zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Target / CellSPU / SPUISelDAGToDAG.cpp
blob38a13d1874ce92a7e8b6d1e6068639c3d50c7a86
1 //===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for the Cell SPU,
11 // converting from a legalized dag to a SPU-target dag.
13 //===----------------------------------------------------------------------===//
15 #include "SPU.h"
16 #include "SPUTargetMachine.h"
17 #include "SPUHazardRecognizers.h"
18 #include "SPUFrameInfo.h"
19 #include "SPURegisterNames.h"
20 #include "SPUTargetMachine.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetOptions.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Constants.h"
30 #include "llvm/GlobalValue.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
41 namespace {
42 //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
43 bool
44 isI32IntS10Immediate(ConstantSDNode *CN)
46 return isInt<10>(CN->getSExtValue());
49 //! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
50 bool
51 isI32IntU10Immediate(ConstantSDNode *CN)
53 return isUInt<10>(CN->getSExtValue());
56 //! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
57 bool
58 isI16IntS10Immediate(ConstantSDNode *CN)
60 return isInt<10>(CN->getSExtValue());
63 //! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
64 bool
65 isI16IntU10Immediate(ConstantSDNode *CN)
67 return isUInt<10>((short) CN->getZExtValue());
70 //! ConstantSDNode predicate for signed 16-bit values
71 /*!
72 \arg CN The constant SelectionDAG node holding the value
73 \arg Imm The returned 16-bit value, if returning true
75 This predicate tests the value in \a CN to see whether it can be
76 represented as a 16-bit, sign-extended quantity. Returns true if
77 this is the case.
79 bool
80 isIntS16Immediate(ConstantSDNode *CN, short &Imm)
82 EVT vt = CN->getValueType(0);
83 Imm = (short) CN->getZExtValue();
84 if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
85 return true;
86 } else if (vt == MVT::i32) {
87 int32_t i_val = (int32_t) CN->getZExtValue();
88 short s_val = (short) i_val;
89 return i_val == s_val;
90 } else {
91 int64_t i_val = (int64_t) CN->getZExtValue();
92 short s_val = (short) i_val;
93 return i_val == s_val;
96 return false;
99 //! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
100 static bool
101 isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
103 EVT vt = FPN->getValueType(0);
104 if (vt == MVT::f32) {
105 int val = FloatToBits(FPN->getValueAPF().convertToFloat());
106 int sval = (int) ((val << 16) >> 16);
107 Imm = (short) val;
108 return val == sval;
111 return false;
114 //! Generate the carry-generate shuffle mask.
115 SDValue getCarryGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
116 SmallVector<SDValue, 16 > ShufBytes;
118 // Create the shuffle mask for "rotating" the borrow up one register slot
119 // once the borrow is generated.
120 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
121 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
122 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
123 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
125 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
126 &ShufBytes[0], ShufBytes.size());
129 //! Generate the borrow-generate shuffle mask
130 SDValue getBorrowGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
131 SmallVector<SDValue, 16 > ShufBytes;
133 // Create the shuffle mask for "rotating" the borrow up one register slot
134 // once the borrow is generated.
135 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
136 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
137 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
138 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
140 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
141 &ShufBytes[0], ShufBytes.size());
144 //===------------------------------------------------------------------===//
145 /// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
146 /// instructions for SelectionDAG operations.
148 class SPUDAGToDAGISel :
149 public SelectionDAGISel
151 const SPUTargetMachine &TM;
152 const SPUTargetLowering &SPUtli;
153 unsigned GlobalBaseReg;
155 public:
156 explicit SPUDAGToDAGISel(SPUTargetMachine &tm) :
157 SelectionDAGISel(tm),
158 TM(tm),
159 SPUtli(*tm.getTargetLowering())
162 virtual bool runOnMachineFunction(MachineFunction &MF) {
163 // Make sure we re-emit a set of the global base reg if necessary
164 GlobalBaseReg = 0;
165 SelectionDAGISel::runOnMachineFunction(MF);
166 return true;
169 /// getI32Imm - Return a target constant with the specified value, of type
170 /// i32.
171 inline SDValue getI32Imm(uint32_t Imm) {
172 return CurDAG->getTargetConstant(Imm, MVT::i32);
175 /// getSmallIPtrImm - Return a target constant of pointer type.
176 inline SDValue getSmallIPtrImm(unsigned Imm) {
177 return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
180 SDNode *emitBuildVector(SDNode *bvNode) {
181 EVT vecVT = bvNode->getValueType(0);
182 DebugLoc dl = bvNode->getDebugLoc();
184 // Check to see if this vector can be represented as a CellSPU immediate
185 // constant by invoking all of the instruction selection predicates:
186 if (((vecVT == MVT::v8i16) &&
187 (SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i16).getNode() != 0)) ||
188 ((vecVT == MVT::v4i32) &&
189 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
190 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
191 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
192 (SPU::get_v4i32_imm(bvNode, *CurDAG).getNode() != 0))) ||
193 ((vecVT == MVT::v2i64) &&
194 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
195 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
196 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0)))) {
197 HandleSDNode Dummy(SDValue(bvNode, 0));
198 if (SDNode *N = Select(bvNode))
199 return N;
200 return Dummy.getValue().getNode();
203 // No, need to emit a constant pool spill:
204 std::vector<Constant*> CV;
206 for (size_t i = 0; i < bvNode->getNumOperands(); ++i) {
207 ConstantSDNode *V = cast<ConstantSDNode > (bvNode->getOperand(i));
208 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
211 const Constant *CP = ConstantVector::get(CV);
212 SDValue CPIdx = CurDAG->getConstantPool(CP, SPUtli.getPointerTy());
213 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
214 SDValue CGPoolOffset =
215 SPU::LowerConstantPool(CPIdx, *CurDAG, TM);
217 HandleSDNode Dummy(CurDAG->getLoad(vecVT, dl,
218 CurDAG->getEntryNode(), CGPoolOffset,
219 MachinePointerInfo::getConstantPool(),
220 false, false, Alignment));
221 CurDAG->ReplaceAllUsesWith(SDValue(bvNode, 0), Dummy.getValue());
222 if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
223 return N;
224 return Dummy.getValue().getNode();
227 /// Select - Convert the specified operand from a target-independent to a
228 /// target-specific node if it hasn't already been changed.
229 SDNode *Select(SDNode *N);
231 //! Emit the instruction sequence for i64 shl
232 SDNode *SelectSHLi64(SDNode *N, EVT OpVT);
234 //! Emit the instruction sequence for i64 srl
235 SDNode *SelectSRLi64(SDNode *N, EVT OpVT);
237 //! Emit the instruction sequence for i64 sra
238 SDNode *SelectSRAi64(SDNode *N, EVT OpVT);
240 //! Emit the necessary sequence for loading i64 constants:
241 SDNode *SelectI64Constant(SDNode *N, EVT OpVT, DebugLoc dl);
243 //! Alternate instruction emit sequence for loading i64 constants
244 SDNode *SelectI64Constant(uint64_t i64const, EVT OpVT, DebugLoc dl);
246 //! Returns true if the address N is an A-form (local store) address
247 bool SelectAFormAddr(SDNode *Op, SDValue N, SDValue &Base,
248 SDValue &Index);
250 //! D-form address predicate
251 bool SelectDFormAddr(SDNode *Op, SDValue N, SDValue &Base,
252 SDValue &Index);
254 /// Alternate D-form address using i7 offset predicate
255 bool SelectDForm2Addr(SDNode *Op, SDValue N, SDValue &Disp,
256 SDValue &Base);
258 /// D-form address selection workhorse
259 bool DFormAddressPredicate(SDNode *Op, SDValue N, SDValue &Disp,
260 SDValue &Base, int minOffset, int maxOffset);
262 //! Address predicate if N can be expressed as an indexed [r+r] operation.
263 bool SelectXFormAddr(SDNode *Op, SDValue N, SDValue &Base,
264 SDValue &Index);
266 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
267 /// inline asm expressions.
268 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
269 char ConstraintCode,
270 std::vector<SDValue> &OutOps) {
271 SDValue Op0, Op1;
272 switch (ConstraintCode) {
273 default: return true;
274 case 'm': // memory
275 if (!SelectDFormAddr(Op.getNode(), Op, Op0, Op1)
276 && !SelectAFormAddr(Op.getNode(), Op, Op0, Op1))
277 SelectXFormAddr(Op.getNode(), Op, Op0, Op1);
278 break;
279 case 'o': // offsetable
280 if (!SelectDFormAddr(Op.getNode(), Op, Op0, Op1)
281 && !SelectAFormAddr(Op.getNode(), Op, Op0, Op1)) {
282 Op0 = Op;
283 Op1 = getSmallIPtrImm(0);
285 break;
286 case 'v': // not offsetable
287 #if 1
288 llvm_unreachable("InlineAsmMemoryOperand 'v' constraint not handled.");
289 #else
290 SelectAddrIdxOnly(Op, Op, Op0, Op1);
291 #endif
292 break;
295 OutOps.push_back(Op0);
296 OutOps.push_back(Op1);
297 return false;
300 virtual const char *getPassName() const {
301 return "Cell SPU DAG->DAG Pattern Instruction Selection";
304 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
305 /// this target when scheduling the DAG.
306 virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
307 const TargetInstrInfo *II = TM.getInstrInfo();
308 assert(II && "No InstrInfo?");
309 return new SPUHazardRecognizer(*II);
312 private:
313 SDValue getRC( MVT );
315 // Include the pieces autogenerated from the target description.
316 #include "SPUGenDAGISel.inc"
321 \arg Op The ISD instruction operand
322 \arg N The address to be tested
323 \arg Base The base address
324 \arg Index The base address index
326 bool
327 SPUDAGToDAGISel::SelectAFormAddr(SDNode *Op, SDValue N, SDValue &Base,
328 SDValue &Index) {
329 // These match the addr256k operand type:
330 EVT OffsVT = MVT::i16;
331 SDValue Zero = CurDAG->getTargetConstant(0, OffsVT);
333 switch (N.getOpcode()) {
334 case ISD::Constant:
335 case ISD::ConstantPool:
336 case ISD::GlobalAddress:
337 report_fatal_error("SPU SelectAFormAddr: Constant/Pool/Global not lowered.");
338 /*NOTREACHED*/
340 case ISD::TargetConstant:
341 case ISD::TargetGlobalAddress:
342 case ISD::TargetJumpTable:
343 report_fatal_error("SPUSelectAFormAddr: Target Constant/Pool/Global "
344 "not wrapped as A-form address.");
345 /*NOTREACHED*/
347 case SPUISD::AFormAddr:
348 // Just load from memory if there's only a single use of the location,
349 // otherwise, this will get handled below with D-form offset addresses
350 if (N.hasOneUse()) {
351 SDValue Op0 = N.getOperand(0);
352 switch (Op0.getOpcode()) {
353 case ISD::TargetConstantPool:
354 case ISD::TargetJumpTable:
355 Base = Op0;
356 Index = Zero;
357 return true;
359 case ISD::TargetGlobalAddress: {
360 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0);
361 const GlobalValue *GV = GSDN->getGlobal();
362 if (GV->getAlignment() == 16) {
363 Base = Op0;
364 Index = Zero;
365 return true;
367 break;
371 break;
373 return false;
376 bool
377 SPUDAGToDAGISel::SelectDForm2Addr(SDNode *Op, SDValue N, SDValue &Disp,
378 SDValue &Base) {
379 const int minDForm2Offset = -(1 << 7);
380 const int maxDForm2Offset = (1 << 7) - 1;
381 return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset,
382 maxDForm2Offset);
386 \arg Op The ISD instruction (ignored)
387 \arg N The address to be tested
388 \arg Base Base address register/pointer
389 \arg Index Base address index
391 Examine the input address by a base register plus a signed 10-bit
392 displacement, [r+I10] (D-form address).
394 \return true if \a N is a D-form address with \a Base and \a Index set
395 to non-empty SDValue instances.
397 bool
398 SPUDAGToDAGISel::SelectDFormAddr(SDNode *Op, SDValue N, SDValue &Base,
399 SDValue &Index) {
400 return DFormAddressPredicate(Op, N, Base, Index,
401 SPUFrameInfo::minFrameOffset(),
402 SPUFrameInfo::maxFrameOffset());
405 bool
406 SPUDAGToDAGISel::DFormAddressPredicate(SDNode *Op, SDValue N, SDValue &Base,
407 SDValue &Index, int minOffset,
408 int maxOffset) {
409 unsigned Opc = N.getOpcode();
410 EVT PtrTy = SPUtli.getPointerTy();
412 if (Opc == ISD::FrameIndex) {
413 // Stack frame index must be less than 512 (divided by 16):
414 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(N);
415 int FI = int(FIN->getIndex());
416 DEBUG(errs() << "SelectDFormAddr: ISD::FrameIndex = "
417 << FI << "\n");
418 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
419 Base = CurDAG->getTargetConstant(0, PtrTy);
420 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
421 return true;
423 } else if (Opc == ISD::ADD) {
424 // Generated by getelementptr
425 const SDValue Op0 = N.getOperand(0);
426 const SDValue Op1 = N.getOperand(1);
428 if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo)
429 || (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) {
430 Base = CurDAG->getTargetConstant(0, PtrTy);
431 Index = N;
432 return true;
433 } else if (Op1.getOpcode() == ISD::Constant
434 || Op1.getOpcode() == ISD::TargetConstant) {
435 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
436 int32_t offset = int32_t(CN->getSExtValue());
438 if (Op0.getOpcode() == ISD::FrameIndex) {
439 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op0);
440 int FI = int(FIN->getIndex());
441 DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
442 << " frame index = " << FI << "\n");
444 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
445 Base = CurDAG->getTargetConstant(offset, PtrTy);
446 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
447 return true;
449 } else if (offset > minOffset && offset < maxOffset) {
450 Base = CurDAG->getTargetConstant(offset, PtrTy);
451 Index = Op0;
452 return true;
454 } else if (Op0.getOpcode() == ISD::Constant
455 || Op0.getOpcode() == ISD::TargetConstant) {
456 ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
457 int32_t offset = int32_t(CN->getSExtValue());
459 if (Op1.getOpcode() == ISD::FrameIndex) {
460 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op1);
461 int FI = int(FIN->getIndex());
462 DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
463 << " frame index = " << FI << "\n");
465 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
466 Base = CurDAG->getTargetConstant(offset, PtrTy);
467 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
468 return true;
470 } else if (offset > minOffset && offset < maxOffset) {
471 Base = CurDAG->getTargetConstant(offset, PtrTy);
472 Index = Op1;
473 return true;
476 } else if (Opc == SPUISD::IndirectAddr) {
477 // Indirect with constant offset -> D-Form address
478 const SDValue Op0 = N.getOperand(0);
479 const SDValue Op1 = N.getOperand(1);
481 if (Op0.getOpcode() == SPUISD::Hi
482 && Op1.getOpcode() == SPUISD::Lo) {
483 // (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0))
484 Base = CurDAG->getTargetConstant(0, PtrTy);
485 Index = N;
486 return true;
487 } else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) {
488 int32_t offset = 0;
489 SDValue idxOp;
491 if (isa<ConstantSDNode>(Op1)) {
492 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
493 offset = int32_t(CN->getSExtValue());
494 idxOp = Op0;
495 } else if (isa<ConstantSDNode>(Op0)) {
496 ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
497 offset = int32_t(CN->getSExtValue());
498 idxOp = Op1;
501 if (offset >= minOffset && offset <= maxOffset) {
502 Base = CurDAG->getTargetConstant(offset, PtrTy);
503 Index = idxOp;
504 return true;
507 } else if (Opc == SPUISD::AFormAddr) {
508 Base = CurDAG->getTargetConstant(0, N.getValueType());
509 Index = N;
510 return true;
511 } else if (Opc == SPUISD::LDRESULT) {
512 Base = CurDAG->getTargetConstant(0, N.getValueType());
513 Index = N;
514 return true;
515 } else if (Opc == ISD::Register
516 ||Opc == ISD::CopyFromReg
517 ||Opc == ISD::UNDEF
518 ||Opc == ISD::Constant) {
519 unsigned OpOpc = Op->getOpcode();
521 if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) {
522 // Direct load/store without getelementptr
523 SDValue Offs;
525 Offs = ((OpOpc == ISD::STORE) ? Op->getOperand(3) : Op->getOperand(2));
527 if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) {
528 if (Offs.getOpcode() == ISD::UNDEF)
529 Offs = CurDAG->getTargetConstant(0, Offs.getValueType());
531 Base = Offs;
532 Index = N;
533 return true;
535 } else {
536 /* If otherwise unadorned, default to D-form address with 0 offset: */
537 if (Opc == ISD::CopyFromReg) {
538 Index = N.getOperand(1);
539 } else {
540 Index = N;
543 Base = CurDAG->getTargetConstant(0, Index.getValueType());
544 return true;
548 return false;
552 \arg Op The ISD instruction operand
553 \arg N The address operand
554 \arg Base The base pointer operand
555 \arg Index The offset/index operand
557 If the address \a N can be expressed as an A-form or D-form address, returns
558 false. Otherwise, creates two operands, Base and Index that will become the
559 (r)(r) X-form address.
561 bool
562 SPUDAGToDAGISel::SelectXFormAddr(SDNode *Op, SDValue N, SDValue &Base,
563 SDValue &Index) {
564 if (!SelectAFormAddr(Op, N, Base, Index)
565 && !SelectDFormAddr(Op, N, Base, Index)) {
566 // If the address is neither A-form or D-form, punt and use an X-form
567 // address:
568 Base = N.getOperand(1);
569 Index = N.getOperand(0);
570 return true;
573 return false;
577 Utility function to use with COPY_TO_REGCLASS instructions. Returns a SDValue
578 to be used as the last parameter of a
579 CurDAG->getMachineNode(COPY_TO_REGCLASS,..., ) function call
580 \arg VT the value type for which we want a register class
582 SDValue SPUDAGToDAGISel::getRC( MVT VT ) {
583 switch( VT.SimpleTy ) {
584 case MVT::i8:
585 return CurDAG->getTargetConstant(SPU::R8CRegClass.getID(), MVT::i32);
586 break;
587 case MVT::i16:
588 return CurDAG->getTargetConstant(SPU::R16CRegClass.getID(), MVT::i32);
589 break;
590 case MVT::i32:
591 return CurDAG->getTargetConstant(SPU::R32CRegClass.getID(), MVT::i32);
592 break;
593 case MVT::f32:
594 return CurDAG->getTargetConstant(SPU::R32FPRegClass.getID(), MVT::i32);
595 break;
596 case MVT::i64:
597 return CurDAG->getTargetConstant(SPU::R64CRegClass.getID(), MVT::i32);
598 break;
599 case MVT::v16i8:
600 case MVT::v8i16:
601 case MVT::v4i32:
602 case MVT::v4f32:
603 case MVT::v2i64:
604 case MVT::v2f64:
605 return CurDAG->getTargetConstant(SPU::VECREGRegClass.getID(), MVT::i32);
606 break;
607 default:
608 assert( false && "add a new case here" );
610 return SDValue();
613 //! Convert the operand from a target-independent to a target-specific node
616 SDNode *
617 SPUDAGToDAGISel::Select(SDNode *N) {
618 unsigned Opc = N->getOpcode();
619 int n_ops = -1;
620 unsigned NewOpc;
621 EVT OpVT = N->getValueType(0);
622 SDValue Ops[8];
623 DebugLoc dl = N->getDebugLoc();
625 if (N->isMachineOpcode())
626 return NULL; // Already selected.
628 if (Opc == ISD::FrameIndex) {
629 int FI = cast<FrameIndexSDNode>(N)->getIndex();
630 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
631 SDValue Imm0 = CurDAG->getTargetConstant(0, N->getValueType(0));
633 if (FI < 128) {
634 NewOpc = SPU::AIr32;
635 Ops[0] = TFI;
636 Ops[1] = Imm0;
637 n_ops = 2;
638 } else {
639 NewOpc = SPU::Ar32;
640 Ops[0] = CurDAG->getRegister(SPU::R1, N->getValueType(0));
641 Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILAr32, dl,
642 N->getValueType(0), TFI, Imm0),
644 n_ops = 2;
646 } else if (Opc == ISD::Constant && OpVT == MVT::i64) {
647 // Catch the i64 constants that end up here. Note: The backend doesn't
648 // attempt to legalize the constant (it's useless because DAGCombiner
649 // will insert 64-bit constants and we can't stop it).
650 return SelectI64Constant(N, OpVT, N->getDebugLoc());
651 } else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
652 && OpVT == MVT::i64) {
653 SDValue Op0 = N->getOperand(0);
654 EVT Op0VT = Op0.getValueType();
655 EVT Op0VecVT = EVT::getVectorVT(*CurDAG->getContext(),
656 Op0VT, (128 / Op0VT.getSizeInBits()));
657 EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(),
658 OpVT, (128 / OpVT.getSizeInBits()));
659 SDValue shufMask;
661 switch (Op0VT.getSimpleVT().SimpleTy) {
662 default:
663 report_fatal_error("CellSPU Select: Unhandled zero/any extend EVT");
664 /*NOTREACHED*/
665 case MVT::i32:
666 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
667 CurDAG->getConstant(0x80808080, MVT::i32),
668 CurDAG->getConstant(0x00010203, MVT::i32),
669 CurDAG->getConstant(0x80808080, MVT::i32),
670 CurDAG->getConstant(0x08090a0b, MVT::i32));
671 break;
673 case MVT::i16:
674 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
675 CurDAG->getConstant(0x80808080, MVT::i32),
676 CurDAG->getConstant(0x80800203, MVT::i32),
677 CurDAG->getConstant(0x80808080, MVT::i32),
678 CurDAG->getConstant(0x80800a0b, MVT::i32));
679 break;
681 case MVT::i8:
682 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
683 CurDAG->getConstant(0x80808080, MVT::i32),
684 CurDAG->getConstant(0x80808003, MVT::i32),
685 CurDAG->getConstant(0x80808080, MVT::i32),
686 CurDAG->getConstant(0x8080800b, MVT::i32));
687 break;
690 SDNode *shufMaskLoad = emitBuildVector(shufMask.getNode());
692 HandleSDNode PromoteScalar(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl,
693 Op0VecVT, Op0));
695 SDValue PromScalar;
696 if (SDNode *N = SelectCode(PromoteScalar.getValue().getNode()))
697 PromScalar = SDValue(N, 0);
698 else
699 PromScalar = PromoteScalar.getValue();
701 SDValue zextShuffle =
702 CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
703 PromScalar, PromScalar,
704 SDValue(shufMaskLoad, 0));
706 HandleSDNode Dummy2(zextShuffle);
707 if (SDNode *N = SelectCode(Dummy2.getValue().getNode()))
708 zextShuffle = SDValue(N, 0);
709 else
710 zextShuffle = Dummy2.getValue();
711 HandleSDNode Dummy(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
712 zextShuffle));
714 CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
715 SelectCode(Dummy.getValue().getNode());
716 return Dummy.getValue().getNode();
717 } else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
718 SDNode *CGLoad =
719 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());
721 HandleSDNode Dummy(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
722 N->getOperand(0), N->getOperand(1),
723 SDValue(CGLoad, 0)));
725 CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
726 if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
727 return N;
728 return Dummy.getValue().getNode();
729 } else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
730 SDNode *CGLoad =
731 emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl).getNode());
733 HandleSDNode Dummy(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
734 N->getOperand(0), N->getOperand(1),
735 SDValue(CGLoad, 0)));
737 CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
738 if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
739 return N;
740 return Dummy.getValue().getNode();
741 } else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
742 SDNode *CGLoad =
743 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());
745 HandleSDNode Dummy(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
746 N->getOperand(0), N->getOperand(1),
747 SDValue(CGLoad, 0)));
748 CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
749 if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
750 return N;
751 return Dummy.getValue().getNode();
752 } else if (Opc == ISD::TRUNCATE) {
753 SDValue Op0 = N->getOperand(0);
754 if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
755 && OpVT == MVT::i32
756 && Op0.getValueType() == MVT::i64) {
757 // Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32
759 // Take advantage of the fact that the upper 32 bits are in the
760 // i32 preferred slot and avoid shuffle gymnastics:
761 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
762 if (CN != 0) {
763 unsigned shift_amt = unsigned(CN->getZExtValue());
765 if (shift_amt >= 32) {
766 SDNode *hi32 =
767 CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, OpVT,
768 Op0.getOperand(0), getRC(MVT::i32));
770 shift_amt -= 32;
771 if (shift_amt > 0) {
772 // Take care of the additional shift, if present:
773 SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32);
774 unsigned Opc = SPU::ROTMAIr32_i32;
776 if (Op0.getOpcode() == ISD::SRL)
777 Opc = SPU::ROTMr32;
779 hi32 = CurDAG->getMachineNode(Opc, dl, OpVT, SDValue(hi32, 0),
780 shift);
783 return hi32;
787 } else if (Opc == ISD::SHL) {
788 if (OpVT == MVT::i64)
789 return SelectSHLi64(N, OpVT);
790 } else if (Opc == ISD::SRL) {
791 if (OpVT == MVT::i64)
792 return SelectSRLi64(N, OpVT);
793 } else if (Opc == ISD::SRA) {
794 if (OpVT == MVT::i64)
795 return SelectSRAi64(N, OpVT);
796 } else if (Opc == ISD::FNEG
797 && (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
798 DebugLoc dl = N->getDebugLoc();
799 // Check if the pattern is a special form of DFNMS:
800 // (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
801 SDValue Op0 = N->getOperand(0);
802 if (Op0.getOpcode() == ISD::FSUB) {
803 SDValue Op00 = Op0.getOperand(0);
804 if (Op00.getOpcode() == ISD::FMUL) {
805 unsigned Opc = SPU::DFNMSf64;
806 if (OpVT == MVT::v2f64)
807 Opc = SPU::DFNMSv2f64;
809 return CurDAG->getMachineNode(Opc, dl, OpVT,
810 Op00.getOperand(0),
811 Op00.getOperand(1),
812 Op0.getOperand(1));
816 SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64);
817 SDNode *signMask = 0;
818 unsigned Opc = SPU::XORfneg64;
820 if (OpVT == MVT::f64) {
821 signMask = SelectI64Constant(negConst.getNode(), MVT::i64, dl);
822 } else if (OpVT == MVT::v2f64) {
823 Opc = SPU::XORfnegvec;
824 signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
825 MVT::v2i64,
826 negConst, negConst).getNode());
829 return CurDAG->getMachineNode(Opc, dl, OpVT,
830 N->getOperand(0), SDValue(signMask, 0));
831 } else if (Opc == ISD::FABS) {
832 if (OpVT == MVT::f64) {
833 SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
834 return CurDAG->getMachineNode(SPU::ANDfabs64, dl, OpVT,
835 N->getOperand(0), SDValue(signMask, 0));
836 } else if (OpVT == MVT::v2f64) {
837 SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
838 SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
839 absConst, absConst);
840 SDNode *signMask = emitBuildVector(absVec.getNode());
841 return CurDAG->getMachineNode(SPU::ANDfabsvec, dl, OpVT,
842 N->getOperand(0), SDValue(signMask, 0));
844 } else if (Opc == SPUISD::LDRESULT) {
845 // Custom select instructions for LDRESULT
846 EVT VT = N->getValueType(0);
847 SDValue Arg = N->getOperand(0);
848 SDValue Chain = N->getOperand(1);
849 SDNode *Result;
851 Result = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, VT,
852 MVT::Other, Arg,
853 getRC( VT.getSimpleVT()), Chain);
854 return Result;
856 } else if (Opc == SPUISD::IndirectAddr) {
857 // Look at the operands: SelectCode() will catch the cases that aren't
858 // specifically handled here.
860 // SPUInstrInfo catches the following patterns:
861 // (SPUindirect (SPUhi ...), (SPUlo ...))
862 // (SPUindirect $sp, imm)
863 EVT VT = N->getValueType(0);
864 SDValue Op0 = N->getOperand(0);
865 SDValue Op1 = N->getOperand(1);
866 RegisterSDNode *RN;
868 if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo)
869 || (Op0.getOpcode() == ISD::Register
870 && ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0
871 && RN->getReg() != SPU::R1))) {
872 NewOpc = SPU::Ar32;
873 Ops[1] = Op1;
874 if (Op1.getOpcode() == ISD::Constant) {
875 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
876 Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT);
877 if (isInt<10>(CN->getSExtValue())) {
878 NewOpc = SPU::AIr32;
879 Ops[1] = Op1;
880 } else {
881 Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILr32, dl,
882 N->getValueType(0),
883 Op1),
884 0);
887 Ops[0] = Op0;
888 n_ops = 2;
892 if (n_ops > 0) {
893 if (N->hasOneUse())
894 return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
895 else
896 return CurDAG->getMachineNode(NewOpc, dl, OpVT, Ops, n_ops);
897 } else
898 return SelectCode(N);
902 * Emit the instruction sequence for i64 left shifts. The basic algorithm
903 * is to fill the bottom two word slots with zeros so that zeros are shifted
904 * in as the entire quadword is shifted left.
906 * \note This code could also be used to implement v2i64 shl.
908 * @param Op The shl operand
909 * @param OpVT Op's machine value value type (doesn't need to be passed, but
910 * makes life easier.)
911 * @return The SDNode with the entire instruction sequence
913 SDNode *
914 SPUDAGToDAGISel::SelectSHLi64(SDNode *N, EVT OpVT) {
915 SDValue Op0 = N->getOperand(0);
916 EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
917 OpVT, (128 / OpVT.getSizeInBits()));
918 SDValue ShiftAmt = N->getOperand(1);
919 EVT ShiftAmtVT = ShiftAmt.getValueType();
920 SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
921 SDValue SelMaskVal;
922 DebugLoc dl = N->getDebugLoc();
924 VecOp0 = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, VecVT,
925 Op0, getRC(MVT::v2i64) );
926 SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
927 SelMask = CurDAG->getMachineNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
928 ZeroFill = CurDAG->getMachineNode(SPU::ILv2i64, dl, VecVT,
929 CurDAG->getTargetConstant(0, OpVT));
930 VecOp0 = CurDAG->getMachineNode(SPU::SELBv2i64, dl, VecVT,
931 SDValue(ZeroFill, 0),
932 SDValue(VecOp0, 0),
933 SDValue(SelMask, 0));
935 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
936 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
937 unsigned bits = unsigned(CN->getZExtValue()) & 7;
939 if (bytes > 0) {
940 Shift =
941 CurDAG->getMachineNode(SPU::SHLQBYIv2i64, dl, VecVT,
942 SDValue(VecOp0, 0),
943 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
946 if (bits > 0) {
947 Shift =
948 CurDAG->getMachineNode(SPU::SHLQBIIv2i64, dl, VecVT,
949 SDValue((Shift != 0 ? Shift : VecOp0), 0),
950 CurDAG->getTargetConstant(bits, ShiftAmtVT));
952 } else {
953 SDNode *Bytes =
954 CurDAG->getMachineNode(SPU::ROTMIr32, dl, ShiftAmtVT,
955 ShiftAmt,
956 CurDAG->getTargetConstant(3, ShiftAmtVT));
957 SDNode *Bits =
958 CurDAG->getMachineNode(SPU::ANDIr32, dl, ShiftAmtVT,
959 ShiftAmt,
960 CurDAG->getTargetConstant(7, ShiftAmtVT));
961 Shift =
962 CurDAG->getMachineNode(SPU::SHLQBYv2i64, dl, VecVT,
963 SDValue(VecOp0, 0), SDValue(Bytes, 0));
964 Shift =
965 CurDAG->getMachineNode(SPU::SHLQBIv2i64, dl, VecVT,
966 SDValue(Shift, 0), SDValue(Bits, 0));
969 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
970 OpVT, SDValue(Shift, 0), getRC(MVT::i64));
974 * Emit the instruction sequence for i64 logical right shifts.
976 * @param Op The shl operand
977 * @param OpVT Op's machine value value type (doesn't need to be passed, but
978 * makes life easier.)
979 * @return The SDNode with the entire instruction sequence
981 SDNode *
982 SPUDAGToDAGISel::SelectSRLi64(SDNode *N, EVT OpVT) {
983 SDValue Op0 = N->getOperand(0);
984 EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
985 OpVT, (128 / OpVT.getSizeInBits()));
986 SDValue ShiftAmt = N->getOperand(1);
987 EVT ShiftAmtVT = ShiftAmt.getValueType();
988 SDNode *VecOp0, *Shift = 0;
989 DebugLoc dl = N->getDebugLoc();
991 VecOp0 = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, VecVT,
992 Op0, getRC(MVT::v2i64) );
994 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
995 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
996 unsigned bits = unsigned(CN->getZExtValue()) & 7;
998 if (bytes > 0) {
999 Shift =
1000 CurDAG->getMachineNode(SPU::ROTQMBYIv2i64, dl, VecVT,
1001 SDValue(VecOp0, 0),
1002 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1005 if (bits > 0) {
1006 Shift =
1007 CurDAG->getMachineNode(SPU::ROTQMBIIv2i64, dl, VecVT,
1008 SDValue((Shift != 0 ? Shift : VecOp0), 0),
1009 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1011 } else {
1012 SDNode *Bytes =
1013 CurDAG->getMachineNode(SPU::ROTMIr32, dl, ShiftAmtVT,
1014 ShiftAmt,
1015 CurDAG->getTargetConstant(3, ShiftAmtVT));
1016 SDNode *Bits =
1017 CurDAG->getMachineNode(SPU::ANDIr32, dl, ShiftAmtVT,
1018 ShiftAmt,
1019 CurDAG->getTargetConstant(7, ShiftAmtVT));
1021 // Ensure that the shift amounts are negated!
1022 Bytes = CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
1023 SDValue(Bytes, 0),
1024 CurDAG->getTargetConstant(0, ShiftAmtVT));
1026 Bits = CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
1027 SDValue(Bits, 0),
1028 CurDAG->getTargetConstant(0, ShiftAmtVT));
1030 Shift =
1031 CurDAG->getMachineNode(SPU::ROTQMBYv2i64, dl, VecVT,
1032 SDValue(VecOp0, 0), SDValue(Bytes, 0));
1033 Shift =
1034 CurDAG->getMachineNode(SPU::ROTQMBIv2i64, dl, VecVT,
1035 SDValue(Shift, 0), SDValue(Bits, 0));
1038 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
1039 OpVT, SDValue(Shift, 0), getRC(MVT::i64));
1043 * Emit the instruction sequence for i64 arithmetic right shifts.
1045 * @param Op The shl operand
1046 * @param OpVT Op's machine value value type (doesn't need to be passed, but
1047 * makes life easier.)
1048 * @return The SDNode with the entire instruction sequence
1050 SDNode *
1051 SPUDAGToDAGISel::SelectSRAi64(SDNode *N, EVT OpVT) {
1052 // Promote Op0 to vector
1053 EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
1054 OpVT, (128 / OpVT.getSizeInBits()));
1055 SDValue ShiftAmt = N->getOperand(1);
1056 EVT ShiftAmtVT = ShiftAmt.getValueType();
1057 DebugLoc dl = N->getDebugLoc();
1059 SDNode *VecOp0 =
1060 CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
1061 VecVT, N->getOperand(0), getRC(MVT::v2i64));
1063 SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
1064 SDNode *SignRot =
1065 CurDAG->getMachineNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
1066 SDValue(VecOp0, 0), SignRotAmt);
1067 SDNode *UpperHalfSign =
1068 CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
1069 MVT::i32, SDValue(SignRot, 0), getRC(MVT::i32));
1071 SDNode *UpperHalfSignMask =
1072 CurDAG->getMachineNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
1073 SDNode *UpperLowerMask =
1074 CurDAG->getMachineNode(SPU::FSMBIv2i64, dl, VecVT,
1075 CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
1076 SDNode *UpperLowerSelect =
1077 CurDAG->getMachineNode(SPU::SELBv2i64, dl, VecVT,
1078 SDValue(UpperHalfSignMask, 0),
1079 SDValue(VecOp0, 0),
1080 SDValue(UpperLowerMask, 0));
1082 SDNode *Shift = 0;
1084 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
1085 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
1086 unsigned bits = unsigned(CN->getZExtValue()) & 7;
1088 if (bytes > 0) {
1089 bytes = 31 - bytes;
1090 Shift =
1091 CurDAG->getMachineNode(SPU::ROTQBYIv2i64, dl, VecVT,
1092 SDValue(UpperLowerSelect, 0),
1093 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1096 if (bits > 0) {
1097 bits = 8 - bits;
1098 Shift =
1099 CurDAG->getMachineNode(SPU::ROTQBIIv2i64, dl, VecVT,
1100 SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
1101 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1103 } else {
1104 SDNode *NegShift =
1105 CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
1106 ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
1108 Shift =
1109 CurDAG->getMachineNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
1110 SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
1111 Shift =
1112 CurDAG->getMachineNode(SPU::ROTQBIv2i64, dl, VecVT,
1113 SDValue(Shift, 0), SDValue(NegShift, 0));
1116 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
1117 OpVT, SDValue(Shift, 0), getRC(MVT::i64));
1121 Do the necessary magic necessary to load a i64 constant
1123 SDNode *SPUDAGToDAGISel::SelectI64Constant(SDNode *N, EVT OpVT,
1124 DebugLoc dl) {
1125 ConstantSDNode *CN = cast<ConstantSDNode>(N);
1126 return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
1129 SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
1130 DebugLoc dl) {
1131 EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(), OpVT, 2);
1132 SDValue i64vec =
1133 SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl);
1135 // Here's where it gets interesting, because we have to parse out the
1136 // subtree handed back in i64vec:
1138 if (i64vec.getOpcode() == ISD::BIT_CONVERT) {
1139 // The degenerate case where the upper and lower bits in the splat are
1140 // identical:
1141 SDValue Op0 = i64vec.getOperand(0);
1143 ReplaceUses(i64vec, Op0);
1144 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, OpVT,
1145 SDValue(emitBuildVector(Op0.getNode()), 0),
1146 getRC(MVT::i64));
1147 } else if (i64vec.getOpcode() == SPUISD::SHUFB) {
1148 SDValue lhs = i64vec.getOperand(0);
1149 SDValue rhs = i64vec.getOperand(1);
1150 SDValue shufmask = i64vec.getOperand(2);
1152 if (lhs.getOpcode() == ISD::BIT_CONVERT) {
1153 ReplaceUses(lhs, lhs.getOperand(0));
1154 lhs = lhs.getOperand(0);
1157 SDNode *lhsNode = (lhs.getNode()->isMachineOpcode()
1158 ? lhs.getNode()
1159 : emitBuildVector(lhs.getNode()));
1161 if (rhs.getOpcode() == ISD::BIT_CONVERT) {
1162 ReplaceUses(rhs, rhs.getOperand(0));
1163 rhs = rhs.getOperand(0);
1166 SDNode *rhsNode = (rhs.getNode()->isMachineOpcode()
1167 ? rhs.getNode()
1168 : emitBuildVector(rhs.getNode()));
1170 if (shufmask.getOpcode() == ISD::BIT_CONVERT) {
1171 ReplaceUses(shufmask, shufmask.getOperand(0));
1172 shufmask = shufmask.getOperand(0);
1175 SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode()
1176 ? shufmask.getNode()
1177 : emitBuildVector(shufmask.getNode()));
1179 SDValue shufNode =
1180 CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
1181 SDValue(lhsNode, 0), SDValue(rhsNode, 0),
1182 SDValue(shufMaskNode, 0));
1183 HandleSDNode Dummy(shufNode);
1184 SDNode *SN = SelectCode(Dummy.getValue().getNode());
1185 if (SN == 0) SN = Dummy.getValue().getNode();
1187 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl,
1188 OpVT, SDValue(SN, 0), getRC(MVT::i64));
1189 } else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
1190 return CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, OpVT,
1191 SDValue(emitBuildVector(i64vec.getNode()), 0),
1192 getRC(MVT::i64));
1193 } else {
1194 report_fatal_error("SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec"
1195 "condition");
1199 /// createSPUISelDag - This pass converts a legalized DAG into a
1200 /// SPU-specific DAG, ready for instruction scheduling.
1202 FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
1203 return new SPUDAGToDAGISel(TM);