zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Support / APInt.cpp
blob88f9ac63f7e99e9ff9ac07aabd27e1d0be6d56df
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <cmath>
25 #include <limits>
26 #include <cstring>
27 #include <cstdlib>
28 using namespace llvm;
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(unsigned numWords) {
33 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(unsigned numWords) {
42 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49 unsigned r;
51 if (radix == 16) {
52 r = cdigit - '0';
53 if (r <= 9)
54 return r;
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
65 r = cdigit - '0';
66 if (r < radix)
67 return r;
69 return -1U;
73 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
74 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
76 if (isSigned && int64_t(val) < 0)
77 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
81 void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
87 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
88 : BitWidth(numBits), VAL(0) {
89 assert(BitWidth && "Bitwidth too small");
90 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words = std::min<unsigned>(numWords, getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
105 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
106 : BitWidth(numbits), VAL(0) {
107 assert(BitWidth && "Bitwidth too small");
108 fromString(numbits, Str, radix);
111 APInt& APInt::AssignSlowCase(const APInt& RHS) {
112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
116 if (BitWidth == RHS.getBitWidth()) {
117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
120 return *this;
123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
129 } else if (getNumWords() == RHS.getNumWords())
130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
143 APInt& APInt::operator=(uint64_t RHS) {
144 if (isSingleWord())
145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
150 return clearUnusedBits();
153 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID& ID) const {
155 ID.AddInteger(BitWidth);
157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
162 unsigned NumWords = getNumWords();
163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
167 /// add_1 - This function adds a single "digit" integer, y, to the multiple
168 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
169 /// 1 is returned if there is a carry out, otherwise 0 is returned.
170 /// @returns the carry of the addition.
171 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
181 return y;
184 /// @brief Prefix increment operator. Increments the APInt by one.
185 APInt& APInt::operator++() {
186 if (isSingleWord())
187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
193 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
195 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
196 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197 /// In other words, if y > x then this function returns 1, otherwise 0.
198 /// @returns the borrow out of the subtraction
199 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
201 uint64_t X = x[i];
202 x[i] -= y;
203 if (y > X)
204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
210 return bool(y);
213 /// @brief Prefix decrement operator. Decrements the APInt by one.
214 APInt& APInt::operator--() {
215 if (isSingleWord())
216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
222 /// add - This function adds the integer array x to the integer array Y and
223 /// places the result in dest.
224 /// @returns the carry out from the addition
225 /// @brief General addition of 64-bit integer arrays
226 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227 unsigned len) {
228 bool carry = false;
229 for (unsigned i = 0; i< len; ++i) {
230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
234 return carry;
237 /// Adds the RHS APint to this APInt.
238 /// @returns this, after addition of RHS.
239 /// @brief Addition assignment operator.
240 APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
250 /// Subtracts the integer array y from the integer array x
251 /// @returns returns the borrow out.
252 /// @brief Generalized subtraction of 64-bit integer arrays.
253 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
254 unsigned len) {
255 bool borrow = false;
256 for (unsigned i = 0; i < len; ++i) {
257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
261 return borrow;
264 /// Subtracts the RHS APInt from this APInt
265 /// @returns this, after subtraction
266 /// @brief Subtraction assignment operator.
267 APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
269 if (isSingleWord())
270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
276 /// Multiplies an integer array, x, by a uint64_t integer and places the result
277 /// into dest.
278 /// @returns the carry out of the multiplication.
279 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
285 // For each digit of x.
286 for (unsigned i = 0; i < len; ++i) {
287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
308 return carry;
311 /// Multiplies integer array x by integer array y and stores the result into
312 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
313 /// @brief Generalized multiplicate of integer arrays.
314 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
317 for (unsigned i = 1; i < ylen; ++i) {
318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
320 for (unsigned j = 0; j < xlen; ++j) {
321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
338 ((lx * hy) >> 32) + hx * hy;
340 dest[i+xlen] = carry;
344 APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
352 // Get some bit facts about LHS and check for zero
353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
355 if (!lhsWords)
356 // 0 * X ===> 0
357 return *this;
359 // Get some bit facts about RHS and check for zero
360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
368 // Allocate space for the result
369 unsigned destWords = rhsWords + lhsWords;
370 uint64_t *dest = getMemory(destWords);
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
375 // Copy result back into *this
376 clear();
377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
380 // delete dest array and return
381 delete[] dest;
382 return *this;
385 APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
393 pVal[i] &= RHS.pVal[i];
394 return *this;
397 APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
405 pVal[i] |= RHS.pVal[i];
406 return *this;
409 APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
422 APInt APInt::AndSlowCase(const APInt& RHS) const {
423 unsigned numWords = getNumWords();
424 uint64_t* val = getMemory(numWords);
425 for (unsigned i = 0; i < numWords; ++i)
426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
430 APInt APInt::OrSlowCase(const APInt& RHS) const {
431 unsigned numWords = getNumWords();
432 uint64_t *val = getMemory(numWords);
433 for (unsigned i = 0; i < numWords; ++i)
434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
438 APInt APInt::XorSlowCase(const APInt& RHS) const {
439 unsigned numWords = getNumWords();
440 uint64_t *val = getMemory(numWords);
441 for (unsigned i = 0; i < numWords; ++i)
442 val[i] = pVal[i] ^ RHS.pVal[i];
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
448 bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
452 for (unsigned i = 0; i < getNumWords(); ++i)
453 if (pVal[i])
454 return false;
455 return true;
458 APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
467 APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
476 APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
485 bool APInt::operator[](unsigned bitPosition) const {
486 return (maskBit(bitPosition) &
487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
490 bool APInt::EqualSlowCase(const APInt& RHS) const {
491 // Get some facts about the number of bits used in the two operands.
492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
495 // If the number of bits isn't the same, they aren't equal
496 if (n1 != n2)
497 return false;
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
503 // Otherwise, compare everything
504 for (int i = whichWord(n1 - 1); i >= 0; --i)
505 if (pVal[i] != RHS.pVal[i])
506 return false;
507 return true;
510 bool APInt::EqualSlowCase(uint64_t Val) const {
511 unsigned n = getActiveBits();
512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
518 bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
523 // Get active bit length of both operands
524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
539 // Otherwise, compare all words
540 unsigned topWord = whichWord(std::max(n1,n2)-1);
541 for (int i = topWord; i >= 0; --i) {
542 if (pVal[i] > RHS.pVal[i])
543 return false;
544 if (pVal[i] < RHS.pVal[i])
545 return true;
547 return false;
550 bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
558 APInt lhs(*this);
559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
564 lhs.flip();
565 lhs++;
567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
569 rhs.flip();
570 rhs++;
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
578 else
579 return true;
580 else if (rhsNeg)
581 return false;
582 else
583 return lhs.ult(rhs);
586 APInt& APInt::set(unsigned bitPosition) {
587 if (isSingleWord())
588 VAL |= maskBit(bitPosition);
589 else
590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591 return *this;
594 /// Set the given bit to 0 whose position is given as "bitPosition".
595 /// @brief Set a given bit to 0.
596 APInt& APInt::clear(unsigned bitPosition) {
597 if (isSingleWord())
598 VAL &= ~maskBit(bitPosition);
599 else
600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601 return *this;
604 /// @brief Toggle every bit to its opposite value.
606 /// Toggle a given bit to its opposite value whose position is given
607 /// as "bitPosition".
608 /// @brief Toggles a given bit to its opposite value.
609 APInt& APInt::flip(unsigned bitPosition) {
610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
616 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
621 size_t slen = str.size();
623 // Each computation below needs to know if it's negative.
624 StringRef::iterator p = str.begin();
625 unsigned isNegative = *p == '-';
626 if (*p == '-' || *p == '+') {
627 p++;
628 slen--;
629 assert(slen && "String is only a sign, needs a value.");
632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
645 // Compute a sufficient number of bits that is always large enough but might
646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
651 // Convert to the actual binary value.
652 APInt tmp(sufficient, StringRef(p, slen), radix);
654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
664 // From http://www.burtleburtle.net, byBob Jenkins.
665 // When targeting x86, both GCC and LLVM seem to recognize this as a
666 // rotate instruction.
667 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
669 // From http://www.burtleburtle.net, by Bob Jenkins.
670 #define mix(a,b,c) \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
680 // From http://www.burtleburtle.net, by Bob Jenkins.
681 #define final(a,b,c) \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
692 // hashword() was adapted from http://www.burtleburtle.net, by Bob
693 // Jenkins. k is a pointer to an array of uint32_t values; length is
694 // the length of the key, in 32-bit chunks. This version only handles
695 // keys that are a multiple of 32 bits in size.
696 static inline uint32_t hashword(const uint64_t *k64, size_t length)
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
704 /*------------------------------------------------- handle most of the key */
705 while (length > 3) {
706 a += k[0];
707 b += k[1];
708 c += k[2];
709 mix(a,b,c);
710 length -= 3;
711 k += 3;
714 /*------------------------------------------- handle the last 3 uint32_t's */
715 switch (length) { /* all the case statements fall through */
716 case 3 : c+=k[2];
717 case 2 : b+=k[1];
718 case 1 : a+=k[0];
719 final(a,b,c);
720 case 0: /* case 0: nothing left to add */
721 break;
723 /*------------------------------------------------------ report the result */
724 return c;
727 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
728 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
729 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
730 // function into about 35 instructions when inlined.
731 static inline uint32_t hashword8(const uint64_t k64)
733 uint32_t a,b,c;
734 a = b = c = 0xdeadbeef + 4;
735 b += k64 >> 32;
736 a += k64 & 0xffffffff;
737 final(a,b,c);
738 return c;
740 #undef final
741 #undef mix
742 #undef rot
744 uint64_t APInt::getHashValue() const {
745 uint64_t hash;
746 if (isSingleWord())
747 hash = hashword8(VAL);
748 else
749 hash = hashword(pVal, getNumWords()*2);
750 return hash;
753 /// HiBits - This function returns the high "numBits" bits of this APInt.
754 APInt APInt::getHiBits(unsigned numBits) const {
755 return APIntOps::lshr(*this, BitWidth - numBits);
758 /// LoBits - This function returns the low "numBits" bits of this APInt.
759 APInt APInt::getLoBits(unsigned numBits) const {
760 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
761 BitWidth - numBits);
764 bool APInt::isPowerOf2() const {
765 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
768 unsigned APInt::countLeadingZerosSlowCase() const {
769 // Treat the most significand word differently because it might have
770 // meaningless bits set beyond the precision.
771 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
772 integerPart MSWMask;
773 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
774 else {
775 MSWMask = ~integerPart(0);
776 BitsInMSW = APINT_BITS_PER_WORD;
779 unsigned i = getNumWords();
780 integerPart MSW = pVal[i-1] & MSWMask;
781 if (MSW)
782 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784 unsigned Count = BitsInMSW;
785 for (--i; i > 0u; --i) {
786 if (pVal[i-1] == 0)
787 Count += APINT_BITS_PER_WORD;
788 else {
789 Count += CountLeadingZeros_64(pVal[i-1]);
790 break;
793 return Count;
796 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
797 unsigned Count = 0;
798 if (skip)
799 V <<= skip;
800 while (V && (V & (1ULL << 63))) {
801 Count++;
802 V <<= 1;
804 return Count;
807 unsigned APInt::countLeadingOnes() const {
808 if (isSingleWord())
809 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
812 unsigned shift;
813 if (!highWordBits) {
814 highWordBits = APINT_BITS_PER_WORD;
815 shift = 0;
816 } else {
817 shift = APINT_BITS_PER_WORD - highWordBits;
819 int i = getNumWords() - 1;
820 unsigned Count = countLeadingOnes_64(pVal[i], shift);
821 if (Count == highWordBits) {
822 for (i--; i >= 0; --i) {
823 if (pVal[i] == -1ULL)
824 Count += APINT_BITS_PER_WORD;
825 else {
826 Count += countLeadingOnes_64(pVal[i], 0);
827 break;
831 return Count;
834 unsigned APInt::countTrailingZeros() const {
835 if (isSingleWord())
836 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
837 unsigned Count = 0;
838 unsigned i = 0;
839 for (; i < getNumWords() && pVal[i] == 0; ++i)
840 Count += APINT_BITS_PER_WORD;
841 if (i < getNumWords())
842 Count += CountTrailingZeros_64(pVal[i]);
843 return std::min(Count, BitWidth);
846 unsigned APInt::countTrailingOnesSlowCase() const {
847 unsigned Count = 0;
848 unsigned i = 0;
849 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
850 Count += APINT_BITS_PER_WORD;
851 if (i < getNumWords())
852 Count += CountTrailingOnes_64(pVal[i]);
853 return std::min(Count, BitWidth);
856 unsigned APInt::countPopulationSlowCase() const {
857 unsigned Count = 0;
858 for (unsigned i = 0; i < getNumWords(); ++i)
859 Count += CountPopulation_64(pVal[i]);
860 return Count;
863 APInt APInt::byteSwap() const {
864 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
865 if (BitWidth == 16)
866 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
867 else if (BitWidth == 32)
868 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
869 else if (BitWidth == 48) {
870 unsigned Tmp1 = unsigned(VAL >> 16);
871 Tmp1 = ByteSwap_32(Tmp1);
872 uint16_t Tmp2 = uint16_t(VAL);
873 Tmp2 = ByteSwap_16(Tmp2);
874 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
875 } else if (BitWidth == 64)
876 return APInt(BitWidth, ByteSwap_64(VAL));
877 else {
878 APInt Result(BitWidth, 0);
879 char *pByte = (char*)Result.pVal;
880 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
881 char Tmp = pByte[i];
882 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
883 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
885 return Result;
889 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
890 const APInt& API2) {
891 APInt A = API1, B = API2;
892 while (!!B) {
893 APInt T = B;
894 B = APIntOps::urem(A, B);
895 A = T;
897 return A;
900 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
901 union {
902 double D;
903 uint64_t I;
904 } T;
905 T.D = Double;
907 // Get the sign bit from the highest order bit
908 bool isNeg = T.I >> 63;
910 // Get the 11-bit exponent and adjust for the 1023 bit bias
911 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
913 // If the exponent is negative, the value is < 0 so just return 0.
914 if (exp < 0)
915 return APInt(width, 0u);
917 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
918 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920 // If the exponent doesn't shift all bits out of the mantissa
921 if (exp < 52)
922 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
923 APInt(width, mantissa >> (52 - exp));
925 // If the client didn't provide enough bits for us to shift the mantissa into
926 // then the result is undefined, just return 0
927 if (width <= exp - 52)
928 return APInt(width, 0);
930 // Otherwise, we have to shift the mantissa bits up to the right location
931 APInt Tmp(width, mantissa);
932 Tmp = Tmp.shl((unsigned)exp - 52);
933 return isNeg ? -Tmp : Tmp;
936 /// RoundToDouble - This function converts this APInt to a double.
937 /// The layout for double is as following (IEEE Standard 754):
938 /// --------------------------------------
939 /// | Sign Exponent Fraction Bias |
940 /// |-------------------------------------- |
941 /// | 1[63] 11[62-52] 52[51-00] 1023 |
942 /// --------------------------------------
943 double APInt::roundToDouble(bool isSigned) const {
945 // Handle the simple case where the value is contained in one uint64_t.
946 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
947 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
948 if (isSigned) {
949 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
950 return double(sext);
951 } else
952 return double(getWord(0));
955 // Determine if the value is negative.
956 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
958 // Construct the absolute value if we're negative.
959 APInt Tmp(isNeg ? -(*this) : (*this));
961 // Figure out how many bits we're using.
962 unsigned n = Tmp.getActiveBits();
964 // The exponent (without bias normalization) is just the number of bits
965 // we are using. Note that the sign bit is gone since we constructed the
966 // absolute value.
967 uint64_t exp = n;
969 // Return infinity for exponent overflow
970 if (exp > 1023) {
971 if (!isSigned || !isNeg)
972 return std::numeric_limits<double>::infinity();
973 else
974 return -std::numeric_limits<double>::infinity();
976 exp += 1023; // Increment for 1023 bias
978 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
979 // extract the high 52 bits from the correct words in pVal.
980 uint64_t mantissa;
981 unsigned hiWord = whichWord(n-1);
982 if (hiWord == 0) {
983 mantissa = Tmp.pVal[0];
984 if (n > 52)
985 mantissa >>= n - 52; // shift down, we want the top 52 bits.
986 } else {
987 assert(hiWord > 0 && "huh?");
988 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
989 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
990 mantissa = hibits | lobits;
993 // The leading bit of mantissa is implicit, so get rid of it.
994 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
995 union {
996 double D;
997 uint64_t I;
998 } T;
999 T.I = sign | (exp << 52) | mantissa;
1000 return T.D;
1003 // Truncate to new width.
1004 APInt &APInt::trunc(unsigned width) {
1005 assert(width < BitWidth && "Invalid APInt Truncate request");
1006 assert(width && "Can't truncate to 0 bits");
1007 unsigned wordsBefore = getNumWords();
1008 BitWidth = width;
1009 unsigned wordsAfter = getNumWords();
1010 if (wordsBefore != wordsAfter) {
1011 if (wordsAfter == 1) {
1012 uint64_t *tmp = pVal;
1013 VAL = pVal[0];
1014 delete [] tmp;
1015 } else {
1016 uint64_t *newVal = getClearedMemory(wordsAfter);
1017 for (unsigned i = 0; i < wordsAfter; ++i)
1018 newVal[i] = pVal[i];
1019 delete [] pVal;
1020 pVal = newVal;
1023 return clearUnusedBits();
1026 // Sign extend to a new width.
1027 APInt &APInt::sext(unsigned width) {
1028 assert(width > BitWidth && "Invalid APInt SignExtend request");
1029 // If the sign bit isn't set, this is the same as zext.
1030 if (!isNegative()) {
1031 zext(width);
1032 return *this;
1035 // The sign bit is set. First, get some facts
1036 unsigned wordsBefore = getNumWords();
1037 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
1038 BitWidth = width;
1039 unsigned wordsAfter = getNumWords();
1041 // Mask the high order word appropriately
1042 if (wordsBefore == wordsAfter) {
1043 unsigned newWordBits = width % APINT_BITS_PER_WORD;
1044 // The extension is contained to the wordsBefore-1th word.
1045 uint64_t mask = ~0ULL;
1046 if (newWordBits)
1047 mask >>= APINT_BITS_PER_WORD - newWordBits;
1048 mask <<= wordBits;
1049 if (wordsBefore == 1)
1050 VAL |= mask;
1051 else
1052 pVal[wordsBefore-1] |= mask;
1053 return clearUnusedBits();
1056 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1057 uint64_t *newVal = getMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL | mask;
1060 else {
1061 for (unsigned i = 0; i < wordsBefore; ++i)
1062 newVal[i] = pVal[i];
1063 newVal[wordsBefore-1] |= mask;
1065 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1066 newVal[i] = -1ULL;
1067 if (wordsBefore != 1)
1068 delete [] pVal;
1069 pVal = newVal;
1070 return clearUnusedBits();
1073 // Zero extend to a new width.
1074 APInt &APInt::zext(unsigned width) {
1075 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1076 unsigned wordsBefore = getNumWords();
1077 BitWidth = width;
1078 unsigned wordsAfter = getNumWords();
1079 if (wordsBefore != wordsAfter) {
1080 uint64_t *newVal = getClearedMemory(wordsAfter);
1081 if (wordsBefore == 1)
1082 newVal[0] = VAL;
1083 else
1084 for (unsigned i = 0; i < wordsBefore; ++i)
1085 newVal[i] = pVal[i];
1086 if (wordsBefore != 1)
1087 delete [] pVal;
1088 pVal = newVal;
1090 return *this;
1093 APInt &APInt::zextOrTrunc(unsigned width) {
1094 if (BitWidth < width)
1095 return zext(width);
1096 if (BitWidth > width)
1097 return trunc(width);
1098 return *this;
1101 APInt &APInt::sextOrTrunc(unsigned width) {
1102 if (BitWidth < width)
1103 return sext(width);
1104 if (BitWidth > width)
1105 return trunc(width);
1106 return *this;
1109 /// Arithmetic right-shift this APInt by shiftAmt.
1110 /// @brief Arithmetic right-shift function.
1111 APInt APInt::ashr(const APInt &shiftAmt) const {
1112 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1115 /// Arithmetic right-shift this APInt by shiftAmt.
1116 /// @brief Arithmetic right-shift function.
1117 APInt APInt::ashr(unsigned shiftAmt) const {
1118 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1119 // Handle a degenerate case
1120 if (shiftAmt == 0)
1121 return *this;
1123 // Handle single word shifts with built-in ashr
1124 if (isSingleWord()) {
1125 if (shiftAmt == BitWidth)
1126 return APInt(BitWidth, 0); // undefined
1127 else {
1128 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1129 return APInt(BitWidth,
1130 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1134 // If all the bits were shifted out, the result is, technically, undefined.
1135 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1136 // issues in the algorithm below.
1137 if (shiftAmt == BitWidth) {
1138 if (isNegative())
1139 return APInt(BitWidth, -1ULL, true);
1140 else
1141 return APInt(BitWidth, 0);
1144 // Create some space for the result.
1145 uint64_t * val = new uint64_t[getNumWords()];
1147 // Compute some values needed by the following shift algorithms
1148 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1149 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1150 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1151 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1152 if (bitsInWord == 0)
1153 bitsInWord = APINT_BITS_PER_WORD;
1155 // If we are shifting whole words, just move whole words
1156 if (wordShift == 0) {
1157 // Move the words containing significant bits
1158 for (unsigned i = 0; i <= breakWord; ++i)
1159 val[i] = pVal[i+offset]; // move whole word
1161 // Adjust the top significant word for sign bit fill, if negative
1162 if (isNegative())
1163 if (bitsInWord < APINT_BITS_PER_WORD)
1164 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1165 } else {
1166 // Shift the low order words
1167 for (unsigned i = 0; i < breakWord; ++i) {
1168 // This combines the shifted corresponding word with the low bits from
1169 // the next word (shifted into this word's high bits).
1170 val[i] = (pVal[i+offset] >> wordShift) |
1171 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1174 // Shift the break word. In this case there are no bits from the next word
1175 // to include in this word.
1176 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178 // Deal with sign extenstion in the break word, and possibly the word before
1179 // it.
1180 if (isNegative()) {
1181 if (wordShift > bitsInWord) {
1182 if (breakWord > 0)
1183 val[breakWord-1] |=
1184 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1185 val[breakWord] |= ~0ULL;
1186 } else
1187 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1191 // Remaining words are 0 or -1, just assign them.
1192 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1193 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1194 val[i] = fillValue;
1195 return APInt(val, BitWidth).clearUnusedBits();
1198 /// Logical right-shift this APInt by shiftAmt.
1199 /// @brief Logical right-shift function.
1200 APInt APInt::lshr(const APInt &shiftAmt) const {
1201 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1204 /// Logical right-shift this APInt by shiftAmt.
1205 /// @brief Logical right-shift function.
1206 APInt APInt::lshr(unsigned shiftAmt) const {
1207 if (isSingleWord()) {
1208 if (shiftAmt == BitWidth)
1209 return APInt(BitWidth, 0);
1210 else
1211 return APInt(BitWidth, this->VAL >> shiftAmt);
1214 // If all the bits were shifted out, the result is 0. This avoids issues
1215 // with shifting by the size of the integer type, which produces undefined
1216 // results. We define these "undefined results" to always be 0.
1217 if (shiftAmt == BitWidth)
1218 return APInt(BitWidth, 0);
1220 // If none of the bits are shifted out, the result is *this. This avoids
1221 // issues with shifting by the size of the integer type, which produces
1222 // undefined results in the code below. This is also an optimization.
1223 if (shiftAmt == 0)
1224 return *this;
1226 // Create some space for the result.
1227 uint64_t * val = new uint64_t[getNumWords()];
1229 // If we are shifting less than a word, compute the shift with a simple carry
1230 if (shiftAmt < APINT_BITS_PER_WORD) {
1231 uint64_t carry = 0;
1232 for (int i = getNumWords()-1; i >= 0; --i) {
1233 val[i] = (pVal[i] >> shiftAmt) | carry;
1234 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236 return APInt(val, BitWidth).clearUnusedBits();
1239 // Compute some values needed by the remaining shift algorithms
1240 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1241 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1243 // If we are shifting whole words, just move whole words
1244 if (wordShift == 0) {
1245 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1246 val[i] = pVal[i+offset];
1247 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1248 val[i] = 0;
1249 return APInt(val,BitWidth).clearUnusedBits();
1252 // Shift the low order words
1253 unsigned breakWord = getNumWords() - offset -1;
1254 for (unsigned i = 0; i < breakWord; ++i)
1255 val[i] = (pVal[i+offset] >> wordShift) |
1256 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1257 // Shift the break word.
1258 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260 // Remaining words are 0
1261 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1262 val[i] = 0;
1263 return APInt(val, BitWidth).clearUnusedBits();
1266 /// Left-shift this APInt by shiftAmt.
1267 /// @brief Left-shift function.
1268 APInt APInt::shl(const APInt &shiftAmt) const {
1269 // It's undefined behavior in C to shift by BitWidth or greater.
1270 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1273 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1274 // If all the bits were shifted out, the result is 0. This avoids issues
1275 // with shifting by the size of the integer type, which produces undefined
1276 // results. We define these "undefined results" to always be 0.
1277 if (shiftAmt == BitWidth)
1278 return APInt(BitWidth, 0);
1280 // If none of the bits are shifted out, the result is *this. This avoids a
1281 // lshr by the words size in the loop below which can produce incorrect
1282 // results. It also avoids the expensive computation below for a common case.
1283 if (shiftAmt == 0)
1284 return *this;
1286 // Create some space for the result.
1287 uint64_t * val = new uint64_t[getNumWords()];
1289 // If we are shifting less than a word, do it the easy way
1290 if (shiftAmt < APINT_BITS_PER_WORD) {
1291 uint64_t carry = 0;
1292 for (unsigned i = 0; i < getNumWords(); i++) {
1293 val[i] = pVal[i] << shiftAmt | carry;
1294 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296 return APInt(val, BitWidth).clearUnusedBits();
1299 // Compute some values needed by the remaining shift algorithms
1300 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1301 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1303 // If we are shifting whole words, just move whole words
1304 if (wordShift == 0) {
1305 for (unsigned i = 0; i < offset; i++)
1306 val[i] = 0;
1307 for (unsigned i = offset; i < getNumWords(); i++)
1308 val[i] = pVal[i-offset];
1309 return APInt(val,BitWidth).clearUnusedBits();
1312 // Copy whole words from this to Result.
1313 unsigned i = getNumWords() - 1;
1314 for (; i > offset; --i)
1315 val[i] = pVal[i-offset] << wordShift |
1316 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1317 val[offset] = pVal[0] << wordShift;
1318 for (i = 0; i < offset; ++i)
1319 val[i] = 0;
1320 return APInt(val, BitWidth).clearUnusedBits();
1323 APInt APInt::rotl(const APInt &rotateAmt) const {
1324 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1327 APInt APInt::rotl(unsigned rotateAmt) const {
1328 if (rotateAmt == 0)
1329 return *this;
1330 // Don't get too fancy, just use existing shift/or facilities
1331 APInt hi(*this);
1332 APInt lo(*this);
1333 hi.shl(rotateAmt);
1334 lo.lshr(BitWidth - rotateAmt);
1335 return hi | lo;
1338 APInt APInt::rotr(const APInt &rotateAmt) const {
1339 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1342 APInt APInt::rotr(unsigned rotateAmt) const {
1343 if (rotateAmt == 0)
1344 return *this;
1345 // Don't get too fancy, just use existing shift/or facilities
1346 APInt hi(*this);
1347 APInt lo(*this);
1348 lo.lshr(rotateAmt);
1349 hi.shl(BitWidth - rotateAmt);
1350 return hi | lo;
1353 // Square Root - this method computes and returns the square root of "this".
1354 // Three mechanisms are used for computation. For small values (<= 5 bits),
1355 // a table lookup is done. This gets some performance for common cases. For
1356 // values using less than 52 bits, the value is converted to double and then
1357 // the libc sqrt function is called. The result is rounded and then converted
1358 // back to a uint64_t which is then used to construct the result. Finally,
1359 // the Babylonian method for computing square roots is used.
1360 APInt APInt::sqrt() const {
1362 // Determine the magnitude of the value.
1363 unsigned magnitude = getActiveBits();
1365 // Use a fast table for some small values. This also gets rid of some
1366 // rounding errors in libc sqrt for small values.
1367 if (magnitude <= 5) {
1368 static const uint8_t results[32] = {
1369 /* 0 */ 0,
1370 /* 1- 2 */ 1, 1,
1371 /* 3- 6 */ 2, 2, 2, 2,
1372 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1373 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1374 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1375 /* 31 */ 6
1377 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1380 // If the magnitude of the value fits in less than 52 bits (the precision of
1381 // an IEEE double precision floating point value), then we can use the
1382 // libc sqrt function which will probably use a hardware sqrt computation.
1383 // This should be faster than the algorithm below.
1384 if (magnitude < 52) {
1385 #if HAVE_ROUND
1386 return APInt(BitWidth,
1387 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1388 #else
1389 return APInt(BitWidth,
1390 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1391 #endif
1394 // Okay, all the short cuts are exhausted. We must compute it. The following
1395 // is a classical Babylonian method for computing the square root. This code
1396 // was adapted to APINt from a wikipedia article on such computations.
1397 // See http://www.wikipedia.org/ and go to the page named
1398 // Calculate_an_integer_square_root.
1399 unsigned nbits = BitWidth, i = 4;
1400 APInt testy(BitWidth, 16);
1401 APInt x_old(BitWidth, 1);
1402 APInt x_new(BitWidth, 0);
1403 APInt two(BitWidth, 2);
1405 // Select a good starting value using binary logarithms.
1406 for (;; i += 2, testy = testy.shl(2))
1407 if (i >= nbits || this->ule(testy)) {
1408 x_old = x_old.shl(i / 2);
1409 break;
1412 // Use the Babylonian method to arrive at the integer square root:
1413 for (;;) {
1414 x_new = (this->udiv(x_old) + x_old).udiv(two);
1415 if (x_old.ule(x_new))
1416 break;
1417 x_old = x_new;
1420 // Make sure we return the closest approximation
1421 // NOTE: The rounding calculation below is correct. It will produce an
1422 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1423 // determined to be a rounding issue with pari/gp as it begins to use a
1424 // floating point representation after 192 bits. There are no discrepancies
1425 // between this algorithm and pari/gp for bit widths < 192 bits.
1426 APInt square(x_old * x_old);
1427 APInt nextSquare((x_old + 1) * (x_old +1));
1428 if (this->ult(square))
1429 return x_old;
1430 else if (this->ule(nextSquare)) {
1431 APInt midpoint((nextSquare - square).udiv(two));
1432 APInt offset(*this - square);
1433 if (offset.ult(midpoint))
1434 return x_old;
1435 else
1436 return x_old + 1;
1437 } else
1438 llvm_unreachable("Error in APInt::sqrt computation");
1439 return x_old + 1;
1442 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1443 /// iterative extended Euclidean algorithm is used to solve for this value,
1444 /// however we simplify it to speed up calculating only the inverse, and take
1445 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1446 /// (potentially large) APInts around.
1447 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1448 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1450 // Using the properties listed at the following web page (accessed 06/21/08):
1451 // http://www.numbertheory.org/php/euclid.html
1452 // (especially the properties numbered 3, 4 and 9) it can be proved that
1453 // BitWidth bits suffice for all the computations in the algorithm implemented
1454 // below. More precisely, this number of bits suffice if the multiplicative
1455 // inverse exists, but may not suffice for the general extended Euclidean
1456 // algorithm.
1458 APInt r[2] = { modulo, *this };
1459 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1460 APInt q(BitWidth, 0);
1462 unsigned i;
1463 for (i = 0; r[i^1] != 0; i ^= 1) {
1464 // An overview of the math without the confusing bit-flipping:
1465 // q = r[i-2] / r[i-1]
1466 // r[i] = r[i-2] % r[i-1]
1467 // t[i] = t[i-2] - t[i-1] * q
1468 udivrem(r[i], r[i^1], q, r[i]);
1469 t[i] -= t[i^1] * q;
1472 // If this APInt and the modulo are not coprime, there is no multiplicative
1473 // inverse, so return 0. We check this by looking at the next-to-last
1474 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1475 // algorithm.
1476 if (r[i] != 1)
1477 return APInt(BitWidth, 0);
1479 // The next-to-last t is the multiplicative inverse. However, we are
1480 // interested in a positive inverse. Calcuate a positive one from a negative
1481 // one if necessary. A simple addition of the modulo suffices because
1482 // abs(t[i]) is known to be less than *this/2 (see the link above).
1483 return t[i].isNegative() ? t[i] + modulo : t[i];
1486 /// Calculate the magic numbers required to implement a signed integer division
1487 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1488 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1489 /// Warren, Jr., chapter 10.
1490 APInt::ms APInt::magic() const {
1491 const APInt& d = *this;
1492 unsigned p;
1493 APInt ad, anc, delta, q1, r1, q2, r2, t;
1494 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1495 struct ms mag;
1497 ad = d.abs();
1498 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1499 anc = t - 1 - t.urem(ad); // absolute value of nc
1500 p = d.getBitWidth() - 1; // initialize p
1501 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1502 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1503 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1504 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1505 do {
1506 p = p + 1;
1507 q1 = q1<<1; // update q1 = 2p/abs(nc)
1508 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1509 if (r1.uge(anc)) { // must be unsigned comparison
1510 q1 = q1 + 1;
1511 r1 = r1 - anc;
1513 q2 = q2<<1; // update q2 = 2p/abs(d)
1514 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1515 if (r2.uge(ad)) { // must be unsigned comparison
1516 q2 = q2 + 1;
1517 r2 = r2 - ad;
1519 delta = ad - r2;
1520 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1522 mag.m = q2 + 1;
1523 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1524 mag.s = p - d.getBitWidth(); // resulting shift
1525 return mag;
1528 /// Calculate the magic numbers required to implement an unsigned integer
1529 /// division by a constant as a sequence of multiplies, adds and shifts.
1530 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1531 /// S. Warren, Jr., chapter 10.
1532 APInt::mu APInt::magicu() const {
1533 const APInt& d = *this;
1534 unsigned p;
1535 APInt nc, delta, q1, r1, q2, r2;
1536 struct mu magu;
1537 magu.a = 0; // initialize "add" indicator
1538 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1539 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1540 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1542 nc = allOnes - (-d).urem(d);
1543 p = d.getBitWidth() - 1; // initialize p
1544 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1545 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1546 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1547 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1548 do {
1549 p = p + 1;
1550 if (r1.uge(nc - r1)) {
1551 q1 = q1 + q1 + 1; // update q1
1552 r1 = r1 + r1 - nc; // update r1
1554 else {
1555 q1 = q1+q1; // update q1
1556 r1 = r1+r1; // update r1
1558 if ((r2 + 1).uge(d - r2)) {
1559 if (q2.uge(signedMax)) magu.a = 1;
1560 q2 = q2+q2 + 1; // update q2
1561 r2 = r2+r2 + 1 - d; // update r2
1563 else {
1564 if (q2.uge(signedMin)) magu.a = 1;
1565 q2 = q2+q2; // update q2
1566 r2 = r2+r2 + 1; // update r2
1568 delta = d - 1 - r2;
1569 } while (p < d.getBitWidth()*2 &&
1570 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1571 magu.m = q2 + 1; // resulting magic number
1572 magu.s = p - d.getBitWidth(); // resulting shift
1573 return magu;
1576 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1577 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1578 /// variables here have the same names as in the algorithm. Comments explain
1579 /// the algorithm and any deviation from it.
1580 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1581 unsigned m, unsigned n) {
1582 assert(u && "Must provide dividend");
1583 assert(v && "Must provide divisor");
1584 assert(q && "Must provide quotient");
1585 assert(u != v && u != q && v != q && "Must us different memory");
1586 assert(n>1 && "n must be > 1");
1588 // Knuth uses the value b as the base of the number system. In our case b
1589 // is 2^31 so we just set it to -1u.
1590 uint64_t b = uint64_t(1) << 32;
1592 #if 0
1593 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1594 DEBUG(dbgs() << "KnuthDiv: original:");
1595 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1596 DEBUG(dbgs() << " by");
1597 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1598 DEBUG(dbgs() << '\n');
1599 #endif
1600 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1601 // u and v by d. Note that we have taken Knuth's advice here to use a power
1602 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1603 // 2 allows us to shift instead of multiply and it is easy to determine the
1604 // shift amount from the leading zeros. We are basically normalizing the u
1605 // and v so that its high bits are shifted to the top of v's range without
1606 // overflow. Note that this can require an extra word in u so that u must
1607 // be of length m+n+1.
1608 unsigned shift = CountLeadingZeros_32(v[n-1]);
1609 unsigned v_carry = 0;
1610 unsigned u_carry = 0;
1611 if (shift) {
1612 for (unsigned i = 0; i < m+n; ++i) {
1613 unsigned u_tmp = u[i] >> (32 - shift);
1614 u[i] = (u[i] << shift) | u_carry;
1615 u_carry = u_tmp;
1617 for (unsigned i = 0; i < n; ++i) {
1618 unsigned v_tmp = v[i] >> (32 - shift);
1619 v[i] = (v[i] << shift) | v_carry;
1620 v_carry = v_tmp;
1623 u[m+n] = u_carry;
1624 #if 0
1625 DEBUG(dbgs() << "KnuthDiv: normal:");
1626 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1627 DEBUG(dbgs() << " by");
1628 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1629 DEBUG(dbgs() << '\n');
1630 #endif
1632 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1633 int j = m;
1634 do {
1635 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1636 // D3. [Calculate q'.].
1637 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1638 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1639 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1640 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1641 // on v[n-2] determines at high speed most of the cases in which the trial
1642 // value qp is one too large, and it eliminates all cases where qp is two
1643 // too large.
1644 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1645 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1646 uint64_t qp = dividend / v[n-1];
1647 uint64_t rp = dividend % v[n-1];
1648 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1649 qp--;
1650 rp += v[n-1];
1651 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1652 qp--;
1654 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1656 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1657 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1658 // consists of a simple multiplication by a one-place number, combined with
1659 // a subtraction.
1660 bool isNeg = false;
1661 for (unsigned i = 0; i < n; ++i) {
1662 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1663 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1664 bool borrow = subtrahend > u_tmp;
1665 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1666 << ", subtrahend == " << subtrahend
1667 << ", borrow = " << borrow << '\n');
1669 uint64_t result = u_tmp - subtrahend;
1670 unsigned k = j + i;
1671 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1672 u[k++] = (unsigned)(result >> 32); // subtract high word
1673 while (borrow && k <= m+n) { // deal with borrow to the left
1674 borrow = u[k] == 0;
1675 u[k]--;
1676 k++;
1678 isNeg |= borrow;
1679 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1680 u[j+i+1] << '\n');
1682 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1683 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1684 DEBUG(dbgs() << '\n');
1685 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1686 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1687 // true value plus b**(n+1), namely as the b's complement of
1688 // the true value, and a "borrow" to the left should be remembered.
1690 if (isNeg) {
1691 bool carry = true; // true because b's complement is "complement + 1"
1692 for (unsigned i = 0; i <= m+n; ++i) {
1693 u[i] = ~u[i] + carry; // b's complement
1694 carry = carry && u[i] == 0;
1697 DEBUG(dbgs() << "KnuthDiv: after complement:");
1698 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1699 DEBUG(dbgs() << '\n');
1701 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1702 // negative, go to step D6; otherwise go on to step D7.
1703 q[j] = (unsigned)qp;
1704 if (isNeg) {
1705 // D6. [Add back]. The probability that this step is necessary is very
1706 // small, on the order of only 2/b. Make sure that test data accounts for
1707 // this possibility. Decrease q[j] by 1
1708 q[j]--;
1709 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1710 // A carry will occur to the left of u[j+n], and it should be ignored
1711 // since it cancels with the borrow that occurred in D4.
1712 bool carry = false;
1713 for (unsigned i = 0; i < n; i++) {
1714 unsigned limit = std::min(u[j+i],v[i]);
1715 u[j+i] += v[i] + carry;
1716 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1718 u[j+n] += carry;
1720 DEBUG(dbgs() << "KnuthDiv: after correction:");
1721 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1722 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1724 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1725 } while (--j >= 0);
1727 DEBUG(dbgs() << "KnuthDiv: quotient:");
1728 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1729 DEBUG(dbgs() << '\n');
1731 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1732 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1733 // compute the remainder (urem uses this).
1734 if (r) {
1735 // The value d is expressed by the "shift" value above since we avoided
1736 // multiplication by d by using a shift left. So, all we have to do is
1737 // shift right here. In order to mak
1738 if (shift) {
1739 unsigned carry = 0;
1740 DEBUG(dbgs() << "KnuthDiv: remainder:");
1741 for (int i = n-1; i >= 0; i--) {
1742 r[i] = (u[i] >> shift) | carry;
1743 carry = u[i] << (32 - shift);
1744 DEBUG(dbgs() << " " << r[i]);
1746 } else {
1747 for (int i = n-1; i >= 0; i--) {
1748 r[i] = u[i];
1749 DEBUG(dbgs() << " " << r[i]);
1752 DEBUG(dbgs() << '\n');
1754 #if 0
1755 DEBUG(dbgs() << '\n');
1756 #endif
1759 void APInt::divide(const APInt LHS, unsigned lhsWords,
1760 const APInt &RHS, unsigned rhsWords,
1761 APInt *Quotient, APInt *Remainder)
1763 assert(lhsWords >= rhsWords && "Fractional result");
1765 // First, compose the values into an array of 32-bit words instead of
1766 // 64-bit words. This is a necessity of both the "short division" algorithm
1767 // and the Knuth "classical algorithm" which requires there to be native
1768 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1769 // can't use 64-bit operands here because we don't have native results of
1770 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1771 // work on large-endian machines.
1772 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1773 unsigned n = rhsWords * 2;
1774 unsigned m = (lhsWords * 2) - n;
1776 // Allocate space for the temporary values we need either on the stack, if
1777 // it will fit, or on the heap if it won't.
1778 unsigned SPACE[128];
1779 unsigned *U = 0;
1780 unsigned *V = 0;
1781 unsigned *Q = 0;
1782 unsigned *R = 0;
1783 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1784 U = &SPACE[0];
1785 V = &SPACE[m+n+1];
1786 Q = &SPACE[(m+n+1) + n];
1787 if (Remainder)
1788 R = &SPACE[(m+n+1) + n + (m+n)];
1789 } else {
1790 U = new unsigned[m + n + 1];
1791 V = new unsigned[n];
1792 Q = new unsigned[m+n];
1793 if (Remainder)
1794 R = new unsigned[n];
1797 // Initialize the dividend
1798 memset(U, 0, (m+n+1)*sizeof(unsigned));
1799 for (unsigned i = 0; i < lhsWords; ++i) {
1800 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1801 U[i * 2] = (unsigned)(tmp & mask);
1802 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1804 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1806 // Initialize the divisor
1807 memset(V, 0, (n)*sizeof(unsigned));
1808 for (unsigned i = 0; i < rhsWords; ++i) {
1809 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1810 V[i * 2] = (unsigned)(tmp & mask);
1811 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1814 // initialize the quotient and remainder
1815 memset(Q, 0, (m+n) * sizeof(unsigned));
1816 if (Remainder)
1817 memset(R, 0, n * sizeof(unsigned));
1819 // Now, adjust m and n for the Knuth division. n is the number of words in
1820 // the divisor. m is the number of words by which the dividend exceeds the
1821 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1822 // contain any zero words or the Knuth algorithm fails.
1823 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1824 n--;
1825 m++;
1827 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1828 m--;
1830 // If we're left with only a single word for the divisor, Knuth doesn't work
1831 // so we implement the short division algorithm here. This is much simpler
1832 // and faster because we are certain that we can divide a 64-bit quantity
1833 // by a 32-bit quantity at hardware speed and short division is simply a
1834 // series of such operations. This is just like doing short division but we
1835 // are using base 2^32 instead of base 10.
1836 assert(n != 0 && "Divide by zero?");
1837 if (n == 1) {
1838 unsigned divisor = V[0];
1839 unsigned remainder = 0;
1840 for (int i = m+n-1; i >= 0; i--) {
1841 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1842 if (partial_dividend == 0) {
1843 Q[i] = 0;
1844 remainder = 0;
1845 } else if (partial_dividend < divisor) {
1846 Q[i] = 0;
1847 remainder = (unsigned)partial_dividend;
1848 } else if (partial_dividend == divisor) {
1849 Q[i] = 1;
1850 remainder = 0;
1851 } else {
1852 Q[i] = (unsigned)(partial_dividend / divisor);
1853 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1856 if (R)
1857 R[0] = remainder;
1858 } else {
1859 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1860 // case n > 1.
1861 KnuthDiv(U, V, Q, R, m, n);
1864 // If the caller wants the quotient
1865 if (Quotient) {
1866 // Set up the Quotient value's memory.
1867 if (Quotient->BitWidth != LHS.BitWidth) {
1868 if (Quotient->isSingleWord())
1869 Quotient->VAL = 0;
1870 else
1871 delete [] Quotient->pVal;
1872 Quotient->BitWidth = LHS.BitWidth;
1873 if (!Quotient->isSingleWord())
1874 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1875 } else
1876 Quotient->clear();
1878 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1879 // order words.
1880 if (lhsWords == 1) {
1881 uint64_t tmp =
1882 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1883 if (Quotient->isSingleWord())
1884 Quotient->VAL = tmp;
1885 else
1886 Quotient->pVal[0] = tmp;
1887 } else {
1888 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1889 for (unsigned i = 0; i < lhsWords; ++i)
1890 Quotient->pVal[i] =
1891 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1895 // If the caller wants the remainder
1896 if (Remainder) {
1897 // Set up the Remainder value's memory.
1898 if (Remainder->BitWidth != RHS.BitWidth) {
1899 if (Remainder->isSingleWord())
1900 Remainder->VAL = 0;
1901 else
1902 delete [] Remainder->pVal;
1903 Remainder->BitWidth = RHS.BitWidth;
1904 if (!Remainder->isSingleWord())
1905 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1906 } else
1907 Remainder->clear();
1909 // The remainder is in R. Reconstitute the remainder into Remainder's low
1910 // order words.
1911 if (rhsWords == 1) {
1912 uint64_t tmp =
1913 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1914 if (Remainder->isSingleWord())
1915 Remainder->VAL = tmp;
1916 else
1917 Remainder->pVal[0] = tmp;
1918 } else {
1919 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1920 for (unsigned i = 0; i < rhsWords; ++i)
1921 Remainder->pVal[i] =
1922 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1926 // Clean up the memory we allocated.
1927 if (U != &SPACE[0]) {
1928 delete [] U;
1929 delete [] V;
1930 delete [] Q;
1931 delete [] R;
1935 APInt APInt::udiv(const APInt& RHS) const {
1936 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1938 // First, deal with the easy case
1939 if (isSingleWord()) {
1940 assert(RHS.VAL != 0 && "Divide by zero?");
1941 return APInt(BitWidth, VAL / RHS.VAL);
1944 // Get some facts about the LHS and RHS number of bits and words
1945 unsigned rhsBits = RHS.getActiveBits();
1946 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1947 assert(rhsWords && "Divided by zero???");
1948 unsigned lhsBits = this->getActiveBits();
1949 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1951 // Deal with some degenerate cases
1952 if (!lhsWords)
1953 // 0 / X ===> 0
1954 return APInt(BitWidth, 0);
1955 else if (lhsWords < rhsWords || this->ult(RHS)) {
1956 // X / Y ===> 0, iff X < Y
1957 return APInt(BitWidth, 0);
1958 } else if (*this == RHS) {
1959 // X / X ===> 1
1960 return APInt(BitWidth, 1);
1961 } else if (lhsWords == 1 && rhsWords == 1) {
1962 // All high words are zero, just use native divide
1963 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1966 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1967 APInt Quotient(1,0); // to hold result.
1968 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1969 return Quotient;
1972 APInt APInt::urem(const APInt& RHS) const {
1973 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1974 if (isSingleWord()) {
1975 assert(RHS.VAL != 0 && "Remainder by zero?");
1976 return APInt(BitWidth, VAL % RHS.VAL);
1979 // Get some facts about the LHS
1980 unsigned lhsBits = getActiveBits();
1981 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1983 // Get some facts about the RHS
1984 unsigned rhsBits = RHS.getActiveBits();
1985 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1986 assert(rhsWords && "Performing remainder operation by zero ???");
1988 // Check the degenerate cases
1989 if (lhsWords == 0) {
1990 // 0 % Y ===> 0
1991 return APInt(BitWidth, 0);
1992 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1993 // X % Y ===> X, iff X < Y
1994 return *this;
1995 } else if (*this == RHS) {
1996 // X % X == 0;
1997 return APInt(BitWidth, 0);
1998 } else if (lhsWords == 1) {
1999 // All high words are zero, just use native remainder
2000 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
2003 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2004 APInt Remainder(1,0);
2005 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2006 return Remainder;
2009 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
2010 APInt &Quotient, APInt &Remainder) {
2011 // Get some size facts about the dividend and divisor
2012 unsigned lhsBits = LHS.getActiveBits();
2013 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2014 unsigned rhsBits = RHS.getActiveBits();
2015 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
2017 // Check the degenerate cases
2018 if (lhsWords == 0) {
2019 Quotient = 0; // 0 / Y ===> 0
2020 Remainder = 0; // 0 % Y ===> 0
2021 return;
2024 if (lhsWords < rhsWords || LHS.ult(RHS)) {
2025 Remainder = LHS; // X % Y ===> X, iff X < Y
2026 Quotient = 0; // X / Y ===> 0, iff X < Y
2027 return;
2030 if (LHS == RHS) {
2031 Quotient = 1; // X / X ===> 1
2032 Remainder = 0; // X % X ===> 0;
2033 return;
2036 if (lhsWords == 1 && rhsWords == 1) {
2037 // There is only one word to consider so use the native versions.
2038 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2039 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2040 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2041 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
2042 return;
2045 // Okay, lets do it the long way
2046 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2049 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
2050 APInt Res = *this+RHS;
2051 Overflow = isNonNegative() == RHS.isNonNegative() &&
2052 Res.isNonNegative() != isNonNegative();
2053 return Res;
2056 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2057 APInt Res = *this+RHS;
2058 Overflow = Res.ult(RHS);
2059 return Res;
2062 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
2063 APInt Res = *this - RHS;
2064 Overflow = isNonNegative() != RHS.isNonNegative() &&
2065 Res.isNonNegative() != isNonNegative();
2066 return Res;
2069 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
2070 APInt Res = *this-RHS;
2071 Overflow = Res.ugt(*this);
2072 return Res;
2075 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
2076 // MININT/-1 --> overflow.
2077 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2078 return sdiv(RHS);
2081 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
2082 APInt Res = *this * RHS;
2084 if (*this != 0 && RHS != 0)
2085 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2086 else
2087 Overflow = false;
2088 return Res;
2091 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
2092 Overflow = ShAmt >= getBitWidth();
2093 if (Overflow)
2094 ShAmt = getBitWidth()-1;
2096 if (isNonNegative()) // Don't allow sign change.
2097 Overflow = ShAmt >= countLeadingZeros();
2098 else
2099 Overflow = ShAmt >= countLeadingOnes();
2101 return *this << ShAmt;
2107 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2108 // Check our assumptions here
2109 assert(!str.empty() && "Invalid string length");
2110 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2111 "Radix should be 2, 8, 10, or 16!");
2113 StringRef::iterator p = str.begin();
2114 size_t slen = str.size();
2115 bool isNeg = *p == '-';
2116 if (*p == '-' || *p == '+') {
2117 p++;
2118 slen--;
2119 assert(slen && "String is only a sign, needs a value.");
2121 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2122 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2123 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2124 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2125 "Insufficient bit width");
2127 // Allocate memory
2128 if (!isSingleWord())
2129 pVal = getClearedMemory(getNumWords());
2131 // Figure out if we can shift instead of multiply
2132 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2134 // Set up an APInt for the digit to add outside the loop so we don't
2135 // constantly construct/destruct it.
2136 APInt apdigit(getBitWidth(), 0);
2137 APInt apradix(getBitWidth(), radix);
2139 // Enter digit traversal loop
2140 for (StringRef::iterator e = str.end(); p != e; ++p) {
2141 unsigned digit = getDigit(*p, radix);
2142 assert(digit < radix && "Invalid character in digit string");
2144 // Shift or multiply the value by the radix
2145 if (slen > 1) {
2146 if (shift)
2147 *this <<= shift;
2148 else
2149 *this *= apradix;
2152 // Add in the digit we just interpreted
2153 if (apdigit.isSingleWord())
2154 apdigit.VAL = digit;
2155 else
2156 apdigit.pVal[0] = digit;
2157 *this += apdigit;
2159 // If its negative, put it in two's complement form
2160 if (isNeg) {
2161 (*this)--;
2162 this->flip();
2166 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2167 bool Signed) const {
2168 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2169 "Radix should be 2, 8, 10, or 16!");
2171 // First, check for a zero value and just short circuit the logic below.
2172 if (*this == 0) {
2173 Str.push_back('0');
2174 return;
2177 static const char Digits[] = "0123456789ABCDEF";
2179 if (isSingleWord()) {
2180 char Buffer[65];
2181 char *BufPtr = Buffer+65;
2183 uint64_t N;
2184 if (!Signed) {
2185 N = getZExtValue();
2186 } else {
2187 int64_t I = getSExtValue();
2188 if (I >= 0) {
2189 N = I;
2190 } else {
2191 Str.push_back('-');
2192 N = -(uint64_t)I;
2196 while (N) {
2197 *--BufPtr = Digits[N % Radix];
2198 N /= Radix;
2200 Str.append(BufPtr, Buffer+65);
2201 return;
2204 APInt Tmp(*this);
2206 if (Signed && isNegative()) {
2207 // They want to print the signed version and it is a negative value
2208 // Flip the bits and add one to turn it into the equivalent positive
2209 // value and put a '-' in the result.
2210 Tmp.flip();
2211 Tmp++;
2212 Str.push_back('-');
2215 // We insert the digits backward, then reverse them to get the right order.
2216 unsigned StartDig = Str.size();
2218 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2219 // because the number of bits per digit (1, 3 and 4 respectively) divides
2220 // equaly. We just shift until the value is zero.
2221 if (Radix != 10) {
2222 // Just shift tmp right for each digit width until it becomes zero
2223 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2224 unsigned MaskAmt = Radix - 1;
2226 while (Tmp != 0) {
2227 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2228 Str.push_back(Digits[Digit]);
2229 Tmp = Tmp.lshr(ShiftAmt);
2231 } else {
2232 APInt divisor(4, 10);
2233 while (Tmp != 0) {
2234 APInt APdigit(1, 0);
2235 APInt tmp2(Tmp.getBitWidth(), 0);
2236 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2237 &APdigit);
2238 unsigned Digit = (unsigned)APdigit.getZExtValue();
2239 assert(Digit < Radix && "divide failed");
2240 Str.push_back(Digits[Digit]);
2241 Tmp = tmp2;
2245 // Reverse the digits before returning.
2246 std::reverse(Str.begin()+StartDig, Str.end());
2249 /// toString - This returns the APInt as a std::string. Note that this is an
2250 /// inefficient method. It is better to pass in a SmallVector/SmallString
2251 /// to the methods above.
2252 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2253 SmallString<40> S;
2254 toString(S, Radix, Signed);
2255 return S.str();
2259 void APInt::dump() const {
2260 SmallString<40> S, U;
2261 this->toStringUnsigned(U);
2262 this->toStringSigned(S);
2263 dbgs() << "APInt(" << BitWidth << "b, "
2264 << U.str() << "u " << S.str() << "s)";
2267 void APInt::print(raw_ostream &OS, bool isSigned) const {
2268 SmallString<40> S;
2269 this->toString(S, 10, isSigned);
2270 OS << S.str();
2273 // This implements a variety of operations on a representation of
2274 // arbitrary precision, two's-complement, bignum integer values.
2276 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2277 // and unrestricting assumption.
2278 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2279 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2281 /* Some handy functions local to this file. */
2282 namespace {
2284 /* Returns the integer part with the least significant BITS set.
2285 BITS cannot be zero. */
2286 static inline integerPart
2287 lowBitMask(unsigned int bits)
2289 assert(bits != 0 && bits <= integerPartWidth);
2291 return ~(integerPart) 0 >> (integerPartWidth - bits);
2294 /* Returns the value of the lower half of PART. */
2295 static inline integerPart
2296 lowHalf(integerPart part)
2298 return part & lowBitMask(integerPartWidth / 2);
2301 /* Returns the value of the upper half of PART. */
2302 static inline integerPart
2303 highHalf(integerPart part)
2305 return part >> (integerPartWidth / 2);
2308 /* Returns the bit number of the most significant set bit of a part.
2309 If the input number has no bits set -1U is returned. */
2310 static unsigned int
2311 partMSB(integerPart value)
2313 unsigned int n, msb;
2315 if (value == 0)
2316 return -1U;
2318 n = integerPartWidth / 2;
2320 msb = 0;
2321 do {
2322 if (value >> n) {
2323 value >>= n;
2324 msb += n;
2327 n >>= 1;
2328 } while (n);
2330 return msb;
2333 /* Returns the bit number of the least significant set bit of a
2334 part. If the input number has no bits set -1U is returned. */
2335 static unsigned int
2336 partLSB(integerPart value)
2338 unsigned int n, lsb;
2340 if (value == 0)
2341 return -1U;
2343 lsb = integerPartWidth - 1;
2344 n = integerPartWidth / 2;
2346 do {
2347 if (value << n) {
2348 value <<= n;
2349 lsb -= n;
2352 n >>= 1;
2353 } while (n);
2355 return lsb;
2359 /* Sets the least significant part of a bignum to the input value, and
2360 zeroes out higher parts. */
2361 void
2362 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2364 unsigned int i;
2366 assert(parts > 0);
2368 dst[0] = part;
2369 for (i = 1; i < parts; i++)
2370 dst[i] = 0;
2373 /* Assign one bignum to another. */
2374 void
2375 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2377 unsigned int i;
2379 for (i = 0; i < parts; i++)
2380 dst[i] = src[i];
2383 /* Returns true if a bignum is zero, false otherwise. */
2384 bool
2385 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2387 unsigned int i;
2389 for (i = 0; i < parts; i++)
2390 if (src[i])
2391 return false;
2393 return true;
2396 /* Extract the given bit of a bignum; returns 0 or 1. */
2398 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2400 return (parts[bit / integerPartWidth] &
2401 ((integerPart) 1 << bit % integerPartWidth)) != 0;
2404 /* Set the given bit of a bignum. */
2405 void
2406 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2408 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2411 /* Clears the given bit of a bignum. */
2412 void
2413 APInt::tcClearBit(integerPart *parts, unsigned int bit)
2415 parts[bit / integerPartWidth] &=
2416 ~((integerPart) 1 << (bit % integerPartWidth));
2419 /* Returns the bit number of the least significant set bit of a
2420 number. If the input number has no bits set -1U is returned. */
2421 unsigned int
2422 APInt::tcLSB(const integerPart *parts, unsigned int n)
2424 unsigned int i, lsb;
2426 for (i = 0; i < n; i++) {
2427 if (parts[i] != 0) {
2428 lsb = partLSB(parts[i]);
2430 return lsb + i * integerPartWidth;
2434 return -1U;
2437 /* Returns the bit number of the most significant set bit of a number.
2438 If the input number has no bits set -1U is returned. */
2439 unsigned int
2440 APInt::tcMSB(const integerPart *parts, unsigned int n)
2442 unsigned int msb;
2444 do {
2445 --n;
2447 if (parts[n] != 0) {
2448 msb = partMSB(parts[n]);
2450 return msb + n * integerPartWidth;
2452 } while (n);
2454 return -1U;
2457 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2458 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2459 the least significant bit of DST. All high bits above srcBITS in
2460 DST are zero-filled. */
2461 void
2462 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2463 unsigned int srcBits, unsigned int srcLSB)
2465 unsigned int firstSrcPart, dstParts, shift, n;
2467 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2468 assert(dstParts <= dstCount);
2470 firstSrcPart = srcLSB / integerPartWidth;
2471 tcAssign (dst, src + firstSrcPart, dstParts);
2473 shift = srcLSB % integerPartWidth;
2474 tcShiftRight (dst, dstParts, shift);
2476 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2477 in DST. If this is less that srcBits, append the rest, else
2478 clear the high bits. */
2479 n = dstParts * integerPartWidth - shift;
2480 if (n < srcBits) {
2481 integerPart mask = lowBitMask (srcBits - n);
2482 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2483 << n % integerPartWidth);
2484 } else if (n > srcBits) {
2485 if (srcBits % integerPartWidth)
2486 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2489 /* Clear high parts. */
2490 while (dstParts < dstCount)
2491 dst[dstParts++] = 0;
2494 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2495 integerPart
2496 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2497 integerPart c, unsigned int parts)
2499 unsigned int i;
2501 assert(c <= 1);
2503 for (i = 0; i < parts; i++) {
2504 integerPart l;
2506 l = dst[i];
2507 if (c) {
2508 dst[i] += rhs[i] + 1;
2509 c = (dst[i] <= l);
2510 } else {
2511 dst[i] += rhs[i];
2512 c = (dst[i] < l);
2516 return c;
2519 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2520 integerPart
2521 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2522 integerPart c, unsigned int parts)
2524 unsigned int i;
2526 assert(c <= 1);
2528 for (i = 0; i < parts; i++) {
2529 integerPart l;
2531 l = dst[i];
2532 if (c) {
2533 dst[i] -= rhs[i] + 1;
2534 c = (dst[i] >= l);
2535 } else {
2536 dst[i] -= rhs[i];
2537 c = (dst[i] > l);
2541 return c;
2544 /* Negate a bignum in-place. */
2545 void
2546 APInt::tcNegate(integerPart *dst, unsigned int parts)
2548 tcComplement(dst, parts);
2549 tcIncrement(dst, parts);
2552 /* DST += SRC * MULTIPLIER + CARRY if add is true
2553 DST = SRC * MULTIPLIER + CARRY if add is false
2555 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2556 they must start at the same point, i.e. DST == SRC.
2558 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2559 returned. Otherwise DST is filled with the least significant
2560 DSTPARTS parts of the result, and if all of the omitted higher
2561 parts were zero return zero, otherwise overflow occurred and
2562 return one. */
2564 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2565 integerPart multiplier, integerPart carry,
2566 unsigned int srcParts, unsigned int dstParts,
2567 bool add)
2569 unsigned int i, n;
2571 /* Otherwise our writes of DST kill our later reads of SRC. */
2572 assert(dst <= src || dst >= src + srcParts);
2573 assert(dstParts <= srcParts + 1);
2575 /* N loops; minimum of dstParts and srcParts. */
2576 n = dstParts < srcParts ? dstParts: srcParts;
2578 for (i = 0; i < n; i++) {
2579 integerPart low, mid, high, srcPart;
2581 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2583 This cannot overflow, because
2585 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2587 which is less than n^2. */
2589 srcPart = src[i];
2591 if (multiplier == 0 || srcPart == 0) {
2592 low = carry;
2593 high = 0;
2594 } else {
2595 low = lowHalf(srcPart) * lowHalf(multiplier);
2596 high = highHalf(srcPart) * highHalf(multiplier);
2598 mid = lowHalf(srcPart) * highHalf(multiplier);
2599 high += highHalf(mid);
2600 mid <<= integerPartWidth / 2;
2601 if (low + mid < low)
2602 high++;
2603 low += mid;
2605 mid = highHalf(srcPart) * lowHalf(multiplier);
2606 high += highHalf(mid);
2607 mid <<= integerPartWidth / 2;
2608 if (low + mid < low)
2609 high++;
2610 low += mid;
2612 /* Now add carry. */
2613 if (low + carry < low)
2614 high++;
2615 low += carry;
2618 if (add) {
2619 /* And now DST[i], and store the new low part there. */
2620 if (low + dst[i] < low)
2621 high++;
2622 dst[i] += low;
2623 } else
2624 dst[i] = low;
2626 carry = high;
2629 if (i < dstParts) {
2630 /* Full multiplication, there is no overflow. */
2631 assert(i + 1 == dstParts);
2632 dst[i] = carry;
2633 return 0;
2634 } else {
2635 /* We overflowed if there is carry. */
2636 if (carry)
2637 return 1;
2639 /* We would overflow if any significant unwritten parts would be
2640 non-zero. This is true if any remaining src parts are non-zero
2641 and the multiplier is non-zero. */
2642 if (multiplier)
2643 for (; i < srcParts; i++)
2644 if (src[i])
2645 return 1;
2647 /* We fitted in the narrow destination. */
2648 return 0;
2652 /* DST = LHS * RHS, where DST has the same width as the operands and
2653 is filled with the least significant parts of the result. Returns
2654 one if overflow occurred, otherwise zero. DST must be disjoint
2655 from both operands. */
2657 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2658 const integerPart *rhs, unsigned int parts)
2660 unsigned int i;
2661 int overflow;
2663 assert(dst != lhs && dst != rhs);
2665 overflow = 0;
2666 tcSet(dst, 0, parts);
2668 for (i = 0; i < parts; i++)
2669 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2670 parts - i, true);
2672 return overflow;
2675 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2676 operands. No overflow occurs. DST must be disjoint from both
2677 operands. Returns the number of parts required to hold the
2678 result. */
2679 unsigned int
2680 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2681 const integerPart *rhs, unsigned int lhsParts,
2682 unsigned int rhsParts)
2684 /* Put the narrower number on the LHS for less loops below. */
2685 if (lhsParts > rhsParts) {
2686 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2687 } else {
2688 unsigned int n;
2690 assert(dst != lhs && dst != rhs);
2692 tcSet(dst, 0, rhsParts);
2694 for (n = 0; n < lhsParts; n++)
2695 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2697 n = lhsParts + rhsParts;
2699 return n - (dst[n - 1] == 0);
2703 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2704 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2705 set REMAINDER to the remainder, return zero. i.e.
2707 OLD_LHS = RHS * LHS + REMAINDER
2709 SCRATCH is a bignum of the same size as the operands and result for
2710 use by the routine; its contents need not be initialized and are
2711 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2714 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2715 integerPart *remainder, integerPart *srhs,
2716 unsigned int parts)
2718 unsigned int n, shiftCount;
2719 integerPart mask;
2721 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2723 shiftCount = tcMSB(rhs, parts) + 1;
2724 if (shiftCount == 0)
2725 return true;
2727 shiftCount = parts * integerPartWidth - shiftCount;
2728 n = shiftCount / integerPartWidth;
2729 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2731 tcAssign(srhs, rhs, parts);
2732 tcShiftLeft(srhs, parts, shiftCount);
2733 tcAssign(remainder, lhs, parts);
2734 tcSet(lhs, 0, parts);
2736 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2737 the total. */
2738 for (;;) {
2739 int compare;
2741 compare = tcCompare(remainder, srhs, parts);
2742 if (compare >= 0) {
2743 tcSubtract(remainder, srhs, 0, parts);
2744 lhs[n] |= mask;
2747 if (shiftCount == 0)
2748 break;
2749 shiftCount--;
2750 tcShiftRight(srhs, parts, 1);
2751 if ((mask >>= 1) == 0)
2752 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2755 return false;
2758 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2759 There are no restrictions on COUNT. */
2760 void
2761 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2763 if (count) {
2764 unsigned int jump, shift;
2766 /* Jump is the inter-part jump; shift is is intra-part shift. */
2767 jump = count / integerPartWidth;
2768 shift = count % integerPartWidth;
2770 while (parts > jump) {
2771 integerPart part;
2773 parts--;
2775 /* dst[i] comes from the two parts src[i - jump] and, if we have
2776 an intra-part shift, src[i - jump - 1]. */
2777 part = dst[parts - jump];
2778 if (shift) {
2779 part <<= shift;
2780 if (parts >= jump + 1)
2781 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2784 dst[parts] = part;
2787 while (parts > 0)
2788 dst[--parts] = 0;
2792 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2793 zero. There are no restrictions on COUNT. */
2794 void
2795 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2797 if (count) {
2798 unsigned int i, jump, shift;
2800 /* Jump is the inter-part jump; shift is is intra-part shift. */
2801 jump = count / integerPartWidth;
2802 shift = count % integerPartWidth;
2804 /* Perform the shift. This leaves the most significant COUNT bits
2805 of the result at zero. */
2806 for (i = 0; i < parts; i++) {
2807 integerPart part;
2809 if (i + jump >= parts) {
2810 part = 0;
2811 } else {
2812 part = dst[i + jump];
2813 if (shift) {
2814 part >>= shift;
2815 if (i + jump + 1 < parts)
2816 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2820 dst[i] = part;
2825 /* Bitwise and of two bignums. */
2826 void
2827 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2829 unsigned int i;
2831 for (i = 0; i < parts; i++)
2832 dst[i] &= rhs[i];
2835 /* Bitwise inclusive or of two bignums. */
2836 void
2837 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2839 unsigned int i;
2841 for (i = 0; i < parts; i++)
2842 dst[i] |= rhs[i];
2845 /* Bitwise exclusive or of two bignums. */
2846 void
2847 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2849 unsigned int i;
2851 for (i = 0; i < parts; i++)
2852 dst[i] ^= rhs[i];
2855 /* Complement a bignum in-place. */
2856 void
2857 APInt::tcComplement(integerPart *dst, unsigned int parts)
2859 unsigned int i;
2861 for (i = 0; i < parts; i++)
2862 dst[i] = ~dst[i];
2865 /* Comparison (unsigned) of two bignums. */
2867 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2868 unsigned int parts)
2870 while (parts) {
2871 parts--;
2872 if (lhs[parts] == rhs[parts])
2873 continue;
2875 if (lhs[parts] > rhs[parts])
2876 return 1;
2877 else
2878 return -1;
2881 return 0;
2884 /* Increment a bignum in-place, return the carry flag. */
2885 integerPart
2886 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2888 unsigned int i;
2890 for (i = 0; i < parts; i++)
2891 if (++dst[i] != 0)
2892 break;
2894 return i == parts;
2897 /* Set the least significant BITS bits of a bignum, clear the
2898 rest. */
2899 void
2900 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2901 unsigned int bits)
2903 unsigned int i;
2905 i = 0;
2906 while (bits > integerPartWidth) {
2907 dst[i++] = ~(integerPart) 0;
2908 bits -= integerPartWidth;
2911 if (bits)
2912 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2914 while (i < parts)
2915 dst[i++] = 0;