zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blob1105bcc0437f28ad629da733aaecfb0d27050bab
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/JITCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetFrameInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
34 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
37 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
38 JITCodeEmitter& jce,
39 unsigned char* StartFunction,
40 unsigned char* EndFunction,
41 unsigned char* &EHFramePtr) {
42 assert(MMI && "MachineModuleInfo not registered!");
44 const TargetMachine& TM = F.getTarget();
45 TD = TM.getTargetData();
46 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
47 RI = TM.getRegisterInfo();
48 JCE = &jce;
50 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
51 EndFunction);
53 unsigned char* Result = 0;
55 const std::vector<const Function *> Personalities = MMI->getPersonalities();
56 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
58 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
59 StartFunction, EndFunction, ExceptionTable);
61 return Result;
65 void
66 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
67 const std::vector<MachineMove> &Moves) const {
68 unsigned PointerSize = TD->getPointerSize();
69 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
70 PointerSize : -PointerSize;
71 MCSymbol *BaseLabel = 0;
73 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
74 const MachineMove &Move = Moves[i];
75 MCSymbol *Label = Move.getLabel();
77 // Throw out move if the label is invalid.
78 if (Label && (*JCE->getLabelLocations())[Label] == 0)
79 continue;
81 intptr_t LabelPtr = 0;
82 if (Label) LabelPtr = JCE->getLabelAddress(Label);
84 const MachineLocation &Dst = Move.getDestination();
85 const MachineLocation &Src = Move.getSource();
87 // Advance row if new location.
88 if (BaseLabelPtr && Label && BaseLabel != Label) {
89 JCE->emitByte(dwarf::DW_CFA_advance_loc4);
90 JCE->emitInt32(LabelPtr - BaseLabelPtr);
92 BaseLabel = Label;
93 BaseLabelPtr = LabelPtr;
96 // If advancing cfa.
97 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
98 if (!Src.isReg()) {
99 if (Src.getReg() == MachineLocation::VirtualFP) {
100 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
101 } else {
102 JCE->emitByte(dwarf::DW_CFA_def_cfa);
103 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
106 JCE->emitULEB128Bytes(-Src.getOffset());
107 } else {
108 llvm_unreachable("Machine move not supported yet.");
110 } else if (Src.isReg() &&
111 Src.getReg() == MachineLocation::VirtualFP) {
112 if (Dst.isReg()) {
113 JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
114 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
115 } else {
116 llvm_unreachable("Machine move not supported yet.");
118 } else {
119 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
120 int Offset = Dst.getOffset() / stackGrowth;
122 if (Offset < 0) {
123 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
124 JCE->emitULEB128Bytes(Reg);
125 JCE->emitSLEB128Bytes(Offset);
126 } else if (Reg < 64) {
127 JCE->emitByte(dwarf::DW_CFA_offset + Reg);
128 JCE->emitULEB128Bytes(Offset);
129 } else {
130 JCE->emitByte(dwarf::DW_CFA_offset_extended);
131 JCE->emitULEB128Bytes(Reg);
132 JCE->emitULEB128Bytes(Offset);
138 /// SharedTypeIds - How many leading type ids two landing pads have in common.
139 static unsigned SharedTypeIds(const LandingPadInfo *L,
140 const LandingPadInfo *R) {
141 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
142 unsigned LSize = LIds.size(), RSize = RIds.size();
143 unsigned MinSize = LSize < RSize ? LSize : RSize;
144 unsigned Count = 0;
146 for (; Count != MinSize; ++Count)
147 if (LIds[Count] != RIds[Count])
148 return Count;
150 return Count;
154 /// PadLT - Order landing pads lexicographically by type id.
155 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
156 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
157 unsigned LSize = LIds.size(), RSize = RIds.size();
158 unsigned MinSize = LSize < RSize ? LSize : RSize;
160 for (unsigned i = 0; i != MinSize; ++i)
161 if (LIds[i] != RIds[i])
162 return LIds[i] < RIds[i];
164 return LSize < RSize;
167 namespace {
169 /// ActionEntry - Structure describing an entry in the actions table.
170 struct ActionEntry {
171 int ValueForTypeID; // The value to write - may not be equal to the type id.
172 int NextAction;
173 struct ActionEntry *Previous;
176 /// PadRange - Structure holding a try-range and the associated landing pad.
177 struct PadRange {
178 // The index of the landing pad.
179 unsigned PadIndex;
180 // The index of the begin and end labels in the landing pad's label lists.
181 unsigned RangeIndex;
184 typedef DenseMap<MCSymbol*, PadRange> RangeMapType;
186 /// CallSiteEntry - Structure describing an entry in the call-site table.
187 struct CallSiteEntry {
188 MCSymbol *BeginLabel; // zero indicates the start of the function.
189 MCSymbol *EndLabel; // zero indicates the end of the function.
190 MCSymbol *PadLabel; // zero indicates that there is no landing pad.
191 unsigned Action;
196 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
197 unsigned char* StartFunction,
198 unsigned char* EndFunction) const {
199 assert(MMI && "MachineModuleInfo not registered!");
201 // Map all labels and get rid of any dead landing pads.
202 MMI->TidyLandingPads(JCE->getLabelLocations());
204 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
205 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
206 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
207 if (PadInfos.empty()) return 0;
209 // Sort the landing pads in order of their type ids. This is used to fold
210 // duplicate actions.
211 SmallVector<const LandingPadInfo *, 64> LandingPads;
212 LandingPads.reserve(PadInfos.size());
213 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
214 LandingPads.push_back(&PadInfos[i]);
215 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
217 // Negative type ids index into FilterIds, positive type ids index into
218 // TypeInfos. The value written for a positive type id is just the type
219 // id itself. For a negative type id, however, the value written is the
220 // (negative) byte offset of the corresponding FilterIds entry. The byte
221 // offset is usually equal to the type id, because the FilterIds entries
222 // are written using a variable width encoding which outputs one byte per
223 // entry as long as the value written is not too large, but can differ.
224 // This kind of complication does not occur for positive type ids because
225 // type infos are output using a fixed width encoding.
226 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
227 SmallVector<int, 16> FilterOffsets;
228 FilterOffsets.reserve(FilterIds.size());
229 int Offset = -1;
230 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
231 E = FilterIds.end(); I != E; ++I) {
232 FilterOffsets.push_back(Offset);
233 Offset -= MCAsmInfo::getULEB128Size(*I);
236 // Compute the actions table and gather the first action index for each
237 // landing pad site.
238 SmallVector<ActionEntry, 32> Actions;
239 SmallVector<unsigned, 64> FirstActions;
240 FirstActions.reserve(LandingPads.size());
242 int FirstAction = 0;
243 unsigned SizeActions = 0;
244 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
245 const LandingPadInfo *LP = LandingPads[i];
246 const std::vector<int> &TypeIds = LP->TypeIds;
247 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
248 unsigned SizeSiteActions = 0;
250 if (NumShared < TypeIds.size()) {
251 unsigned SizeAction = 0;
252 ActionEntry *PrevAction = 0;
254 if (NumShared) {
255 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
256 assert(Actions.size());
257 PrevAction = &Actions.back();
258 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
259 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
260 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
261 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
262 SizeAction += -PrevAction->NextAction;
263 PrevAction = PrevAction->Previous;
267 // Compute the actions.
268 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
269 int TypeID = TypeIds[I];
270 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
271 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
272 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
274 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
275 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
276 SizeSiteActions += SizeAction;
278 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
279 Actions.push_back(Action);
281 PrevAction = &Actions.back();
284 // Record the first action of the landing pad site.
285 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
286 } // else identical - re-use previous FirstAction
288 FirstActions.push_back(FirstAction);
290 // Compute this sites contribution to size.
291 SizeActions += SizeSiteActions;
294 // Compute the call-site table. Entries must be ordered by address.
295 SmallVector<CallSiteEntry, 64> CallSites;
297 RangeMapType PadMap;
298 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
299 const LandingPadInfo *LandingPad = LandingPads[i];
300 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
301 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
302 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
303 PadRange P = { i, j };
304 PadMap[BeginLabel] = P;
308 bool MayThrow = false;
309 MCSymbol *LastLabel = 0;
310 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
311 I != E; ++I) {
312 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
313 MI != E; ++MI) {
314 if (!MI->isLabel()) {
315 MayThrow |= MI->getDesc().isCall();
316 continue;
319 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
320 assert(BeginLabel && "Invalid label!");
322 if (BeginLabel == LastLabel)
323 MayThrow = false;
325 RangeMapType::iterator L = PadMap.find(BeginLabel);
327 if (L == PadMap.end())
328 continue;
330 PadRange P = L->second;
331 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
333 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
334 "Inconsistent landing pad map!");
336 // If some instruction between the previous try-range and this one may
337 // throw, create a call-site entry with no landing pad for the region
338 // between the try-ranges.
339 if (MayThrow) {
340 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
341 CallSites.push_back(Site);
344 LastLabel = LandingPad->EndLabels[P.RangeIndex];
345 CallSiteEntry Site = {BeginLabel, LastLabel,
346 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
348 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
349 "Invalid landing pad!");
351 // Try to merge with the previous call-site.
352 if (CallSites.size()) {
353 CallSiteEntry &Prev = CallSites.back();
354 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
355 // Extend the range of the previous entry.
356 Prev.EndLabel = Site.EndLabel;
357 continue;
361 // Otherwise, create a new call-site.
362 CallSites.push_back(Site);
365 // If some instruction between the previous try-range and the end of the
366 // function may throw, create a call-site entry with no landing pad for the
367 // region following the try-range.
368 if (MayThrow) {
369 CallSiteEntry Site = {LastLabel, 0, 0, 0};
370 CallSites.push_back(Site);
373 // Final tallies.
374 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
375 sizeof(int32_t) + // Site length.
376 sizeof(int32_t)); // Landing pad.
377 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
378 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
380 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
382 unsigned TypeOffset = sizeof(int8_t) + // Call site format
383 // Call-site table length
384 MCAsmInfo::getULEB128Size(SizeSites) +
385 SizeSites + SizeActions + SizeTypes;
387 // Begin the exception table.
388 JCE->emitAlignmentWithFill(4, 0);
389 // Asm->EOL("Padding");
391 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
393 // Emit the header.
394 JCE->emitByte(dwarf::DW_EH_PE_omit);
395 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
396 JCE->emitByte(dwarf::DW_EH_PE_absptr);
397 // Asm->EOL("TType format (DW_EH_PE_absptr)");
398 JCE->emitULEB128Bytes(TypeOffset);
399 // Asm->EOL("TType base offset");
400 JCE->emitByte(dwarf::DW_EH_PE_udata4);
401 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
402 JCE->emitULEB128Bytes(SizeSites);
403 // Asm->EOL("Call-site table length");
405 // Emit the landing pad site information.
406 for (unsigned i = 0; i < CallSites.size(); ++i) {
407 CallSiteEntry &S = CallSites[i];
408 intptr_t BeginLabelPtr = 0;
409 intptr_t EndLabelPtr = 0;
411 if (!S.BeginLabel) {
412 BeginLabelPtr = (intptr_t)StartFunction;
413 JCE->emitInt32(0);
414 } else {
415 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
416 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
419 // Asm->EOL("Region start");
421 if (!S.EndLabel)
422 EndLabelPtr = (intptr_t)EndFunction;
423 else
424 EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
426 JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
427 //Asm->EOL("Region length");
429 if (!S.PadLabel) {
430 JCE->emitInt32(0);
431 } else {
432 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
433 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
435 // Asm->EOL("Landing pad");
437 JCE->emitULEB128Bytes(S.Action);
438 // Asm->EOL("Action");
441 // Emit the actions.
442 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
443 ActionEntry &Action = Actions[I];
445 JCE->emitSLEB128Bytes(Action.ValueForTypeID);
446 //Asm->EOL("TypeInfo index");
447 JCE->emitSLEB128Bytes(Action.NextAction);
448 //Asm->EOL("Next action");
451 // Emit the type ids.
452 for (unsigned M = TypeInfos.size(); M; --M) {
453 const GlobalVariable *GV = TypeInfos[M - 1];
455 if (GV) {
456 if (TD->getPointerSize() == sizeof(int32_t))
457 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
458 else
459 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
460 } else {
461 if (TD->getPointerSize() == sizeof(int32_t))
462 JCE->emitInt32(0);
463 else
464 JCE->emitInt64(0);
466 // Asm->EOL("TypeInfo");
469 // Emit the filter typeids.
470 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
471 unsigned TypeID = FilterIds[j];
472 JCE->emitULEB128Bytes(TypeID);
473 //Asm->EOL("Filter TypeInfo index");
476 JCE->emitAlignmentWithFill(4, 0);
478 return DwarfExceptionTable;
481 unsigned char*
482 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
483 unsigned PointerSize = TD->getPointerSize();
484 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
485 PointerSize : -PointerSize;
487 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
488 // EH Common Frame header
489 JCE->allocateSpace(4, 0);
490 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
491 JCE->emitInt32((int)0);
492 JCE->emitByte(dwarf::DW_CIE_VERSION);
493 JCE->emitString(Personality ? "zPLR" : "zR");
494 JCE->emitULEB128Bytes(1);
495 JCE->emitSLEB128Bytes(stackGrowth);
496 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
498 if (Personality) {
499 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
500 // function which size is PointerSize.
501 JCE->emitULEB128Bytes(3 + PointerSize);
503 // We set the encoding of the personality as direct encoding because we use
504 // the function pointer. The encoding is not relative because the current
505 // PC value may be bigger than the personality function pointer.
506 if (PointerSize == 4) {
507 JCE->emitByte(dwarf::DW_EH_PE_sdata4);
508 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
509 } else {
510 JCE->emitByte(dwarf::DW_EH_PE_sdata8);
511 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
514 // LSDA encoding: This must match the encoding used in EmitEHFrame ()
515 if (PointerSize == 4)
516 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
517 else
518 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
519 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
520 } else {
521 JCE->emitULEB128Bytes(1);
522 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
525 std::vector<MachineMove> Moves;
526 RI->getInitialFrameState(Moves);
527 EmitFrameMoves(0, Moves);
529 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
531 JCE->emitInt32At((uintptr_t*)StartCommonPtr,
532 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
533 FrameCommonBeginPtr));
535 return StartCommonPtr;
539 unsigned char*
540 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
541 unsigned char* StartCommonPtr,
542 unsigned char* StartFunction,
543 unsigned char* EndFunction,
544 unsigned char* ExceptionTable) const {
545 unsigned PointerSize = TD->getPointerSize();
547 // EH frame header.
548 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
549 JCE->allocateSpace(4, 0);
550 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
551 // FDE CIE Offset
552 JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
553 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
554 JCE->emitInt32(EndFunction - StartFunction);
556 // If there is a personality and landing pads then point to the language
557 // specific data area in the exception table.
558 if (Personality) {
559 JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
561 if (PointerSize == 4) {
562 if (!MMI->getLandingPads().empty())
563 JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
564 else
565 JCE->emitInt32((int)0);
566 } else {
567 if (!MMI->getLandingPads().empty())
568 JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
569 else
570 JCE->emitInt64((int)0);
572 } else {
573 JCE->emitULEB128Bytes(0);
576 // Indicate locations of function specific callee saved registers in
577 // frame.
578 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
580 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
582 // Indicate the size of the table
583 JCE->emitInt32At((uintptr_t*)StartEHPtr,
584 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
585 StartEHPtr));
587 // Double zeroes for the unwind runtime
588 if (PointerSize == 8) {
589 JCE->emitInt64(0);
590 JCE->emitInt64(0);
591 } else {
592 JCE->emitInt32(0);
593 JCE->emitInt32(0);
596 return StartEHPtr;