1 //===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the Mips implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
15 // Floating Point Instructions
16 // ------------------------
18 // - 32 64-bit registers (default mode)
19 // - 16 even 32-bit registers (32-bit compatible mode) for
20 // single and double access.
22 // - 16 even 32-bit registers - single and double (aliased)
23 // - 32 32-bit registers (within single-only mode)
24 //===----------------------------------------------------------------------===//
26 // Floating Point Compare and Branch
27 def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
28 SDTCisVT<1, OtherVT>]>;
29 def SDT_MipsFPCmp : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
30 SDTCisSameAs<1, 2>, SDTCisFP<1>,
32 def SDT_MipsFPSelectCC : SDTypeProfile<1, 4, [SDTCisInt<1>, SDTCisInt<4>,
33 SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
35 def MipsFPRound : SDNode<"MipsISD::FPRound", SDTFPRoundOp, [SDNPOptInFlag]>;
36 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
38 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
39 def MipsFPSelectCC : SDNode<"MipsISD::FPSelectCC", SDT_MipsFPSelectCC>;
41 // Operand for printing out a condition code.
42 let PrintMethod = "printFCCOperand" in
43 def condcode : Operand<i32>;
45 //===----------------------------------------------------------------------===//
46 // Feature predicates.
47 //===----------------------------------------------------------------------===//
49 def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
50 def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
51 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
52 def IsNotMipsI : Predicate<"!Subtarget.isMips1()">;
54 //===----------------------------------------------------------------------===//
55 // Instruction Class Templates
57 // A set of multiclasses is used to address the register usage.
59 // S32 - single precision in 16 32bit even fp registers
60 // single precision in 32 32bit fp registers in SingleOnly mode
61 // S64 - single precision in 32 64bit fp registers (In64BitMode)
62 // D32 - double precision in 16 32bit even fp registers
63 // D64 - double precision in 32 64bit fp registers (In64BitMode)
65 // Only S32 and D32 are supported right now.
66 //===----------------------------------------------------------------------===//
68 multiclass FFR1_1<bits<6> funct, string asmstr>
70 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
71 !strconcat(asmstr, ".s $fd, $fs"), []>;
73 def _D32 : FFR<0x11, funct, 0x1, (outs FGR32:$fd), (ins AFGR64:$fs),
74 !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
77 multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
79 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
80 !strconcat(asmstr, ".s $fd, $fs"),
81 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
83 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
84 !strconcat(asmstr, ".d $fd, $fs"),
85 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
88 class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
89 RegisterClass RcDst, string asmstr>:
90 FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
91 !strconcat(asmstr, " $fd, $fs"), []>;
94 multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
95 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
96 (ins FGR32:$fs, FGR32:$ft),
97 !strconcat(asmstr, ".s $fd, $fs, $ft"),
98 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
100 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
101 (ins AFGR64:$fs, AFGR64:$ft),
102 !strconcat(asmstr, ".d $fd, $fs, $ft"),
103 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
104 Requires<[In32BitMode]>;
107 //===----------------------------------------------------------------------===//
108 // Floating Point Instructions
109 //===----------------------------------------------------------------------===//
112 defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
113 defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
114 defm ROUND_W : FFR1_1<0b001100, "round.w">;
115 defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
116 defm CVTW : FFR1_1<0b100100, "cvt.w">;
118 defm FABS : FFR1_2<0b000101, "abs", fabs>;
119 defm FNEG : FFR1_2<0b000111, "neg", fneg>;
120 defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
122 /// Convert to Single Precison
123 def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">;
125 let Predicates = [IsNotSingleFloat] in {
126 /// Ceil to long signed integer
127 def CEIL_LS : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
128 def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
130 /// Round to long signed integer
131 def ROUND_LS : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
132 def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
134 /// Floor to long signed integer
135 def FLOOR_LS : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
136 def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
138 /// Trunc to long signed integer
139 def TRUNC_LS : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
140 def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
142 /// Convert to long signed integer
143 def CVTL_S : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
144 def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
146 /// Convert to Double Precison
147 def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
148 def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
149 def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
151 /// Convert to Single Precison
152 def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
153 def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
157 // The odd-numbered registers are only referenced when doing loads,
158 // stores, and moves between floating-point and integer registers.
159 // When defining instructions, we reference all 32-bit registers,
160 // regardless of register aliasing.
162 /// Move Control Registers From/To CPU Registers
163 def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
164 "cfc1 $rt, $fs", []>;
166 def CTC1 : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
167 "ctc1 $fs, $rt", []>;
169 def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
170 "mfc1 $rt, $fs", []>;
172 def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
173 "mtc1 $rt, $fs", []>;
176 def FMOV_S32 : FFR<0x11, 0b000110, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
177 "mov.s $fd, $fs", []>;
178 def FMOV_D32 : FFR<0x11, 0b000110, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
179 "mov.d $fd, $fs", []>;
181 /// Floating Point Memory Instructions
182 let Predicates = [IsNotSingleFloat, IsNotMipsI] in {
183 def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
184 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
186 def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
187 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
190 // LWC1 and SWC1 can always be emited with odd registers.
191 def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
192 [(set FGR32:$ft, (load addr:$addr))]>;
193 def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
194 [(store FGR32:$ft, addr:$addr)]>;
196 /// Floating-point Aritmetic
197 defm FADD : FFR1_4<0x10, "add", fadd>;
198 defm FDIV : FFR1_4<0x03, "div", fdiv>;
199 defm FMUL : FFR1_4<0x02, "mul", fmul>;
200 defm FSUB : FFR1_4<0x01, "sub", fsub>;
202 //===----------------------------------------------------------------------===//
203 // Floating Point Branch Codes
204 //===----------------------------------------------------------------------===//
205 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
206 // They must be kept in synch.
207 def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
208 def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
209 def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
210 def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
212 /// Floating Point Branch of False/True (Likely)
213 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
214 class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
215 (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
216 [(MipsFPBrcond op, bb:$dst, FCR31)]>;
218 def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
219 def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
220 def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
221 def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
223 //===----------------------------------------------------------------------===//
224 // Floating Point Flag Conditions
225 //===----------------------------------------------------------------------===//
226 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
227 // They must be kept in synch.
228 def MIPS_FCOND_F : PatLeaf<(i32 0)>;
229 def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
230 def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
231 def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
232 def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
233 def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
234 def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
235 def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
236 def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
237 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
238 def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
239 def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
240 def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
241 def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
242 def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
243 def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
245 /// Floating Point Compare
246 let hasDelaySlot = 1, Defs=[FCR31] in {
247 def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
249 [(set FCR31, (MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc))]>;
251 def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
253 [(set FCR31, (MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc))]>,
254 Requires<[In32BitMode]>;
257 //===----------------------------------------------------------------------===//
258 // Floating Point Pseudo-Instructions
259 //===----------------------------------------------------------------------===//
261 // For some explanation, see Select_CC at MipsInstrInfo.td. We also embedd a
262 // condiciton code to enable easy handling by the Custom Inserter.
263 let usesCustomInserter = 1, Uses=[FCR31] in {
264 class PseudoFPSelCC<RegisterClass RC, string asmstr> :
265 MipsPseudo<(outs RC:$dst),
266 (ins CPURegs:$CmpRes, RC:$T, RC:$F, condcode:$cc), asmstr,
267 [(set RC:$dst, (MipsFPSelectCC CPURegs:$CmpRes, RC:$T, RC:$F,
271 // The values to be selected are fp but the condition test is with integers.
272 def Select_CC_S32 : PseudoSelCC<FGR32, "# MipsSelect_CC_S32_f32">;
273 def Select_CC_D32 : PseudoSelCC<AFGR64, "# MipsSelect_CC_D32_f32">,
274 Requires<[In32BitMode]>;
276 // The values to be selected are int but the condition test is done with fp.
277 def Select_FCC : PseudoFPSelCC<CPURegs, "# MipsSelect_FCC">;
279 // The values to be selected and the condition test is done with fp.
280 def Select_FCC_S32 : PseudoFPSelCC<FGR32, "# MipsSelect_FCC_S32_f32">;
281 def Select_FCC_D32 : PseudoFPSelCC<AFGR64, "# MipsSelect_FCC_D32_f32">,
282 Requires<[In32BitMode]>;
284 def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
285 "# MOVCCRToCCR", []>;
287 //===----------------------------------------------------------------------===//
288 // Floating Point Patterns
289 //===----------------------------------------------------------------------===//
290 def fpimm0 : PatLeaf<(fpimm), [{
291 return N->isExactlyValue(+0.0);
294 def fpimm0neg : PatLeaf<(fpimm), [{
295 return N->isExactlyValue(-0.0);
298 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
299 def : Pat<(f32 fpimm0neg), (FNEG_S32 (MTC1 ZERO))>;
301 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
302 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
304 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
306 def : Pat<(i32 (bitconvert FGR32:$src)), (MFC1 FGR32:$src)>;
307 def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;
309 let Predicates = [In32BitMode] in {
310 def : Pat<(f32 (fround AFGR64:$src)), (CVTS_D32 AFGR64:$src)>;
311 def : Pat<(f64 (fextend FGR32:$src)), (CVTD_S32 FGR32:$src)>;
314 // MipsFPRound is only emitted for MipsI targets.
315 def : Pat<(f32 (MipsFPRound AFGR64:$src)), (CVTW_D32 AFGR64:$src)>;