exit(const FunctionType *FT,
319 const std::vector<GenericValue> &Args) {
320 TheInterpreter->exitCalled(Args[0]);
321 return GenericValue();
324 // void abort(void)
325 GenericValue lle_X_abort(const FunctionType *FT,
326 const std::vector<GenericValue> &Args) {
327 //FIXME: should we report or raise here?
328 //report_fatal_error("Interpreted program raised SIGABRT");
329 raise (SIGABRT);
330 return GenericValue();
333 // int sprintf(char *, const char *, ...) - a very rough implementation to make
334 // output useful.
335 GenericValue lle_X_sprintf(const FunctionType *FT,
336 const std::vector<GenericValue> &Args) {
337 char *OutputBuffer = (char *)GVTOP(Args[0]);
338 const char *FmtStr = (const char *)GVTOP(Args[1]);
339 unsigned ArgNo = 2;
341 // printf should return # chars printed. This is completely incorrect, but
342 // close enough for now.
343 GenericValue GV;
344 GV.IntVal = APInt(32, strlen(FmtStr));
345 while (1) {
346 switch (*FmtStr) {
347 case 0: return GV; // Null terminator...
348 default: // Normal nonspecial character
349 sprintf(OutputBuffer++, "%c", *FmtStr++);
350 break;
351 case '\\': { // Handle escape codes
352 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
353 FmtStr += 2; OutputBuffer += 2;
354 break;
356 case '%': { // Handle format specifiers
357 char FmtBuf[100] = "", Buffer[1000] = "";
358 char *FB = FmtBuf;
359 *FB++ = *FmtStr++;
360 char Last = *FB++ = *FmtStr++;
361 unsigned HowLong = 0;
362 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
363 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
364 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
365 Last != 'p' && Last != 's' && Last != '%') {
366 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
367 Last = *FB++ = *FmtStr++;
369 *FB = 0;
371 switch (Last) {
372 case '%':
373 memcpy(Buffer, "%", 2); break;
374 case 'c':
375 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
376 break;
377 case 'd': case 'i':
378 case 'u': case 'o':
379 case 'x': case 'X':
380 if (HowLong >= 1) {
381 if (HowLong == 1 &&
382 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
383 sizeof(long) < sizeof(int64_t)) {
384 // Make sure we use %lld with a 64 bit argument because we might be
385 // compiling LLI on a 32 bit compiler.
386 unsigned Size = strlen(FmtBuf);
387 FmtBuf[Size] = FmtBuf[Size-1];
388 FmtBuf[Size+1] = 0;
389 FmtBuf[Size-1] = 'l';
391 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
392 } else
393 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
394 break;
395 case 'e': case 'E': case 'g': case 'G': case 'f':
396 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
397 case 'p':
398 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
399 case 's':
400 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
401 default:
402 errs() << "<unknown printf code '" << *FmtStr << "'!>";
403 ArgNo++; break;
405 size_t Len = strlen(Buffer);
406 memcpy(OutputBuffer, Buffer, Len + 1);
407 OutputBuffer += Len;
409 break;
412 return GV;
415 // int printf(const char *, ...) - a very rough implementation to make output
416 // useful.
417 GenericValue lle_X_printf(const FunctionType *FT,
418 const std::vector<GenericValue> &Args) {
419 char Buffer[10000];
420 std::vector<GenericValue> NewArgs;
421 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
422 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
423 GenericValue GV = lle_X_sprintf(FT, NewArgs);
424 outs() << Buffer;
425 return GV;
428 // int sscanf(const char *format, ...);
429 GenericValue lle_X_sscanf(const FunctionType *FT,
430 const std::vector<GenericValue> &args) {
431 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
433 char *Args[10];
434 for (unsigned i = 0; i < args.size(); ++i)
435 Args[i] = (char*)GVTOP(args[i]);
437 GenericValue GV;
438 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
439 Args[5], Args[6], Args[7], Args[8], Args[9]));
440 return GV;
443 // int scanf(const char *format, ...);
444 GenericValue lle_X_scanf(const FunctionType *FT,
445 const std::vector<GenericValue> &args) {
446 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
448 char *Args[10];
449 for (unsigned i = 0; i < args.size(); ++i)
450 Args[i] = (char*)GVTOP(args[i]);
452 GenericValue GV;
453 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
454 Args[5], Args[6], Args[7], Args[8], Args[9]));
455 return GV;
458 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
459 // output useful.
460 GenericValue lle_X_fprintf(const FunctionType *FT,
461 const std::vector<GenericValue> &Args) {
462 assert(Args.size() >= 2);
463 char Buffer[10000];
464 std::vector<GenericValue> NewArgs;
465 NewArgs.push_back(PTOGV(Buffer));
466 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
467 GenericValue GV = lle_X_sprintf(FT, NewArgs);
469 fputs(Buffer, (FILE *) GVTOP(Args[0]));
470 return GV;
473 } // End extern "C"
475 // Done with externals; turn the warning back on
476 #ifdef _MSC_VER
477 #pragma warning(default: 4190)
478 #endif
481 void Interpreter::initializeExternalFunctions() {
482 sys::ScopedLock Writer(*FunctionsLock);
483 FuncNames["lle_X_atexit"] = lle_X_atexit;
484 FuncNames["lle_X_exit"] = lle_X_exit;
485 FuncNames["lle_X_abort"] = lle_X_abort;
487 FuncNames["lle_X_printf"] = lle_X_printf;
488 FuncNames["lle_X_sprintf"] = lle_X_sprintf;
489 FuncNames["lle_X_sscanf"] = lle_X_sscanf;
490 FuncNames["lle_X_scanf"] = lle_X_scanf;
491 FuncNames["lle_X_fprintf"] = lle_X_fprintf;