zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / System / Host.cpp
blob17384a18f94b30c85fdf40ad1d615c7c8964cfd5
1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header file implements the operating system Host concept.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/System/Host.h"
15 #include "llvm/Config/config.h"
16 #include <string.h>
18 // Include the platform-specific parts of this class.
19 #ifdef LLVM_ON_UNIX
20 #include "Unix/Host.inc"
21 #endif
22 #ifdef LLVM_ON_WIN32
23 #include "Win32/Host.inc"
24 #endif
25 #ifdef _MSC_VER
26 #include <intrin.h>
27 #endif
29 //===----------------------------------------------------------------------===//
31 // Implementations of the CPU detection routines
33 //===----------------------------------------------------------------------===//
35 using namespace llvm;
37 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
38 || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
40 /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
41 /// specified arguments. If we can't run cpuid on the host, return true.
42 static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX,
43 unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
44 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
45 #if defined(__GNUC__)
46 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
47 asm ("movq\t%%rbx, %%rsi\n\t"
48 "cpuid\n\t"
49 "xchgq\t%%rbx, %%rsi\n\t"
50 : "=a" (*rEAX),
51 "=S" (*rEBX),
52 "=c" (*rECX),
53 "=d" (*rEDX)
54 : "a" (value));
55 return false;
56 #elif defined(_MSC_VER)
57 int registers[4];
58 __cpuid(registers, value);
59 *rEAX = registers[0];
60 *rEBX = registers[1];
61 *rECX = registers[2];
62 *rEDX = registers[3];
63 return false;
64 #endif
65 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
66 #if defined(__GNUC__)
67 asm ("movl\t%%ebx, %%esi\n\t"
68 "cpuid\n\t"
69 "xchgl\t%%ebx, %%esi\n\t"
70 : "=a" (*rEAX),
71 "=S" (*rEBX),
72 "=c" (*rECX),
73 "=d" (*rEDX)
74 : "a" (value));
75 return false;
76 #elif defined(_MSC_VER)
77 __asm {
78 mov eax,value
79 cpuid
80 mov esi,rEAX
81 mov dword ptr [esi],eax
82 mov esi,rEBX
83 mov dword ptr [esi],ebx
84 mov esi,rECX
85 mov dword ptr [esi],ecx
86 mov esi,rEDX
87 mov dword ptr [esi],edx
89 return false;
90 #endif
91 #endif
92 return true;
95 static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
96 unsigned &Model) {
97 Family = (EAX >> 8) & 0xf; // Bits 8 - 11
98 Model = (EAX >> 4) & 0xf; // Bits 4 - 7
99 if (Family == 6 || Family == 0xf) {
100 if (Family == 0xf)
101 // Examine extended family ID if family ID is F.
102 Family += (EAX >> 20) & 0xff; // Bits 20 - 27
103 // Examine extended model ID if family ID is 6 or F.
104 Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
108 std::string sys::getHostCPUName() {
109 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
110 if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
111 return "generic";
112 unsigned Family = 0;
113 unsigned Model = 0;
114 DetectX86FamilyModel(EAX, Family, Model);
116 bool HasSSE3 = (ECX & 0x1);
117 GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
118 bool Em64T = (EDX >> 29) & 0x1;
120 union {
121 unsigned u[3];
122 char c[12];
123 } text;
125 GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
126 if (memcmp(text.c, "GenuineIntel", 12) == 0) {
127 switch (Family) {
128 case 3:
129 return "i386";
130 case 4:
131 switch (Model) {
132 case 0: // Intel486 DX processors
133 case 1: // Intel486 DX processors
134 case 2: // Intel486 SX processors
135 case 3: // Intel487 processors, IntelDX2 OverDrive processors,
136 // IntelDX2 processors
137 case 4: // Intel486 SL processor
138 case 5: // IntelSX2 processors
139 case 7: // Write-Back Enhanced IntelDX2 processors
140 case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
141 default: return "i486";
143 case 5:
144 switch (Model) {
145 case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
146 // Pentium processors (60, 66)
147 case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
148 // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
149 // 150, 166, 200)
150 case 3: // Pentium OverDrive processors for Intel486 processor-based
151 // systems
152 return "pentium";
154 case 4: // Pentium OverDrive processor with MMX technology for Pentium
155 // processor (75, 90, 100, 120, 133), Pentium processor with
156 // MMX technology (166, 200)
157 return "pentium-mmx";
159 default: return "pentium";
161 case 6:
162 switch (Model) {
163 case 1: // Pentium Pro processor
164 return "pentiumpro";
166 case 3: // Intel Pentium II OverDrive processor, Pentium II processor,
167 // model 03
168 case 5: // Pentium II processor, model 05, Pentium II Xeon processor,
169 // model 05, and Intel Celeron processor, model 05
170 case 6: // Celeron processor, model 06
171 return "pentium2";
173 case 7: // Pentium III processor, model 07, and Pentium III Xeon
174 // processor, model 07
175 case 8: // Pentium III processor, model 08, Pentium III Xeon processor,
176 // model 08, and Celeron processor, model 08
177 case 10: // Pentium III Xeon processor, model 0Ah
178 case 11: // Pentium III processor, model 0Bh
179 return "pentium3";
181 case 9: // Intel Pentium M processor, Intel Celeron M processor model 09.
182 case 13: // Intel Pentium M processor, Intel Celeron M processor, model
183 // 0Dh. All processors are manufactured using the 90 nm process.
184 return "pentium-m";
186 case 14: // Intel Core Duo processor, Intel Core Solo processor, model
187 // 0Eh. All processors are manufactured using the 65 nm process.
188 return "yonah";
190 case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
191 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
192 // mobile processor, Intel Core 2 Extreme processor, Intel
193 // Pentium Dual-Core processor, Intel Xeon processor, model
194 // 0Fh. All processors are manufactured using the 65 nm process.
195 case 22: // Intel Celeron processor model 16h. All processors are
196 // manufactured using the 65 nm process
197 return "core2";
199 case 21: // Intel EP80579 Integrated Processor and Intel EP80579
200 // Integrated Processor with Intel QuickAssist Technology
201 return "i686"; // FIXME: ???
203 case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
204 // 17h. All processors are manufactured using the 45 nm process.
206 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
207 return "penryn";
209 case 26: // Intel Core i7 processor and Intel Xeon processor. All
210 // processors are manufactured using the 45 nm process.
211 case 29: // Intel Xeon processor MP. All processors are manufactured using
212 // the 45 nm process.
213 case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
214 // As found in a Summer 2010 model iMac.
215 case 37: // Intel Core i7, laptop version.
216 return "corei7";
218 case 28: // Intel Atom processor. All processors are manufactured using
219 // the 45 nm process
220 return "atom";
222 default: return "i686";
224 case 15: {
225 switch (Model) {
226 case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
227 // model 00h and manufactured using the 0.18 micron process.
228 case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
229 // processor MP, and Intel Celeron processor. All processors are
230 // model 01h and manufactured using the 0.18 micron process.
231 case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
232 // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
233 // processor, and Mobile Intel Celeron processor. All processors
234 // are model 02h and manufactured using the 0.13 micron process.
235 return (Em64T) ? "x86-64" : "pentium4";
237 case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
238 // processor. All processors are model 03h and manufactured using
239 // the 90 nm process.
240 case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
241 // Pentium D processor, Intel Xeon processor, Intel Xeon
242 // processor MP, Intel Celeron D processor. All processors are
243 // model 04h and manufactured using the 90 nm process.
244 case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
245 // Extreme Edition, Intel Xeon processor, Intel Xeon processor
246 // MP, Intel Celeron D processor. All processors are model 06h
247 // and manufactured using the 65 nm process.
248 return (Em64T) ? "nocona" : "prescott";
250 default:
251 return (Em64T) ? "x86-64" : "pentium4";
255 default:
256 return "generic";
258 } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
259 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
260 // appears to be no way to generate the wide variety of AMD-specific targets
261 // from the information returned from CPUID.
262 switch (Family) {
263 case 4:
264 return "i486";
265 case 5:
266 switch (Model) {
267 case 6:
268 case 7: return "k6";
269 case 8: return "k6-2";
270 case 9:
271 case 13: return "k6-3";
272 default: return "pentium";
274 case 6:
275 switch (Model) {
276 case 4: return "athlon-tbird";
277 case 6:
278 case 7:
279 case 8: return "athlon-mp";
280 case 10: return "athlon-xp";
281 default: return "athlon";
283 case 15:
284 if (HasSSE3)
285 return "k8-sse3";
286 switch (Model) {
287 case 1: return "opteron";
288 case 5: return "athlon-fx"; // also opteron
289 default: return "athlon64";
291 case 16:
292 return "amdfam10";
293 default:
294 return "generic";
297 return "generic";
299 #else
300 std::string sys::getHostCPUName() {
301 return "generic";
303 #endif
305 bool sys::getHostCPUFeatures(StringMap<bool> &Features){
306 return false;