zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Target / X86 / X86ISelLowering.cpp
blobbce5fd862608f30babc486038e81d7b845f10d54
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86ShuffleDecode.h"
20 #include "X86TargetMachine.h"
21 #include "X86TargetObjectFile.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VectorExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Dwarf.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 using namespace llvm;
54 using namespace dwarf;
56 STATISTIC(NumTailCalls, "Number of tail calls");
58 static cl::opt<bool>
59 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
61 // Forward declarations.
62 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63 SDValue V2);
65 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
67 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
69 if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70 if (is64Bit) return new X8664_MachoTargetObjectFile();
71 return new TargetLoweringObjectFileMachO();
72 } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73 if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74 return new X8632_ELFTargetObjectFile(TM);
75 } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76 return new TargetLoweringObjectFileCOFF();
78 llvm_unreachable("unknown subtarget type");
81 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82 : TargetLowering(TM, createTLOF(TM)) {
83 Subtarget = &TM.getSubtarget<X86Subtarget>();
84 X86ScalarSSEf64 = Subtarget->hasSSE2();
85 X86ScalarSSEf32 = Subtarget->hasSSE1();
86 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
88 RegInfo = TM.getRegisterInfo();
89 TD = getTargetData();
91 // Set up the TargetLowering object.
93 // X86 is weird, it always uses i8 for shift amounts and setcc results.
94 setShiftAmountType(MVT::i8);
95 setBooleanContents(ZeroOrOneBooleanContent);
96 setSchedulingPreference(Sched::RegPressure);
97 setStackPointerRegisterToSaveRestore(X86StackPtr);
99 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100 // Setup Windows compiler runtime calls.
101 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
108 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
111 if (Subtarget->isTargetDarwin()) {
112 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113 setUseUnderscoreSetJmp(false);
114 setUseUnderscoreLongJmp(false);
115 } else if (Subtarget->isTargetMingw()) {
116 // MS runtime is weird: it exports _setjmp, but longjmp!
117 setUseUnderscoreSetJmp(true);
118 setUseUnderscoreLongJmp(false);
119 } else {
120 setUseUnderscoreSetJmp(true);
121 setUseUnderscoreLongJmp(true);
124 // Set up the register classes.
125 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128 if (Subtarget->is64Bit())
129 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
131 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
133 // We don't accept any truncstore of integer registers.
134 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
141 // SETOEQ and SETUNE require checking two conditions.
142 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
149 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150 // operation.
151 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
152 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
153 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
155 if (Subtarget->is64Bit()) {
156 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
157 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
158 } else if (!UseSoftFloat) {
159 // We have an algorithm for SSE2->double, and we turn this into a
160 // 64-bit FILD followed by conditional FADD for other targets.
161 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
162 // We have an algorithm for SSE2, and we turn this into a 64-bit
163 // FILD for other targets.
164 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
167 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168 // this operation.
169 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
170 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
172 if (!UseSoftFloat) {
173 // SSE has no i16 to fp conversion, only i32
174 if (X86ScalarSSEf32) {
175 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
176 // f32 and f64 cases are Legal, f80 case is not
177 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
178 } else {
179 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
180 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
182 } else {
183 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
184 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
187 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
188 // are Legal, f80 is custom lowered.
189 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
190 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
192 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193 // this operation.
194 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
195 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
197 if (X86ScalarSSEf32) {
198 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
199 // f32 and f64 cases are Legal, f80 case is not
200 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
201 } else {
202 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
203 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
206 // Handle FP_TO_UINT by promoting the destination to a larger signed
207 // conversion.
208 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
209 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
210 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
212 if (Subtarget->is64Bit()) {
213 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
214 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
215 } else if (!UseSoftFloat) {
216 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217 // Expand FP_TO_UINT into a select.
218 // FIXME: We would like to use a Custom expander here eventually to do
219 // the optimal thing for SSE vs. the default expansion in the legalizer.
220 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
221 else
222 // With SSE3 we can use fisttpll to convert to a signed i64; without
223 // SSE, we're stuck with a fistpll.
224 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
227 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228 if (!X86ScalarSSEf64) {
229 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
230 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
231 if (Subtarget->is64Bit()) {
232 setOperationAction(ISD::BIT_CONVERT , MVT::f64 , Expand);
233 // Without SSE, i64->f64 goes through memory.
234 setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Expand);
238 // Scalar integer divide and remainder are lowered to use operations that
239 // produce two results, to match the available instructions. This exposes
240 // the two-result form to trivial CSE, which is able to combine x/y and x%y
241 // into a single instruction.
243 // Scalar integer multiply-high is also lowered to use two-result
244 // operations, to match the available instructions. However, plain multiply
245 // (low) operations are left as Legal, as there are single-result
246 // instructions for this in x86. Using the two-result multiply instructions
247 // when both high and low results are needed must be arranged by dagcombine.
248 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
249 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
250 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
251 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
252 setOperationAction(ISD::SREM , MVT::i8 , Expand);
253 setOperationAction(ISD::UREM , MVT::i8 , Expand);
254 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
255 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
256 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
257 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
258 setOperationAction(ISD::SREM , MVT::i16 , Expand);
259 setOperationAction(ISD::UREM , MVT::i16 , Expand);
260 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
261 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
262 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
263 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
264 setOperationAction(ISD::SREM , MVT::i32 , Expand);
265 setOperationAction(ISD::UREM , MVT::i32 , Expand);
266 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
267 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
268 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
269 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
270 setOperationAction(ISD::SREM , MVT::i64 , Expand);
271 setOperationAction(ISD::UREM , MVT::i64 , Expand);
273 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
274 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
275 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
276 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
277 if (Subtarget->is64Bit())
278 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
280 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
281 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
282 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
283 setOperationAction(ISD::FREM , MVT::f32 , Expand);
284 setOperationAction(ISD::FREM , MVT::f64 , Expand);
285 setOperationAction(ISD::FREM , MVT::f80 , Expand);
286 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
288 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
289 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
290 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
291 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
292 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
293 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
294 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
295 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
296 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
297 if (Subtarget->is64Bit()) {
298 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
299 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
300 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
303 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
304 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
306 // These should be promoted to a larger select which is supported.
307 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
308 // X86 wants to expand cmov itself.
309 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
310 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
311 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
312 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
313 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
314 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
315 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
316 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
317 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
318 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
319 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
320 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
321 if (Subtarget->is64Bit()) {
322 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
323 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
325 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
327 // Darwin ABI issue.
328 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
329 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
330 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
331 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
332 if (Subtarget->is64Bit())
333 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
335 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
336 if (Subtarget->is64Bit()) {
337 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
338 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
339 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
340 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
341 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
343 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
345 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
346 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
347 if (Subtarget->is64Bit()) {
348 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
349 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
350 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
353 if (Subtarget->hasSSE1())
354 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
356 // We may not have a libcall for MEMBARRIER so we should lower this.
357 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
359 // On X86 and X86-64, atomic operations are lowered to locked instructions.
360 // Locked instructions, in turn, have implicit fence semantics (all memory
361 // operations are flushed before issuing the locked instruction, and they
362 // are not buffered), so we can fold away the common pattern of
363 // fence-atomic-fence.
364 setShouldFoldAtomicFences(true);
366 // Expand certain atomics
367 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
372 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
377 if (!Subtarget->is64Bit()) {
378 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
387 // FIXME - use subtarget debug flags
388 if (!Subtarget->isTargetDarwin() &&
389 !Subtarget->isTargetELF() &&
390 !Subtarget->isTargetCygMing()) {
391 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
394 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
396 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
398 if (Subtarget->is64Bit()) {
399 setExceptionPointerRegister(X86::RAX);
400 setExceptionSelectorRegister(X86::RDX);
401 } else {
402 setExceptionPointerRegister(X86::EAX);
403 setExceptionSelectorRegister(X86::EDX);
405 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
408 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
410 setOperationAction(ISD::TRAP, MVT::Other, Legal);
412 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413 setOperationAction(ISD::VASTART , MVT::Other, Custom);
414 setOperationAction(ISD::VAEND , MVT::Other, Expand);
415 if (Subtarget->is64Bit()) {
416 setOperationAction(ISD::VAARG , MVT::Other, Custom);
417 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
418 } else {
419 setOperationAction(ISD::VAARG , MVT::Other, Expand);
420 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
423 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
424 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
425 if (Subtarget->is64Bit())
426 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427 if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
428 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429 else
430 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
432 if (!UseSoftFloat && X86ScalarSSEf64) {
433 // f32 and f64 use SSE.
434 // Set up the FP register classes.
435 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
438 // Use ANDPD to simulate FABS.
439 setOperationAction(ISD::FABS , MVT::f64, Custom);
440 setOperationAction(ISD::FABS , MVT::f32, Custom);
442 // Use XORP to simulate FNEG.
443 setOperationAction(ISD::FNEG , MVT::f64, Custom);
444 setOperationAction(ISD::FNEG , MVT::f32, Custom);
446 // Use ANDPD and ORPD to simulate FCOPYSIGN.
447 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
450 // We don't support sin/cos/fmod
451 setOperationAction(ISD::FSIN , MVT::f64, Expand);
452 setOperationAction(ISD::FCOS , MVT::f64, Expand);
453 setOperationAction(ISD::FSIN , MVT::f32, Expand);
454 setOperationAction(ISD::FCOS , MVT::f32, Expand);
456 // Expand FP immediates into loads from the stack, except for the special
457 // cases we handle.
458 addLegalFPImmediate(APFloat(+0.0)); // xorpd
459 addLegalFPImmediate(APFloat(+0.0f)); // xorps
460 } else if (!UseSoftFloat && X86ScalarSSEf32) {
461 // Use SSE for f32, x87 for f64.
462 // Set up the FP register classes.
463 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
466 // Use ANDPS to simulate FABS.
467 setOperationAction(ISD::FABS , MVT::f32, Custom);
469 // Use XORP to simulate FNEG.
470 setOperationAction(ISD::FNEG , MVT::f32, Custom);
472 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
474 // Use ANDPS and ORPS to simulate FCOPYSIGN.
475 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
478 // We don't support sin/cos/fmod
479 setOperationAction(ISD::FSIN , MVT::f32, Expand);
480 setOperationAction(ISD::FCOS , MVT::f32, Expand);
482 // Special cases we handle for FP constants.
483 addLegalFPImmediate(APFloat(+0.0f)); // xorps
484 addLegalFPImmediate(APFloat(+0.0)); // FLD0
485 addLegalFPImmediate(APFloat(+1.0)); // FLD1
486 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489 if (!UnsafeFPMath) {
490 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
491 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
493 } else if (!UseSoftFloat) {
494 // f32 and f64 in x87.
495 // Set up the FP register classes.
496 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
499 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
500 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
501 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
504 if (!UnsafeFPMath) {
505 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
506 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
508 addLegalFPImmediate(APFloat(+0.0)); // FLD0
509 addLegalFPImmediate(APFloat(+1.0)); // FLD1
510 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
518 // Long double always uses X87.
519 if (!UseSoftFloat) {
520 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
522 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
524 bool ignored;
525 APFloat TmpFlt(+0.0);
526 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527 &ignored);
528 addLegalFPImmediate(TmpFlt); // FLD0
529 TmpFlt.changeSign();
530 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
531 APFloat TmpFlt2(+1.0);
532 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533 &ignored);
534 addLegalFPImmediate(TmpFlt2); // FLD1
535 TmpFlt2.changeSign();
536 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
539 if (!UnsafeFPMath) {
540 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
541 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
545 // Always use a library call for pow.
546 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
547 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
548 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
550 setOperationAction(ISD::FLOG, MVT::f80, Expand);
551 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553 setOperationAction(ISD::FEXP, MVT::f80, Expand);
554 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
556 // First set operation action for all vector types to either promote
557 // (for widening) or expand (for scalarization). Then we will selectively
558 // turn on ones that can be effectively codegen'd.
559 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
611 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
612 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
613 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
614 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616 setTruncStoreAction((MVT::SimpleValueType)VT,
617 (MVT::SimpleValueType)InnerVT, Expand);
618 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
623 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624 // with -msoft-float, disable use of MMX as well.
625 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
627 // No operations on x86mmx supported, everything uses intrinsics.
630 // MMX-sized vectors (other than x86mmx) are expected to be expanded
631 // into smaller operations.
632 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
633 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
634 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
635 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
636 setOperationAction(ISD::AND, MVT::v8i8, Expand);
637 setOperationAction(ISD::AND, MVT::v4i16, Expand);
638 setOperationAction(ISD::AND, MVT::v2i32, Expand);
639 setOperationAction(ISD::AND, MVT::v1i64, Expand);
640 setOperationAction(ISD::OR, MVT::v8i8, Expand);
641 setOperationAction(ISD::OR, MVT::v4i16, Expand);
642 setOperationAction(ISD::OR, MVT::v2i32, Expand);
643 setOperationAction(ISD::OR, MVT::v1i64, Expand);
644 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
645 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
646 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
647 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
648 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
649 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
650 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
651 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
652 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
653 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
654 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
655 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
656 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
657 setOperationAction(ISD::BIT_CONVERT, MVT::v8i8, Expand);
658 setOperationAction(ISD::BIT_CONVERT, MVT::v4i16, Expand);
659 setOperationAction(ISD::BIT_CONVERT, MVT::v2i32, Expand);
660 setOperationAction(ISD::BIT_CONVERT, MVT::v1i64, Expand);
662 if (!UseSoftFloat && Subtarget->hasSSE1()) {
663 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
665 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
666 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
667 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
668 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
669 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
670 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
671 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
672 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
673 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
674 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
676 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
679 if (!UseSoftFloat && Subtarget->hasSSE2()) {
680 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
682 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683 // registers cannot be used even for integer operations.
684 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
689 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
690 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
691 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
692 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
693 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
694 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
695 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
696 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
697 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
698 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
699 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
700 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
701 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
702 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
703 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
704 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
706 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
707 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
708 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
709 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
711 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
712 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
713 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
714 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
715 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
717 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
718 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
719 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
720 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
721 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
723 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
725 EVT VT = (MVT::SimpleValueType)i;
726 // Do not attempt to custom lower non-power-of-2 vectors
727 if (!isPowerOf2_32(VT.getVectorNumElements()))
728 continue;
729 // Do not attempt to custom lower non-128-bit vectors
730 if (!VT.is128BitVector())
731 continue;
732 setOperationAction(ISD::BUILD_VECTOR,
733 VT.getSimpleVT().SimpleTy, Custom);
734 setOperationAction(ISD::VECTOR_SHUFFLE,
735 VT.getSimpleVT().SimpleTy, Custom);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
737 VT.getSimpleVT().SimpleTy, Custom);
740 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
741 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
742 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
743 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
744 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
747 if (Subtarget->is64Bit()) {
748 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
749 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
752 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
754 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
755 EVT VT = SVT;
757 // Do not attempt to promote non-128-bit vectors
758 if (!VT.is128BitVector())
759 continue;
761 setOperationAction(ISD::AND, SVT, Promote);
762 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
763 setOperationAction(ISD::OR, SVT, Promote);
764 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
765 setOperationAction(ISD::XOR, SVT, Promote);
766 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
767 setOperationAction(ISD::LOAD, SVT, Promote);
768 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
769 setOperationAction(ISD::SELECT, SVT, Promote);
770 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
773 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
775 // Custom lower v2i64 and v2f64 selects.
776 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
777 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
778 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
779 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
781 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
782 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
785 if (Subtarget->hasSSE41()) {
786 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
787 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
788 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
789 setOperationAction(ISD::FRINT, MVT::f32, Legal);
790 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
791 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
792 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
793 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
794 setOperationAction(ISD::FRINT, MVT::f64, Legal);
795 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
797 // FIXME: Do we need to handle scalar-to-vector here?
798 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
800 // Can turn SHL into an integer multiply.
801 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
802 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
804 // i8 and i16 vectors are custom , because the source register and source
805 // source memory operand types are not the same width. f32 vectors are
806 // custom since the immediate controlling the insert encodes additional
807 // information.
808 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
809 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
810 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
811 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
813 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
814 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
816 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
818 if (Subtarget->is64Bit()) {
819 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
820 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
824 if (Subtarget->hasSSE42()) {
825 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
828 if (!UseSoftFloat && Subtarget->hasAVX()) {
829 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
830 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
831 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
832 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
833 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
835 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
836 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
837 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
838 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
839 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
840 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
841 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
842 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
843 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
844 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
845 setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
846 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
847 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
849 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
851 // Operations to consider commented out -v16i16 v32i8
852 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
853 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
854 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
855 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
856 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
857 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
858 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
859 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
860 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
861 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
862 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
863 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
864 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
865 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
867 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
868 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
869 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
870 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
872 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
873 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
874 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
875 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
876 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
878 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
879 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
880 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
881 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
882 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
883 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
885 #if 0
886 // Not sure we want to do this since there are no 256-bit integer
887 // operations in AVX
889 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890 // This includes 256-bit vectors
891 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
892 EVT VT = (MVT::SimpleValueType)i;
894 // Do not attempt to custom lower non-power-of-2 vectors
895 if (!isPowerOf2_32(VT.getVectorNumElements()))
896 continue;
898 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
899 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
900 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
903 if (Subtarget->is64Bit()) {
904 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
905 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
907 #endif
909 #if 0
910 // Not sure we want to do this since there are no 256-bit integer
911 // operations in AVX
913 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914 // Including 256-bit vectors
915 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
916 EVT VT = (MVT::SimpleValueType)i;
918 if (!VT.is256BitVector()) {
919 continue;
921 setOperationAction(ISD::AND, VT, Promote);
922 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
923 setOperationAction(ISD::OR, VT, Promote);
924 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
925 setOperationAction(ISD::XOR, VT, Promote);
926 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
927 setOperationAction(ISD::LOAD, VT, Promote);
928 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
929 setOperationAction(ISD::SELECT, VT, Promote);
930 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
933 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934 #endif
937 // We want to custom lower some of our intrinsics.
938 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
940 // Add/Sub/Mul with overflow operations are custom lowered.
941 setOperationAction(ISD::SADDO, MVT::i32, Custom);
942 setOperationAction(ISD::UADDO, MVT::i32, Custom);
943 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
944 setOperationAction(ISD::USUBO, MVT::i32, Custom);
945 setOperationAction(ISD::SMULO, MVT::i32, Custom);
947 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948 // handle type legalization for these operations here.
950 // FIXME: We really should do custom legalization for addition and
951 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
952 // than generic legalization for 64-bit multiplication-with-overflow, though.
953 if (Subtarget->is64Bit()) {
954 setOperationAction(ISD::SADDO, MVT::i64, Custom);
955 setOperationAction(ISD::UADDO, MVT::i64, Custom);
956 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
957 setOperationAction(ISD::USUBO, MVT::i64, Custom);
958 setOperationAction(ISD::SMULO, MVT::i64, Custom);
961 if (!Subtarget->is64Bit()) {
962 // These libcalls are not available in 32-bit.
963 setLibcallName(RTLIB::SHL_I128, 0);
964 setLibcallName(RTLIB::SRL_I128, 0);
965 setLibcallName(RTLIB::SRA_I128, 0);
968 // We have target-specific dag combine patterns for the following nodes:
969 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
970 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
971 setTargetDAGCombine(ISD::BUILD_VECTOR);
972 setTargetDAGCombine(ISD::SELECT);
973 setTargetDAGCombine(ISD::SHL);
974 setTargetDAGCombine(ISD::SRA);
975 setTargetDAGCombine(ISD::SRL);
976 setTargetDAGCombine(ISD::OR);
977 setTargetDAGCombine(ISD::STORE);
978 setTargetDAGCombine(ISD::ZERO_EXTEND);
979 if (Subtarget->is64Bit())
980 setTargetDAGCombine(ISD::MUL);
982 computeRegisterProperties();
984 // FIXME: These should be based on subtarget info. Plus, the values should
985 // be smaller when we are in optimizing for size mode.
986 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
987 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
988 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
989 setPrefLoopAlignment(16);
990 benefitFromCodePlacementOpt = true;
994 MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995 return MVT::i8;
999 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000 /// the desired ByVal argument alignment.
1001 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002 if (MaxAlign == 16)
1003 return;
1004 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005 if (VTy->getBitWidth() == 128)
1006 MaxAlign = 16;
1007 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008 unsigned EltAlign = 0;
1009 getMaxByValAlign(ATy->getElementType(), EltAlign);
1010 if (EltAlign > MaxAlign)
1011 MaxAlign = EltAlign;
1012 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014 unsigned EltAlign = 0;
1015 getMaxByValAlign(STy->getElementType(i), EltAlign);
1016 if (EltAlign > MaxAlign)
1017 MaxAlign = EltAlign;
1018 if (MaxAlign == 16)
1019 break;
1022 return;
1025 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026 /// function arguments in the caller parameter area. For X86, aggregates
1027 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028 /// are at 4-byte boundaries.
1029 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030 if (Subtarget->is64Bit()) {
1031 // Max of 8 and alignment of type.
1032 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033 if (TyAlign > 8)
1034 return TyAlign;
1035 return 8;
1038 unsigned Align = 4;
1039 if (Subtarget->hasSSE1())
1040 getMaxByValAlign(Ty, Align);
1041 return Align;
1044 /// getOptimalMemOpType - Returns the target specific optimal type for load
1045 /// and store operations as a result of memset, memcpy, and memmove
1046 /// lowering. If DstAlign is zero that means it's safe to destination
1047 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048 /// means there isn't a need to check it against alignment requirement,
1049 /// probably because the source does not need to be loaded. If
1050 /// 'NonScalarIntSafe' is true, that means it's safe to return a
1051 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053 /// constant so it does not need to be loaded.
1054 /// It returns EVT::Other if the type should be determined using generic
1055 /// target-independent logic.
1057 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058 unsigned DstAlign, unsigned SrcAlign,
1059 bool NonScalarIntSafe,
1060 bool MemcpyStrSrc,
1061 MachineFunction &MF) const {
1062 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063 // linux. This is because the stack realignment code can't handle certain
1064 // cases like PR2962. This should be removed when PR2962 is fixed.
1065 const Function *F = MF.getFunction();
1066 if (NonScalarIntSafe &&
1067 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068 if (Size >= 16 &&
1069 (Subtarget->isUnalignedMemAccessFast() ||
1070 ((DstAlign == 0 || DstAlign >= 16) &&
1071 (SrcAlign == 0 || SrcAlign >= 16))) &&
1072 Subtarget->getStackAlignment() >= 16) {
1073 if (Subtarget->hasSSE2())
1074 return MVT::v4i32;
1075 if (Subtarget->hasSSE1())
1076 return MVT::v4f32;
1077 } else if (!MemcpyStrSrc && Size >= 8 &&
1078 !Subtarget->is64Bit() &&
1079 Subtarget->getStackAlignment() >= 8 &&
1080 Subtarget->hasSSE2()) {
1081 // Do not use f64 to lower memcpy if source is string constant. It's
1082 // better to use i32 to avoid the loads.
1083 return MVT::f64;
1086 if (Subtarget->is64Bit() && Size >= 8)
1087 return MVT::i64;
1088 return MVT::i32;
1091 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092 /// current function. The returned value is a member of the
1093 /// MachineJumpTableInfo::JTEntryKind enum.
1094 unsigned X86TargetLowering::getJumpTableEncoding() const {
1095 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096 // symbol.
1097 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098 Subtarget->isPICStyleGOT())
1099 return MachineJumpTableInfo::EK_Custom32;
1101 // Otherwise, use the normal jump table encoding heuristics.
1102 return TargetLowering::getJumpTableEncoding();
1105 /// getPICBaseSymbol - Return the X86-32 PIC base.
1106 MCSymbol *
1107 X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1108 MCContext &Ctx) const {
1109 const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1110 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1111 Twine(MF->getFunctionNumber())+"$pb");
1115 const MCExpr *
1116 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1117 const MachineBasicBlock *MBB,
1118 unsigned uid,MCContext &Ctx) const{
1119 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1120 Subtarget->isPICStyleGOT());
1121 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1122 // entries.
1123 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1124 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1127 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1128 /// jumptable.
1129 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1130 SelectionDAG &DAG) const {
1131 if (!Subtarget->is64Bit())
1132 // This doesn't have DebugLoc associated with it, but is not really the
1133 // same as a Register.
1134 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1135 return Table;
1138 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1140 /// MCExpr.
1141 const MCExpr *X86TargetLowering::
1142 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1143 MCContext &Ctx) const {
1144 // X86-64 uses RIP relative addressing based on the jump table label.
1145 if (Subtarget->isPICStyleRIPRel())
1146 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1148 // Otherwise, the reference is relative to the PIC base.
1149 return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1152 /// getFunctionAlignment - Return the Log2 alignment of this function.
1153 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1154 return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1157 std::pair<const TargetRegisterClass*, uint8_t>
1158 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1159 const TargetRegisterClass *RRC = 0;
1160 uint8_t Cost = 1;
1161 switch (VT.getSimpleVT().SimpleTy) {
1162 default:
1163 return TargetLowering::findRepresentativeClass(VT);
1164 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1165 RRC = (Subtarget->is64Bit()
1166 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1167 break;
1168 case MVT::x86mmx:
1169 RRC = X86::VR64RegisterClass;
1170 break;
1171 case MVT::f32: case MVT::f64:
1172 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1173 case MVT::v4f32: case MVT::v2f64:
1174 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1175 case MVT::v4f64:
1176 RRC = X86::VR128RegisterClass;
1177 break;
1179 return std::make_pair(RRC, Cost);
1182 unsigned
1183 X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1184 MachineFunction &MF) const {
1185 unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1186 switch (RC->getID()) {
1187 default:
1188 return 0;
1189 case X86::GR32RegClassID:
1190 return 4 - FPDiff;
1191 case X86::GR64RegClassID:
1192 return 8 - FPDiff;
1193 case X86::VR128RegClassID:
1194 return Subtarget->is64Bit() ? 10 : 4;
1195 case X86::VR64RegClassID:
1196 return 4;
1200 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1201 unsigned &Offset) const {
1202 if (!Subtarget->isTargetLinux())
1203 return false;
1205 if (Subtarget->is64Bit()) {
1206 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1207 Offset = 0x28;
1208 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1209 AddressSpace = 256;
1210 else
1211 AddressSpace = 257;
1212 } else {
1213 // %gs:0x14 on i386
1214 Offset = 0x14;
1215 AddressSpace = 256;
1217 return true;
1221 //===----------------------------------------------------------------------===//
1222 // Return Value Calling Convention Implementation
1223 //===----------------------------------------------------------------------===//
1225 #include "X86GenCallingConv.inc"
1227 bool
1228 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1229 const SmallVectorImpl<ISD::OutputArg> &Outs,
1230 LLVMContext &Context) const {
1231 SmallVector<CCValAssign, 16> RVLocs;
1232 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1233 RVLocs, Context);
1234 return CCInfo.CheckReturn(Outs, RetCC_X86);
1237 SDValue
1238 X86TargetLowering::LowerReturn(SDValue Chain,
1239 CallingConv::ID CallConv, bool isVarArg,
1240 const SmallVectorImpl<ISD::OutputArg> &Outs,
1241 const SmallVectorImpl<SDValue> &OutVals,
1242 DebugLoc dl, SelectionDAG &DAG) const {
1243 MachineFunction &MF = DAG.getMachineFunction();
1244 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1246 SmallVector<CCValAssign, 16> RVLocs;
1247 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1248 RVLocs, *DAG.getContext());
1249 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1251 // Add the regs to the liveout set for the function.
1252 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1253 for (unsigned i = 0; i != RVLocs.size(); ++i)
1254 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1255 MRI.addLiveOut(RVLocs[i].getLocReg());
1257 SDValue Flag;
1259 SmallVector<SDValue, 6> RetOps;
1260 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1261 // Operand #1 = Bytes To Pop
1262 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1263 MVT::i16));
1265 // Copy the result values into the output registers.
1266 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1267 CCValAssign &VA = RVLocs[i];
1268 assert(VA.isRegLoc() && "Can only return in registers!");
1269 SDValue ValToCopy = OutVals[i];
1270 EVT ValVT = ValToCopy.getValueType();
1272 // If this is x86-64, and we disabled SSE, we can't return FP values,
1273 // or SSE or MMX vectors.
1274 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1275 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1276 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1277 report_fatal_error("SSE register return with SSE disabled");
1279 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1280 // llvm-gcc has never done it right and no one has noticed, so this
1281 // should be OK for now.
1282 if (ValVT == MVT::f64 &&
1283 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1284 report_fatal_error("SSE2 register return with SSE2 disabled");
1286 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1287 // the RET instruction and handled by the FP Stackifier.
1288 if (VA.getLocReg() == X86::ST0 ||
1289 VA.getLocReg() == X86::ST1) {
1290 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1291 // change the value to the FP stack register class.
1292 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1293 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1294 RetOps.push_back(ValToCopy);
1295 // Don't emit a copytoreg.
1296 continue;
1299 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1300 // which is returned in RAX / RDX.
1301 if (Subtarget->is64Bit()) {
1302 if (ValVT == MVT::x86mmx) {
1303 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1304 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1305 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1306 ValToCopy);
1307 // If we don't have SSE2 available, convert to v4f32 so the generated
1308 // register is legal.
1309 if (!Subtarget->hasSSE2())
1310 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1315 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1316 Flag = Chain.getValue(1);
1319 // The x86-64 ABI for returning structs by value requires that we copy
1320 // the sret argument into %rax for the return. We saved the argument into
1321 // a virtual register in the entry block, so now we copy the value out
1322 // and into %rax.
1323 if (Subtarget->is64Bit() &&
1324 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1325 MachineFunction &MF = DAG.getMachineFunction();
1326 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1327 unsigned Reg = FuncInfo->getSRetReturnReg();
1328 assert(Reg &&
1329 "SRetReturnReg should have been set in LowerFormalArguments().");
1330 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1332 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1333 Flag = Chain.getValue(1);
1335 // RAX now acts like a return value.
1336 MRI.addLiveOut(X86::RAX);
1339 RetOps[0] = Chain; // Update chain.
1341 // Add the flag if we have it.
1342 if (Flag.getNode())
1343 RetOps.push_back(Flag);
1345 return DAG.getNode(X86ISD::RET_FLAG, dl,
1346 MVT::Other, &RetOps[0], RetOps.size());
1349 /// LowerCallResult - Lower the result values of a call into the
1350 /// appropriate copies out of appropriate physical registers.
1352 SDValue
1353 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1354 CallingConv::ID CallConv, bool isVarArg,
1355 const SmallVectorImpl<ISD::InputArg> &Ins,
1356 DebugLoc dl, SelectionDAG &DAG,
1357 SmallVectorImpl<SDValue> &InVals) const {
1359 // Assign locations to each value returned by this call.
1360 SmallVector<CCValAssign, 16> RVLocs;
1361 bool Is64Bit = Subtarget->is64Bit();
1362 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1363 RVLocs, *DAG.getContext());
1364 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1366 // Copy all of the result registers out of their specified physreg.
1367 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1368 CCValAssign &VA = RVLocs[i];
1369 EVT CopyVT = VA.getValVT();
1371 // If this is x86-64, and we disabled SSE, we can't return FP values
1372 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1373 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1374 report_fatal_error("SSE register return with SSE disabled");
1377 SDValue Val;
1379 // If this is a call to a function that returns an fp value on the floating
1380 // point stack, we must guarantee the the value is popped from the stack, so
1381 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1382 // if the return value is not used. We use the FpGET_ST0 instructions
1383 // instead.
1384 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1385 // If we prefer to use the value in xmm registers, copy it out as f80 and
1386 // use a truncate to move it from fp stack reg to xmm reg.
1387 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1388 bool isST0 = VA.getLocReg() == X86::ST0;
1389 unsigned Opc = 0;
1390 if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1391 if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1392 if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1393 SDValue Ops[] = { Chain, InFlag };
1394 Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1395 Ops, 2), 1);
1396 Val = Chain.getValue(0);
1398 // Round the f80 to the right size, which also moves it to the appropriate
1399 // xmm register.
1400 if (CopyVT != VA.getValVT())
1401 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1402 // This truncation won't change the value.
1403 DAG.getIntPtrConstant(1));
1404 } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1405 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1406 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1407 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1408 MVT::v2i64, InFlag).getValue(1);
1409 Val = Chain.getValue(0);
1410 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1411 Val, DAG.getConstant(0, MVT::i64));
1412 } else {
1413 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1414 MVT::i64, InFlag).getValue(1);
1415 Val = Chain.getValue(0);
1417 Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1418 } else {
1419 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1420 CopyVT, InFlag).getValue(1);
1421 Val = Chain.getValue(0);
1423 InFlag = Chain.getValue(2);
1424 InVals.push_back(Val);
1427 return Chain;
1431 //===----------------------------------------------------------------------===//
1432 // C & StdCall & Fast Calling Convention implementation
1433 //===----------------------------------------------------------------------===//
1434 // StdCall calling convention seems to be standard for many Windows' API
1435 // routines and around. It differs from C calling convention just a little:
1436 // callee should clean up the stack, not caller. Symbols should be also
1437 // decorated in some fancy way :) It doesn't support any vector arguments.
1438 // For info on fast calling convention see Fast Calling Convention (tail call)
1439 // implementation LowerX86_32FastCCCallTo.
1441 /// CallIsStructReturn - Determines whether a call uses struct return
1442 /// semantics.
1443 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1444 if (Outs.empty())
1445 return false;
1447 return Outs[0].Flags.isSRet();
1450 /// ArgsAreStructReturn - Determines whether a function uses struct
1451 /// return semantics.
1452 static bool
1453 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1454 if (Ins.empty())
1455 return false;
1457 return Ins[0].Flags.isSRet();
1460 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1461 /// by "Src" to address "Dst" with size and alignment information specified by
1462 /// the specific parameter attribute. The copy will be passed as a byval
1463 /// function parameter.
1464 static SDValue
1465 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1466 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1467 DebugLoc dl) {
1468 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1470 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1471 /*isVolatile*/false, /*AlwaysInline=*/true,
1472 MachinePointerInfo(), MachinePointerInfo());
1475 /// IsTailCallConvention - Return true if the calling convention is one that
1476 /// supports tail call optimization.
1477 static bool IsTailCallConvention(CallingConv::ID CC) {
1478 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1481 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1482 /// a tailcall target by changing its ABI.
1483 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1484 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1487 SDValue
1488 X86TargetLowering::LowerMemArgument(SDValue Chain,
1489 CallingConv::ID CallConv,
1490 const SmallVectorImpl<ISD::InputArg> &Ins,
1491 DebugLoc dl, SelectionDAG &DAG,
1492 const CCValAssign &VA,
1493 MachineFrameInfo *MFI,
1494 unsigned i) const {
1495 // Create the nodes corresponding to a load from this parameter slot.
1496 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1497 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1498 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1499 EVT ValVT;
1501 // If value is passed by pointer we have address passed instead of the value
1502 // itself.
1503 if (VA.getLocInfo() == CCValAssign::Indirect)
1504 ValVT = VA.getLocVT();
1505 else
1506 ValVT = VA.getValVT();
1508 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1509 // changed with more analysis.
1510 // In case of tail call optimization mark all arguments mutable. Since they
1511 // could be overwritten by lowering of arguments in case of a tail call.
1512 if (Flags.isByVal()) {
1513 int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1514 VA.getLocMemOffset(), isImmutable);
1515 return DAG.getFrameIndex(FI, getPointerTy());
1516 } else {
1517 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1518 VA.getLocMemOffset(), isImmutable);
1519 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1520 return DAG.getLoad(ValVT, dl, Chain, FIN,
1521 MachinePointerInfo::getFixedStack(FI),
1522 false, false, 0);
1526 SDValue
1527 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1528 CallingConv::ID CallConv,
1529 bool isVarArg,
1530 const SmallVectorImpl<ISD::InputArg> &Ins,
1531 DebugLoc dl,
1532 SelectionDAG &DAG,
1533 SmallVectorImpl<SDValue> &InVals)
1534 const {
1535 MachineFunction &MF = DAG.getMachineFunction();
1536 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1538 const Function* Fn = MF.getFunction();
1539 if (Fn->hasExternalLinkage() &&
1540 Subtarget->isTargetCygMing() &&
1541 Fn->getName() == "main")
1542 FuncInfo->setForceFramePointer(true);
1544 MachineFrameInfo *MFI = MF.getFrameInfo();
1545 bool Is64Bit = Subtarget->is64Bit();
1546 bool IsWin64 = Subtarget->isTargetWin64();
1548 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1549 "Var args not supported with calling convention fastcc or ghc");
1551 // Assign locations to all of the incoming arguments.
1552 SmallVector<CCValAssign, 16> ArgLocs;
1553 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1554 ArgLocs, *DAG.getContext());
1555 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1557 unsigned LastVal = ~0U;
1558 SDValue ArgValue;
1559 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1560 CCValAssign &VA = ArgLocs[i];
1561 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1562 // places.
1563 assert(VA.getValNo() != LastVal &&
1564 "Don't support value assigned to multiple locs yet");
1565 LastVal = VA.getValNo();
1567 if (VA.isRegLoc()) {
1568 EVT RegVT = VA.getLocVT();
1569 TargetRegisterClass *RC = NULL;
1570 if (RegVT == MVT::i32)
1571 RC = X86::GR32RegisterClass;
1572 else if (Is64Bit && RegVT == MVT::i64)
1573 RC = X86::GR64RegisterClass;
1574 else if (RegVT == MVT::f32)
1575 RC = X86::FR32RegisterClass;
1576 else if (RegVT == MVT::f64)
1577 RC = X86::FR64RegisterClass;
1578 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1579 RC = X86::VR256RegisterClass;
1580 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1581 RC = X86::VR128RegisterClass;
1582 else if (RegVT == MVT::x86mmx)
1583 RC = X86::VR64RegisterClass;
1584 else
1585 llvm_unreachable("Unknown argument type!");
1587 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1588 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1590 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1591 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1592 // right size.
1593 if (VA.getLocInfo() == CCValAssign::SExt)
1594 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1595 DAG.getValueType(VA.getValVT()));
1596 else if (VA.getLocInfo() == CCValAssign::ZExt)
1597 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1598 DAG.getValueType(VA.getValVT()));
1599 else if (VA.getLocInfo() == CCValAssign::BCvt)
1600 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1602 if (VA.isExtInLoc()) {
1603 // Handle MMX values passed in XMM regs.
1604 if (RegVT.isVector()) {
1605 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1606 ArgValue);
1607 } else
1608 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1610 } else {
1611 assert(VA.isMemLoc());
1612 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1615 // If value is passed via pointer - do a load.
1616 if (VA.getLocInfo() == CCValAssign::Indirect)
1617 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1618 MachinePointerInfo(), false, false, 0);
1620 InVals.push_back(ArgValue);
1623 // The x86-64 ABI for returning structs by value requires that we copy
1624 // the sret argument into %rax for the return. Save the argument into
1625 // a virtual register so that we can access it from the return points.
1626 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1627 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1628 unsigned Reg = FuncInfo->getSRetReturnReg();
1629 if (!Reg) {
1630 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1631 FuncInfo->setSRetReturnReg(Reg);
1633 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1634 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1637 unsigned StackSize = CCInfo.getNextStackOffset();
1638 // Align stack specially for tail calls.
1639 if (FuncIsMadeTailCallSafe(CallConv))
1640 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1642 // If the function takes variable number of arguments, make a frame index for
1643 // the start of the first vararg value... for expansion of llvm.va_start.
1644 if (isVarArg) {
1645 if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1646 CallConv != CallingConv::X86_ThisCall))) {
1647 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1649 if (Is64Bit) {
1650 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1652 // FIXME: We should really autogenerate these arrays
1653 static const unsigned GPR64ArgRegsWin64[] = {
1654 X86::RCX, X86::RDX, X86::R8, X86::R9
1656 static const unsigned GPR64ArgRegs64Bit[] = {
1657 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1659 static const unsigned XMMArgRegs64Bit[] = {
1660 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1661 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1663 const unsigned *GPR64ArgRegs;
1664 unsigned NumXMMRegs = 0;
1666 if (IsWin64) {
1667 // The XMM registers which might contain var arg parameters are shadowed
1668 // in their paired GPR. So we only need to save the GPR to their home
1669 // slots.
1670 TotalNumIntRegs = 4;
1671 GPR64ArgRegs = GPR64ArgRegsWin64;
1672 } else {
1673 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1674 GPR64ArgRegs = GPR64ArgRegs64Bit;
1676 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1678 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1679 TotalNumIntRegs);
1681 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1682 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1683 "SSE register cannot be used when SSE is disabled!");
1684 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1685 "SSE register cannot be used when SSE is disabled!");
1686 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1687 // Kernel mode asks for SSE to be disabled, so don't push them
1688 // on the stack.
1689 TotalNumXMMRegs = 0;
1691 if (IsWin64) {
1692 const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1693 // Get to the caller-allocated home save location. Add 8 to account
1694 // for the return address.
1695 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1696 FuncInfo->setRegSaveFrameIndex(
1697 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1698 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1699 } else {
1700 // For X86-64, if there are vararg parameters that are passed via
1701 // registers, then we must store them to their spots on the stack so they
1702 // may be loaded by deferencing the result of va_next.
1703 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1704 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1705 FuncInfo->setRegSaveFrameIndex(
1706 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1707 false));
1710 // Store the integer parameter registers.
1711 SmallVector<SDValue, 8> MemOps;
1712 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1713 getPointerTy());
1714 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1715 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1716 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1717 DAG.getIntPtrConstant(Offset));
1718 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1719 X86::GR64RegisterClass);
1720 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1721 SDValue Store =
1722 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1723 MachinePointerInfo::getFixedStack(
1724 FuncInfo->getRegSaveFrameIndex(), Offset),
1725 false, false, 0);
1726 MemOps.push_back(Store);
1727 Offset += 8;
1730 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1731 // Now store the XMM (fp + vector) parameter registers.
1732 SmallVector<SDValue, 11> SaveXMMOps;
1733 SaveXMMOps.push_back(Chain);
1735 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1736 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1737 SaveXMMOps.push_back(ALVal);
1739 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1740 FuncInfo->getRegSaveFrameIndex()));
1741 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1742 FuncInfo->getVarArgsFPOffset()));
1744 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1745 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1746 X86::VR128RegisterClass);
1747 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1748 SaveXMMOps.push_back(Val);
1750 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1751 MVT::Other,
1752 &SaveXMMOps[0], SaveXMMOps.size()));
1755 if (!MemOps.empty())
1756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1757 &MemOps[0], MemOps.size());
1761 // Some CCs need callee pop.
1762 if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1763 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1764 } else {
1765 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1766 // If this is an sret function, the return should pop the hidden pointer.
1767 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1768 FuncInfo->setBytesToPopOnReturn(4);
1771 if (!Is64Bit) {
1772 // RegSaveFrameIndex is X86-64 only.
1773 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1774 if (CallConv == CallingConv::X86_FastCall ||
1775 CallConv == CallingConv::X86_ThisCall)
1776 // fastcc functions can't have varargs.
1777 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1780 return Chain;
1783 SDValue
1784 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1785 SDValue StackPtr, SDValue Arg,
1786 DebugLoc dl, SelectionDAG &DAG,
1787 const CCValAssign &VA,
1788 ISD::ArgFlagsTy Flags) const {
1789 const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1790 unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1791 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1792 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1793 if (Flags.isByVal())
1794 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1796 return DAG.getStore(Chain, dl, Arg, PtrOff,
1797 MachinePointerInfo::getStack(LocMemOffset),
1798 false, false, 0);
1801 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1802 /// optimization is performed and it is required.
1803 SDValue
1804 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1805 SDValue &OutRetAddr, SDValue Chain,
1806 bool IsTailCall, bool Is64Bit,
1807 int FPDiff, DebugLoc dl) const {
1808 // Adjust the Return address stack slot.
1809 EVT VT = getPointerTy();
1810 OutRetAddr = getReturnAddressFrameIndex(DAG);
1812 // Load the "old" Return address.
1813 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1814 false, false, 0);
1815 return SDValue(OutRetAddr.getNode(), 1);
1818 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1819 /// optimization is performed and it is required (FPDiff!=0).
1820 static SDValue
1821 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1822 SDValue Chain, SDValue RetAddrFrIdx,
1823 bool Is64Bit, int FPDiff, DebugLoc dl) {
1824 // Store the return address to the appropriate stack slot.
1825 if (!FPDiff) return Chain;
1826 // Calculate the new stack slot for the return address.
1827 int SlotSize = Is64Bit ? 8 : 4;
1828 int NewReturnAddrFI =
1829 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1830 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1831 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1832 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1833 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1834 false, false, 0);
1835 return Chain;
1838 SDValue
1839 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1840 CallingConv::ID CallConv, bool isVarArg,
1841 bool &isTailCall,
1842 const SmallVectorImpl<ISD::OutputArg> &Outs,
1843 const SmallVectorImpl<SDValue> &OutVals,
1844 const SmallVectorImpl<ISD::InputArg> &Ins,
1845 DebugLoc dl, SelectionDAG &DAG,
1846 SmallVectorImpl<SDValue> &InVals) const {
1847 MachineFunction &MF = DAG.getMachineFunction();
1848 bool Is64Bit = Subtarget->is64Bit();
1849 bool IsStructRet = CallIsStructReturn(Outs);
1850 bool IsSibcall = false;
1852 if (isTailCall) {
1853 // Check if it's really possible to do a tail call.
1854 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1855 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1856 Outs, OutVals, Ins, DAG);
1858 // Sibcalls are automatically detected tailcalls which do not require
1859 // ABI changes.
1860 if (!GuaranteedTailCallOpt && isTailCall)
1861 IsSibcall = true;
1863 if (isTailCall)
1864 ++NumTailCalls;
1867 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1868 "Var args not supported with calling convention fastcc or ghc");
1870 // Analyze operands of the call, assigning locations to each operand.
1871 SmallVector<CCValAssign, 16> ArgLocs;
1872 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1873 ArgLocs, *DAG.getContext());
1874 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1876 // Get a count of how many bytes are to be pushed on the stack.
1877 unsigned NumBytes = CCInfo.getNextStackOffset();
1878 if (IsSibcall)
1879 // This is a sibcall. The memory operands are available in caller's
1880 // own caller's stack.
1881 NumBytes = 0;
1882 else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1883 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1885 int FPDiff = 0;
1886 if (isTailCall && !IsSibcall) {
1887 // Lower arguments at fp - stackoffset + fpdiff.
1888 unsigned NumBytesCallerPushed =
1889 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1890 FPDiff = NumBytesCallerPushed - NumBytes;
1892 // Set the delta of movement of the returnaddr stackslot.
1893 // But only set if delta is greater than previous delta.
1894 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1895 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1898 if (!IsSibcall)
1899 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1901 SDValue RetAddrFrIdx;
1902 // Load return adress for tail calls.
1903 if (isTailCall && FPDiff)
1904 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1905 Is64Bit, FPDiff, dl);
1907 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1908 SmallVector<SDValue, 8> MemOpChains;
1909 SDValue StackPtr;
1911 // Walk the register/memloc assignments, inserting copies/loads. In the case
1912 // of tail call optimization arguments are handle later.
1913 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1914 CCValAssign &VA = ArgLocs[i];
1915 EVT RegVT = VA.getLocVT();
1916 SDValue Arg = OutVals[i];
1917 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1918 bool isByVal = Flags.isByVal();
1920 // Promote the value if needed.
1921 switch (VA.getLocInfo()) {
1922 default: llvm_unreachable("Unknown loc info!");
1923 case CCValAssign::Full: break;
1924 case CCValAssign::SExt:
1925 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1926 break;
1927 case CCValAssign::ZExt:
1928 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1929 break;
1930 case CCValAssign::AExt:
1931 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1932 // Special case: passing MMX values in XMM registers.
1933 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1934 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1935 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1936 } else
1937 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1938 break;
1939 case CCValAssign::BCvt:
1940 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1941 break;
1942 case CCValAssign::Indirect: {
1943 // Store the argument.
1944 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1945 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1946 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1947 MachinePointerInfo::getFixedStack(FI),
1948 false, false, 0);
1949 Arg = SpillSlot;
1950 break;
1954 if (VA.isRegLoc()) {
1955 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1956 if (isVarArg && Subtarget->isTargetWin64()) {
1957 // Win64 ABI requires argument XMM reg to be copied to the corresponding
1958 // shadow reg if callee is a varargs function.
1959 unsigned ShadowReg = 0;
1960 switch (VA.getLocReg()) {
1961 case X86::XMM0: ShadowReg = X86::RCX; break;
1962 case X86::XMM1: ShadowReg = X86::RDX; break;
1963 case X86::XMM2: ShadowReg = X86::R8; break;
1964 case X86::XMM3: ShadowReg = X86::R9; break;
1966 if (ShadowReg)
1967 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1969 } else if (!IsSibcall && (!isTailCall || isByVal)) {
1970 assert(VA.isMemLoc());
1971 if (StackPtr.getNode() == 0)
1972 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1973 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1974 dl, DAG, VA, Flags));
1978 if (!MemOpChains.empty())
1979 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1980 &MemOpChains[0], MemOpChains.size());
1982 // Build a sequence of copy-to-reg nodes chained together with token chain
1983 // and flag operands which copy the outgoing args into registers.
1984 SDValue InFlag;
1985 // Tail call byval lowering might overwrite argument registers so in case of
1986 // tail call optimization the copies to registers are lowered later.
1987 if (!isTailCall)
1988 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1989 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1990 RegsToPass[i].second, InFlag);
1991 InFlag = Chain.getValue(1);
1994 if (Subtarget->isPICStyleGOT()) {
1995 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1996 // GOT pointer.
1997 if (!isTailCall) {
1998 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1999 DAG.getNode(X86ISD::GlobalBaseReg,
2000 DebugLoc(), getPointerTy()),
2001 InFlag);
2002 InFlag = Chain.getValue(1);
2003 } else {
2004 // If we are tail calling and generating PIC/GOT style code load the
2005 // address of the callee into ECX. The value in ecx is used as target of
2006 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2007 // for tail calls on PIC/GOT architectures. Normally we would just put the
2008 // address of GOT into ebx and then call target@PLT. But for tail calls
2009 // ebx would be restored (since ebx is callee saved) before jumping to the
2010 // target@PLT.
2012 // Note: The actual moving to ECX is done further down.
2013 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2014 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2015 !G->getGlobal()->hasProtectedVisibility())
2016 Callee = LowerGlobalAddress(Callee, DAG);
2017 else if (isa<ExternalSymbolSDNode>(Callee))
2018 Callee = LowerExternalSymbol(Callee, DAG);
2022 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2023 // From AMD64 ABI document:
2024 // For calls that may call functions that use varargs or stdargs
2025 // (prototype-less calls or calls to functions containing ellipsis (...) in
2026 // the declaration) %al is used as hidden argument to specify the number
2027 // of SSE registers used. The contents of %al do not need to match exactly
2028 // the number of registers, but must be an ubound on the number of SSE
2029 // registers used and is in the range 0 - 8 inclusive.
2031 // Count the number of XMM registers allocated.
2032 static const unsigned XMMArgRegs[] = {
2033 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2034 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2036 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2037 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2038 && "SSE registers cannot be used when SSE is disabled");
2040 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2041 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2042 InFlag = Chain.getValue(1);
2046 // For tail calls lower the arguments to the 'real' stack slot.
2047 if (isTailCall) {
2048 // Force all the incoming stack arguments to be loaded from the stack
2049 // before any new outgoing arguments are stored to the stack, because the
2050 // outgoing stack slots may alias the incoming argument stack slots, and
2051 // the alias isn't otherwise explicit. This is slightly more conservative
2052 // than necessary, because it means that each store effectively depends
2053 // on every argument instead of just those arguments it would clobber.
2054 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2056 SmallVector<SDValue, 8> MemOpChains2;
2057 SDValue FIN;
2058 int FI = 0;
2059 // Do not flag preceeding copytoreg stuff together with the following stuff.
2060 InFlag = SDValue();
2061 if (GuaranteedTailCallOpt) {
2062 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2063 CCValAssign &VA = ArgLocs[i];
2064 if (VA.isRegLoc())
2065 continue;
2066 assert(VA.isMemLoc());
2067 SDValue Arg = OutVals[i];
2068 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2069 // Create frame index.
2070 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2071 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2072 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2073 FIN = DAG.getFrameIndex(FI, getPointerTy());
2075 if (Flags.isByVal()) {
2076 // Copy relative to framepointer.
2077 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2078 if (StackPtr.getNode() == 0)
2079 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2080 getPointerTy());
2081 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2083 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2084 ArgChain,
2085 Flags, DAG, dl));
2086 } else {
2087 // Store relative to framepointer.
2088 MemOpChains2.push_back(
2089 DAG.getStore(ArgChain, dl, Arg, FIN,
2090 MachinePointerInfo::getFixedStack(FI),
2091 false, false, 0));
2096 if (!MemOpChains2.empty())
2097 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2098 &MemOpChains2[0], MemOpChains2.size());
2100 // Copy arguments to their registers.
2101 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2102 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2103 RegsToPass[i].second, InFlag);
2104 InFlag = Chain.getValue(1);
2106 InFlag =SDValue();
2108 // Store the return address to the appropriate stack slot.
2109 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2110 FPDiff, dl);
2113 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2114 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2115 // In the 64-bit large code model, we have to make all calls
2116 // through a register, since the call instruction's 32-bit
2117 // pc-relative offset may not be large enough to hold the whole
2118 // address.
2119 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2120 // If the callee is a GlobalAddress node (quite common, every direct call
2121 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2122 // it.
2124 // We should use extra load for direct calls to dllimported functions in
2125 // non-JIT mode.
2126 const GlobalValue *GV = G->getGlobal();
2127 if (!GV->hasDLLImportLinkage()) {
2128 unsigned char OpFlags = 0;
2130 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2131 // external symbols most go through the PLT in PIC mode. If the symbol
2132 // has hidden or protected visibility, or if it is static or local, then
2133 // we don't need to use the PLT - we can directly call it.
2134 if (Subtarget->isTargetELF() &&
2135 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2136 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2137 OpFlags = X86II::MO_PLT;
2138 } else if (Subtarget->isPICStyleStubAny() &&
2139 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2140 Subtarget->getDarwinVers() < 9) {
2141 // PC-relative references to external symbols should go through $stub,
2142 // unless we're building with the leopard linker or later, which
2143 // automatically synthesizes these stubs.
2144 OpFlags = X86II::MO_DARWIN_STUB;
2147 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2148 G->getOffset(), OpFlags);
2150 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2151 unsigned char OpFlags = 0;
2153 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2154 // symbols should go through the PLT.
2155 if (Subtarget->isTargetELF() &&
2156 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2157 OpFlags = X86II::MO_PLT;
2158 } else if (Subtarget->isPICStyleStubAny() &&
2159 Subtarget->getDarwinVers() < 9) {
2160 // PC-relative references to external symbols should go through $stub,
2161 // unless we're building with the leopard linker or later, which
2162 // automatically synthesizes these stubs.
2163 OpFlags = X86II::MO_DARWIN_STUB;
2166 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2167 OpFlags);
2170 // Returns a chain & a flag for retval copy to use.
2171 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2172 SmallVector<SDValue, 8> Ops;
2174 if (!IsSibcall && isTailCall) {
2175 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2176 DAG.getIntPtrConstant(0, true), InFlag);
2177 InFlag = Chain.getValue(1);
2180 Ops.push_back(Chain);
2181 Ops.push_back(Callee);
2183 if (isTailCall)
2184 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2186 // Add argument registers to the end of the list so that they are known live
2187 // into the call.
2188 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2189 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2190 RegsToPass[i].second.getValueType()));
2192 // Add an implicit use GOT pointer in EBX.
2193 if (!isTailCall && Subtarget->isPICStyleGOT())
2194 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2196 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2197 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2198 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2200 if (InFlag.getNode())
2201 Ops.push_back(InFlag);
2203 if (isTailCall) {
2204 // We used to do:
2205 //// If this is the first return lowered for this function, add the regs
2206 //// to the liveout set for the function.
2207 // This isn't right, although it's probably harmless on x86; liveouts
2208 // should be computed from returns not tail calls. Consider a void
2209 // function making a tail call to a function returning int.
2210 return DAG.getNode(X86ISD::TC_RETURN, dl,
2211 NodeTys, &Ops[0], Ops.size());
2214 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2215 InFlag = Chain.getValue(1);
2217 // Create the CALLSEQ_END node.
2218 unsigned NumBytesForCalleeToPush;
2219 if (Subtarget->IsCalleePop(isVarArg, CallConv))
2220 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2221 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2222 // If this is a call to a struct-return function, the callee
2223 // pops the hidden struct pointer, so we have to push it back.
2224 // This is common for Darwin/X86, Linux & Mingw32 targets.
2225 NumBytesForCalleeToPush = 4;
2226 else
2227 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2229 // Returns a flag for retval copy to use.
2230 if (!IsSibcall) {
2231 Chain = DAG.getCALLSEQ_END(Chain,
2232 DAG.getIntPtrConstant(NumBytes, true),
2233 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2234 true),
2235 InFlag);
2236 InFlag = Chain.getValue(1);
2239 // Handle result values, copying them out of physregs into vregs that we
2240 // return.
2241 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2242 Ins, dl, DAG, InVals);
2246 //===----------------------------------------------------------------------===//
2247 // Fast Calling Convention (tail call) implementation
2248 //===----------------------------------------------------------------------===//
2250 // Like std call, callee cleans arguments, convention except that ECX is
2251 // reserved for storing the tail called function address. Only 2 registers are
2252 // free for argument passing (inreg). Tail call optimization is performed
2253 // provided:
2254 // * tailcallopt is enabled
2255 // * caller/callee are fastcc
2256 // On X86_64 architecture with GOT-style position independent code only local
2257 // (within module) calls are supported at the moment.
2258 // To keep the stack aligned according to platform abi the function
2259 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2260 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2261 // If a tail called function callee has more arguments than the caller the
2262 // caller needs to make sure that there is room to move the RETADDR to. This is
2263 // achieved by reserving an area the size of the argument delta right after the
2264 // original REtADDR, but before the saved framepointer or the spilled registers
2265 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2266 // stack layout:
2267 // arg1
2268 // arg2
2269 // RETADDR
2270 // [ new RETADDR
2271 // move area ]
2272 // (possible EBP)
2273 // ESI
2274 // EDI
2275 // local1 ..
2277 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2278 /// for a 16 byte align requirement.
2279 unsigned
2280 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2281 SelectionDAG& DAG) const {
2282 MachineFunction &MF = DAG.getMachineFunction();
2283 const TargetMachine &TM = MF.getTarget();
2284 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2285 unsigned StackAlignment = TFI.getStackAlignment();
2286 uint64_t AlignMask = StackAlignment - 1;
2287 int64_t Offset = StackSize;
2288 uint64_t SlotSize = TD->getPointerSize();
2289 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2290 // Number smaller than 12 so just add the difference.
2291 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2292 } else {
2293 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2294 Offset = ((~AlignMask) & Offset) + StackAlignment +
2295 (StackAlignment-SlotSize);
2297 return Offset;
2300 /// MatchingStackOffset - Return true if the given stack call argument is
2301 /// already available in the same position (relatively) of the caller's
2302 /// incoming argument stack.
2303 static
2304 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2305 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2306 const X86InstrInfo *TII) {
2307 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2308 int FI = INT_MAX;
2309 if (Arg.getOpcode() == ISD::CopyFromReg) {
2310 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2311 if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2312 return false;
2313 MachineInstr *Def = MRI->getVRegDef(VR);
2314 if (!Def)
2315 return false;
2316 if (!Flags.isByVal()) {
2317 if (!TII->isLoadFromStackSlot(Def, FI))
2318 return false;
2319 } else {
2320 unsigned Opcode = Def->getOpcode();
2321 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2322 Def->getOperand(1).isFI()) {
2323 FI = Def->getOperand(1).getIndex();
2324 Bytes = Flags.getByValSize();
2325 } else
2326 return false;
2328 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2329 if (Flags.isByVal())
2330 // ByVal argument is passed in as a pointer but it's now being
2331 // dereferenced. e.g.
2332 // define @foo(%struct.X* %A) {
2333 // tail call @bar(%struct.X* byval %A)
2334 // }
2335 return false;
2336 SDValue Ptr = Ld->getBasePtr();
2337 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2338 if (!FINode)
2339 return false;
2340 FI = FINode->getIndex();
2341 } else
2342 return false;
2344 assert(FI != INT_MAX);
2345 if (!MFI->isFixedObjectIndex(FI))
2346 return false;
2347 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2350 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2351 /// for tail call optimization. Targets which want to do tail call
2352 /// optimization should implement this function.
2353 bool
2354 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2355 CallingConv::ID CalleeCC,
2356 bool isVarArg,
2357 bool isCalleeStructRet,
2358 bool isCallerStructRet,
2359 const SmallVectorImpl<ISD::OutputArg> &Outs,
2360 const SmallVectorImpl<SDValue> &OutVals,
2361 const SmallVectorImpl<ISD::InputArg> &Ins,
2362 SelectionDAG& DAG) const {
2363 if (!IsTailCallConvention(CalleeCC) &&
2364 CalleeCC != CallingConv::C)
2365 return false;
2367 // If -tailcallopt is specified, make fastcc functions tail-callable.
2368 const MachineFunction &MF = DAG.getMachineFunction();
2369 const Function *CallerF = DAG.getMachineFunction().getFunction();
2370 CallingConv::ID CallerCC = CallerF->getCallingConv();
2371 bool CCMatch = CallerCC == CalleeCC;
2373 if (GuaranteedTailCallOpt) {
2374 if (IsTailCallConvention(CalleeCC) && CCMatch)
2375 return true;
2376 return false;
2379 // Look for obvious safe cases to perform tail call optimization that do not
2380 // require ABI changes. This is what gcc calls sibcall.
2382 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2383 // emit a special epilogue.
2384 if (RegInfo->needsStackRealignment(MF))
2385 return false;
2387 // Do not sibcall optimize vararg calls unless the call site is not passing
2388 // any arguments.
2389 if (isVarArg && !Outs.empty())
2390 return false;
2392 // Also avoid sibcall optimization if either caller or callee uses struct
2393 // return semantics.
2394 if (isCalleeStructRet || isCallerStructRet)
2395 return false;
2397 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2398 // Therefore if it's not used by the call it is not safe to optimize this into
2399 // a sibcall.
2400 bool Unused = false;
2401 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2402 if (!Ins[i].Used) {
2403 Unused = true;
2404 break;
2407 if (Unused) {
2408 SmallVector<CCValAssign, 16> RVLocs;
2409 CCState CCInfo(CalleeCC, false, getTargetMachine(),
2410 RVLocs, *DAG.getContext());
2411 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2412 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2413 CCValAssign &VA = RVLocs[i];
2414 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2415 return false;
2419 // If the calling conventions do not match, then we'd better make sure the
2420 // results are returned in the same way as what the caller expects.
2421 if (!CCMatch) {
2422 SmallVector<CCValAssign, 16> RVLocs1;
2423 CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2424 RVLocs1, *DAG.getContext());
2425 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2427 SmallVector<CCValAssign, 16> RVLocs2;
2428 CCState CCInfo2(CallerCC, false, getTargetMachine(),
2429 RVLocs2, *DAG.getContext());
2430 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2432 if (RVLocs1.size() != RVLocs2.size())
2433 return false;
2434 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2435 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2436 return false;
2437 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2438 return false;
2439 if (RVLocs1[i].isRegLoc()) {
2440 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2441 return false;
2442 } else {
2443 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2444 return false;
2449 // If the callee takes no arguments then go on to check the results of the
2450 // call.
2451 if (!Outs.empty()) {
2452 // Check if stack adjustment is needed. For now, do not do this if any
2453 // argument is passed on the stack.
2454 SmallVector<CCValAssign, 16> ArgLocs;
2455 CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2456 ArgLocs, *DAG.getContext());
2457 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2458 if (CCInfo.getNextStackOffset()) {
2459 MachineFunction &MF = DAG.getMachineFunction();
2460 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2461 return false;
2462 if (Subtarget->isTargetWin64())
2463 // Win64 ABI has additional complications.
2464 return false;
2466 // Check if the arguments are already laid out in the right way as
2467 // the caller's fixed stack objects.
2468 MachineFrameInfo *MFI = MF.getFrameInfo();
2469 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2470 const X86InstrInfo *TII =
2471 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2472 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2473 CCValAssign &VA = ArgLocs[i];
2474 SDValue Arg = OutVals[i];
2475 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2476 if (VA.getLocInfo() == CCValAssign::Indirect)
2477 return false;
2478 if (!VA.isRegLoc()) {
2479 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2480 MFI, MRI, TII))
2481 return false;
2486 // If the tailcall address may be in a register, then make sure it's
2487 // possible to register allocate for it. In 32-bit, the call address can
2488 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2489 // callee-saved registers are restored. These happen to be the same
2490 // registers used to pass 'inreg' arguments so watch out for those.
2491 if (!Subtarget->is64Bit() &&
2492 !isa<GlobalAddressSDNode>(Callee) &&
2493 !isa<ExternalSymbolSDNode>(Callee)) {
2494 unsigned NumInRegs = 0;
2495 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2496 CCValAssign &VA = ArgLocs[i];
2497 if (!VA.isRegLoc())
2498 continue;
2499 unsigned Reg = VA.getLocReg();
2500 switch (Reg) {
2501 default: break;
2502 case X86::EAX: case X86::EDX: case X86::ECX:
2503 if (++NumInRegs == 3)
2504 return false;
2505 break;
2511 // An stdcall caller is expected to clean up its arguments; the callee
2512 // isn't going to do that. PR 8461.
2513 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2514 return false;
2516 return true;
2519 FastISel *
2520 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2521 return X86::createFastISel(funcInfo);
2525 //===----------------------------------------------------------------------===//
2526 // Other Lowering Hooks
2527 //===----------------------------------------------------------------------===//
2529 static bool MayFoldLoad(SDValue Op) {
2530 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2533 static bool MayFoldIntoStore(SDValue Op) {
2534 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2537 static bool isTargetShuffle(unsigned Opcode) {
2538 switch(Opcode) {
2539 default: return false;
2540 case X86ISD::PSHUFD:
2541 case X86ISD::PSHUFHW:
2542 case X86ISD::PSHUFLW:
2543 case X86ISD::SHUFPD:
2544 case X86ISD::PALIGN:
2545 case X86ISD::SHUFPS:
2546 case X86ISD::MOVLHPS:
2547 case X86ISD::MOVLHPD:
2548 case X86ISD::MOVHLPS:
2549 case X86ISD::MOVLPS:
2550 case X86ISD::MOVLPD:
2551 case X86ISD::MOVSHDUP:
2552 case X86ISD::MOVSLDUP:
2553 case X86ISD::MOVDDUP:
2554 case X86ISD::MOVSS:
2555 case X86ISD::MOVSD:
2556 case X86ISD::UNPCKLPS:
2557 case X86ISD::UNPCKLPD:
2558 case X86ISD::PUNPCKLWD:
2559 case X86ISD::PUNPCKLBW:
2560 case X86ISD::PUNPCKLDQ:
2561 case X86ISD::PUNPCKLQDQ:
2562 case X86ISD::UNPCKHPS:
2563 case X86ISD::UNPCKHPD:
2564 case X86ISD::PUNPCKHWD:
2565 case X86ISD::PUNPCKHBW:
2566 case X86ISD::PUNPCKHDQ:
2567 case X86ISD::PUNPCKHQDQ:
2568 return true;
2570 return false;
2573 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2574 SDValue V1, SelectionDAG &DAG) {
2575 switch(Opc) {
2576 default: llvm_unreachable("Unknown x86 shuffle node");
2577 case X86ISD::MOVSHDUP:
2578 case X86ISD::MOVSLDUP:
2579 case X86ISD::MOVDDUP:
2580 return DAG.getNode(Opc, dl, VT, V1);
2583 return SDValue();
2586 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2587 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2588 switch(Opc) {
2589 default: llvm_unreachable("Unknown x86 shuffle node");
2590 case X86ISD::PSHUFD:
2591 case X86ISD::PSHUFHW:
2592 case X86ISD::PSHUFLW:
2593 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2596 return SDValue();
2599 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2600 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2601 switch(Opc) {
2602 default: llvm_unreachable("Unknown x86 shuffle node");
2603 case X86ISD::PALIGN:
2604 case X86ISD::SHUFPD:
2605 case X86ISD::SHUFPS:
2606 return DAG.getNode(Opc, dl, VT, V1, V2,
2607 DAG.getConstant(TargetMask, MVT::i8));
2609 return SDValue();
2612 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2613 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2614 switch(Opc) {
2615 default: llvm_unreachable("Unknown x86 shuffle node");
2616 case X86ISD::MOVLHPS:
2617 case X86ISD::MOVLHPD:
2618 case X86ISD::MOVHLPS:
2619 case X86ISD::MOVLPS:
2620 case X86ISD::MOVLPD:
2621 case X86ISD::MOVSS:
2622 case X86ISD::MOVSD:
2623 case X86ISD::UNPCKLPS:
2624 case X86ISD::UNPCKLPD:
2625 case X86ISD::PUNPCKLWD:
2626 case X86ISD::PUNPCKLBW:
2627 case X86ISD::PUNPCKLDQ:
2628 case X86ISD::PUNPCKLQDQ:
2629 case X86ISD::UNPCKHPS:
2630 case X86ISD::UNPCKHPD:
2631 case X86ISD::PUNPCKHWD:
2632 case X86ISD::PUNPCKHBW:
2633 case X86ISD::PUNPCKHDQ:
2634 case X86ISD::PUNPCKHQDQ:
2635 return DAG.getNode(Opc, dl, VT, V1, V2);
2637 return SDValue();
2640 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2641 MachineFunction &MF = DAG.getMachineFunction();
2642 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2643 int ReturnAddrIndex = FuncInfo->getRAIndex();
2645 if (ReturnAddrIndex == 0) {
2646 // Set up a frame object for the return address.
2647 uint64_t SlotSize = TD->getPointerSize();
2648 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2649 false);
2650 FuncInfo->setRAIndex(ReturnAddrIndex);
2653 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2657 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2658 bool hasSymbolicDisplacement) {
2659 // Offset should fit into 32 bit immediate field.
2660 if (!isInt<32>(Offset))
2661 return false;
2663 // If we don't have a symbolic displacement - we don't have any extra
2664 // restrictions.
2665 if (!hasSymbolicDisplacement)
2666 return true;
2668 // FIXME: Some tweaks might be needed for medium code model.
2669 if (M != CodeModel::Small && M != CodeModel::Kernel)
2670 return false;
2672 // For small code model we assume that latest object is 16MB before end of 31
2673 // bits boundary. We may also accept pretty large negative constants knowing
2674 // that all objects are in the positive half of address space.
2675 if (M == CodeModel::Small && Offset < 16*1024*1024)
2676 return true;
2678 // For kernel code model we know that all object resist in the negative half
2679 // of 32bits address space. We may not accept negative offsets, since they may
2680 // be just off and we may accept pretty large positive ones.
2681 if (M == CodeModel::Kernel && Offset > 0)
2682 return true;
2684 return false;
2687 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2688 /// specific condition code, returning the condition code and the LHS/RHS of the
2689 /// comparison to make.
2690 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2691 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2692 if (!isFP) {
2693 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2694 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2695 // X > -1 -> X == 0, jump !sign.
2696 RHS = DAG.getConstant(0, RHS.getValueType());
2697 return X86::COND_NS;
2698 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2699 // X < 0 -> X == 0, jump on sign.
2700 return X86::COND_S;
2701 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2702 // X < 1 -> X <= 0
2703 RHS = DAG.getConstant(0, RHS.getValueType());
2704 return X86::COND_LE;
2708 switch (SetCCOpcode) {
2709 default: llvm_unreachable("Invalid integer condition!");
2710 case ISD::SETEQ: return X86::COND_E;
2711 case ISD::SETGT: return X86::COND_G;
2712 case ISD::SETGE: return X86::COND_GE;
2713 case ISD::SETLT: return X86::COND_L;
2714 case ISD::SETLE: return X86::COND_LE;
2715 case ISD::SETNE: return X86::COND_NE;
2716 case ISD::SETULT: return X86::COND_B;
2717 case ISD::SETUGT: return X86::COND_A;
2718 case ISD::SETULE: return X86::COND_BE;
2719 case ISD::SETUGE: return X86::COND_AE;
2723 // First determine if it is required or is profitable to flip the operands.
2725 // If LHS is a foldable load, but RHS is not, flip the condition.
2726 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2727 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2728 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2729 std::swap(LHS, RHS);
2732 switch (SetCCOpcode) {
2733 default: break;
2734 case ISD::SETOLT:
2735 case ISD::SETOLE:
2736 case ISD::SETUGT:
2737 case ISD::SETUGE:
2738 std::swap(LHS, RHS);
2739 break;
2742 // On a floating point condition, the flags are set as follows:
2743 // ZF PF CF op
2744 // 0 | 0 | 0 | X > Y
2745 // 0 | 0 | 1 | X < Y
2746 // 1 | 0 | 0 | X == Y
2747 // 1 | 1 | 1 | unordered
2748 switch (SetCCOpcode) {
2749 default: llvm_unreachable("Condcode should be pre-legalized away");
2750 case ISD::SETUEQ:
2751 case ISD::SETEQ: return X86::COND_E;
2752 case ISD::SETOLT: // flipped
2753 case ISD::SETOGT:
2754 case ISD::SETGT: return X86::COND_A;
2755 case ISD::SETOLE: // flipped
2756 case ISD::SETOGE:
2757 case ISD::SETGE: return X86::COND_AE;
2758 case ISD::SETUGT: // flipped
2759 case ISD::SETULT:
2760 case ISD::SETLT: return X86::COND_B;
2761 case ISD::SETUGE: // flipped
2762 case ISD::SETULE:
2763 case ISD::SETLE: return X86::COND_BE;
2764 case ISD::SETONE:
2765 case ISD::SETNE: return X86::COND_NE;
2766 case ISD::SETUO: return X86::COND_P;
2767 case ISD::SETO: return X86::COND_NP;
2768 case ISD::SETOEQ:
2769 case ISD::SETUNE: return X86::COND_INVALID;
2773 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2774 /// code. Current x86 isa includes the following FP cmov instructions:
2775 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2776 static bool hasFPCMov(unsigned X86CC) {
2777 switch (X86CC) {
2778 default:
2779 return false;
2780 case X86::COND_B:
2781 case X86::COND_BE:
2782 case X86::COND_E:
2783 case X86::COND_P:
2784 case X86::COND_A:
2785 case X86::COND_AE:
2786 case X86::COND_NE:
2787 case X86::COND_NP:
2788 return true;
2792 /// isFPImmLegal - Returns true if the target can instruction select the
2793 /// specified FP immediate natively. If false, the legalizer will
2794 /// materialize the FP immediate as a load from a constant pool.
2795 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2796 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2797 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2798 return true;
2800 return false;
2803 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2804 /// the specified range (L, H].
2805 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2806 return (Val < 0) || (Val >= Low && Val < Hi);
2809 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2810 /// specified value.
2811 static bool isUndefOrEqual(int Val, int CmpVal) {
2812 if (Val < 0 || Val == CmpVal)
2813 return true;
2814 return false;
2817 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2818 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2819 /// the second operand.
2820 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2821 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2822 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2823 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2824 return (Mask[0] < 2 && Mask[1] < 2);
2825 return false;
2828 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2829 SmallVector<int, 8> M;
2830 N->getMask(M);
2831 return ::isPSHUFDMask(M, N->getValueType(0));
2834 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2835 /// is suitable for input to PSHUFHW.
2836 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2837 if (VT != MVT::v8i16)
2838 return false;
2840 // Lower quadword copied in order or undef.
2841 for (int i = 0; i != 4; ++i)
2842 if (Mask[i] >= 0 && Mask[i] != i)
2843 return false;
2845 // Upper quadword shuffled.
2846 for (int i = 4; i != 8; ++i)
2847 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2848 return false;
2850 return true;
2853 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2854 SmallVector<int, 8> M;
2855 N->getMask(M);
2856 return ::isPSHUFHWMask(M, N->getValueType(0));
2859 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2860 /// is suitable for input to PSHUFLW.
2861 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2862 if (VT != MVT::v8i16)
2863 return false;
2865 // Upper quadword copied in order.
2866 for (int i = 4; i != 8; ++i)
2867 if (Mask[i] >= 0 && Mask[i] != i)
2868 return false;
2870 // Lower quadword shuffled.
2871 for (int i = 0; i != 4; ++i)
2872 if (Mask[i] >= 4)
2873 return false;
2875 return true;
2878 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2879 SmallVector<int, 8> M;
2880 N->getMask(M);
2881 return ::isPSHUFLWMask(M, N->getValueType(0));
2884 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2885 /// is suitable for input to PALIGNR.
2886 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2887 bool hasSSSE3) {
2888 int i, e = VT.getVectorNumElements();
2890 // Do not handle v2i64 / v2f64 shuffles with palignr.
2891 if (e < 4 || !hasSSSE3)
2892 return false;
2894 for (i = 0; i != e; ++i)
2895 if (Mask[i] >= 0)
2896 break;
2898 // All undef, not a palignr.
2899 if (i == e)
2900 return false;
2902 // Determine if it's ok to perform a palignr with only the LHS, since we
2903 // don't have access to the actual shuffle elements to see if RHS is undef.
2904 bool Unary = Mask[i] < (int)e;
2905 bool NeedsUnary = false;
2907 int s = Mask[i] - i;
2909 // Check the rest of the elements to see if they are consecutive.
2910 for (++i; i != e; ++i) {
2911 int m = Mask[i];
2912 if (m < 0)
2913 continue;
2915 Unary = Unary && (m < (int)e);
2916 NeedsUnary = NeedsUnary || (m < s);
2918 if (NeedsUnary && !Unary)
2919 return false;
2920 if (Unary && m != ((s+i) & (e-1)))
2921 return false;
2922 if (!Unary && m != (s+i))
2923 return false;
2925 return true;
2928 bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2929 SmallVector<int, 8> M;
2930 N->getMask(M);
2931 return ::isPALIGNRMask(M, N->getValueType(0), true);
2934 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2935 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2936 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2937 int NumElems = VT.getVectorNumElements();
2938 if (NumElems != 2 && NumElems != 4)
2939 return false;
2941 int Half = NumElems / 2;
2942 for (int i = 0; i < Half; ++i)
2943 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2944 return false;
2945 for (int i = Half; i < NumElems; ++i)
2946 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2947 return false;
2949 return true;
2952 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2953 SmallVector<int, 8> M;
2954 N->getMask(M);
2955 return ::isSHUFPMask(M, N->getValueType(0));
2958 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2959 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2960 /// half elements to come from vector 1 (which would equal the dest.) and
2961 /// the upper half to come from vector 2.
2962 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2963 int NumElems = VT.getVectorNumElements();
2965 if (NumElems != 2 && NumElems != 4)
2966 return false;
2968 int Half = NumElems / 2;
2969 for (int i = 0; i < Half; ++i)
2970 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2971 return false;
2972 for (int i = Half; i < NumElems; ++i)
2973 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2974 return false;
2975 return true;
2978 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2979 SmallVector<int, 8> M;
2980 N->getMask(M);
2981 return isCommutedSHUFPMask(M, N->getValueType(0));
2984 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2985 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2986 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2987 if (N->getValueType(0).getVectorNumElements() != 4)
2988 return false;
2990 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2991 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2992 isUndefOrEqual(N->getMaskElt(1), 7) &&
2993 isUndefOrEqual(N->getMaskElt(2), 2) &&
2994 isUndefOrEqual(N->getMaskElt(3), 3);
2997 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2998 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2999 /// <2, 3, 2, 3>
3000 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3001 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3003 if (NumElems != 4)
3004 return false;
3006 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3007 isUndefOrEqual(N->getMaskElt(1), 3) &&
3008 isUndefOrEqual(N->getMaskElt(2), 2) &&
3009 isUndefOrEqual(N->getMaskElt(3), 3);
3012 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3013 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3014 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3015 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3017 if (NumElems != 2 && NumElems != 4)
3018 return false;
3020 for (unsigned i = 0; i < NumElems/2; ++i)
3021 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3022 return false;
3024 for (unsigned i = NumElems/2; i < NumElems; ++i)
3025 if (!isUndefOrEqual(N->getMaskElt(i), i))
3026 return false;
3028 return true;
3031 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3032 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3033 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3034 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3036 if (NumElems != 2 && NumElems != 4)
3037 return false;
3039 for (unsigned i = 0; i < NumElems/2; ++i)
3040 if (!isUndefOrEqual(N->getMaskElt(i), i))
3041 return false;
3043 for (unsigned i = 0; i < NumElems/2; ++i)
3044 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3045 return false;
3047 return true;
3050 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3051 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3052 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3053 bool V2IsSplat = false) {
3054 int NumElts = VT.getVectorNumElements();
3055 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3056 return false;
3058 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3059 int BitI = Mask[i];
3060 int BitI1 = Mask[i+1];
3061 if (!isUndefOrEqual(BitI, j))
3062 return false;
3063 if (V2IsSplat) {
3064 if (!isUndefOrEqual(BitI1, NumElts))
3065 return false;
3066 } else {
3067 if (!isUndefOrEqual(BitI1, j + NumElts))
3068 return false;
3071 return true;
3074 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3075 SmallVector<int, 8> M;
3076 N->getMask(M);
3077 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3080 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3081 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3082 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3083 bool V2IsSplat = false) {
3084 int NumElts = VT.getVectorNumElements();
3085 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3086 return false;
3088 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3089 int BitI = Mask[i];
3090 int BitI1 = Mask[i+1];
3091 if (!isUndefOrEqual(BitI, j + NumElts/2))
3092 return false;
3093 if (V2IsSplat) {
3094 if (isUndefOrEqual(BitI1, NumElts))
3095 return false;
3096 } else {
3097 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3098 return false;
3101 return true;
3104 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3105 SmallVector<int, 8> M;
3106 N->getMask(M);
3107 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3110 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3111 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3112 /// <0, 0, 1, 1>
3113 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3114 int NumElems = VT.getVectorNumElements();
3115 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3116 return false;
3118 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3119 int BitI = Mask[i];
3120 int BitI1 = Mask[i+1];
3121 if (!isUndefOrEqual(BitI, j))
3122 return false;
3123 if (!isUndefOrEqual(BitI1, j))
3124 return false;
3126 return true;
3129 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3130 SmallVector<int, 8> M;
3131 N->getMask(M);
3132 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3135 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3136 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3137 /// <2, 2, 3, 3>
3138 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3139 int NumElems = VT.getVectorNumElements();
3140 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3141 return false;
3143 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3144 int BitI = Mask[i];
3145 int BitI1 = Mask[i+1];
3146 if (!isUndefOrEqual(BitI, j))
3147 return false;
3148 if (!isUndefOrEqual(BitI1, j))
3149 return false;
3151 return true;
3154 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3155 SmallVector<int, 8> M;
3156 N->getMask(M);
3157 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3160 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3161 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3162 /// MOVSD, and MOVD, i.e. setting the lowest element.
3163 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3164 if (VT.getVectorElementType().getSizeInBits() < 32)
3165 return false;
3167 int NumElts = VT.getVectorNumElements();
3169 if (!isUndefOrEqual(Mask[0], NumElts))
3170 return false;
3172 for (int i = 1; i < NumElts; ++i)
3173 if (!isUndefOrEqual(Mask[i], i))
3174 return false;
3176 return true;
3179 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3180 SmallVector<int, 8> M;
3181 N->getMask(M);
3182 return ::isMOVLMask(M, N->getValueType(0));
3185 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3186 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3187 /// element of vector 2 and the other elements to come from vector 1 in order.
3188 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3189 bool V2IsSplat = false, bool V2IsUndef = false) {
3190 int NumOps = VT.getVectorNumElements();
3191 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3192 return false;
3194 if (!isUndefOrEqual(Mask[0], 0))
3195 return false;
3197 for (int i = 1; i < NumOps; ++i)
3198 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3199 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3200 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3201 return false;
3203 return true;
3206 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3207 bool V2IsUndef = false) {
3208 SmallVector<int, 8> M;
3209 N->getMask(M);
3210 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3213 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3214 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3215 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3216 if (N->getValueType(0).getVectorNumElements() != 4)
3217 return false;
3219 // Expect 1, 1, 3, 3
3220 for (unsigned i = 0; i < 2; ++i) {
3221 int Elt = N->getMaskElt(i);
3222 if (Elt >= 0 && Elt != 1)
3223 return false;
3226 bool HasHi = false;
3227 for (unsigned i = 2; i < 4; ++i) {
3228 int Elt = N->getMaskElt(i);
3229 if (Elt >= 0 && Elt != 3)
3230 return false;
3231 if (Elt == 3)
3232 HasHi = true;
3234 // Don't use movshdup if it can be done with a shufps.
3235 // FIXME: verify that matching u, u, 3, 3 is what we want.
3236 return HasHi;
3239 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3240 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3241 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3242 if (N->getValueType(0).getVectorNumElements() != 4)
3243 return false;
3245 // Expect 0, 0, 2, 2
3246 for (unsigned i = 0; i < 2; ++i)
3247 if (N->getMaskElt(i) > 0)
3248 return false;
3250 bool HasHi = false;
3251 for (unsigned i = 2; i < 4; ++i) {
3252 int Elt = N->getMaskElt(i);
3253 if (Elt >= 0 && Elt != 2)
3254 return false;
3255 if (Elt == 2)
3256 HasHi = true;
3258 // Don't use movsldup if it can be done with a shufps.
3259 return HasHi;
3262 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3263 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3264 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3265 int e = N->getValueType(0).getVectorNumElements() / 2;
3267 for (int i = 0; i < e; ++i)
3268 if (!isUndefOrEqual(N->getMaskElt(i), i))
3269 return false;
3270 for (int i = 0; i < e; ++i)
3271 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3272 return false;
3273 return true;
3276 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3277 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3278 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3279 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3280 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3282 unsigned Shift = (NumOperands == 4) ? 2 : 1;
3283 unsigned Mask = 0;
3284 for (int i = 0; i < NumOperands; ++i) {
3285 int Val = SVOp->getMaskElt(NumOperands-i-1);
3286 if (Val < 0) Val = 0;
3287 if (Val >= NumOperands) Val -= NumOperands;
3288 Mask |= Val;
3289 if (i != NumOperands - 1)
3290 Mask <<= Shift;
3292 return Mask;
3295 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3296 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3297 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3298 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3299 unsigned Mask = 0;
3300 // 8 nodes, but we only care about the last 4.
3301 for (unsigned i = 7; i >= 4; --i) {
3302 int Val = SVOp->getMaskElt(i);
3303 if (Val >= 0)
3304 Mask |= (Val - 4);
3305 if (i != 4)
3306 Mask <<= 2;
3308 return Mask;
3311 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3312 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3313 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3314 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3315 unsigned Mask = 0;
3316 // 8 nodes, but we only care about the first 4.
3317 for (int i = 3; i >= 0; --i) {
3318 int Val = SVOp->getMaskElt(i);
3319 if (Val >= 0)
3320 Mask |= Val;
3321 if (i != 0)
3322 Mask <<= 2;
3324 return Mask;
3327 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3328 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3329 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3330 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3331 EVT VVT = N->getValueType(0);
3332 unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3333 int Val = 0;
3335 unsigned i, e;
3336 for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3337 Val = SVOp->getMaskElt(i);
3338 if (Val >= 0)
3339 break;
3341 return (Val - i) * EltSize;
3344 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
3345 /// constant +0.0.
3346 bool X86::isZeroNode(SDValue Elt) {
3347 return ((isa<ConstantSDNode>(Elt) &&
3348 cast<ConstantSDNode>(Elt)->isNullValue()) ||
3349 (isa<ConstantFPSDNode>(Elt) &&
3350 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3353 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3354 /// their permute mask.
3355 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3356 SelectionDAG &DAG) {
3357 EVT VT = SVOp->getValueType(0);
3358 unsigned NumElems = VT.getVectorNumElements();
3359 SmallVector<int, 8> MaskVec;
3361 for (unsigned i = 0; i != NumElems; ++i) {
3362 int idx = SVOp->getMaskElt(i);
3363 if (idx < 0)
3364 MaskVec.push_back(idx);
3365 else if (idx < (int)NumElems)
3366 MaskVec.push_back(idx + NumElems);
3367 else
3368 MaskVec.push_back(idx - NumElems);
3370 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3371 SVOp->getOperand(0), &MaskVec[0]);
3374 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3375 /// the two vector operands have swapped position.
3376 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3377 unsigned NumElems = VT.getVectorNumElements();
3378 for (unsigned i = 0; i != NumElems; ++i) {
3379 int idx = Mask[i];
3380 if (idx < 0)
3381 continue;
3382 else if (idx < (int)NumElems)
3383 Mask[i] = idx + NumElems;
3384 else
3385 Mask[i] = idx - NumElems;
3389 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3390 /// match movhlps. The lower half elements should come from upper half of
3391 /// V1 (and in order), and the upper half elements should come from the upper
3392 /// half of V2 (and in order).
3393 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3394 if (Op->getValueType(0).getVectorNumElements() != 4)
3395 return false;
3396 for (unsigned i = 0, e = 2; i != e; ++i)
3397 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3398 return false;
3399 for (unsigned i = 2; i != 4; ++i)
3400 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3401 return false;
3402 return true;
3405 /// isScalarLoadToVector - Returns true if the node is a scalar load that
3406 /// is promoted to a vector. It also returns the LoadSDNode by reference if
3407 /// required.
3408 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3409 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3410 return false;
3411 N = N->getOperand(0).getNode();
3412 if (!ISD::isNON_EXTLoad(N))
3413 return false;
3414 if (LD)
3415 *LD = cast<LoadSDNode>(N);
3416 return true;
3419 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3420 /// match movlp{s|d}. The lower half elements should come from lower half of
3421 /// V1 (and in order), and the upper half elements should come from the upper
3422 /// half of V2 (and in order). And since V1 will become the source of the
3423 /// MOVLP, it must be either a vector load or a scalar load to vector.
3424 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3425 ShuffleVectorSDNode *Op) {
3426 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3427 return false;
3428 // Is V2 is a vector load, don't do this transformation. We will try to use
3429 // load folding shufps op.
3430 if (ISD::isNON_EXTLoad(V2))
3431 return false;
3433 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3435 if (NumElems != 2 && NumElems != 4)
3436 return false;
3437 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3438 if (!isUndefOrEqual(Op->getMaskElt(i), i))
3439 return false;
3440 for (unsigned i = NumElems/2; i != NumElems; ++i)
3441 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3442 return false;
3443 return true;
3446 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3447 /// all the same.
3448 static bool isSplatVector(SDNode *N) {
3449 if (N->getOpcode() != ISD::BUILD_VECTOR)
3450 return false;
3452 SDValue SplatValue = N->getOperand(0);
3453 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3454 if (N->getOperand(i) != SplatValue)
3455 return false;
3456 return true;
3459 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3460 /// to an zero vector.
3461 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3462 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3463 SDValue V1 = N->getOperand(0);
3464 SDValue V2 = N->getOperand(1);
3465 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3466 for (unsigned i = 0; i != NumElems; ++i) {
3467 int Idx = N->getMaskElt(i);
3468 if (Idx >= (int)NumElems) {
3469 unsigned Opc = V2.getOpcode();
3470 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3471 continue;
3472 if (Opc != ISD::BUILD_VECTOR ||
3473 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3474 return false;
3475 } else if (Idx >= 0) {
3476 unsigned Opc = V1.getOpcode();
3477 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3478 continue;
3479 if (Opc != ISD::BUILD_VECTOR ||
3480 !X86::isZeroNode(V1.getOperand(Idx)))
3481 return false;
3484 return true;
3487 /// getZeroVector - Returns a vector of specified type with all zero elements.
3489 static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3490 DebugLoc dl) {
3491 assert(VT.isVector() && "Expected a vector type");
3493 // Always build SSE zero vectors as <4 x i32> bitcasted
3494 // to their dest type. This ensures they get CSE'd.
3495 SDValue Vec;
3496 if (VT.getSizeInBits() == 128) { // SSE
3497 if (HasSSE2) { // SSE2
3498 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3499 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3500 } else { // SSE1
3501 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3502 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3504 } else if (VT.getSizeInBits() == 256) { // AVX
3505 // 256-bit logic and arithmetic instructions in AVX are
3506 // all floating-point, no support for integer ops. Default
3507 // to emitting fp zeroed vectors then.
3508 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3509 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3510 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3512 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3515 /// getOnesVector - Returns a vector of specified type with all bits set.
3517 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3518 assert(VT.isVector() && "Expected a vector type");
3520 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3521 // type. This ensures they get CSE'd.
3522 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3523 SDValue Vec;
3524 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3525 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3529 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3530 /// that point to V2 points to its first element.
3531 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3532 EVT VT = SVOp->getValueType(0);
3533 unsigned NumElems = VT.getVectorNumElements();
3535 bool Changed = false;
3536 SmallVector<int, 8> MaskVec;
3537 SVOp->getMask(MaskVec);
3539 for (unsigned i = 0; i != NumElems; ++i) {
3540 if (MaskVec[i] > (int)NumElems) {
3541 MaskVec[i] = NumElems;
3542 Changed = true;
3545 if (Changed)
3546 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3547 SVOp->getOperand(1), &MaskVec[0]);
3548 return SDValue(SVOp, 0);
3551 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3552 /// operation of specified width.
3553 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3554 SDValue V2) {
3555 unsigned NumElems = VT.getVectorNumElements();
3556 SmallVector<int, 8> Mask;
3557 Mask.push_back(NumElems);
3558 for (unsigned i = 1; i != NumElems; ++i)
3559 Mask.push_back(i);
3560 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3563 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3564 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3565 SDValue V2) {
3566 unsigned NumElems = VT.getVectorNumElements();
3567 SmallVector<int, 8> Mask;
3568 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3569 Mask.push_back(i);
3570 Mask.push_back(i + NumElems);
3572 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3575 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3576 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3577 SDValue V2) {
3578 unsigned NumElems = VT.getVectorNumElements();
3579 unsigned Half = NumElems/2;
3580 SmallVector<int, 8> Mask;
3581 for (unsigned i = 0; i != Half; ++i) {
3582 Mask.push_back(i + Half);
3583 Mask.push_back(i + NumElems + Half);
3585 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3588 /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3589 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3590 EVT PVT = MVT::v4f32;
3591 EVT VT = SV->getValueType(0);
3592 DebugLoc dl = SV->getDebugLoc();
3593 SDValue V1 = SV->getOperand(0);
3594 int NumElems = VT.getVectorNumElements();
3595 int EltNo = SV->getSplatIndex();
3597 // unpack elements to the correct location
3598 while (NumElems > 4) {
3599 if (EltNo < NumElems/2) {
3600 V1 = getUnpackl(DAG, dl, VT, V1, V1);
3601 } else {
3602 V1 = getUnpackh(DAG, dl, VT, V1, V1);
3603 EltNo -= NumElems/2;
3605 NumElems >>= 1;
3608 // Perform the splat.
3609 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3610 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3611 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3612 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3615 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3616 /// vector of zero or undef vector. This produces a shuffle where the low
3617 /// element of V2 is swizzled into the zero/undef vector, landing at element
3618 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3619 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3620 bool isZero, bool HasSSE2,
3621 SelectionDAG &DAG) {
3622 EVT VT = V2.getValueType();
3623 SDValue V1 = isZero
3624 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3625 unsigned NumElems = VT.getVectorNumElements();
3626 SmallVector<int, 16> MaskVec;
3627 for (unsigned i = 0; i != NumElems; ++i)
3628 // If this is the insertion idx, put the low elt of V2 here.
3629 MaskVec.push_back(i == Idx ? NumElems : i);
3630 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3633 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
3634 /// element of the result of the vector shuffle.
3635 SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3636 unsigned Depth) {
3637 if (Depth == 6)
3638 return SDValue(); // Limit search depth.
3640 SDValue V = SDValue(N, 0);
3641 EVT VT = V.getValueType();
3642 unsigned Opcode = V.getOpcode();
3644 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3645 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3646 Index = SV->getMaskElt(Index);
3648 if (Index < 0)
3649 return DAG.getUNDEF(VT.getVectorElementType());
3651 int NumElems = VT.getVectorNumElements();
3652 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3653 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3656 // Recurse into target specific vector shuffles to find scalars.
3657 if (isTargetShuffle(Opcode)) {
3658 int NumElems = VT.getVectorNumElements();
3659 SmallVector<unsigned, 16> ShuffleMask;
3660 SDValue ImmN;
3662 switch(Opcode) {
3663 case X86ISD::SHUFPS:
3664 case X86ISD::SHUFPD:
3665 ImmN = N->getOperand(N->getNumOperands()-1);
3666 DecodeSHUFPSMask(NumElems,
3667 cast<ConstantSDNode>(ImmN)->getZExtValue(),
3668 ShuffleMask);
3669 break;
3670 case X86ISD::PUNPCKHBW:
3671 case X86ISD::PUNPCKHWD:
3672 case X86ISD::PUNPCKHDQ:
3673 case X86ISD::PUNPCKHQDQ:
3674 DecodePUNPCKHMask(NumElems, ShuffleMask);
3675 break;
3676 case X86ISD::UNPCKHPS:
3677 case X86ISD::UNPCKHPD:
3678 DecodeUNPCKHPMask(NumElems, ShuffleMask);
3679 break;
3680 case X86ISD::PUNPCKLBW:
3681 case X86ISD::PUNPCKLWD:
3682 case X86ISD::PUNPCKLDQ:
3683 case X86ISD::PUNPCKLQDQ:
3684 DecodePUNPCKLMask(NumElems, ShuffleMask);
3685 break;
3686 case X86ISD::UNPCKLPS:
3687 case X86ISD::UNPCKLPD:
3688 DecodeUNPCKLPMask(NumElems, ShuffleMask);
3689 break;
3690 case X86ISD::MOVHLPS:
3691 DecodeMOVHLPSMask(NumElems, ShuffleMask);
3692 break;
3693 case X86ISD::MOVLHPS:
3694 DecodeMOVLHPSMask(NumElems, ShuffleMask);
3695 break;
3696 case X86ISD::PSHUFD:
3697 ImmN = N->getOperand(N->getNumOperands()-1);
3698 DecodePSHUFMask(NumElems,
3699 cast<ConstantSDNode>(ImmN)->getZExtValue(),
3700 ShuffleMask);
3701 break;
3702 case X86ISD::PSHUFHW:
3703 ImmN = N->getOperand(N->getNumOperands()-1);
3704 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3705 ShuffleMask);
3706 break;
3707 case X86ISD::PSHUFLW:
3708 ImmN = N->getOperand(N->getNumOperands()-1);
3709 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3710 ShuffleMask);
3711 break;
3712 case X86ISD::MOVSS:
3713 case X86ISD::MOVSD: {
3714 // The index 0 always comes from the first element of the second source,
3715 // this is why MOVSS and MOVSD are used in the first place. The other
3716 // elements come from the other positions of the first source vector.
3717 unsigned OpNum = (Index == 0) ? 1 : 0;
3718 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3719 Depth+1);
3721 default:
3722 assert("not implemented for target shuffle node");
3723 return SDValue();
3726 Index = ShuffleMask[Index];
3727 if (Index < 0)
3728 return DAG.getUNDEF(VT.getVectorElementType());
3730 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3731 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3732 Depth+1);
3735 // Actual nodes that may contain scalar elements
3736 if (Opcode == ISD::BIT_CONVERT) {
3737 V = V.getOperand(0);
3738 EVT SrcVT = V.getValueType();
3739 unsigned NumElems = VT.getVectorNumElements();
3741 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3742 return SDValue();
3745 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3746 return (Index == 0) ? V.getOperand(0)
3747 : DAG.getUNDEF(VT.getVectorElementType());
3749 if (V.getOpcode() == ISD::BUILD_VECTOR)
3750 return V.getOperand(Index);
3752 return SDValue();
3755 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
3756 /// shuffle operation which come from a consecutively from a zero. The
3757 /// search can start in two diferent directions, from left or right.
3758 static
3759 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3760 bool ZerosFromLeft, SelectionDAG &DAG) {
3761 int i = 0;
3763 while (i < NumElems) {
3764 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3765 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3766 if (!(Elt.getNode() &&
3767 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3768 break;
3769 ++i;
3772 return i;
3775 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3776 /// MaskE correspond consecutively to elements from one of the vector operands,
3777 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
3778 static
3779 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3780 int OpIdx, int NumElems, unsigned &OpNum) {
3781 bool SeenV1 = false;
3782 bool SeenV2 = false;
3784 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3785 int Idx = SVOp->getMaskElt(i);
3786 // Ignore undef indicies
3787 if (Idx < 0)
3788 continue;
3790 if (Idx < NumElems)
3791 SeenV1 = true;
3792 else
3793 SeenV2 = true;
3795 // Only accept consecutive elements from the same vector
3796 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3797 return false;
3800 OpNum = SeenV1 ? 0 : 1;
3801 return true;
3804 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3805 /// logical left shift of a vector.
3806 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3807 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3808 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3809 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3810 false /* check zeros from right */, DAG);
3811 unsigned OpSrc;
3813 if (!NumZeros)
3814 return false;
3816 // Considering the elements in the mask that are not consecutive zeros,
3817 // check if they consecutively come from only one of the source vectors.
3819 // V1 = {X, A, B, C} 0
3820 // \ \ \ /
3821 // vector_shuffle V1, V2 <1, 2, 3, X>
3823 if (!isShuffleMaskConsecutive(SVOp,
3824 0, // Mask Start Index
3825 NumElems-NumZeros-1, // Mask End Index
3826 NumZeros, // Where to start looking in the src vector
3827 NumElems, // Number of elements in vector
3828 OpSrc)) // Which source operand ?
3829 return false;
3831 isLeft = false;
3832 ShAmt = NumZeros;
3833 ShVal = SVOp->getOperand(OpSrc);
3834 return true;
3837 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3838 /// logical left shift of a vector.
3839 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3840 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3841 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3842 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3843 true /* check zeros from left */, DAG);
3844 unsigned OpSrc;
3846 if (!NumZeros)
3847 return false;
3849 // Considering the elements in the mask that are not consecutive zeros,
3850 // check if they consecutively come from only one of the source vectors.
3852 // 0 { A, B, X, X } = V2
3853 // / \ / /
3854 // vector_shuffle V1, V2 <X, X, 4, 5>
3856 if (!isShuffleMaskConsecutive(SVOp,
3857 NumZeros, // Mask Start Index
3858 NumElems-1, // Mask End Index
3859 0, // Where to start looking in the src vector
3860 NumElems, // Number of elements in vector
3861 OpSrc)) // Which source operand ?
3862 return false;
3864 isLeft = true;
3865 ShAmt = NumZeros;
3866 ShVal = SVOp->getOperand(OpSrc);
3867 return true;
3870 /// isVectorShift - Returns true if the shuffle can be implemented as a
3871 /// logical left or right shift of a vector.
3872 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3873 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3874 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3875 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3876 return true;
3878 return false;
3881 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3883 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3884 unsigned NumNonZero, unsigned NumZero,
3885 SelectionDAG &DAG,
3886 const TargetLowering &TLI) {
3887 if (NumNonZero > 8)
3888 return SDValue();
3890 DebugLoc dl = Op.getDebugLoc();
3891 SDValue V(0, 0);
3892 bool First = true;
3893 for (unsigned i = 0; i < 16; ++i) {
3894 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3895 if (ThisIsNonZero && First) {
3896 if (NumZero)
3897 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3898 else
3899 V = DAG.getUNDEF(MVT::v8i16);
3900 First = false;
3903 if ((i & 1) != 0) {
3904 SDValue ThisElt(0, 0), LastElt(0, 0);
3905 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3906 if (LastIsNonZero) {
3907 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3908 MVT::i16, Op.getOperand(i-1));
3910 if (ThisIsNonZero) {
3911 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3912 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3913 ThisElt, DAG.getConstant(8, MVT::i8));
3914 if (LastIsNonZero)
3915 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3916 } else
3917 ThisElt = LastElt;
3919 if (ThisElt.getNode())
3920 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3921 DAG.getIntPtrConstant(i/2));
3925 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3928 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3930 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3931 unsigned NumNonZero, unsigned NumZero,
3932 SelectionDAG &DAG,
3933 const TargetLowering &TLI) {
3934 if (NumNonZero > 4)
3935 return SDValue();
3937 DebugLoc dl = Op.getDebugLoc();
3938 SDValue V(0, 0);
3939 bool First = true;
3940 for (unsigned i = 0; i < 8; ++i) {
3941 bool isNonZero = (NonZeros & (1 << i)) != 0;
3942 if (isNonZero) {
3943 if (First) {
3944 if (NumZero)
3945 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3946 else
3947 V = DAG.getUNDEF(MVT::v8i16);
3948 First = false;
3950 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3951 MVT::v8i16, V, Op.getOperand(i),
3952 DAG.getIntPtrConstant(i));
3956 return V;
3959 /// getVShift - Return a vector logical shift node.
3961 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3962 unsigned NumBits, SelectionDAG &DAG,
3963 const TargetLowering &TLI, DebugLoc dl) {
3964 EVT ShVT = MVT::v2i64;
3965 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3966 SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3967 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3968 DAG.getNode(Opc, dl, ShVT, SrcOp,
3969 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3972 SDValue
3973 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3974 SelectionDAG &DAG) const {
3976 // Check if the scalar load can be widened into a vector load. And if
3977 // the address is "base + cst" see if the cst can be "absorbed" into
3978 // the shuffle mask.
3979 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3980 SDValue Ptr = LD->getBasePtr();
3981 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3982 return SDValue();
3983 EVT PVT = LD->getValueType(0);
3984 if (PVT != MVT::i32 && PVT != MVT::f32)
3985 return SDValue();
3987 int FI = -1;
3988 int64_t Offset = 0;
3989 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3990 FI = FINode->getIndex();
3991 Offset = 0;
3992 } else if (Ptr.getOpcode() == ISD::ADD &&
3993 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3994 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3995 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3996 Offset = Ptr.getConstantOperandVal(1);
3997 Ptr = Ptr.getOperand(0);
3998 } else {
3999 return SDValue();
4002 SDValue Chain = LD->getChain();
4003 // Make sure the stack object alignment is at least 16.
4004 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4005 if (DAG.InferPtrAlignment(Ptr) < 16) {
4006 if (MFI->isFixedObjectIndex(FI)) {
4007 // Can't change the alignment. FIXME: It's possible to compute
4008 // the exact stack offset and reference FI + adjust offset instead.
4009 // If someone *really* cares about this. That's the way to implement it.
4010 return SDValue();
4011 } else {
4012 MFI->setObjectAlignment(FI, 16);
4016 // (Offset % 16) must be multiple of 4. Then address is then
4017 // Ptr + (Offset & ~15).
4018 if (Offset < 0)
4019 return SDValue();
4020 if ((Offset % 16) & 3)
4021 return SDValue();
4022 int64_t StartOffset = Offset & ~15;
4023 if (StartOffset)
4024 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4025 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4027 int EltNo = (Offset - StartOffset) >> 2;
4028 int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4029 EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4030 SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4031 LD->getPointerInfo().getWithOffset(StartOffset),
4032 false, false, 0);
4033 // Canonicalize it to a v4i32 shuffle.
4034 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4035 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4036 DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4037 DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4040 return SDValue();
4043 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4044 /// vector of type 'VT', see if the elements can be replaced by a single large
4045 /// load which has the same value as a build_vector whose operands are 'elts'.
4047 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4049 /// FIXME: we'd also like to handle the case where the last elements are zero
4050 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4051 /// There's even a handy isZeroNode for that purpose.
4052 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4053 DebugLoc &DL, SelectionDAG &DAG) {
4054 EVT EltVT = VT.getVectorElementType();
4055 unsigned NumElems = Elts.size();
4057 LoadSDNode *LDBase = NULL;
4058 unsigned LastLoadedElt = -1U;
4060 // For each element in the initializer, see if we've found a load or an undef.
4061 // If we don't find an initial load element, or later load elements are
4062 // non-consecutive, bail out.
4063 for (unsigned i = 0; i < NumElems; ++i) {
4064 SDValue Elt = Elts[i];
4066 if (!Elt.getNode() ||
4067 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4068 return SDValue();
4069 if (!LDBase) {
4070 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4071 return SDValue();
4072 LDBase = cast<LoadSDNode>(Elt.getNode());
4073 LastLoadedElt = i;
4074 continue;
4076 if (Elt.getOpcode() == ISD::UNDEF)
4077 continue;
4079 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4080 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4081 return SDValue();
4082 LastLoadedElt = i;
4085 // If we have found an entire vector of loads and undefs, then return a large
4086 // load of the entire vector width starting at the base pointer. If we found
4087 // consecutive loads for the low half, generate a vzext_load node.
4088 if (LastLoadedElt == NumElems - 1) {
4089 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4090 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4091 LDBase->getPointerInfo(),
4092 LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4093 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4094 LDBase->getPointerInfo(),
4095 LDBase->isVolatile(), LDBase->isNonTemporal(),
4096 LDBase->getAlignment());
4097 } else if (NumElems == 4 && LastLoadedElt == 1) {
4098 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4099 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4100 SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4101 Ops, 2, MVT::i32,
4102 LDBase->getMemOperand());
4103 return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
4105 return SDValue();
4108 SDValue
4109 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4110 DebugLoc dl = Op.getDebugLoc();
4111 // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4112 // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4113 // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4114 // is present, so AllOnes is ignored.
4115 if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4116 (Op.getValueType().getSizeInBits() != 256 &&
4117 ISD::isBuildVectorAllOnes(Op.getNode()))) {
4118 // Canonicalize this to <4 x i32> (SSE) to
4119 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4120 // eliminated on x86-32 hosts.
4121 if (Op.getValueType() == MVT::v4i32)
4122 return Op;
4124 if (ISD::isBuildVectorAllOnes(Op.getNode()))
4125 return getOnesVector(Op.getValueType(), DAG, dl);
4126 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4129 EVT VT = Op.getValueType();
4130 EVT ExtVT = VT.getVectorElementType();
4131 unsigned EVTBits = ExtVT.getSizeInBits();
4133 unsigned NumElems = Op.getNumOperands();
4134 unsigned NumZero = 0;
4135 unsigned NumNonZero = 0;
4136 unsigned NonZeros = 0;
4137 bool IsAllConstants = true;
4138 SmallSet<SDValue, 8> Values;
4139 for (unsigned i = 0; i < NumElems; ++i) {
4140 SDValue Elt = Op.getOperand(i);
4141 if (Elt.getOpcode() == ISD::UNDEF)
4142 continue;
4143 Values.insert(Elt);
4144 if (Elt.getOpcode() != ISD::Constant &&
4145 Elt.getOpcode() != ISD::ConstantFP)
4146 IsAllConstants = false;
4147 if (X86::isZeroNode(Elt))
4148 NumZero++;
4149 else {
4150 NonZeros |= (1 << i);
4151 NumNonZero++;
4155 // All undef vector. Return an UNDEF. All zero vectors were handled above.
4156 if (NumNonZero == 0)
4157 return DAG.getUNDEF(VT);
4159 // Special case for single non-zero, non-undef, element.
4160 if (NumNonZero == 1) {
4161 unsigned Idx = CountTrailingZeros_32(NonZeros);
4162 SDValue Item = Op.getOperand(Idx);
4164 // If this is an insertion of an i64 value on x86-32, and if the top bits of
4165 // the value are obviously zero, truncate the value to i32 and do the
4166 // insertion that way. Only do this if the value is non-constant or if the
4167 // value is a constant being inserted into element 0. It is cheaper to do
4168 // a constant pool load than it is to do a movd + shuffle.
4169 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4170 (!IsAllConstants || Idx == 0)) {
4171 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4172 // Handle SSE only.
4173 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4174 EVT VecVT = MVT::v4i32;
4175 unsigned VecElts = 4;
4177 // Truncate the value (which may itself be a constant) to i32, and
4178 // convert it to a vector with movd (S2V+shuffle to zero extend).
4179 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4180 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4181 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4182 Subtarget->hasSSE2(), DAG);
4184 // Now we have our 32-bit value zero extended in the low element of
4185 // a vector. If Idx != 0, swizzle it into place.
4186 if (Idx != 0) {
4187 SmallVector<int, 4> Mask;
4188 Mask.push_back(Idx);
4189 for (unsigned i = 1; i != VecElts; ++i)
4190 Mask.push_back(i);
4191 Item = DAG.getVectorShuffle(VecVT, dl, Item,
4192 DAG.getUNDEF(Item.getValueType()),
4193 &Mask[0]);
4195 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4199 // If we have a constant or non-constant insertion into the low element of
4200 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4201 // the rest of the elements. This will be matched as movd/movq/movss/movsd
4202 // depending on what the source datatype is.
4203 if (Idx == 0) {
4204 if (NumZero == 0) {
4205 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4206 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4207 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4208 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4209 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4210 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4211 DAG);
4212 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4213 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4214 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4215 EVT MiddleVT = MVT::v4i32;
4216 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4217 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4218 Subtarget->hasSSE2(), DAG);
4219 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4223 // Is it a vector logical left shift?
4224 if (NumElems == 2 && Idx == 1 &&
4225 X86::isZeroNode(Op.getOperand(0)) &&
4226 !X86::isZeroNode(Op.getOperand(1))) {
4227 unsigned NumBits = VT.getSizeInBits();
4228 return getVShift(true, VT,
4229 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4230 VT, Op.getOperand(1)),
4231 NumBits/2, DAG, *this, dl);
4234 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4235 return SDValue();
4237 // Otherwise, if this is a vector with i32 or f32 elements, and the element
4238 // is a non-constant being inserted into an element other than the low one,
4239 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
4240 // movd/movss) to move this into the low element, then shuffle it into
4241 // place.
4242 if (EVTBits == 32) {
4243 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4245 // Turn it into a shuffle of zero and zero-extended scalar to vector.
4246 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4247 Subtarget->hasSSE2(), DAG);
4248 SmallVector<int, 8> MaskVec;
4249 for (unsigned i = 0; i < NumElems; i++)
4250 MaskVec.push_back(i == Idx ? 0 : 1);
4251 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4255 // Splat is obviously ok. Let legalizer expand it to a shuffle.
4256 if (Values.size() == 1) {
4257 if (EVTBits == 32) {
4258 // Instead of a shuffle like this:
4259 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4260 // Check if it's possible to issue this instead.
4261 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4262 unsigned Idx = CountTrailingZeros_32(NonZeros);
4263 SDValue Item = Op.getOperand(Idx);
4264 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4265 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4267 return SDValue();
4270 // A vector full of immediates; various special cases are already
4271 // handled, so this is best done with a single constant-pool load.
4272 if (IsAllConstants)
4273 return SDValue();
4275 // Let legalizer expand 2-wide build_vectors.
4276 if (EVTBits == 64) {
4277 if (NumNonZero == 1) {
4278 // One half is zero or undef.
4279 unsigned Idx = CountTrailingZeros_32(NonZeros);
4280 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4281 Op.getOperand(Idx));
4282 return getShuffleVectorZeroOrUndef(V2, Idx, true,
4283 Subtarget->hasSSE2(), DAG);
4285 return SDValue();
4288 // If element VT is < 32 bits, convert it to inserts into a zero vector.
4289 if (EVTBits == 8 && NumElems == 16) {
4290 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4291 *this);
4292 if (V.getNode()) return V;
4295 if (EVTBits == 16 && NumElems == 8) {
4296 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4297 *this);
4298 if (V.getNode()) return V;
4301 // If element VT is == 32 bits, turn it into a number of shuffles.
4302 SmallVector<SDValue, 8> V;
4303 V.resize(NumElems);
4304 if (NumElems == 4 && NumZero > 0) {
4305 for (unsigned i = 0; i < 4; ++i) {
4306 bool isZero = !(NonZeros & (1 << i));
4307 if (isZero)
4308 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4309 else
4310 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4313 for (unsigned i = 0; i < 2; ++i) {
4314 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4315 default: break;
4316 case 0:
4317 V[i] = V[i*2]; // Must be a zero vector.
4318 break;
4319 case 1:
4320 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4321 break;
4322 case 2:
4323 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4324 break;
4325 case 3:
4326 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4327 break;
4331 SmallVector<int, 8> MaskVec;
4332 bool Reverse = (NonZeros & 0x3) == 2;
4333 for (unsigned i = 0; i < 2; ++i)
4334 MaskVec.push_back(Reverse ? 1-i : i);
4335 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4336 for (unsigned i = 0; i < 2; ++i)
4337 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4338 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4341 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4342 // Check for a build vector of consecutive loads.
4343 for (unsigned i = 0; i < NumElems; ++i)
4344 V[i] = Op.getOperand(i);
4346 // Check for elements which are consecutive loads.
4347 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4348 if (LD.getNode())
4349 return LD;
4351 // For SSE 4.1, use insertps to put the high elements into the low element.
4352 if (getSubtarget()->hasSSE41()) {
4353 SDValue Result;
4354 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4355 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4356 else
4357 Result = DAG.getUNDEF(VT);
4359 for (unsigned i = 1; i < NumElems; ++i) {
4360 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4361 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4362 Op.getOperand(i), DAG.getIntPtrConstant(i));
4364 return Result;
4367 // Otherwise, expand into a number of unpckl*, start by extending each of
4368 // our (non-undef) elements to the full vector width with the element in the
4369 // bottom slot of the vector (which generates no code for SSE).
4370 for (unsigned i = 0; i < NumElems; ++i) {
4371 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4372 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4373 else
4374 V[i] = DAG.getUNDEF(VT);
4377 // Next, we iteratively mix elements, e.g. for v4f32:
4378 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4379 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4380 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
4381 unsigned EltStride = NumElems >> 1;
4382 while (EltStride != 0) {
4383 for (unsigned i = 0; i < EltStride; ++i) {
4384 // If V[i+EltStride] is undef and this is the first round of mixing,
4385 // then it is safe to just drop this shuffle: V[i] is already in the
4386 // right place, the one element (since it's the first round) being
4387 // inserted as undef can be dropped. This isn't safe for successive
4388 // rounds because they will permute elements within both vectors.
4389 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4390 EltStride == NumElems/2)
4391 continue;
4393 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4395 EltStride >>= 1;
4397 return V[0];
4399 return SDValue();
4402 SDValue
4403 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4404 // We support concatenate two MMX registers and place them in a MMX
4405 // register. This is better than doing a stack convert.
4406 DebugLoc dl = Op.getDebugLoc();
4407 EVT ResVT = Op.getValueType();
4408 assert(Op.getNumOperands() == 2);
4409 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4410 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4411 int Mask[2];
4412 SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4413 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4414 InVec = Op.getOperand(1);
4415 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4416 unsigned NumElts = ResVT.getVectorNumElements();
4417 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4418 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4419 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4420 } else {
4421 InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4422 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4423 Mask[0] = 0; Mask[1] = 2;
4424 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4426 return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4429 // v8i16 shuffles - Prefer shuffles in the following order:
4430 // 1. [all] pshuflw, pshufhw, optional move
4431 // 2. [ssse3] 1 x pshufb
4432 // 3. [ssse3] 2 x pshufb + 1 x por
4433 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4434 SDValue
4435 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4436 SelectionDAG &DAG) const {
4437 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4438 SDValue V1 = SVOp->getOperand(0);
4439 SDValue V2 = SVOp->getOperand(1);
4440 DebugLoc dl = SVOp->getDebugLoc();
4441 SmallVector<int, 8> MaskVals;
4443 // Determine if more than 1 of the words in each of the low and high quadwords
4444 // of the result come from the same quadword of one of the two inputs. Undef
4445 // mask values count as coming from any quadword, for better codegen.
4446 SmallVector<unsigned, 4> LoQuad(4);
4447 SmallVector<unsigned, 4> HiQuad(4);
4448 BitVector InputQuads(4);
4449 for (unsigned i = 0; i < 8; ++i) {
4450 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4451 int EltIdx = SVOp->getMaskElt(i);
4452 MaskVals.push_back(EltIdx);
4453 if (EltIdx < 0) {
4454 ++Quad[0];
4455 ++Quad[1];
4456 ++Quad[2];
4457 ++Quad[3];
4458 continue;
4460 ++Quad[EltIdx / 4];
4461 InputQuads.set(EltIdx / 4);
4464 int BestLoQuad = -1;
4465 unsigned MaxQuad = 1;
4466 for (unsigned i = 0; i < 4; ++i) {
4467 if (LoQuad[i] > MaxQuad) {
4468 BestLoQuad = i;
4469 MaxQuad = LoQuad[i];
4473 int BestHiQuad = -1;
4474 MaxQuad = 1;
4475 for (unsigned i = 0; i < 4; ++i) {
4476 if (HiQuad[i] > MaxQuad) {
4477 BestHiQuad = i;
4478 MaxQuad = HiQuad[i];
4482 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4483 // of the two input vectors, shuffle them into one input vector so only a
4484 // single pshufb instruction is necessary. If There are more than 2 input
4485 // quads, disable the next transformation since it does not help SSSE3.
4486 bool V1Used = InputQuads[0] || InputQuads[1];
4487 bool V2Used = InputQuads[2] || InputQuads[3];
4488 if (Subtarget->hasSSSE3()) {
4489 if (InputQuads.count() == 2 && V1Used && V2Used) {
4490 BestLoQuad = InputQuads.find_first();
4491 BestHiQuad = InputQuads.find_next(BestLoQuad);
4493 if (InputQuads.count() > 2) {
4494 BestLoQuad = -1;
4495 BestHiQuad = -1;
4499 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4500 // the shuffle mask. If a quad is scored as -1, that means that it contains
4501 // words from all 4 input quadwords.
4502 SDValue NewV;
4503 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4504 SmallVector<int, 8> MaskV;
4505 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4506 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4507 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4508 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4509 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4510 NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4512 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4513 // source words for the shuffle, to aid later transformations.
4514 bool AllWordsInNewV = true;
4515 bool InOrder[2] = { true, true };
4516 for (unsigned i = 0; i != 8; ++i) {
4517 int idx = MaskVals[i];
4518 if (idx != (int)i)
4519 InOrder[i/4] = false;
4520 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4521 continue;
4522 AllWordsInNewV = false;
4523 break;
4526 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4527 if (AllWordsInNewV) {
4528 for (int i = 0; i != 8; ++i) {
4529 int idx = MaskVals[i];
4530 if (idx < 0)
4531 continue;
4532 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4533 if ((idx != i) && idx < 4)
4534 pshufhw = false;
4535 if ((idx != i) && idx > 3)
4536 pshuflw = false;
4538 V1 = NewV;
4539 V2Used = false;
4540 BestLoQuad = 0;
4541 BestHiQuad = 1;
4544 // If we've eliminated the use of V2, and the new mask is a pshuflw or
4545 // pshufhw, that's as cheap as it gets. Return the new shuffle.
4546 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4547 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4548 unsigned TargetMask = 0;
4549 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4550 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4551 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4552 X86::getShufflePSHUFLWImmediate(NewV.getNode());
4553 V1 = NewV.getOperand(0);
4554 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4558 // If we have SSSE3, and all words of the result are from 1 input vector,
4559 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
4560 // is present, fall back to case 4.
4561 if (Subtarget->hasSSSE3()) {
4562 SmallVector<SDValue,16> pshufbMask;
4564 // If we have elements from both input vectors, set the high bit of the
4565 // shuffle mask element to zero out elements that come from V2 in the V1
4566 // mask, and elements that come from V1 in the V2 mask, so that the two
4567 // results can be OR'd together.
4568 bool TwoInputs = V1Used && V2Used;
4569 for (unsigned i = 0; i != 8; ++i) {
4570 int EltIdx = MaskVals[i] * 2;
4571 if (TwoInputs && (EltIdx >= 16)) {
4572 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4573 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4574 continue;
4576 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4577 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4579 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4580 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4581 DAG.getNode(ISD::BUILD_VECTOR, dl,
4582 MVT::v16i8, &pshufbMask[0], 16));
4583 if (!TwoInputs)
4584 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4586 // Calculate the shuffle mask for the second input, shuffle it, and
4587 // OR it with the first shuffled input.
4588 pshufbMask.clear();
4589 for (unsigned i = 0; i != 8; ++i) {
4590 int EltIdx = MaskVals[i] * 2;
4591 if (EltIdx < 16) {
4592 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4593 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4594 continue;
4596 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4597 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4599 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4600 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4601 DAG.getNode(ISD::BUILD_VECTOR, dl,
4602 MVT::v16i8, &pshufbMask[0], 16));
4603 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4604 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4607 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4608 // and update MaskVals with new element order.
4609 BitVector InOrder(8);
4610 if (BestLoQuad >= 0) {
4611 SmallVector<int, 8> MaskV;
4612 for (int i = 0; i != 4; ++i) {
4613 int idx = MaskVals[i];
4614 if (idx < 0) {
4615 MaskV.push_back(-1);
4616 InOrder.set(i);
4617 } else if ((idx / 4) == BestLoQuad) {
4618 MaskV.push_back(idx & 3);
4619 InOrder.set(i);
4620 } else {
4621 MaskV.push_back(-1);
4624 for (unsigned i = 4; i != 8; ++i)
4625 MaskV.push_back(i);
4626 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4627 &MaskV[0]);
4629 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4630 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4631 NewV.getOperand(0),
4632 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4633 DAG);
4636 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4637 // and update MaskVals with the new element order.
4638 if (BestHiQuad >= 0) {
4639 SmallVector<int, 8> MaskV;
4640 for (unsigned i = 0; i != 4; ++i)
4641 MaskV.push_back(i);
4642 for (unsigned i = 4; i != 8; ++i) {
4643 int idx = MaskVals[i];
4644 if (idx < 0) {
4645 MaskV.push_back(-1);
4646 InOrder.set(i);
4647 } else if ((idx / 4) == BestHiQuad) {
4648 MaskV.push_back((idx & 3) + 4);
4649 InOrder.set(i);
4650 } else {
4651 MaskV.push_back(-1);
4654 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4655 &MaskV[0]);
4657 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4658 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4659 NewV.getOperand(0),
4660 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4661 DAG);
4664 // In case BestHi & BestLo were both -1, which means each quadword has a word
4665 // from each of the four input quadwords, calculate the InOrder bitvector now
4666 // before falling through to the insert/extract cleanup.
4667 if (BestLoQuad == -1 && BestHiQuad == -1) {
4668 NewV = V1;
4669 for (int i = 0; i != 8; ++i)
4670 if (MaskVals[i] < 0 || MaskVals[i] == i)
4671 InOrder.set(i);
4674 // The other elements are put in the right place using pextrw and pinsrw.
4675 for (unsigned i = 0; i != 8; ++i) {
4676 if (InOrder[i])
4677 continue;
4678 int EltIdx = MaskVals[i];
4679 if (EltIdx < 0)
4680 continue;
4681 SDValue ExtOp = (EltIdx < 8)
4682 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4683 DAG.getIntPtrConstant(EltIdx))
4684 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4685 DAG.getIntPtrConstant(EltIdx - 8));
4686 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4687 DAG.getIntPtrConstant(i));
4689 return NewV;
4692 // v16i8 shuffles - Prefer shuffles in the following order:
4693 // 1. [ssse3] 1 x pshufb
4694 // 2. [ssse3] 2 x pshufb + 1 x por
4695 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
4696 static
4697 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4698 SelectionDAG &DAG,
4699 const X86TargetLowering &TLI) {
4700 SDValue V1 = SVOp->getOperand(0);
4701 SDValue V2 = SVOp->getOperand(1);
4702 DebugLoc dl = SVOp->getDebugLoc();
4703 SmallVector<int, 16> MaskVals;
4704 SVOp->getMask(MaskVals);
4706 // If we have SSSE3, case 1 is generated when all result bytes come from
4707 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
4708 // present, fall back to case 3.
4709 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4710 bool V1Only = true;
4711 bool V2Only = true;
4712 for (unsigned i = 0; i < 16; ++i) {
4713 int EltIdx = MaskVals[i];
4714 if (EltIdx < 0)
4715 continue;
4716 if (EltIdx < 16)
4717 V2Only = false;
4718 else
4719 V1Only = false;
4722 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4723 if (TLI.getSubtarget()->hasSSSE3()) {
4724 SmallVector<SDValue,16> pshufbMask;
4726 // If all result elements are from one input vector, then only translate
4727 // undef mask values to 0x80 (zero out result) in the pshufb mask.
4729 // Otherwise, we have elements from both input vectors, and must zero out
4730 // elements that come from V2 in the first mask, and V1 in the second mask
4731 // so that we can OR them together.
4732 bool TwoInputs = !(V1Only || V2Only);
4733 for (unsigned i = 0; i != 16; ++i) {
4734 int EltIdx = MaskVals[i];
4735 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4736 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4737 continue;
4739 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4741 // If all the elements are from V2, assign it to V1 and return after
4742 // building the first pshufb.
4743 if (V2Only)
4744 V1 = V2;
4745 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4746 DAG.getNode(ISD::BUILD_VECTOR, dl,
4747 MVT::v16i8, &pshufbMask[0], 16));
4748 if (!TwoInputs)
4749 return V1;
4751 // Calculate the shuffle mask for the second input, shuffle it, and
4752 // OR it with the first shuffled input.
4753 pshufbMask.clear();
4754 for (unsigned i = 0; i != 16; ++i) {
4755 int EltIdx = MaskVals[i];
4756 if (EltIdx < 16) {
4757 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4758 continue;
4760 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4762 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4763 DAG.getNode(ISD::BUILD_VECTOR, dl,
4764 MVT::v16i8, &pshufbMask[0], 16));
4765 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4768 // No SSSE3 - Calculate in place words and then fix all out of place words
4769 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
4770 // the 16 different words that comprise the two doublequadword input vectors.
4771 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4772 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4773 SDValue NewV = V2Only ? V2 : V1;
4774 for (int i = 0; i != 8; ++i) {
4775 int Elt0 = MaskVals[i*2];
4776 int Elt1 = MaskVals[i*2+1];
4778 // This word of the result is all undef, skip it.
4779 if (Elt0 < 0 && Elt1 < 0)
4780 continue;
4782 // This word of the result is already in the correct place, skip it.
4783 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4784 continue;
4785 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4786 continue;
4788 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4789 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4790 SDValue InsElt;
4792 // If Elt0 and Elt1 are defined, are consecutive, and can be load
4793 // using a single extract together, load it and store it.
4794 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4795 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4796 DAG.getIntPtrConstant(Elt1 / 2));
4797 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4798 DAG.getIntPtrConstant(i));
4799 continue;
4802 // If Elt1 is defined, extract it from the appropriate source. If the
4803 // source byte is not also odd, shift the extracted word left 8 bits
4804 // otherwise clear the bottom 8 bits if we need to do an or.
4805 if (Elt1 >= 0) {
4806 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4807 DAG.getIntPtrConstant(Elt1 / 2));
4808 if ((Elt1 & 1) == 0)
4809 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4810 DAG.getConstant(8, TLI.getShiftAmountTy()));
4811 else if (Elt0 >= 0)
4812 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4813 DAG.getConstant(0xFF00, MVT::i16));
4815 // If Elt0 is defined, extract it from the appropriate source. If the
4816 // source byte is not also even, shift the extracted word right 8 bits. If
4817 // Elt1 was also defined, OR the extracted values together before
4818 // inserting them in the result.
4819 if (Elt0 >= 0) {
4820 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4821 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4822 if ((Elt0 & 1) != 0)
4823 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4824 DAG.getConstant(8, TLI.getShiftAmountTy()));
4825 else if (Elt1 >= 0)
4826 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4827 DAG.getConstant(0x00FF, MVT::i16));
4828 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4829 : InsElt0;
4831 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4832 DAG.getIntPtrConstant(i));
4834 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4837 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4838 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4839 /// done when every pair / quad of shuffle mask elements point to elements in
4840 /// the right sequence. e.g.
4841 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4842 static
4843 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4844 SelectionDAG &DAG, DebugLoc dl) {
4845 EVT VT = SVOp->getValueType(0);
4846 SDValue V1 = SVOp->getOperand(0);
4847 SDValue V2 = SVOp->getOperand(1);
4848 unsigned NumElems = VT.getVectorNumElements();
4849 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4850 EVT NewVT;
4851 switch (VT.getSimpleVT().SimpleTy) {
4852 default: assert(false && "Unexpected!");
4853 case MVT::v4f32: NewVT = MVT::v2f64; break;
4854 case MVT::v4i32: NewVT = MVT::v2i64; break;
4855 case MVT::v8i16: NewVT = MVT::v4i32; break;
4856 case MVT::v16i8: NewVT = MVT::v4i32; break;
4859 int Scale = NumElems / NewWidth;
4860 SmallVector<int, 8> MaskVec;
4861 for (unsigned i = 0; i < NumElems; i += Scale) {
4862 int StartIdx = -1;
4863 for (int j = 0; j < Scale; ++j) {
4864 int EltIdx = SVOp->getMaskElt(i+j);
4865 if (EltIdx < 0)
4866 continue;
4867 if (StartIdx == -1)
4868 StartIdx = EltIdx - (EltIdx % Scale);
4869 if (EltIdx != StartIdx + j)
4870 return SDValue();
4872 if (StartIdx == -1)
4873 MaskVec.push_back(-1);
4874 else
4875 MaskVec.push_back(StartIdx / Scale);
4878 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4879 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4880 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4883 /// getVZextMovL - Return a zero-extending vector move low node.
4885 static SDValue getVZextMovL(EVT VT, EVT OpVT,
4886 SDValue SrcOp, SelectionDAG &DAG,
4887 const X86Subtarget *Subtarget, DebugLoc dl) {
4888 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4889 LoadSDNode *LD = NULL;
4890 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4891 LD = dyn_cast<LoadSDNode>(SrcOp);
4892 if (!LD) {
4893 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4894 // instead.
4895 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4896 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4897 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4898 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4899 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4900 // PR2108
4901 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4902 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4903 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4904 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4905 OpVT,
4906 SrcOp.getOperand(0)
4907 .getOperand(0))));
4912 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4913 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4914 DAG.getNode(ISD::BIT_CONVERT, dl,
4915 OpVT, SrcOp)));
4918 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4919 /// shuffles.
4920 static SDValue
4921 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4922 SDValue V1 = SVOp->getOperand(0);
4923 SDValue V2 = SVOp->getOperand(1);
4924 DebugLoc dl = SVOp->getDebugLoc();
4925 EVT VT = SVOp->getValueType(0);
4927 SmallVector<std::pair<int, int>, 8> Locs;
4928 Locs.resize(4);
4929 SmallVector<int, 8> Mask1(4U, -1);
4930 SmallVector<int, 8> PermMask;
4931 SVOp->getMask(PermMask);
4933 unsigned NumHi = 0;
4934 unsigned NumLo = 0;
4935 for (unsigned i = 0; i != 4; ++i) {
4936 int Idx = PermMask[i];
4937 if (Idx < 0) {
4938 Locs[i] = std::make_pair(-1, -1);
4939 } else {
4940 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4941 if (Idx < 4) {
4942 Locs[i] = std::make_pair(0, NumLo);
4943 Mask1[NumLo] = Idx;
4944 NumLo++;
4945 } else {
4946 Locs[i] = std::make_pair(1, NumHi);
4947 if (2+NumHi < 4)
4948 Mask1[2+NumHi] = Idx;
4949 NumHi++;
4954 if (NumLo <= 2 && NumHi <= 2) {
4955 // If no more than two elements come from either vector. This can be
4956 // implemented with two shuffles. First shuffle gather the elements.
4957 // The second shuffle, which takes the first shuffle as both of its
4958 // vector operands, put the elements into the right order.
4959 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4961 SmallVector<int, 8> Mask2(4U, -1);
4963 for (unsigned i = 0; i != 4; ++i) {
4964 if (Locs[i].first == -1)
4965 continue;
4966 else {
4967 unsigned Idx = (i < 2) ? 0 : 4;
4968 Idx += Locs[i].first * 2 + Locs[i].second;
4969 Mask2[i] = Idx;
4973 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4974 } else if (NumLo == 3 || NumHi == 3) {
4975 // Otherwise, we must have three elements from one vector, call it X, and
4976 // one element from the other, call it Y. First, use a shufps to build an
4977 // intermediate vector with the one element from Y and the element from X
4978 // that will be in the same half in the final destination (the indexes don't
4979 // matter). Then, use a shufps to build the final vector, taking the half
4980 // containing the element from Y from the intermediate, and the other half
4981 // from X.
4982 if (NumHi == 3) {
4983 // Normalize it so the 3 elements come from V1.
4984 CommuteVectorShuffleMask(PermMask, VT);
4985 std::swap(V1, V2);
4988 // Find the element from V2.
4989 unsigned HiIndex;
4990 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4991 int Val = PermMask[HiIndex];
4992 if (Val < 0)
4993 continue;
4994 if (Val >= 4)
4995 break;
4998 Mask1[0] = PermMask[HiIndex];
4999 Mask1[1] = -1;
5000 Mask1[2] = PermMask[HiIndex^1];
5001 Mask1[3] = -1;
5002 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5004 if (HiIndex >= 2) {
5005 Mask1[0] = PermMask[0];
5006 Mask1[1] = PermMask[1];
5007 Mask1[2] = HiIndex & 1 ? 6 : 4;
5008 Mask1[3] = HiIndex & 1 ? 4 : 6;
5009 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5010 } else {
5011 Mask1[0] = HiIndex & 1 ? 2 : 0;
5012 Mask1[1] = HiIndex & 1 ? 0 : 2;
5013 Mask1[2] = PermMask[2];
5014 Mask1[3] = PermMask[3];
5015 if (Mask1[2] >= 0)
5016 Mask1[2] += 4;
5017 if (Mask1[3] >= 0)
5018 Mask1[3] += 4;
5019 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5023 // Break it into (shuffle shuffle_hi, shuffle_lo).
5024 Locs.clear();
5025 SmallVector<int,8> LoMask(4U, -1);
5026 SmallVector<int,8> HiMask(4U, -1);
5028 SmallVector<int,8> *MaskPtr = &LoMask;
5029 unsigned MaskIdx = 0;
5030 unsigned LoIdx = 0;
5031 unsigned HiIdx = 2;
5032 for (unsigned i = 0; i != 4; ++i) {
5033 if (i == 2) {
5034 MaskPtr = &HiMask;
5035 MaskIdx = 1;
5036 LoIdx = 0;
5037 HiIdx = 2;
5039 int Idx = PermMask[i];
5040 if (Idx < 0) {
5041 Locs[i] = std::make_pair(-1, -1);
5042 } else if (Idx < 4) {
5043 Locs[i] = std::make_pair(MaskIdx, LoIdx);
5044 (*MaskPtr)[LoIdx] = Idx;
5045 LoIdx++;
5046 } else {
5047 Locs[i] = std::make_pair(MaskIdx, HiIdx);
5048 (*MaskPtr)[HiIdx] = Idx;
5049 HiIdx++;
5053 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5054 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5055 SmallVector<int, 8> MaskOps;
5056 for (unsigned i = 0; i != 4; ++i) {
5057 if (Locs[i].first == -1) {
5058 MaskOps.push_back(-1);
5059 } else {
5060 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5061 MaskOps.push_back(Idx);
5064 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5067 static bool MayFoldVectorLoad(SDValue V) {
5068 if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5069 V = V.getOperand(0);
5070 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5071 V = V.getOperand(0);
5072 if (MayFoldLoad(V))
5073 return true;
5074 return false;
5077 // FIXME: the version above should always be used. Since there's
5078 // a bug where several vector shuffles can't be folded because the
5079 // DAG is not updated during lowering and a node claims to have two
5080 // uses while it only has one, use this version, and let isel match
5081 // another instruction if the load really happens to have more than
5082 // one use. Remove this version after this bug get fixed.
5083 // rdar://8434668, PR8156
5084 static bool RelaxedMayFoldVectorLoad(SDValue V) {
5085 if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5086 V = V.getOperand(0);
5087 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5088 V = V.getOperand(0);
5089 if (ISD::isNormalLoad(V.getNode()))
5090 return true;
5091 return false;
5094 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5095 /// a vector extract, and if both can be later optimized into a single load.
5096 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5097 /// here because otherwise a target specific shuffle node is going to be
5098 /// emitted for this shuffle, and the optimization not done.
5099 /// FIXME: This is probably not the best approach, but fix the problem
5100 /// until the right path is decided.
5101 static
5102 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5103 const TargetLowering &TLI) {
5104 EVT VT = V.getValueType();
5105 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5107 // Be sure that the vector shuffle is present in a pattern like this:
5108 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5109 if (!V.hasOneUse())
5110 return false;
5112 SDNode *N = *V.getNode()->use_begin();
5113 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5114 return false;
5116 SDValue EltNo = N->getOperand(1);
5117 if (!isa<ConstantSDNode>(EltNo))
5118 return false;
5120 // If the bit convert changed the number of elements, it is unsafe
5121 // to examine the mask.
5122 bool HasShuffleIntoBitcast = false;
5123 if (V.getOpcode() == ISD::BIT_CONVERT) {
5124 EVT SrcVT = V.getOperand(0).getValueType();
5125 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5126 return false;
5127 V = V.getOperand(0);
5128 HasShuffleIntoBitcast = true;
5131 // Select the input vector, guarding against out of range extract vector.
5132 unsigned NumElems = VT.getVectorNumElements();
5133 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5134 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5135 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5137 // Skip one more bit_convert if necessary
5138 if (V.getOpcode() == ISD::BIT_CONVERT)
5139 V = V.getOperand(0);
5141 if (ISD::isNormalLoad(V.getNode())) {
5142 // Is the original load suitable?
5143 LoadSDNode *LN0 = cast<LoadSDNode>(V);
5145 // FIXME: avoid the multi-use bug that is preventing lots of
5146 // of foldings to be detected, this is still wrong of course, but
5147 // give the temporary desired behavior, and if it happens that
5148 // the load has real more uses, during isel it will not fold, and
5149 // will generate poor code.
5150 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5151 return false;
5153 if (!HasShuffleIntoBitcast)
5154 return true;
5156 // If there's a bitcast before the shuffle, check if the load type and
5157 // alignment is valid.
5158 unsigned Align = LN0->getAlignment();
5159 unsigned NewAlign =
5160 TLI.getTargetData()->getABITypeAlignment(
5161 VT.getTypeForEVT(*DAG.getContext()));
5163 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5164 return false;
5167 return true;
5170 static
5171 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5172 EVT VT = Op.getValueType();
5174 // Canonizalize to v2f64.
5175 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
5176 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5177 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5178 V1, DAG));
5181 static
5182 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5183 bool HasSSE2) {
5184 SDValue V1 = Op.getOperand(0);
5185 SDValue V2 = Op.getOperand(1);
5186 EVT VT = Op.getValueType();
5188 assert(VT != MVT::v2i64 && "unsupported shuffle type");
5190 if (HasSSE2 && VT == MVT::v2f64)
5191 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5193 // v4f32 or v4i32
5194 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5197 static
5198 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5199 SDValue V1 = Op.getOperand(0);
5200 SDValue V2 = Op.getOperand(1);
5201 EVT VT = Op.getValueType();
5203 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5204 "unsupported shuffle type");
5206 if (V2.getOpcode() == ISD::UNDEF)
5207 V2 = V1;
5209 // v4i32 or v4f32
5210 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5213 static
5214 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5215 SDValue V1 = Op.getOperand(0);
5216 SDValue V2 = Op.getOperand(1);
5217 EVT VT = Op.getValueType();
5218 unsigned NumElems = VT.getVectorNumElements();
5220 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5221 // operand of these instructions is only memory, so check if there's a
5222 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5223 // same masks.
5224 bool CanFoldLoad = false;
5226 // Trivial case, when V2 comes from a load.
5227 if (MayFoldVectorLoad(V2))
5228 CanFoldLoad = true;
5230 // When V1 is a load, it can be folded later into a store in isel, example:
5231 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5232 // turns into:
5233 // (MOVLPSmr addr:$src1, VR128:$src2)
5234 // So, recognize this potential and also use MOVLPS or MOVLPD
5235 if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5236 CanFoldLoad = true;
5238 if (CanFoldLoad) {
5239 if (HasSSE2 && NumElems == 2)
5240 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5242 if (NumElems == 4)
5243 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5246 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5247 // movl and movlp will both match v2i64, but v2i64 is never matched by
5248 // movl earlier because we make it strict to avoid messing with the movlp load
5249 // folding logic (see the code above getMOVLP call). Match it here then,
5250 // this is horrible, but will stay like this until we move all shuffle
5251 // matching to x86 specific nodes. Note that for the 1st condition all
5252 // types are matched with movsd.
5253 if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5254 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5255 else if (HasSSE2)
5256 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5259 assert(VT != MVT::v4i32 && "unsupported shuffle type");
5261 // Invert the operand order and use SHUFPS to match it.
5262 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5263 X86::getShuffleSHUFImmediate(SVOp), DAG);
5266 static inline unsigned getUNPCKLOpcode(EVT VT) {
5267 switch(VT.getSimpleVT().SimpleTy) {
5268 case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5269 case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5270 case MVT::v4f32: return X86ISD::UNPCKLPS;
5271 case MVT::v2f64: return X86ISD::UNPCKLPD;
5272 case MVT::v16i8: return X86ISD::PUNPCKLBW;
5273 case MVT::v8i16: return X86ISD::PUNPCKLWD;
5274 default:
5275 llvm_unreachable("Unknow type for unpckl");
5277 return 0;
5280 static inline unsigned getUNPCKHOpcode(EVT VT) {
5281 switch(VT.getSimpleVT().SimpleTy) {
5282 case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5283 case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5284 case MVT::v4f32: return X86ISD::UNPCKHPS;
5285 case MVT::v2f64: return X86ISD::UNPCKHPD;
5286 case MVT::v16i8: return X86ISD::PUNPCKHBW;
5287 case MVT::v8i16: return X86ISD::PUNPCKHWD;
5288 default:
5289 llvm_unreachable("Unknow type for unpckh");
5291 return 0;
5294 static
5295 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5296 const TargetLowering &TLI,
5297 const X86Subtarget *Subtarget) {
5298 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5299 EVT VT = Op.getValueType();
5300 DebugLoc dl = Op.getDebugLoc();
5301 SDValue V1 = Op.getOperand(0);
5302 SDValue V2 = Op.getOperand(1);
5304 if (isZeroShuffle(SVOp))
5305 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5307 // Handle splat operations
5308 if (SVOp->isSplat()) {
5309 // Special case, this is the only place now where it's
5310 // allowed to return a vector_shuffle operation without
5311 // using a target specific node, because *hopefully* it
5312 // will be optimized away by the dag combiner.
5313 if (VT.getVectorNumElements() <= 4 &&
5314 CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5315 return Op;
5317 // Handle splats by matching through known masks
5318 if (VT.getVectorNumElements() <= 4)
5319 return SDValue();
5321 // Canonicalize all of the remaining to v4f32.
5322 return PromoteSplat(SVOp, DAG);
5325 // If the shuffle can be profitably rewritten as a narrower shuffle, then
5326 // do it!
5327 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5328 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5329 if (NewOp.getNode())
5330 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
5331 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5332 // FIXME: Figure out a cleaner way to do this.
5333 // Try to make use of movq to zero out the top part.
5334 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5335 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5336 if (NewOp.getNode()) {
5337 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5338 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5339 DAG, Subtarget, dl);
5341 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5342 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5343 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5344 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5345 DAG, Subtarget, dl);
5348 return SDValue();
5351 SDValue
5352 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5353 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5354 SDValue V1 = Op.getOperand(0);
5355 SDValue V2 = Op.getOperand(1);
5356 EVT VT = Op.getValueType();
5357 DebugLoc dl = Op.getDebugLoc();
5358 unsigned NumElems = VT.getVectorNumElements();
5359 bool isMMX = VT.getSizeInBits() == 64;
5360 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5361 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5362 bool V1IsSplat = false;
5363 bool V2IsSplat = false;
5364 bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5365 bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5366 bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5367 MachineFunction &MF = DAG.getMachineFunction();
5368 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5370 // Shuffle operations on MMX not supported.
5371 if (isMMX)
5372 return Op;
5374 // Vector shuffle lowering takes 3 steps:
5376 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5377 // narrowing and commutation of operands should be handled.
5378 // 2) Matching of shuffles with known shuffle masks to x86 target specific
5379 // shuffle nodes.
5380 // 3) Rewriting of unmatched masks into new generic shuffle operations,
5381 // so the shuffle can be broken into other shuffles and the legalizer can
5382 // try the lowering again.
5384 // The general ideia is that no vector_shuffle operation should be left to
5385 // be matched during isel, all of them must be converted to a target specific
5386 // node here.
5388 // Normalize the input vectors. Here splats, zeroed vectors, profitable
5389 // narrowing and commutation of operands should be handled. The actual code
5390 // doesn't include all of those, work in progress...
5391 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5392 if (NewOp.getNode())
5393 return NewOp;
5395 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5396 // unpckh_undef). Only use pshufd if speed is more important than size.
5397 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5398 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5399 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5400 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5401 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5402 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5404 if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5405 RelaxedMayFoldVectorLoad(V1))
5406 return getMOVDDup(Op, dl, V1, DAG);
5408 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5409 return getMOVHighToLow(Op, dl, DAG);
5411 // Use to match splats
5412 if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5413 (VT == MVT::v2f64 || VT == MVT::v2i64))
5414 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5416 if (X86::isPSHUFDMask(SVOp)) {
5417 // The actual implementation will match the mask in the if above and then
5418 // during isel it can match several different instructions, not only pshufd
5419 // as its name says, sad but true, emulate the behavior for now...
5420 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5421 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5423 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5425 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5426 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5428 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5429 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5430 TargetMask, DAG);
5432 if (VT == MVT::v4f32)
5433 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5434 TargetMask, DAG);
5437 // Check if this can be converted into a logical shift.
5438 bool isLeft = false;
5439 unsigned ShAmt = 0;
5440 SDValue ShVal;
5441 bool isShift = getSubtarget()->hasSSE2() &&
5442 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5443 if (isShift && ShVal.hasOneUse()) {
5444 // If the shifted value has multiple uses, it may be cheaper to use
5445 // v_set0 + movlhps or movhlps, etc.
5446 EVT EltVT = VT.getVectorElementType();
5447 ShAmt *= EltVT.getSizeInBits();
5448 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5451 if (X86::isMOVLMask(SVOp)) {
5452 if (V1IsUndef)
5453 return V2;
5454 if (ISD::isBuildVectorAllZeros(V1.getNode()))
5455 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5456 if (!X86::isMOVLPMask(SVOp)) {
5457 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5458 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5460 if (VT == MVT::v4i32 || VT == MVT::v4f32)
5461 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5465 // FIXME: fold these into legal mask.
5466 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5467 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5469 if (X86::isMOVHLPSMask(SVOp))
5470 return getMOVHighToLow(Op, dl, DAG);
5472 if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5473 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5475 if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5476 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5478 if (X86::isMOVLPMask(SVOp))
5479 return getMOVLP(Op, dl, DAG, HasSSE2);
5481 if (ShouldXformToMOVHLPS(SVOp) ||
5482 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5483 return CommuteVectorShuffle(SVOp, DAG);
5485 if (isShift) {
5486 // No better options. Use a vshl / vsrl.
5487 EVT EltVT = VT.getVectorElementType();
5488 ShAmt *= EltVT.getSizeInBits();
5489 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5492 bool Commuted = false;
5493 // FIXME: This should also accept a bitcast of a splat? Be careful, not
5494 // 1,1,1,1 -> v8i16 though.
5495 V1IsSplat = isSplatVector(V1.getNode());
5496 V2IsSplat = isSplatVector(V2.getNode());
5498 // Canonicalize the splat or undef, if present, to be on the RHS.
5499 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5500 Op = CommuteVectorShuffle(SVOp, DAG);
5501 SVOp = cast<ShuffleVectorSDNode>(Op);
5502 V1 = SVOp->getOperand(0);
5503 V2 = SVOp->getOperand(1);
5504 std::swap(V1IsSplat, V2IsSplat);
5505 std::swap(V1IsUndef, V2IsUndef);
5506 Commuted = true;
5509 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5510 // Shuffling low element of v1 into undef, just return v1.
5511 if (V2IsUndef)
5512 return V1;
5513 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5514 // the instruction selector will not match, so get a canonical MOVL with
5515 // swapped operands to undo the commute.
5516 return getMOVL(DAG, dl, VT, V2, V1);
5519 if (X86::isUNPCKLMask(SVOp))
5520 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5522 if (X86::isUNPCKHMask(SVOp))
5523 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5525 if (V2IsSplat) {
5526 // Normalize mask so all entries that point to V2 points to its first
5527 // element then try to match unpck{h|l} again. If match, return a
5528 // new vector_shuffle with the corrected mask.
5529 SDValue NewMask = NormalizeMask(SVOp, DAG);
5530 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5531 if (NSVOp != SVOp) {
5532 if (X86::isUNPCKLMask(NSVOp, true)) {
5533 return NewMask;
5534 } else if (X86::isUNPCKHMask(NSVOp, true)) {
5535 return NewMask;
5540 if (Commuted) {
5541 // Commute is back and try unpck* again.
5542 // FIXME: this seems wrong.
5543 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5544 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5546 if (X86::isUNPCKLMask(NewSVOp))
5547 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5549 if (X86::isUNPCKHMask(NewSVOp))
5550 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5553 // Normalize the node to match x86 shuffle ops if needed
5554 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5555 return CommuteVectorShuffle(SVOp, DAG);
5557 // The checks below are all present in isShuffleMaskLegal, but they are
5558 // inlined here right now to enable us to directly emit target specific
5559 // nodes, and remove one by one until they don't return Op anymore.
5560 SmallVector<int, 16> M;
5561 SVOp->getMask(M);
5563 if (isPALIGNRMask(M, VT, HasSSSE3))
5564 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5565 X86::getShufflePALIGNRImmediate(SVOp),
5566 DAG);
5568 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5569 SVOp->getSplatIndex() == 0 && V2IsUndef) {
5570 if (VT == MVT::v2f64)
5571 return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5572 if (VT == MVT::v2i64)
5573 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5576 if (isPSHUFHWMask(M, VT))
5577 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5578 X86::getShufflePSHUFHWImmediate(SVOp),
5579 DAG);
5581 if (isPSHUFLWMask(M, VT))
5582 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5583 X86::getShufflePSHUFLWImmediate(SVOp),
5584 DAG);
5586 if (isSHUFPMask(M, VT)) {
5587 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5588 if (VT == MVT::v4f32 || VT == MVT::v4i32)
5589 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5590 TargetMask, DAG);
5591 if (VT == MVT::v2f64 || VT == MVT::v2i64)
5592 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5593 TargetMask, DAG);
5596 if (X86::isUNPCKL_v_undef_Mask(SVOp))
5597 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5598 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5599 if (X86::isUNPCKH_v_undef_Mask(SVOp))
5600 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5601 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5603 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5604 if (VT == MVT::v8i16) {
5605 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5606 if (NewOp.getNode())
5607 return NewOp;
5610 if (VT == MVT::v16i8) {
5611 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5612 if (NewOp.getNode())
5613 return NewOp;
5616 // Handle all 4 wide cases with a number of shuffles.
5617 if (NumElems == 4)
5618 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5620 return SDValue();
5623 SDValue
5624 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5625 SelectionDAG &DAG) const {
5626 EVT VT = Op.getValueType();
5627 DebugLoc dl = Op.getDebugLoc();
5628 if (VT.getSizeInBits() == 8) {
5629 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5630 Op.getOperand(0), Op.getOperand(1));
5631 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5632 DAG.getValueType(VT));
5633 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5634 } else if (VT.getSizeInBits() == 16) {
5635 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5636 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5637 if (Idx == 0)
5638 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5639 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5640 DAG.getNode(ISD::BIT_CONVERT, dl,
5641 MVT::v4i32,
5642 Op.getOperand(0)),
5643 Op.getOperand(1)));
5644 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5645 Op.getOperand(0), Op.getOperand(1));
5646 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5647 DAG.getValueType(VT));
5648 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5649 } else if (VT == MVT::f32) {
5650 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5651 // the result back to FR32 register. It's only worth matching if the
5652 // result has a single use which is a store or a bitcast to i32. And in
5653 // the case of a store, it's not worth it if the index is a constant 0,
5654 // because a MOVSSmr can be used instead, which is smaller and faster.
5655 if (!Op.hasOneUse())
5656 return SDValue();
5657 SDNode *User = *Op.getNode()->use_begin();
5658 if ((User->getOpcode() != ISD::STORE ||
5659 (isa<ConstantSDNode>(Op.getOperand(1)) &&
5660 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5661 (User->getOpcode() != ISD::BIT_CONVERT ||
5662 User->getValueType(0) != MVT::i32))
5663 return SDValue();
5664 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5665 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5666 Op.getOperand(0)),
5667 Op.getOperand(1));
5668 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5669 } else if (VT == MVT::i32) {
5670 // ExtractPS works with constant index.
5671 if (isa<ConstantSDNode>(Op.getOperand(1)))
5672 return Op;
5674 return SDValue();
5678 SDValue
5679 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5680 SelectionDAG &DAG) const {
5681 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5682 return SDValue();
5684 if (Subtarget->hasSSE41()) {
5685 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5686 if (Res.getNode())
5687 return Res;
5690 EVT VT = Op.getValueType();
5691 DebugLoc dl = Op.getDebugLoc();
5692 // TODO: handle v16i8.
5693 if (VT.getSizeInBits() == 16) {
5694 SDValue Vec = Op.getOperand(0);
5695 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5696 if (Idx == 0)
5697 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5698 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5699 DAG.getNode(ISD::BIT_CONVERT, dl,
5700 MVT::v4i32, Vec),
5701 Op.getOperand(1)));
5702 // Transform it so it match pextrw which produces a 32-bit result.
5703 EVT EltVT = MVT::i32;
5704 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5705 Op.getOperand(0), Op.getOperand(1));
5706 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5707 DAG.getValueType(VT));
5708 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5709 } else if (VT.getSizeInBits() == 32) {
5710 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5711 if (Idx == 0)
5712 return Op;
5714 // SHUFPS the element to the lowest double word, then movss.
5715 int Mask[4] = { Idx, -1, -1, -1 };
5716 EVT VVT = Op.getOperand(0).getValueType();
5717 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5718 DAG.getUNDEF(VVT), Mask);
5719 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5720 DAG.getIntPtrConstant(0));
5721 } else if (VT.getSizeInBits() == 64) {
5722 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5723 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5724 // to match extract_elt for f64.
5725 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5726 if (Idx == 0)
5727 return Op;
5729 // UNPCKHPD the element to the lowest double word, then movsd.
5730 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5731 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5732 int Mask[2] = { 1, -1 };
5733 EVT VVT = Op.getOperand(0).getValueType();
5734 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5735 DAG.getUNDEF(VVT), Mask);
5736 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5737 DAG.getIntPtrConstant(0));
5740 return SDValue();
5743 SDValue
5744 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5745 SelectionDAG &DAG) const {
5746 EVT VT = Op.getValueType();
5747 EVT EltVT = VT.getVectorElementType();
5748 DebugLoc dl = Op.getDebugLoc();
5750 SDValue N0 = Op.getOperand(0);
5751 SDValue N1 = Op.getOperand(1);
5752 SDValue N2 = Op.getOperand(2);
5754 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5755 isa<ConstantSDNode>(N2)) {
5756 unsigned Opc;
5757 if (VT == MVT::v8i16)
5758 Opc = X86ISD::PINSRW;
5759 else if (VT == MVT::v16i8)
5760 Opc = X86ISD::PINSRB;
5761 else
5762 Opc = X86ISD::PINSRB;
5764 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5765 // argument.
5766 if (N1.getValueType() != MVT::i32)
5767 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5768 if (N2.getValueType() != MVT::i32)
5769 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5770 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5771 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5772 // Bits [7:6] of the constant are the source select. This will always be
5773 // zero here. The DAG Combiner may combine an extract_elt index into these
5774 // bits. For example (insert (extract, 3), 2) could be matched by putting
5775 // the '3' into bits [7:6] of X86ISD::INSERTPS.
5776 // Bits [5:4] of the constant are the destination select. This is the
5777 // value of the incoming immediate.
5778 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
5779 // combine either bitwise AND or insert of float 0.0 to set these bits.
5780 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5781 // Create this as a scalar to vector..
5782 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5783 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5784 } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5785 // PINSR* works with constant index.
5786 return Op;
5788 return SDValue();
5791 SDValue
5792 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5793 EVT VT = Op.getValueType();
5794 EVT EltVT = VT.getVectorElementType();
5796 if (Subtarget->hasSSE41())
5797 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5799 if (EltVT == MVT::i8)
5800 return SDValue();
5802 DebugLoc dl = Op.getDebugLoc();
5803 SDValue N0 = Op.getOperand(0);
5804 SDValue N1 = Op.getOperand(1);
5805 SDValue N2 = Op.getOperand(2);
5807 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5808 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5809 // as its second argument.
5810 if (N1.getValueType() != MVT::i32)
5811 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5812 if (N2.getValueType() != MVT::i32)
5813 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5814 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5816 return SDValue();
5819 SDValue
5820 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5821 DebugLoc dl = Op.getDebugLoc();
5823 if (Op.getValueType() == MVT::v1i64 &&
5824 Op.getOperand(0).getValueType() == MVT::i64)
5825 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5827 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5828 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5829 "Expected an SSE type!");
5830 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5831 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5834 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5835 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5836 // one of the above mentioned nodes. It has to be wrapped because otherwise
5837 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5838 // be used to form addressing mode. These wrapped nodes will be selected
5839 // into MOV32ri.
5840 SDValue
5841 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5842 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5844 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5845 // global base reg.
5846 unsigned char OpFlag = 0;
5847 unsigned WrapperKind = X86ISD::Wrapper;
5848 CodeModel::Model M = getTargetMachine().getCodeModel();
5850 if (Subtarget->isPICStyleRIPRel() &&
5851 (M == CodeModel::Small || M == CodeModel::Kernel))
5852 WrapperKind = X86ISD::WrapperRIP;
5853 else if (Subtarget->isPICStyleGOT())
5854 OpFlag = X86II::MO_GOTOFF;
5855 else if (Subtarget->isPICStyleStubPIC())
5856 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5858 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5859 CP->getAlignment(),
5860 CP->getOffset(), OpFlag);
5861 DebugLoc DL = CP->getDebugLoc();
5862 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5863 // With PIC, the address is actually $g + Offset.
5864 if (OpFlag) {
5865 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5866 DAG.getNode(X86ISD::GlobalBaseReg,
5867 DebugLoc(), getPointerTy()),
5868 Result);
5871 return Result;
5874 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5875 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5877 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5878 // global base reg.
5879 unsigned char OpFlag = 0;
5880 unsigned WrapperKind = X86ISD::Wrapper;
5881 CodeModel::Model M = getTargetMachine().getCodeModel();
5883 if (Subtarget->isPICStyleRIPRel() &&
5884 (M == CodeModel::Small || M == CodeModel::Kernel))
5885 WrapperKind = X86ISD::WrapperRIP;
5886 else if (Subtarget->isPICStyleGOT())
5887 OpFlag = X86II::MO_GOTOFF;
5888 else if (Subtarget->isPICStyleStubPIC())
5889 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5891 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5892 OpFlag);
5893 DebugLoc DL = JT->getDebugLoc();
5894 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5896 // With PIC, the address is actually $g + Offset.
5897 if (OpFlag) {
5898 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5899 DAG.getNode(X86ISD::GlobalBaseReg,
5900 DebugLoc(), getPointerTy()),
5901 Result);
5904 return Result;
5907 SDValue
5908 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5909 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5911 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5912 // global base reg.
5913 unsigned char OpFlag = 0;
5914 unsigned WrapperKind = X86ISD::Wrapper;
5915 CodeModel::Model M = getTargetMachine().getCodeModel();
5917 if (Subtarget->isPICStyleRIPRel() &&
5918 (M == CodeModel::Small || M == CodeModel::Kernel))
5919 WrapperKind = X86ISD::WrapperRIP;
5920 else if (Subtarget->isPICStyleGOT())
5921 OpFlag = X86II::MO_GOTOFF;
5922 else if (Subtarget->isPICStyleStubPIC())
5923 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5925 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5927 DebugLoc DL = Op.getDebugLoc();
5928 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5931 // With PIC, the address is actually $g + Offset.
5932 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5933 !Subtarget->is64Bit()) {
5934 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5935 DAG.getNode(X86ISD::GlobalBaseReg,
5936 DebugLoc(), getPointerTy()),
5937 Result);
5940 return Result;
5943 SDValue
5944 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5945 // Create the TargetBlockAddressAddress node.
5946 unsigned char OpFlags =
5947 Subtarget->ClassifyBlockAddressReference();
5948 CodeModel::Model M = getTargetMachine().getCodeModel();
5949 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5950 DebugLoc dl = Op.getDebugLoc();
5951 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5952 /*isTarget=*/true, OpFlags);
5954 if (Subtarget->isPICStyleRIPRel() &&
5955 (M == CodeModel::Small || M == CodeModel::Kernel))
5956 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5957 else
5958 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5960 // With PIC, the address is actually $g + Offset.
5961 if (isGlobalRelativeToPICBase(OpFlags)) {
5962 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5963 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5964 Result);
5967 return Result;
5970 SDValue
5971 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5972 int64_t Offset,
5973 SelectionDAG &DAG) const {
5974 // Create the TargetGlobalAddress node, folding in the constant
5975 // offset if it is legal.
5976 unsigned char OpFlags =
5977 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5978 CodeModel::Model M = getTargetMachine().getCodeModel();
5979 SDValue Result;
5980 if (OpFlags == X86II::MO_NO_FLAG &&
5981 X86::isOffsetSuitableForCodeModel(Offset, M)) {
5982 // A direct static reference to a global.
5983 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5984 Offset = 0;
5985 } else {
5986 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5989 if (Subtarget->isPICStyleRIPRel() &&
5990 (M == CodeModel::Small || M == CodeModel::Kernel))
5991 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5992 else
5993 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5995 // With PIC, the address is actually $g + Offset.
5996 if (isGlobalRelativeToPICBase(OpFlags)) {
5997 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5998 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5999 Result);
6002 // For globals that require a load from a stub to get the address, emit the
6003 // load.
6004 if (isGlobalStubReference(OpFlags))
6005 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6006 MachinePointerInfo::getGOT(), false, false, 0);
6008 // If there was a non-zero offset that we didn't fold, create an explicit
6009 // addition for it.
6010 if (Offset != 0)
6011 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6012 DAG.getConstant(Offset, getPointerTy()));
6014 return Result;
6017 SDValue
6018 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6019 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6020 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6021 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6024 static SDValue
6025 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6026 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6027 unsigned char OperandFlags) {
6028 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6029 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6030 DebugLoc dl = GA->getDebugLoc();
6031 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6032 GA->getValueType(0),
6033 GA->getOffset(),
6034 OperandFlags);
6035 if (InFlag) {
6036 SDValue Ops[] = { Chain, TGA, *InFlag };
6037 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6038 } else {
6039 SDValue Ops[] = { Chain, TGA };
6040 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6043 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6044 MFI->setAdjustsStack(true);
6046 SDValue Flag = Chain.getValue(1);
6047 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6050 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6051 static SDValue
6052 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6053 const EVT PtrVT) {
6054 SDValue InFlag;
6055 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
6056 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6057 DAG.getNode(X86ISD::GlobalBaseReg,
6058 DebugLoc(), PtrVT), InFlag);
6059 InFlag = Chain.getValue(1);
6061 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6064 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6065 static SDValue
6066 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6067 const EVT PtrVT) {
6068 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6069 X86::RAX, X86II::MO_TLSGD);
6072 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6073 // "local exec" model.
6074 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6075 const EVT PtrVT, TLSModel::Model model,
6076 bool is64Bit) {
6077 DebugLoc dl = GA->getDebugLoc();
6079 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6080 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6081 is64Bit ? 257 : 256));
6083 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6084 DAG.getIntPtrConstant(0),
6085 MachinePointerInfo(Ptr), false, false, 0);
6087 unsigned char OperandFlags = 0;
6088 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
6089 // initialexec.
6090 unsigned WrapperKind = X86ISD::Wrapper;
6091 if (model == TLSModel::LocalExec) {
6092 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6093 } else if (is64Bit) {
6094 assert(model == TLSModel::InitialExec);
6095 OperandFlags = X86II::MO_GOTTPOFF;
6096 WrapperKind = X86ISD::WrapperRIP;
6097 } else {
6098 assert(model == TLSModel::InitialExec);
6099 OperandFlags = X86II::MO_INDNTPOFF;
6102 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6103 // exec)
6104 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6105 GA->getValueType(0),
6106 GA->getOffset(), OperandFlags);
6107 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6109 if (model == TLSModel::InitialExec)
6110 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6111 MachinePointerInfo::getGOT(), false, false, 0);
6113 // The address of the thread local variable is the add of the thread
6114 // pointer with the offset of the variable.
6115 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6118 SDValue
6119 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6121 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6122 const GlobalValue *GV = GA->getGlobal();
6124 if (Subtarget->isTargetELF()) {
6125 // TODO: implement the "local dynamic" model
6126 // TODO: implement the "initial exec"model for pic executables
6128 // If GV is an alias then use the aliasee for determining
6129 // thread-localness.
6130 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6131 GV = GA->resolveAliasedGlobal(false);
6133 TLSModel::Model model
6134 = getTLSModel(GV, getTargetMachine().getRelocationModel());
6136 switch (model) {
6137 case TLSModel::GeneralDynamic:
6138 case TLSModel::LocalDynamic: // not implemented
6139 if (Subtarget->is64Bit())
6140 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6141 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6143 case TLSModel::InitialExec:
6144 case TLSModel::LocalExec:
6145 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6146 Subtarget->is64Bit());
6148 } else if (Subtarget->isTargetDarwin()) {
6149 // Darwin only has one model of TLS. Lower to that.
6150 unsigned char OpFlag = 0;
6151 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6152 X86ISD::WrapperRIP : X86ISD::Wrapper;
6154 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6155 // global base reg.
6156 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6157 !Subtarget->is64Bit();
6158 if (PIC32)
6159 OpFlag = X86II::MO_TLVP_PIC_BASE;
6160 else
6161 OpFlag = X86II::MO_TLVP;
6162 DebugLoc DL = Op.getDebugLoc();
6163 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6164 getPointerTy(),
6165 GA->getOffset(), OpFlag);
6166 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6168 // With PIC32, the address is actually $g + Offset.
6169 if (PIC32)
6170 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6171 DAG.getNode(X86ISD::GlobalBaseReg,
6172 DebugLoc(), getPointerTy()),
6173 Offset);
6175 // Lowering the machine isd will make sure everything is in the right
6176 // location.
6177 SDValue Args[] = { Offset };
6178 SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6180 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6181 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6182 MFI->setAdjustsStack(true);
6184 // And our return value (tls address) is in the standard call return value
6185 // location.
6186 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6187 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6190 assert(false &&
6191 "TLS not implemented for this target.");
6193 llvm_unreachable("Unreachable");
6194 return SDValue();
6198 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6199 /// take a 2 x i32 value to shift plus a shift amount.
6200 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6201 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6202 EVT VT = Op.getValueType();
6203 unsigned VTBits = VT.getSizeInBits();
6204 DebugLoc dl = Op.getDebugLoc();
6205 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6206 SDValue ShOpLo = Op.getOperand(0);
6207 SDValue ShOpHi = Op.getOperand(1);
6208 SDValue ShAmt = Op.getOperand(2);
6209 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6210 DAG.getConstant(VTBits - 1, MVT::i8))
6211 : DAG.getConstant(0, VT);
6213 SDValue Tmp2, Tmp3;
6214 if (Op.getOpcode() == ISD::SHL_PARTS) {
6215 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6216 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6217 } else {
6218 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6219 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6222 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6223 DAG.getConstant(VTBits, MVT::i8));
6224 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6225 AndNode, DAG.getConstant(0, MVT::i8));
6227 SDValue Hi, Lo;
6228 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6229 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6230 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6232 if (Op.getOpcode() == ISD::SHL_PARTS) {
6233 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6234 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6235 } else {
6236 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6237 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6240 SDValue Ops[2] = { Lo, Hi };
6241 return DAG.getMergeValues(Ops, 2, dl);
6244 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6245 SelectionDAG &DAG) const {
6246 EVT SrcVT = Op.getOperand(0).getValueType();
6248 if (SrcVT.isVector())
6249 return SDValue();
6251 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6252 "Unknown SINT_TO_FP to lower!");
6254 // These are really Legal; return the operand so the caller accepts it as
6255 // Legal.
6256 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6257 return Op;
6258 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6259 Subtarget->is64Bit()) {
6260 return Op;
6263 DebugLoc dl = Op.getDebugLoc();
6264 unsigned Size = SrcVT.getSizeInBits()/8;
6265 MachineFunction &MF = DAG.getMachineFunction();
6266 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6267 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6268 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6269 StackSlot,
6270 MachinePointerInfo::getFixedStack(SSFI),
6271 false, false, 0);
6272 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6275 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6276 SDValue StackSlot,
6277 SelectionDAG &DAG) const {
6278 // Build the FILD
6279 DebugLoc DL = Op.getDebugLoc();
6280 SDVTList Tys;
6281 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6282 if (useSSE)
6283 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6284 else
6285 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6287 unsigned ByteSize = SrcVT.getSizeInBits()/8;
6289 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6290 MachineMemOperand *MMO =
6291 DAG.getMachineFunction()
6292 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6293 MachineMemOperand::MOLoad, ByteSize, ByteSize);
6295 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6296 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6297 X86ISD::FILD, DL,
6298 Tys, Ops, array_lengthof(Ops),
6299 SrcVT, MMO);
6301 if (useSSE) {
6302 Chain = Result.getValue(1);
6303 SDValue InFlag = Result.getValue(2);
6305 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6306 // shouldn't be necessary except that RFP cannot be live across
6307 // multiple blocks. When stackifier is fixed, they can be uncoupled.
6308 MachineFunction &MF = DAG.getMachineFunction();
6309 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6310 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6311 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6312 Tys = DAG.getVTList(MVT::Other);
6313 SDValue Ops[] = {
6314 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6316 MachineMemOperand *MMO =
6317 DAG.getMachineFunction()
6318 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6319 MachineMemOperand::MOStore, SSFISize, SSFISize);
6321 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6322 Ops, array_lengthof(Ops),
6323 Op.getValueType(), MMO);
6324 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6325 MachinePointerInfo::getFixedStack(SSFI),
6326 false, false, 0);
6329 return Result;
6332 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6333 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6334 SelectionDAG &DAG) const {
6335 // This algorithm is not obvious. Here it is in C code, more or less:
6337 double uint64_to_double( uint32_t hi, uint32_t lo ) {
6338 static const __m128i exp = { 0x4330000045300000ULL, 0 };
6339 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6341 // Copy ints to xmm registers.
6342 __m128i xh = _mm_cvtsi32_si128( hi );
6343 __m128i xl = _mm_cvtsi32_si128( lo );
6345 // Combine into low half of a single xmm register.
6346 __m128i x = _mm_unpacklo_epi32( xh, xl );
6347 __m128d d;
6348 double sd;
6350 // Merge in appropriate exponents to give the integer bits the right
6351 // magnitude.
6352 x = _mm_unpacklo_epi32( x, exp );
6354 // Subtract away the biases to deal with the IEEE-754 double precision
6355 // implicit 1.
6356 d = _mm_sub_pd( (__m128d) x, bias );
6358 // All conversions up to here are exact. The correctly rounded result is
6359 // calculated using the current rounding mode using the following
6360 // horizontal add.
6361 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6362 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
6363 // store doesn't really need to be here (except
6364 // maybe to zero the other double)
6365 return sd;
6369 DebugLoc dl = Op.getDebugLoc();
6370 LLVMContext *Context = DAG.getContext();
6372 // Build some magic constants.
6373 std::vector<Constant*> CV0;
6374 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6375 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6376 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6377 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6378 Constant *C0 = ConstantVector::get(CV0);
6379 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6381 std::vector<Constant*> CV1;
6382 CV1.push_back(
6383 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6384 CV1.push_back(
6385 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6386 Constant *C1 = ConstantVector::get(CV1);
6387 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6389 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6390 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6391 Op.getOperand(0),
6392 DAG.getIntPtrConstant(1)));
6393 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6394 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6395 Op.getOperand(0),
6396 DAG.getIntPtrConstant(0)));
6397 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6398 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6399 MachinePointerInfo::getConstantPool(),
6400 false, false, 16);
6401 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6402 SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6403 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6404 MachinePointerInfo::getConstantPool(),
6405 false, false, 16);
6406 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6408 // Add the halves; easiest way is to swap them into another reg first.
6409 int ShufMask[2] = { 1, -1 };
6410 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6411 DAG.getUNDEF(MVT::v2f64), ShufMask);
6412 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6413 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6414 DAG.getIntPtrConstant(0));
6417 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6418 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6419 SelectionDAG &DAG) const {
6420 DebugLoc dl = Op.getDebugLoc();
6421 // FP constant to bias correct the final result.
6422 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6423 MVT::f64);
6425 // Load the 32-bit value into an XMM register.
6426 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6427 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6428 Op.getOperand(0),
6429 DAG.getIntPtrConstant(0)));
6431 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6432 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6433 DAG.getIntPtrConstant(0));
6435 // Or the load with the bias.
6436 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6437 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6438 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6439 MVT::v2f64, Load)),
6440 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6441 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6442 MVT::v2f64, Bias)));
6443 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6444 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6445 DAG.getIntPtrConstant(0));
6447 // Subtract the bias.
6448 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6450 // Handle final rounding.
6451 EVT DestVT = Op.getValueType();
6453 if (DestVT.bitsLT(MVT::f64)) {
6454 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6455 DAG.getIntPtrConstant(0));
6456 } else if (DestVT.bitsGT(MVT::f64)) {
6457 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6460 // Handle final rounding.
6461 return Sub;
6464 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6465 SelectionDAG &DAG) const {
6466 SDValue N0 = Op.getOperand(0);
6467 DebugLoc dl = Op.getDebugLoc();
6469 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6470 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6471 // the optimization here.
6472 if (DAG.SignBitIsZero(N0))
6473 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6475 EVT SrcVT = N0.getValueType();
6476 EVT DstVT = Op.getValueType();
6477 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6478 return LowerUINT_TO_FP_i64(Op, DAG);
6479 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6480 return LowerUINT_TO_FP_i32(Op, DAG);
6482 // Make a 64-bit buffer, and use it to build an FILD.
6483 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6484 if (SrcVT == MVT::i32) {
6485 SDValue WordOff = DAG.getConstant(4, getPointerTy());
6486 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6487 getPointerTy(), StackSlot, WordOff);
6488 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6489 StackSlot, MachinePointerInfo(),
6490 false, false, 0);
6491 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6492 OffsetSlot, MachinePointerInfo(),
6493 false, false, 0);
6494 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6495 return Fild;
6498 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6499 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6500 StackSlot, MachinePointerInfo(),
6501 false, false, 0);
6502 // For i64 source, we need to add the appropriate power of 2 if the input
6503 // was negative. This is the same as the optimization in
6504 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6505 // we must be careful to do the computation in x87 extended precision, not
6506 // in SSE. (The generic code can't know it's OK to do this, or how to.)
6507 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6508 MachineMemOperand *MMO =
6509 DAG.getMachineFunction()
6510 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6511 MachineMemOperand::MOLoad, 8, 8);
6513 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6514 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6515 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6516 MVT::i64, MMO);
6518 APInt FF(32, 0x5F800000ULL);
6520 // Check whether the sign bit is set.
6521 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6522 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6523 ISD::SETLT);
6525 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6526 SDValue FudgePtr = DAG.getConstantPool(
6527 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6528 getPointerTy());
6530 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6531 SDValue Zero = DAG.getIntPtrConstant(0);
6532 SDValue Four = DAG.getIntPtrConstant(4);
6533 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6534 Zero, Four);
6535 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6537 // Load the value out, extending it from f32 to f80.
6538 // FIXME: Avoid the extend by constructing the right constant pool?
6539 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6540 FudgePtr, MachinePointerInfo::getConstantPool(),
6541 MVT::f32, false, false, 4);
6542 // Extend everything to 80 bits to force it to be done on x87.
6543 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6544 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6547 std::pair<SDValue,SDValue> X86TargetLowering::
6548 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6549 DebugLoc DL = Op.getDebugLoc();
6551 EVT DstTy = Op.getValueType();
6553 if (!IsSigned) {
6554 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6555 DstTy = MVT::i64;
6558 assert(DstTy.getSimpleVT() <= MVT::i64 &&
6559 DstTy.getSimpleVT() >= MVT::i16 &&
6560 "Unknown FP_TO_SINT to lower!");
6562 // These are really Legal.
6563 if (DstTy == MVT::i32 &&
6564 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6565 return std::make_pair(SDValue(), SDValue());
6566 if (Subtarget->is64Bit() &&
6567 DstTy == MVT::i64 &&
6568 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6569 return std::make_pair(SDValue(), SDValue());
6571 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6572 // stack slot.
6573 MachineFunction &MF = DAG.getMachineFunction();
6574 unsigned MemSize = DstTy.getSizeInBits()/8;
6575 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6576 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6580 unsigned Opc;
6581 switch (DstTy.getSimpleVT().SimpleTy) {
6582 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6583 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6584 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6585 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6588 SDValue Chain = DAG.getEntryNode();
6589 SDValue Value = Op.getOperand(0);
6590 EVT TheVT = Op.getOperand(0).getValueType();
6591 if (isScalarFPTypeInSSEReg(TheVT)) {
6592 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6593 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6594 MachinePointerInfo::getFixedStack(SSFI),
6595 false, false, 0);
6596 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6597 SDValue Ops[] = {
6598 Chain, StackSlot, DAG.getValueType(TheVT)
6601 MachineMemOperand *MMO =
6602 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6603 MachineMemOperand::MOLoad, MemSize, MemSize);
6604 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6605 DstTy, MMO);
6606 Chain = Value.getValue(1);
6607 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6608 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6611 MachineMemOperand *MMO =
6612 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6613 MachineMemOperand::MOStore, MemSize, MemSize);
6615 // Build the FP_TO_INT*_IN_MEM
6616 SDValue Ops[] = { Chain, Value, StackSlot };
6617 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6618 Ops, 3, DstTy, MMO);
6620 return std::make_pair(FIST, StackSlot);
6623 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6624 SelectionDAG &DAG) const {
6625 if (Op.getValueType().isVector())
6626 return SDValue();
6628 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6629 SDValue FIST = Vals.first, StackSlot = Vals.second;
6630 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6631 if (FIST.getNode() == 0) return Op;
6633 // Load the result.
6634 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6635 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6638 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6639 SelectionDAG &DAG) const {
6640 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6641 SDValue FIST = Vals.first, StackSlot = Vals.second;
6642 assert(FIST.getNode() && "Unexpected failure");
6644 // Load the result.
6645 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6646 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6649 SDValue X86TargetLowering::LowerFABS(SDValue Op,
6650 SelectionDAG &DAG) const {
6651 LLVMContext *Context = DAG.getContext();
6652 DebugLoc dl = Op.getDebugLoc();
6653 EVT VT = Op.getValueType();
6654 EVT EltVT = VT;
6655 if (VT.isVector())
6656 EltVT = VT.getVectorElementType();
6657 std::vector<Constant*> CV;
6658 if (EltVT == MVT::f64) {
6659 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6660 CV.push_back(C);
6661 CV.push_back(C);
6662 } else {
6663 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6664 CV.push_back(C);
6665 CV.push_back(C);
6666 CV.push_back(C);
6667 CV.push_back(C);
6669 Constant *C = ConstantVector::get(CV);
6670 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6671 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6672 MachinePointerInfo::getConstantPool(),
6673 false, false, 16);
6674 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6677 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6678 LLVMContext *Context = DAG.getContext();
6679 DebugLoc dl = Op.getDebugLoc();
6680 EVT VT = Op.getValueType();
6681 EVT EltVT = VT;
6682 if (VT.isVector())
6683 EltVT = VT.getVectorElementType();
6684 std::vector<Constant*> CV;
6685 if (EltVT == MVT::f64) {
6686 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6687 CV.push_back(C);
6688 CV.push_back(C);
6689 } else {
6690 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6691 CV.push_back(C);
6692 CV.push_back(C);
6693 CV.push_back(C);
6694 CV.push_back(C);
6696 Constant *C = ConstantVector::get(CV);
6697 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6698 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6699 MachinePointerInfo::getConstantPool(),
6700 false, false, 16);
6701 if (VT.isVector()) {
6702 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6703 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6704 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6705 Op.getOperand(0)),
6706 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6707 } else {
6708 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6712 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6713 LLVMContext *Context = DAG.getContext();
6714 SDValue Op0 = Op.getOperand(0);
6715 SDValue Op1 = Op.getOperand(1);
6716 DebugLoc dl = Op.getDebugLoc();
6717 EVT VT = Op.getValueType();
6718 EVT SrcVT = Op1.getValueType();
6720 // If second operand is smaller, extend it first.
6721 if (SrcVT.bitsLT(VT)) {
6722 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6723 SrcVT = VT;
6725 // And if it is bigger, shrink it first.
6726 if (SrcVT.bitsGT(VT)) {
6727 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6728 SrcVT = VT;
6731 // At this point the operands and the result should have the same
6732 // type, and that won't be f80 since that is not custom lowered.
6734 // First get the sign bit of second operand.
6735 std::vector<Constant*> CV;
6736 if (SrcVT == MVT::f64) {
6737 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6738 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6739 } else {
6740 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6741 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6742 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6743 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6745 Constant *C = ConstantVector::get(CV);
6746 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6747 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6748 MachinePointerInfo::getConstantPool(),
6749 false, false, 16);
6750 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6752 // Shift sign bit right or left if the two operands have different types.
6753 if (SrcVT.bitsGT(VT)) {
6754 // Op0 is MVT::f32, Op1 is MVT::f64.
6755 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6756 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6757 DAG.getConstant(32, MVT::i32));
6758 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6759 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6760 DAG.getIntPtrConstant(0));
6763 // Clear first operand sign bit.
6764 CV.clear();
6765 if (VT == MVT::f64) {
6766 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6767 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6768 } else {
6769 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6770 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6771 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6772 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6774 C = ConstantVector::get(CV);
6775 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6776 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6777 MachinePointerInfo::getConstantPool(),
6778 false, false, 16);
6779 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6781 // Or the value with the sign bit.
6782 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6785 /// Emit nodes that will be selected as "test Op0,Op0", or something
6786 /// equivalent.
6787 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6788 SelectionDAG &DAG) const {
6789 DebugLoc dl = Op.getDebugLoc();
6791 // CF and OF aren't always set the way we want. Determine which
6792 // of these we need.
6793 bool NeedCF = false;
6794 bool NeedOF = false;
6795 switch (X86CC) {
6796 default: break;
6797 case X86::COND_A: case X86::COND_AE:
6798 case X86::COND_B: case X86::COND_BE:
6799 NeedCF = true;
6800 break;
6801 case X86::COND_G: case X86::COND_GE:
6802 case X86::COND_L: case X86::COND_LE:
6803 case X86::COND_O: case X86::COND_NO:
6804 NeedOF = true;
6805 break;
6808 // See if we can use the EFLAGS value from the operand instead of
6809 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6810 // we prove that the arithmetic won't overflow, we can't use OF or CF.
6811 if (Op.getResNo() != 0 || NeedOF || NeedCF)
6812 // Emit a CMP with 0, which is the TEST pattern.
6813 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6814 DAG.getConstant(0, Op.getValueType()));
6816 unsigned Opcode = 0;
6817 unsigned NumOperands = 0;
6818 switch (Op.getNode()->getOpcode()) {
6819 case ISD::ADD:
6820 // Due to an isel shortcoming, be conservative if this add is likely to be
6821 // selected as part of a load-modify-store instruction. When the root node
6822 // in a match is a store, isel doesn't know how to remap non-chain non-flag
6823 // uses of other nodes in the match, such as the ADD in this case. This
6824 // leads to the ADD being left around and reselected, with the result being
6825 // two adds in the output. Alas, even if none our users are stores, that
6826 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
6827 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
6828 // climbing the DAG back to the root, and it doesn't seem to be worth the
6829 // effort.
6830 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6831 UE = Op.getNode()->use_end(); UI != UE; ++UI)
6832 if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6833 goto default_case;
6835 if (ConstantSDNode *C =
6836 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6837 // An add of one will be selected as an INC.
6838 if (C->getAPIntValue() == 1) {
6839 Opcode = X86ISD::INC;
6840 NumOperands = 1;
6841 break;
6844 // An add of negative one (subtract of one) will be selected as a DEC.
6845 if (C->getAPIntValue().isAllOnesValue()) {
6846 Opcode = X86ISD::DEC;
6847 NumOperands = 1;
6848 break;
6852 // Otherwise use a regular EFLAGS-setting add.
6853 Opcode = X86ISD::ADD;
6854 NumOperands = 2;
6855 break;
6856 case ISD::AND: {
6857 // If the primary and result isn't used, don't bother using X86ISD::AND,
6858 // because a TEST instruction will be better.
6859 bool NonFlagUse = false;
6860 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6861 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6862 SDNode *User = *UI;
6863 unsigned UOpNo = UI.getOperandNo();
6864 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6865 // Look pass truncate.
6866 UOpNo = User->use_begin().getOperandNo();
6867 User = *User->use_begin();
6870 if (User->getOpcode() != ISD::BRCOND &&
6871 User->getOpcode() != ISD::SETCC &&
6872 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6873 NonFlagUse = true;
6874 break;
6878 if (!NonFlagUse)
6879 break;
6881 // FALL THROUGH
6882 case ISD::SUB:
6883 case ISD::OR:
6884 case ISD::XOR:
6885 // Due to the ISEL shortcoming noted above, be conservative if this op is
6886 // likely to be selected as part of a load-modify-store instruction.
6887 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6888 UE = Op.getNode()->use_end(); UI != UE; ++UI)
6889 if (UI->getOpcode() == ISD::STORE)
6890 goto default_case;
6892 // Otherwise use a regular EFLAGS-setting instruction.
6893 switch (Op.getNode()->getOpcode()) {
6894 default: llvm_unreachable("unexpected operator!");
6895 case ISD::SUB: Opcode = X86ISD::SUB; break;
6896 case ISD::OR: Opcode = X86ISD::OR; break;
6897 case ISD::XOR: Opcode = X86ISD::XOR; break;
6898 case ISD::AND: Opcode = X86ISD::AND; break;
6901 NumOperands = 2;
6902 break;
6903 case X86ISD::ADD:
6904 case X86ISD::SUB:
6905 case X86ISD::INC:
6906 case X86ISD::DEC:
6907 case X86ISD::OR:
6908 case X86ISD::XOR:
6909 case X86ISD::AND:
6910 return SDValue(Op.getNode(), 1);
6911 default:
6912 default_case:
6913 break;
6916 if (Opcode == 0)
6917 // Emit a CMP with 0, which is the TEST pattern.
6918 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6919 DAG.getConstant(0, Op.getValueType()));
6921 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6922 SmallVector<SDValue, 4> Ops;
6923 for (unsigned i = 0; i != NumOperands; ++i)
6924 Ops.push_back(Op.getOperand(i));
6926 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6927 DAG.ReplaceAllUsesWith(Op, New);
6928 return SDValue(New.getNode(), 1);
6931 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
6932 /// equivalent.
6933 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6934 SelectionDAG &DAG) const {
6935 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6936 if (C->getAPIntValue() == 0)
6937 return EmitTest(Op0, X86CC, DAG);
6939 DebugLoc dl = Op0.getDebugLoc();
6940 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6943 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6944 /// if it's possible.
6945 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6946 DebugLoc dl, SelectionDAG &DAG) const {
6947 SDValue Op0 = And.getOperand(0);
6948 SDValue Op1 = And.getOperand(1);
6949 if (Op0.getOpcode() == ISD::TRUNCATE)
6950 Op0 = Op0.getOperand(0);
6951 if (Op1.getOpcode() == ISD::TRUNCATE)
6952 Op1 = Op1.getOperand(0);
6954 SDValue LHS, RHS;
6955 if (Op1.getOpcode() == ISD::SHL)
6956 std::swap(Op0, Op1);
6957 if (Op0.getOpcode() == ISD::SHL) {
6958 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6959 if (And00C->getZExtValue() == 1) {
6960 // If we looked past a truncate, check that it's only truncating away
6961 // known zeros.
6962 unsigned BitWidth = Op0.getValueSizeInBits();
6963 unsigned AndBitWidth = And.getValueSizeInBits();
6964 if (BitWidth > AndBitWidth) {
6965 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6966 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6967 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6968 return SDValue();
6970 LHS = Op1;
6971 RHS = Op0.getOperand(1);
6973 } else if (Op1.getOpcode() == ISD::Constant) {
6974 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6975 SDValue AndLHS = Op0;
6976 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6977 LHS = AndLHS.getOperand(0);
6978 RHS = AndLHS.getOperand(1);
6982 if (LHS.getNode()) {
6983 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
6984 // instruction. Since the shift amount is in-range-or-undefined, we know
6985 // that doing a bittest on the i32 value is ok. We extend to i32 because
6986 // the encoding for the i16 version is larger than the i32 version.
6987 // Also promote i16 to i32 for performance / code size reason.
6988 if (LHS.getValueType() == MVT::i8 ||
6989 LHS.getValueType() == MVT::i16)
6990 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6992 // If the operand types disagree, extend the shift amount to match. Since
6993 // BT ignores high bits (like shifts) we can use anyextend.
6994 if (LHS.getValueType() != RHS.getValueType())
6995 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6997 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6998 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6999 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7000 DAG.getConstant(Cond, MVT::i8), BT);
7003 return SDValue();
7006 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7007 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7008 SDValue Op0 = Op.getOperand(0);
7009 SDValue Op1 = Op.getOperand(1);
7010 DebugLoc dl = Op.getDebugLoc();
7011 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7013 // Optimize to BT if possible.
7014 // Lower (X & (1 << N)) == 0 to BT(X, N).
7015 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7016 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7017 if (Op0.getOpcode() == ISD::AND &&
7018 Op0.hasOneUse() &&
7019 Op1.getOpcode() == ISD::Constant &&
7020 cast<ConstantSDNode>(Op1)->isNullValue() &&
7021 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7022 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7023 if (NewSetCC.getNode())
7024 return NewSetCC;
7027 // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7028 if (Op0.getOpcode() == X86ISD::SETCC &&
7029 Op1.getOpcode() == ISD::Constant &&
7030 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7031 cast<ConstantSDNode>(Op1)->isNullValue()) &&
7032 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7033 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7034 bool Invert = (CC == ISD::SETNE) ^
7035 cast<ConstantSDNode>(Op1)->isNullValue();
7036 if (Invert)
7037 CCode = X86::GetOppositeBranchCondition(CCode);
7038 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7039 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7042 bool isFP = Op1.getValueType().isFloatingPoint();
7043 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7044 if (X86CC == X86::COND_INVALID)
7045 return SDValue();
7047 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7049 // Use sbb x, x to materialize carry bit into a GPR.
7050 if (X86CC == X86::COND_B)
7051 return DAG.getNode(ISD::AND, dl, MVT::i8,
7052 DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7053 DAG.getConstant(X86CC, MVT::i8), Cond),
7054 DAG.getConstant(1, MVT::i8));
7056 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7057 DAG.getConstant(X86CC, MVT::i8), Cond);
7060 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7061 SDValue Cond;
7062 SDValue Op0 = Op.getOperand(0);
7063 SDValue Op1 = Op.getOperand(1);
7064 SDValue CC = Op.getOperand(2);
7065 EVT VT = Op.getValueType();
7066 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7067 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7068 DebugLoc dl = Op.getDebugLoc();
7070 if (isFP) {
7071 unsigned SSECC = 8;
7072 EVT VT0 = Op0.getValueType();
7073 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7074 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7075 bool Swap = false;
7077 switch (SetCCOpcode) {
7078 default: break;
7079 case ISD::SETOEQ:
7080 case ISD::SETEQ: SSECC = 0; break;
7081 case ISD::SETOGT:
7082 case ISD::SETGT: Swap = true; // Fallthrough
7083 case ISD::SETLT:
7084 case ISD::SETOLT: SSECC = 1; break;
7085 case ISD::SETOGE:
7086 case ISD::SETGE: Swap = true; // Fallthrough
7087 case ISD::SETLE:
7088 case ISD::SETOLE: SSECC = 2; break;
7089 case ISD::SETUO: SSECC = 3; break;
7090 case ISD::SETUNE:
7091 case ISD::SETNE: SSECC = 4; break;
7092 case ISD::SETULE: Swap = true;
7093 case ISD::SETUGE: SSECC = 5; break;
7094 case ISD::SETULT: Swap = true;
7095 case ISD::SETUGT: SSECC = 6; break;
7096 case ISD::SETO: SSECC = 7; break;
7098 if (Swap)
7099 std::swap(Op0, Op1);
7101 // In the two special cases we can't handle, emit two comparisons.
7102 if (SSECC == 8) {
7103 if (SetCCOpcode == ISD::SETUEQ) {
7104 SDValue UNORD, EQ;
7105 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7106 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7107 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7109 else if (SetCCOpcode == ISD::SETONE) {
7110 SDValue ORD, NEQ;
7111 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7112 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7113 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7115 llvm_unreachable("Illegal FP comparison");
7117 // Handle all other FP comparisons here.
7118 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7121 // We are handling one of the integer comparisons here. Since SSE only has
7122 // GT and EQ comparisons for integer, swapping operands and multiple
7123 // operations may be required for some comparisons.
7124 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7125 bool Swap = false, Invert = false, FlipSigns = false;
7127 switch (VT.getSimpleVT().SimpleTy) {
7128 default: break;
7129 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7130 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7131 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7132 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7135 switch (SetCCOpcode) {
7136 default: break;
7137 case ISD::SETNE: Invert = true;
7138 case ISD::SETEQ: Opc = EQOpc; break;
7139 case ISD::SETLT: Swap = true;
7140 case ISD::SETGT: Opc = GTOpc; break;
7141 case ISD::SETGE: Swap = true;
7142 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
7143 case ISD::SETULT: Swap = true;
7144 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7145 case ISD::SETUGE: Swap = true;
7146 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7148 if (Swap)
7149 std::swap(Op0, Op1);
7151 // Since SSE has no unsigned integer comparisons, we need to flip the sign
7152 // bits of the inputs before performing those operations.
7153 if (FlipSigns) {
7154 EVT EltVT = VT.getVectorElementType();
7155 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7156 EltVT);
7157 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7158 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7159 SignBits.size());
7160 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7161 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7164 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7166 // If the logical-not of the result is required, perform that now.
7167 if (Invert)
7168 Result = DAG.getNOT(dl, Result, VT);
7170 return Result;
7173 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7174 static bool isX86LogicalCmp(SDValue Op) {
7175 unsigned Opc = Op.getNode()->getOpcode();
7176 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7177 return true;
7178 if (Op.getResNo() == 1 &&
7179 (Opc == X86ISD::ADD ||
7180 Opc == X86ISD::SUB ||
7181 Opc == X86ISD::SMUL ||
7182 Opc == X86ISD::UMUL ||
7183 Opc == X86ISD::INC ||
7184 Opc == X86ISD::DEC ||
7185 Opc == X86ISD::OR ||
7186 Opc == X86ISD::XOR ||
7187 Opc == X86ISD::AND))
7188 return true;
7190 return false;
7193 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7194 bool addTest = true;
7195 SDValue Cond = Op.getOperand(0);
7196 DebugLoc dl = Op.getDebugLoc();
7197 SDValue CC;
7199 if (Cond.getOpcode() == ISD::SETCC) {
7200 SDValue NewCond = LowerSETCC(Cond, DAG);
7201 if (NewCond.getNode())
7202 Cond = NewCond;
7205 // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7206 SDValue Op1 = Op.getOperand(1);
7207 SDValue Op2 = Op.getOperand(2);
7208 if (Cond.getOpcode() == X86ISD::SETCC &&
7209 cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7210 SDValue Cmp = Cond.getOperand(1);
7211 if (Cmp.getOpcode() == X86ISD::CMP) {
7212 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7213 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7214 ConstantSDNode *RHSC =
7215 dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7216 if (N1C && N1C->isAllOnesValue() &&
7217 N2C && N2C->isNullValue() &&
7218 RHSC && RHSC->isNullValue()) {
7219 SDValue CmpOp0 = Cmp.getOperand(0);
7220 Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7221 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7222 return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7223 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7228 // Look pass (and (setcc_carry (cmp ...)), 1).
7229 if (Cond.getOpcode() == ISD::AND &&
7230 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7231 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7232 if (C && C->getAPIntValue() == 1)
7233 Cond = Cond.getOperand(0);
7236 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7237 // setting operand in place of the X86ISD::SETCC.
7238 if (Cond.getOpcode() == X86ISD::SETCC ||
7239 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7240 CC = Cond.getOperand(0);
7242 SDValue Cmp = Cond.getOperand(1);
7243 unsigned Opc = Cmp.getOpcode();
7244 EVT VT = Op.getValueType();
7246 bool IllegalFPCMov = false;
7247 if (VT.isFloatingPoint() && !VT.isVector() &&
7248 !isScalarFPTypeInSSEReg(VT)) // FPStack?
7249 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7251 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7252 Opc == X86ISD::BT) { // FIXME
7253 Cond = Cmp;
7254 addTest = false;
7258 if (addTest) {
7259 // Look pass the truncate.
7260 if (Cond.getOpcode() == ISD::TRUNCATE)
7261 Cond = Cond.getOperand(0);
7263 // We know the result of AND is compared against zero. Try to match
7264 // it to BT.
7265 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7266 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7267 if (NewSetCC.getNode()) {
7268 CC = NewSetCC.getOperand(0);
7269 Cond = NewSetCC.getOperand(1);
7270 addTest = false;
7275 if (addTest) {
7276 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7277 Cond = EmitTest(Cond, X86::COND_NE, DAG);
7280 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7281 // condition is true.
7282 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7283 SDValue Ops[] = { Op2, Op1, CC, Cond };
7284 return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7287 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7288 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7289 // from the AND / OR.
7290 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7291 Opc = Op.getOpcode();
7292 if (Opc != ISD::OR && Opc != ISD::AND)
7293 return false;
7294 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7295 Op.getOperand(0).hasOneUse() &&
7296 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7297 Op.getOperand(1).hasOneUse());
7300 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7301 // 1 and that the SETCC node has a single use.
7302 static bool isXor1OfSetCC(SDValue Op) {
7303 if (Op.getOpcode() != ISD::XOR)
7304 return false;
7305 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7306 if (N1C && N1C->getAPIntValue() == 1) {
7307 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7308 Op.getOperand(0).hasOneUse();
7310 return false;
7313 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7314 bool addTest = true;
7315 SDValue Chain = Op.getOperand(0);
7316 SDValue Cond = Op.getOperand(1);
7317 SDValue Dest = Op.getOperand(2);
7318 DebugLoc dl = Op.getDebugLoc();
7319 SDValue CC;
7321 if (Cond.getOpcode() == ISD::SETCC) {
7322 SDValue NewCond = LowerSETCC(Cond, DAG);
7323 if (NewCond.getNode())
7324 Cond = NewCond;
7326 #if 0
7327 // FIXME: LowerXALUO doesn't handle these!!
7328 else if (Cond.getOpcode() == X86ISD::ADD ||
7329 Cond.getOpcode() == X86ISD::SUB ||
7330 Cond.getOpcode() == X86ISD::SMUL ||
7331 Cond.getOpcode() == X86ISD::UMUL)
7332 Cond = LowerXALUO(Cond, DAG);
7333 #endif
7335 // Look pass (and (setcc_carry (cmp ...)), 1).
7336 if (Cond.getOpcode() == ISD::AND &&
7337 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7338 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7339 if (C && C->getAPIntValue() == 1)
7340 Cond = Cond.getOperand(0);
7343 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7344 // setting operand in place of the X86ISD::SETCC.
7345 if (Cond.getOpcode() == X86ISD::SETCC ||
7346 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7347 CC = Cond.getOperand(0);
7349 SDValue Cmp = Cond.getOperand(1);
7350 unsigned Opc = Cmp.getOpcode();
7351 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7352 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7353 Cond = Cmp;
7354 addTest = false;
7355 } else {
7356 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7357 default: break;
7358 case X86::COND_O:
7359 case X86::COND_B:
7360 // These can only come from an arithmetic instruction with overflow,
7361 // e.g. SADDO, UADDO.
7362 Cond = Cond.getNode()->getOperand(1);
7363 addTest = false;
7364 break;
7367 } else {
7368 unsigned CondOpc;
7369 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7370 SDValue Cmp = Cond.getOperand(0).getOperand(1);
7371 if (CondOpc == ISD::OR) {
7372 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7373 // two branches instead of an explicit OR instruction with a
7374 // separate test.
7375 if (Cmp == Cond.getOperand(1).getOperand(1) &&
7376 isX86LogicalCmp(Cmp)) {
7377 CC = Cond.getOperand(0).getOperand(0);
7378 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7379 Chain, Dest, CC, Cmp);
7380 CC = Cond.getOperand(1).getOperand(0);
7381 Cond = Cmp;
7382 addTest = false;
7384 } else { // ISD::AND
7385 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7386 // two branches instead of an explicit AND instruction with a
7387 // separate test. However, we only do this if this block doesn't
7388 // have a fall-through edge, because this requires an explicit
7389 // jmp when the condition is false.
7390 if (Cmp == Cond.getOperand(1).getOperand(1) &&
7391 isX86LogicalCmp(Cmp) &&
7392 Op.getNode()->hasOneUse()) {
7393 X86::CondCode CCode =
7394 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7395 CCode = X86::GetOppositeBranchCondition(CCode);
7396 CC = DAG.getConstant(CCode, MVT::i8);
7397 SDNode *User = *Op.getNode()->use_begin();
7398 // Look for an unconditional branch following this conditional branch.
7399 // We need this because we need to reverse the successors in order
7400 // to implement FCMP_OEQ.
7401 if (User->getOpcode() == ISD::BR) {
7402 SDValue FalseBB = User->getOperand(1);
7403 SDNode *NewBR =
7404 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7405 assert(NewBR == User);
7406 (void)NewBR;
7407 Dest = FalseBB;
7409 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7410 Chain, Dest, CC, Cmp);
7411 X86::CondCode CCode =
7412 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7413 CCode = X86::GetOppositeBranchCondition(CCode);
7414 CC = DAG.getConstant(CCode, MVT::i8);
7415 Cond = Cmp;
7416 addTest = false;
7420 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7421 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7422 // It should be transformed during dag combiner except when the condition
7423 // is set by a arithmetics with overflow node.
7424 X86::CondCode CCode =
7425 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7426 CCode = X86::GetOppositeBranchCondition(CCode);
7427 CC = DAG.getConstant(CCode, MVT::i8);
7428 Cond = Cond.getOperand(0).getOperand(1);
7429 addTest = false;
7433 if (addTest) {
7434 // Look pass the truncate.
7435 if (Cond.getOpcode() == ISD::TRUNCATE)
7436 Cond = Cond.getOperand(0);
7438 // We know the result of AND is compared against zero. Try to match
7439 // it to BT.
7440 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7441 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7442 if (NewSetCC.getNode()) {
7443 CC = NewSetCC.getOperand(0);
7444 Cond = NewSetCC.getOperand(1);
7445 addTest = false;
7450 if (addTest) {
7451 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7452 Cond = EmitTest(Cond, X86::COND_NE, DAG);
7454 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7455 Chain, Dest, CC, Cond);
7459 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7460 // Calls to _alloca is needed to probe the stack when allocating more than 4k
7461 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
7462 // that the guard pages used by the OS virtual memory manager are allocated in
7463 // correct sequence.
7464 SDValue
7465 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7466 SelectionDAG &DAG) const {
7467 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7468 "This should be used only on Windows targets");
7469 DebugLoc dl = Op.getDebugLoc();
7471 // Get the inputs.
7472 SDValue Chain = Op.getOperand(0);
7473 SDValue Size = Op.getOperand(1);
7474 // FIXME: Ensure alignment here
7476 SDValue Flag;
7478 EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7480 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7481 Flag = Chain.getValue(1);
7483 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7485 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7486 Flag = Chain.getValue(1);
7488 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7490 SDValue Ops1[2] = { Chain.getValue(0), Chain };
7491 return DAG.getMergeValues(Ops1, 2, dl);
7494 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7495 MachineFunction &MF = DAG.getMachineFunction();
7496 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7498 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7499 DebugLoc DL = Op.getDebugLoc();
7501 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7502 // vastart just stores the address of the VarArgsFrameIndex slot into the
7503 // memory location argument.
7504 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7505 getPointerTy());
7506 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7507 MachinePointerInfo(SV), false, false, 0);
7510 // __va_list_tag:
7511 // gp_offset (0 - 6 * 8)
7512 // fp_offset (48 - 48 + 8 * 16)
7513 // overflow_arg_area (point to parameters coming in memory).
7514 // reg_save_area
7515 SmallVector<SDValue, 8> MemOps;
7516 SDValue FIN = Op.getOperand(1);
7517 // Store gp_offset
7518 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7519 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7520 MVT::i32),
7521 FIN, MachinePointerInfo(SV), false, false, 0);
7522 MemOps.push_back(Store);
7524 // Store fp_offset
7525 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7526 FIN, DAG.getIntPtrConstant(4));
7527 Store = DAG.getStore(Op.getOperand(0), DL,
7528 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7529 MVT::i32),
7530 FIN, MachinePointerInfo(SV, 4), false, false, 0);
7531 MemOps.push_back(Store);
7533 // Store ptr to overflow_arg_area
7534 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7535 FIN, DAG.getIntPtrConstant(4));
7536 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7537 getPointerTy());
7538 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7539 MachinePointerInfo(SV, 8),
7540 false, false, 0);
7541 MemOps.push_back(Store);
7543 // Store ptr to reg_save_area.
7544 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7545 FIN, DAG.getIntPtrConstant(8));
7546 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7547 getPointerTy());
7548 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7549 MachinePointerInfo(SV, 16), false, false, 0);
7550 MemOps.push_back(Store);
7551 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7552 &MemOps[0], MemOps.size());
7555 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7556 assert(Subtarget->is64Bit() &&
7557 "LowerVAARG only handles 64-bit va_arg!");
7558 assert((Subtarget->isTargetLinux() ||
7559 Subtarget->isTargetDarwin()) &&
7560 "Unhandled target in LowerVAARG");
7561 assert(Op.getNode()->getNumOperands() == 4);
7562 SDValue Chain = Op.getOperand(0);
7563 SDValue SrcPtr = Op.getOperand(1);
7564 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7565 unsigned Align = Op.getConstantOperandVal(3);
7566 DebugLoc dl = Op.getDebugLoc();
7568 EVT ArgVT = Op.getNode()->getValueType(0);
7569 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7570 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7571 uint8_t ArgMode;
7573 // Decide which area this value should be read from.
7574 // TODO: Implement the AMD64 ABI in its entirety. This simple
7575 // selection mechanism works only for the basic types.
7576 if (ArgVT == MVT::f80) {
7577 llvm_unreachable("va_arg for f80 not yet implemented");
7578 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7579 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
7580 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7581 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
7582 } else {
7583 llvm_unreachable("Unhandled argument type in LowerVAARG");
7586 if (ArgMode == 2) {
7587 // Sanity Check: Make sure using fp_offset makes sense.
7588 assert(!UseSoftFloat &&
7589 !(DAG.getMachineFunction()
7590 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7591 Subtarget->hasSSE1());
7594 // Insert VAARG_64 node into the DAG
7595 // VAARG_64 returns two values: Variable Argument Address, Chain
7596 SmallVector<SDValue, 11> InstOps;
7597 InstOps.push_back(Chain);
7598 InstOps.push_back(SrcPtr);
7599 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7600 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7601 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7602 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7603 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7604 VTs, &InstOps[0], InstOps.size(),
7605 MVT::i64,
7606 MachinePointerInfo(SV),
7607 /*Align=*/0,
7608 /*Volatile=*/false,
7609 /*ReadMem=*/true,
7610 /*WriteMem=*/true);
7611 Chain = VAARG.getValue(1);
7613 // Load the next argument and return it
7614 return DAG.getLoad(ArgVT, dl,
7615 Chain,
7616 VAARG,
7617 MachinePointerInfo(),
7618 false, false, 0);
7621 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7622 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7623 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7624 SDValue Chain = Op.getOperand(0);
7625 SDValue DstPtr = Op.getOperand(1);
7626 SDValue SrcPtr = Op.getOperand(2);
7627 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7628 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7629 DebugLoc DL = Op.getDebugLoc();
7631 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7632 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7633 false,
7634 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7637 SDValue
7638 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7639 DebugLoc dl = Op.getDebugLoc();
7640 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7641 switch (IntNo) {
7642 default: return SDValue(); // Don't custom lower most intrinsics.
7643 // Comparison intrinsics.
7644 case Intrinsic::x86_sse_comieq_ss:
7645 case Intrinsic::x86_sse_comilt_ss:
7646 case Intrinsic::x86_sse_comile_ss:
7647 case Intrinsic::x86_sse_comigt_ss:
7648 case Intrinsic::x86_sse_comige_ss:
7649 case Intrinsic::x86_sse_comineq_ss:
7650 case Intrinsic::x86_sse_ucomieq_ss:
7651 case Intrinsic::x86_sse_ucomilt_ss:
7652 case Intrinsic::x86_sse_ucomile_ss:
7653 case Intrinsic::x86_sse_ucomigt_ss:
7654 case Intrinsic::x86_sse_ucomige_ss:
7655 case Intrinsic::x86_sse_ucomineq_ss:
7656 case Intrinsic::x86_sse2_comieq_sd:
7657 case Intrinsic::x86_sse2_comilt_sd:
7658 case Intrinsic::x86_sse2_comile_sd:
7659 case Intrinsic::x86_sse2_comigt_sd:
7660 case Intrinsic::x86_sse2_comige_sd:
7661 case Intrinsic::x86_sse2_comineq_sd:
7662 case Intrinsic::x86_sse2_ucomieq_sd:
7663 case Intrinsic::x86_sse2_ucomilt_sd:
7664 case Intrinsic::x86_sse2_ucomile_sd:
7665 case Intrinsic::x86_sse2_ucomigt_sd:
7666 case Intrinsic::x86_sse2_ucomige_sd:
7667 case Intrinsic::x86_sse2_ucomineq_sd: {
7668 unsigned Opc = 0;
7669 ISD::CondCode CC = ISD::SETCC_INVALID;
7670 switch (IntNo) {
7671 default: break;
7672 case Intrinsic::x86_sse_comieq_ss:
7673 case Intrinsic::x86_sse2_comieq_sd:
7674 Opc = X86ISD::COMI;
7675 CC = ISD::SETEQ;
7676 break;
7677 case Intrinsic::x86_sse_comilt_ss:
7678 case Intrinsic::x86_sse2_comilt_sd:
7679 Opc = X86ISD::COMI;
7680 CC = ISD::SETLT;
7681 break;
7682 case Intrinsic::x86_sse_comile_ss:
7683 case Intrinsic::x86_sse2_comile_sd:
7684 Opc = X86ISD::COMI;
7685 CC = ISD::SETLE;
7686 break;
7687 case Intrinsic::x86_sse_comigt_ss:
7688 case Intrinsic::x86_sse2_comigt_sd:
7689 Opc = X86ISD::COMI;
7690 CC = ISD::SETGT;
7691 break;
7692 case Intrinsic::x86_sse_comige_ss:
7693 case Intrinsic::x86_sse2_comige_sd:
7694 Opc = X86ISD::COMI;
7695 CC = ISD::SETGE;
7696 break;
7697 case Intrinsic::x86_sse_comineq_ss:
7698 case Intrinsic::x86_sse2_comineq_sd:
7699 Opc = X86ISD::COMI;
7700 CC = ISD::SETNE;
7701 break;
7702 case Intrinsic::x86_sse_ucomieq_ss:
7703 case Intrinsic::x86_sse2_ucomieq_sd:
7704 Opc = X86ISD::UCOMI;
7705 CC = ISD::SETEQ;
7706 break;
7707 case Intrinsic::x86_sse_ucomilt_ss:
7708 case Intrinsic::x86_sse2_ucomilt_sd:
7709 Opc = X86ISD::UCOMI;
7710 CC = ISD::SETLT;
7711 break;
7712 case Intrinsic::x86_sse_ucomile_ss:
7713 case Intrinsic::x86_sse2_ucomile_sd:
7714 Opc = X86ISD::UCOMI;
7715 CC = ISD::SETLE;
7716 break;
7717 case Intrinsic::x86_sse_ucomigt_ss:
7718 case Intrinsic::x86_sse2_ucomigt_sd:
7719 Opc = X86ISD::UCOMI;
7720 CC = ISD::SETGT;
7721 break;
7722 case Intrinsic::x86_sse_ucomige_ss:
7723 case Intrinsic::x86_sse2_ucomige_sd:
7724 Opc = X86ISD::UCOMI;
7725 CC = ISD::SETGE;
7726 break;
7727 case Intrinsic::x86_sse_ucomineq_ss:
7728 case Intrinsic::x86_sse2_ucomineq_sd:
7729 Opc = X86ISD::UCOMI;
7730 CC = ISD::SETNE;
7731 break;
7734 SDValue LHS = Op.getOperand(1);
7735 SDValue RHS = Op.getOperand(2);
7736 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7737 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7738 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7739 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7740 DAG.getConstant(X86CC, MVT::i8), Cond);
7741 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7743 // ptest and testp intrinsics. The intrinsic these come from are designed to
7744 // return an integer value, not just an instruction so lower it to the ptest
7745 // or testp pattern and a setcc for the result.
7746 case Intrinsic::x86_sse41_ptestz:
7747 case Intrinsic::x86_sse41_ptestc:
7748 case Intrinsic::x86_sse41_ptestnzc:
7749 case Intrinsic::x86_avx_ptestz_256:
7750 case Intrinsic::x86_avx_ptestc_256:
7751 case Intrinsic::x86_avx_ptestnzc_256:
7752 case Intrinsic::x86_avx_vtestz_ps:
7753 case Intrinsic::x86_avx_vtestc_ps:
7754 case Intrinsic::x86_avx_vtestnzc_ps:
7755 case Intrinsic::x86_avx_vtestz_pd:
7756 case Intrinsic::x86_avx_vtestc_pd:
7757 case Intrinsic::x86_avx_vtestnzc_pd:
7758 case Intrinsic::x86_avx_vtestz_ps_256:
7759 case Intrinsic::x86_avx_vtestc_ps_256:
7760 case Intrinsic::x86_avx_vtestnzc_ps_256:
7761 case Intrinsic::x86_avx_vtestz_pd_256:
7762 case Intrinsic::x86_avx_vtestc_pd_256:
7763 case Intrinsic::x86_avx_vtestnzc_pd_256: {
7764 bool IsTestPacked = false;
7765 unsigned X86CC = 0;
7766 switch (IntNo) {
7767 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7768 case Intrinsic::x86_avx_vtestz_ps:
7769 case Intrinsic::x86_avx_vtestz_pd:
7770 case Intrinsic::x86_avx_vtestz_ps_256:
7771 case Intrinsic::x86_avx_vtestz_pd_256:
7772 IsTestPacked = true; // Fallthrough
7773 case Intrinsic::x86_sse41_ptestz:
7774 case Intrinsic::x86_avx_ptestz_256:
7775 // ZF = 1
7776 X86CC = X86::COND_E;
7777 break;
7778 case Intrinsic::x86_avx_vtestc_ps:
7779 case Intrinsic::x86_avx_vtestc_pd:
7780 case Intrinsic::x86_avx_vtestc_ps_256:
7781 case Intrinsic::x86_avx_vtestc_pd_256:
7782 IsTestPacked = true; // Fallthrough
7783 case Intrinsic::x86_sse41_ptestc:
7784 case Intrinsic::x86_avx_ptestc_256:
7785 // CF = 1
7786 X86CC = X86::COND_B;
7787 break;
7788 case Intrinsic::x86_avx_vtestnzc_ps:
7789 case Intrinsic::x86_avx_vtestnzc_pd:
7790 case Intrinsic::x86_avx_vtestnzc_ps_256:
7791 case Intrinsic::x86_avx_vtestnzc_pd_256:
7792 IsTestPacked = true; // Fallthrough
7793 case Intrinsic::x86_sse41_ptestnzc:
7794 case Intrinsic::x86_avx_ptestnzc_256:
7795 // ZF and CF = 0
7796 X86CC = X86::COND_A;
7797 break;
7800 SDValue LHS = Op.getOperand(1);
7801 SDValue RHS = Op.getOperand(2);
7802 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7803 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7804 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7805 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7806 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7809 // Fix vector shift instructions where the last operand is a non-immediate
7810 // i32 value.
7811 case Intrinsic::x86_sse2_pslli_w:
7812 case Intrinsic::x86_sse2_pslli_d:
7813 case Intrinsic::x86_sse2_pslli_q:
7814 case Intrinsic::x86_sse2_psrli_w:
7815 case Intrinsic::x86_sse2_psrli_d:
7816 case Intrinsic::x86_sse2_psrli_q:
7817 case Intrinsic::x86_sse2_psrai_w:
7818 case Intrinsic::x86_sse2_psrai_d:
7819 case Intrinsic::x86_mmx_pslli_w:
7820 case Intrinsic::x86_mmx_pslli_d:
7821 case Intrinsic::x86_mmx_pslli_q:
7822 case Intrinsic::x86_mmx_psrli_w:
7823 case Intrinsic::x86_mmx_psrli_d:
7824 case Intrinsic::x86_mmx_psrli_q:
7825 case Intrinsic::x86_mmx_psrai_w:
7826 case Intrinsic::x86_mmx_psrai_d: {
7827 SDValue ShAmt = Op.getOperand(2);
7828 if (isa<ConstantSDNode>(ShAmt))
7829 return SDValue();
7831 unsigned NewIntNo = 0;
7832 EVT ShAmtVT = MVT::v4i32;
7833 switch (IntNo) {
7834 case Intrinsic::x86_sse2_pslli_w:
7835 NewIntNo = Intrinsic::x86_sse2_psll_w;
7836 break;
7837 case Intrinsic::x86_sse2_pslli_d:
7838 NewIntNo = Intrinsic::x86_sse2_psll_d;
7839 break;
7840 case Intrinsic::x86_sse2_pslli_q:
7841 NewIntNo = Intrinsic::x86_sse2_psll_q;
7842 break;
7843 case Intrinsic::x86_sse2_psrli_w:
7844 NewIntNo = Intrinsic::x86_sse2_psrl_w;
7845 break;
7846 case Intrinsic::x86_sse2_psrli_d:
7847 NewIntNo = Intrinsic::x86_sse2_psrl_d;
7848 break;
7849 case Intrinsic::x86_sse2_psrli_q:
7850 NewIntNo = Intrinsic::x86_sse2_psrl_q;
7851 break;
7852 case Intrinsic::x86_sse2_psrai_w:
7853 NewIntNo = Intrinsic::x86_sse2_psra_w;
7854 break;
7855 case Intrinsic::x86_sse2_psrai_d:
7856 NewIntNo = Intrinsic::x86_sse2_psra_d;
7857 break;
7858 default: {
7859 ShAmtVT = MVT::v2i32;
7860 switch (IntNo) {
7861 case Intrinsic::x86_mmx_pslli_w:
7862 NewIntNo = Intrinsic::x86_mmx_psll_w;
7863 break;
7864 case Intrinsic::x86_mmx_pslli_d:
7865 NewIntNo = Intrinsic::x86_mmx_psll_d;
7866 break;
7867 case Intrinsic::x86_mmx_pslli_q:
7868 NewIntNo = Intrinsic::x86_mmx_psll_q;
7869 break;
7870 case Intrinsic::x86_mmx_psrli_w:
7871 NewIntNo = Intrinsic::x86_mmx_psrl_w;
7872 break;
7873 case Intrinsic::x86_mmx_psrli_d:
7874 NewIntNo = Intrinsic::x86_mmx_psrl_d;
7875 break;
7876 case Intrinsic::x86_mmx_psrli_q:
7877 NewIntNo = Intrinsic::x86_mmx_psrl_q;
7878 break;
7879 case Intrinsic::x86_mmx_psrai_w:
7880 NewIntNo = Intrinsic::x86_mmx_psra_w;
7881 break;
7882 case Intrinsic::x86_mmx_psrai_d:
7883 NewIntNo = Intrinsic::x86_mmx_psra_d;
7884 break;
7885 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7887 break;
7891 // The vector shift intrinsics with scalars uses 32b shift amounts but
7892 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7893 // to be zero.
7894 SDValue ShOps[4];
7895 ShOps[0] = ShAmt;
7896 ShOps[1] = DAG.getConstant(0, MVT::i32);
7897 if (ShAmtVT == MVT::v4i32) {
7898 ShOps[2] = DAG.getUNDEF(MVT::i32);
7899 ShOps[3] = DAG.getUNDEF(MVT::i32);
7900 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7901 } else {
7902 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7903 // FIXME this must be lowered to get rid of the invalid type.
7906 EVT VT = Op.getValueType();
7907 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7908 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7909 DAG.getConstant(NewIntNo, MVT::i32),
7910 Op.getOperand(1), ShAmt);
7915 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7916 SelectionDAG &DAG) const {
7917 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7918 MFI->setReturnAddressIsTaken(true);
7920 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7921 DebugLoc dl = Op.getDebugLoc();
7923 if (Depth > 0) {
7924 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7925 SDValue Offset =
7926 DAG.getConstant(TD->getPointerSize(),
7927 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7928 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7929 DAG.getNode(ISD::ADD, dl, getPointerTy(),
7930 FrameAddr, Offset),
7931 MachinePointerInfo(), false, false, 0);
7934 // Just load the return address.
7935 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7936 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7937 RetAddrFI, MachinePointerInfo(), false, false, 0);
7940 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7941 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7942 MFI->setFrameAddressIsTaken(true);
7944 EVT VT = Op.getValueType();
7945 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
7946 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7947 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7948 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7949 while (Depth--)
7950 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7951 MachinePointerInfo(),
7952 false, false, 0);
7953 return FrameAddr;
7956 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7957 SelectionDAG &DAG) const {
7958 return DAG.getIntPtrConstant(2*TD->getPointerSize());
7961 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7962 MachineFunction &MF = DAG.getMachineFunction();
7963 SDValue Chain = Op.getOperand(0);
7964 SDValue Offset = Op.getOperand(1);
7965 SDValue Handler = Op.getOperand(2);
7966 DebugLoc dl = Op.getDebugLoc();
7968 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7969 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7970 getPointerTy());
7971 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7973 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7974 DAG.getIntPtrConstant(TD->getPointerSize()));
7975 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7976 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7977 false, false, 0);
7978 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7979 MF.getRegInfo().addLiveOut(StoreAddrReg);
7981 return DAG.getNode(X86ISD::EH_RETURN, dl,
7982 MVT::Other,
7983 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7986 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7987 SelectionDAG &DAG) const {
7988 SDValue Root = Op.getOperand(0);
7989 SDValue Trmp = Op.getOperand(1); // trampoline
7990 SDValue FPtr = Op.getOperand(2); // nested function
7991 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7992 DebugLoc dl = Op.getDebugLoc();
7994 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7996 if (Subtarget->is64Bit()) {
7997 SDValue OutChains[6];
7999 // Large code-model.
8000 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
8001 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8003 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8004 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8006 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8008 // Load the pointer to the nested function into R11.
8009 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8010 SDValue Addr = Trmp;
8011 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8012 Addr, MachinePointerInfo(TrmpAddr),
8013 false, false, 0);
8015 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8016 DAG.getConstant(2, MVT::i64));
8017 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8018 MachinePointerInfo(TrmpAddr, 2),
8019 false, false, 2);
8021 // Load the 'nest' parameter value into R10.
8022 // R10 is specified in X86CallingConv.td
8023 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8024 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8025 DAG.getConstant(10, MVT::i64));
8026 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8027 Addr, MachinePointerInfo(TrmpAddr, 10),
8028 false, false, 0);
8030 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8031 DAG.getConstant(12, MVT::i64));
8032 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8033 MachinePointerInfo(TrmpAddr, 12),
8034 false, false, 2);
8036 // Jump to the nested function.
8037 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8038 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8039 DAG.getConstant(20, MVT::i64));
8040 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8041 Addr, MachinePointerInfo(TrmpAddr, 20),
8042 false, false, 0);
8044 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8045 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8046 DAG.getConstant(22, MVT::i64));
8047 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8048 MachinePointerInfo(TrmpAddr, 22),
8049 false, false, 0);
8051 SDValue Ops[] =
8052 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8053 return DAG.getMergeValues(Ops, 2, dl);
8054 } else {
8055 const Function *Func =
8056 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8057 CallingConv::ID CC = Func->getCallingConv();
8058 unsigned NestReg;
8060 switch (CC) {
8061 default:
8062 llvm_unreachable("Unsupported calling convention");
8063 case CallingConv::C:
8064 case CallingConv::X86_StdCall: {
8065 // Pass 'nest' parameter in ECX.
8066 // Must be kept in sync with X86CallingConv.td
8067 NestReg = X86::ECX;
8069 // Check that ECX wasn't needed by an 'inreg' parameter.
8070 const FunctionType *FTy = Func->getFunctionType();
8071 const AttrListPtr &Attrs = Func->getAttributes();
8073 if (!Attrs.isEmpty() && !Func->isVarArg()) {
8074 unsigned InRegCount = 0;
8075 unsigned Idx = 1;
8077 for (FunctionType::param_iterator I = FTy->param_begin(),
8078 E = FTy->param_end(); I != E; ++I, ++Idx)
8079 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8080 // FIXME: should only count parameters that are lowered to integers.
8081 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8083 if (InRegCount > 2) {
8084 report_fatal_error("Nest register in use - reduce number of inreg"
8085 " parameters!");
8088 break;
8090 case CallingConv::X86_FastCall:
8091 case CallingConv::X86_ThisCall:
8092 case CallingConv::Fast:
8093 // Pass 'nest' parameter in EAX.
8094 // Must be kept in sync with X86CallingConv.td
8095 NestReg = X86::EAX;
8096 break;
8099 SDValue OutChains[4];
8100 SDValue Addr, Disp;
8102 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8103 DAG.getConstant(10, MVT::i32));
8104 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8106 // This is storing the opcode for MOV32ri.
8107 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8108 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8109 OutChains[0] = DAG.getStore(Root, dl,
8110 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8111 Trmp, MachinePointerInfo(TrmpAddr),
8112 false, false, 0);
8114 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8115 DAG.getConstant(1, MVT::i32));
8116 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8117 MachinePointerInfo(TrmpAddr, 1),
8118 false, false, 1);
8120 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8121 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8122 DAG.getConstant(5, MVT::i32));
8123 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8124 MachinePointerInfo(TrmpAddr, 5),
8125 false, false, 1);
8127 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8128 DAG.getConstant(6, MVT::i32));
8129 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8130 MachinePointerInfo(TrmpAddr, 6),
8131 false, false, 1);
8133 SDValue Ops[] =
8134 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8135 return DAG.getMergeValues(Ops, 2, dl);
8139 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8140 SelectionDAG &DAG) const {
8142 The rounding mode is in bits 11:10 of FPSR, and has the following
8143 settings:
8144 00 Round to nearest
8145 01 Round to -inf
8146 10 Round to +inf
8147 11 Round to 0
8149 FLT_ROUNDS, on the other hand, expects the following:
8150 -1 Undefined
8151 0 Round to 0
8152 1 Round to nearest
8153 2 Round to +inf
8154 3 Round to -inf
8156 To perform the conversion, we do:
8157 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8160 MachineFunction &MF = DAG.getMachineFunction();
8161 const TargetMachine &TM = MF.getTarget();
8162 const TargetFrameInfo &TFI = *TM.getFrameInfo();
8163 unsigned StackAlignment = TFI.getStackAlignment();
8164 EVT VT = Op.getValueType();
8165 DebugLoc DL = Op.getDebugLoc();
8167 // Save FP Control Word to stack slot
8168 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8169 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8172 MachineMemOperand *MMO =
8173 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8174 MachineMemOperand::MOStore, 2, 2);
8176 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8177 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8178 DAG.getVTList(MVT::Other),
8179 Ops, 2, MVT::i16, MMO);
8181 // Load FP Control Word from stack slot
8182 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8183 MachinePointerInfo(), false, false, 0);
8185 // Transform as necessary
8186 SDValue CWD1 =
8187 DAG.getNode(ISD::SRL, DL, MVT::i16,
8188 DAG.getNode(ISD::AND, DL, MVT::i16,
8189 CWD, DAG.getConstant(0x800, MVT::i16)),
8190 DAG.getConstant(11, MVT::i8));
8191 SDValue CWD2 =
8192 DAG.getNode(ISD::SRL, DL, MVT::i16,
8193 DAG.getNode(ISD::AND, DL, MVT::i16,
8194 CWD, DAG.getConstant(0x400, MVT::i16)),
8195 DAG.getConstant(9, MVT::i8));
8197 SDValue RetVal =
8198 DAG.getNode(ISD::AND, DL, MVT::i16,
8199 DAG.getNode(ISD::ADD, DL, MVT::i16,
8200 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8201 DAG.getConstant(1, MVT::i16)),
8202 DAG.getConstant(3, MVT::i16));
8205 return DAG.getNode((VT.getSizeInBits() < 16 ?
8206 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8209 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8210 EVT VT = Op.getValueType();
8211 EVT OpVT = VT;
8212 unsigned NumBits = VT.getSizeInBits();
8213 DebugLoc dl = Op.getDebugLoc();
8215 Op = Op.getOperand(0);
8216 if (VT == MVT::i8) {
8217 // Zero extend to i32 since there is not an i8 bsr.
8218 OpVT = MVT::i32;
8219 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8222 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8223 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8224 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8226 // If src is zero (i.e. bsr sets ZF), returns NumBits.
8227 SDValue Ops[] = {
8229 DAG.getConstant(NumBits+NumBits-1, OpVT),
8230 DAG.getConstant(X86::COND_E, MVT::i8),
8231 Op.getValue(1)
8233 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8235 // Finally xor with NumBits-1.
8236 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8238 if (VT == MVT::i8)
8239 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8240 return Op;
8243 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8244 EVT VT = Op.getValueType();
8245 EVT OpVT = VT;
8246 unsigned NumBits = VT.getSizeInBits();
8247 DebugLoc dl = Op.getDebugLoc();
8249 Op = Op.getOperand(0);
8250 if (VT == MVT::i8) {
8251 OpVT = MVT::i32;
8252 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8255 // Issue a bsf (scan bits forward) which also sets EFLAGS.
8256 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8257 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8259 // If src is zero (i.e. bsf sets ZF), returns NumBits.
8260 SDValue Ops[] = {
8262 DAG.getConstant(NumBits, OpVT),
8263 DAG.getConstant(X86::COND_E, MVT::i8),
8264 Op.getValue(1)
8266 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8268 if (VT == MVT::i8)
8269 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8270 return Op;
8273 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8274 EVT VT = Op.getValueType();
8275 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8276 DebugLoc dl = Op.getDebugLoc();
8278 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8279 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8280 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8281 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8282 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8284 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8285 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8286 // return AloBlo + AloBhi + AhiBlo;
8288 SDValue A = Op.getOperand(0);
8289 SDValue B = Op.getOperand(1);
8291 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8292 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8293 A, DAG.getConstant(32, MVT::i32));
8294 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8295 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8296 B, DAG.getConstant(32, MVT::i32));
8297 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8298 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8299 A, B);
8300 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8301 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8302 A, Bhi);
8303 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8304 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8305 Ahi, B);
8306 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8307 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8308 AloBhi, DAG.getConstant(32, MVT::i32));
8309 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8310 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8311 AhiBlo, DAG.getConstant(32, MVT::i32));
8312 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8313 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8314 return Res;
8317 SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8318 EVT VT = Op.getValueType();
8319 DebugLoc dl = Op.getDebugLoc();
8320 SDValue R = Op.getOperand(0);
8322 LLVMContext *Context = DAG.getContext();
8324 assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8326 if (VT == MVT::v4i32) {
8327 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8328 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8329 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8331 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8333 std::vector<Constant*> CV(4, CI);
8334 Constant *C = ConstantVector::get(CV);
8335 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8336 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8337 MachinePointerInfo::getConstantPool(),
8338 false, false, 16);
8340 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8341 Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8342 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8343 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8345 if (VT == MVT::v16i8) {
8346 // a = a << 5;
8347 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8348 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8349 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8351 ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8352 ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8354 std::vector<Constant*> CVM1(16, CM1);
8355 std::vector<Constant*> CVM2(16, CM2);
8356 Constant *C = ConstantVector::get(CVM1);
8357 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8358 SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8359 MachinePointerInfo::getConstantPool(),
8360 false, false, 16);
8362 // r = pblendv(r, psllw(r & (char16)15, 4), a);
8363 M = DAG.getNode(ISD::AND, dl, VT, R, M);
8364 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8365 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8366 DAG.getConstant(4, MVT::i32));
8367 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8368 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8369 R, M, Op);
8370 // a += a
8371 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8373 C = ConstantVector::get(CVM2);
8374 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8375 M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8376 MachinePointerInfo::getConstantPool(),
8377 false, false, 16);
8379 // r = pblendv(r, psllw(r & (char16)63, 2), a);
8380 M = DAG.getNode(ISD::AND, dl, VT, R, M);
8381 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8382 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8383 DAG.getConstant(2, MVT::i32));
8384 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8385 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8386 R, M, Op);
8387 // a += a
8388 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8390 // return pblendv(r, r+r, a);
8391 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8392 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8393 R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8394 return R;
8396 return SDValue();
8399 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8400 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8401 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8402 // looks for this combo and may remove the "setcc" instruction if the "setcc"
8403 // has only one use.
8404 SDNode *N = Op.getNode();
8405 SDValue LHS = N->getOperand(0);
8406 SDValue RHS = N->getOperand(1);
8407 unsigned BaseOp = 0;
8408 unsigned Cond = 0;
8409 DebugLoc dl = Op.getDebugLoc();
8411 switch (Op.getOpcode()) {
8412 default: llvm_unreachable("Unknown ovf instruction!");
8413 case ISD::SADDO:
8414 // A subtract of one will be selected as a INC. Note that INC doesn't
8415 // set CF, so we can't do this for UADDO.
8416 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8417 if (C->getAPIntValue() == 1) {
8418 BaseOp = X86ISD::INC;
8419 Cond = X86::COND_O;
8420 break;
8422 BaseOp = X86ISD::ADD;
8423 Cond = X86::COND_O;
8424 break;
8425 case ISD::UADDO:
8426 BaseOp = X86ISD::ADD;
8427 Cond = X86::COND_B;
8428 break;
8429 case ISD::SSUBO:
8430 // A subtract of one will be selected as a DEC. Note that DEC doesn't
8431 // set CF, so we can't do this for USUBO.
8432 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8433 if (C->getAPIntValue() == 1) {
8434 BaseOp = X86ISD::DEC;
8435 Cond = X86::COND_O;
8436 break;
8438 BaseOp = X86ISD::SUB;
8439 Cond = X86::COND_O;
8440 break;
8441 case ISD::USUBO:
8442 BaseOp = X86ISD::SUB;
8443 Cond = X86::COND_B;
8444 break;
8445 case ISD::SMULO:
8446 BaseOp = X86ISD::SMUL;
8447 Cond = X86::COND_O;
8448 break;
8449 case ISD::UMULO:
8450 BaseOp = X86ISD::UMUL;
8451 Cond = X86::COND_B;
8452 break;
8455 // Also sets EFLAGS.
8456 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8457 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8459 SDValue SetCC =
8460 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8461 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8463 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8464 return Sum;
8467 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8468 DebugLoc dl = Op.getDebugLoc();
8470 if (!Subtarget->hasSSE2()) {
8471 SDValue Chain = Op.getOperand(0);
8472 SDValue Zero = DAG.getConstant(0,
8473 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8474 SDValue Ops[] = {
8475 DAG.getRegister(X86::ESP, MVT::i32), // Base
8476 DAG.getTargetConstant(1, MVT::i8), // Scale
8477 DAG.getRegister(0, MVT::i32), // Index
8478 DAG.getTargetConstant(0, MVT::i32), // Disp
8479 DAG.getRegister(0, MVT::i32), // Segment.
8480 Zero,
8481 Chain
8483 SDNode *Res =
8484 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8485 array_lengthof(Ops));
8486 return SDValue(Res, 0);
8489 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8490 if (!isDev)
8491 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8493 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8494 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8495 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8496 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8498 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8499 if (!Op1 && !Op2 && !Op3 && Op4)
8500 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8502 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8503 if (Op1 && !Op2 && !Op3 && !Op4)
8504 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8506 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8507 // (MFENCE)>;
8508 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8511 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8512 EVT T = Op.getValueType();
8513 DebugLoc DL = Op.getDebugLoc();
8514 unsigned Reg = 0;
8515 unsigned size = 0;
8516 switch(T.getSimpleVT().SimpleTy) {
8517 default:
8518 assert(false && "Invalid value type!");
8519 case MVT::i8: Reg = X86::AL; size = 1; break;
8520 case MVT::i16: Reg = X86::AX; size = 2; break;
8521 case MVT::i32: Reg = X86::EAX; size = 4; break;
8522 case MVT::i64:
8523 assert(Subtarget->is64Bit() && "Node not type legal!");
8524 Reg = X86::RAX; size = 8;
8525 break;
8527 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8528 Op.getOperand(2), SDValue());
8529 SDValue Ops[] = { cpIn.getValue(0),
8530 Op.getOperand(1),
8531 Op.getOperand(3),
8532 DAG.getTargetConstant(size, MVT::i8),
8533 cpIn.getValue(1) };
8534 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8535 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8536 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8537 Ops, 5, T, MMO);
8538 SDValue cpOut =
8539 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8540 return cpOut;
8543 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8544 SelectionDAG &DAG) const {
8545 assert(Subtarget->is64Bit() && "Result not type legalized?");
8546 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8547 SDValue TheChain = Op.getOperand(0);
8548 DebugLoc dl = Op.getDebugLoc();
8549 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8550 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8551 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8552 rax.getValue(2));
8553 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8554 DAG.getConstant(32, MVT::i8));
8555 SDValue Ops[] = {
8556 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8557 rdx.getValue(1)
8559 return DAG.getMergeValues(Ops, 2, dl);
8562 SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8563 SelectionDAG &DAG) const {
8564 EVT SrcVT = Op.getOperand(0).getValueType();
8565 EVT DstVT = Op.getValueType();
8566 assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8567 Subtarget->hasMMX() && !DisableMMX) &&
8568 "Unexpected custom BIT_CONVERT");
8569 assert((DstVT == MVT::i64 ||
8570 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8571 "Unexpected custom BIT_CONVERT");
8572 // i64 <=> MMX conversions are Legal.
8573 if (SrcVT==MVT::i64 && DstVT.isVector())
8574 return Op;
8575 if (DstVT==MVT::i64 && SrcVT.isVector())
8576 return Op;
8577 // MMX <=> MMX conversions are Legal.
8578 if (SrcVT.isVector() && DstVT.isVector())
8579 return Op;
8580 // All other conversions need to be expanded.
8581 return SDValue();
8583 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8584 SDNode *Node = Op.getNode();
8585 DebugLoc dl = Node->getDebugLoc();
8586 EVT T = Node->getValueType(0);
8587 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8588 DAG.getConstant(0, T), Node->getOperand(2));
8589 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8590 cast<AtomicSDNode>(Node)->getMemoryVT(),
8591 Node->getOperand(0),
8592 Node->getOperand(1), negOp,
8593 cast<AtomicSDNode>(Node)->getSrcValue(),
8594 cast<AtomicSDNode>(Node)->getAlignment());
8597 /// LowerOperation - Provide custom lowering hooks for some operations.
8599 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8600 switch (Op.getOpcode()) {
8601 default: llvm_unreachable("Should not custom lower this!");
8602 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
8603 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
8604 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
8605 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
8606 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8607 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8608 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8609 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8610 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
8611 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8612 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8613 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8614 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
8615 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8616 case ISD::SHL_PARTS:
8617 case ISD::SRA_PARTS:
8618 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
8619 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
8620 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
8621 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
8622 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
8623 case ISD::FABS: return LowerFABS(Op, DAG);
8624 case ISD::FNEG: return LowerFNEG(Op, DAG);
8625 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8626 case ISD::SETCC: return LowerSETCC(Op, DAG);
8627 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
8628 case ISD::SELECT: return LowerSELECT(Op, DAG);
8629 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8630 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
8631 case ISD::VASTART: return LowerVASTART(Op, DAG);
8632 case ISD::VAARG: return LowerVAARG(Op, DAG);
8633 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
8634 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8635 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8636 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8637 case ISD::FRAME_TO_ARGS_OFFSET:
8638 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8639 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8640 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
8641 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
8642 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8643 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
8644 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
8645 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
8646 case ISD::SHL: return LowerSHL(Op, DAG);
8647 case ISD::SADDO:
8648 case ISD::UADDO:
8649 case ISD::SSUBO:
8650 case ISD::USUBO:
8651 case ISD::SMULO:
8652 case ISD::UMULO: return LowerXALUO(Op, DAG);
8653 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
8654 case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
8658 void X86TargetLowering::
8659 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8660 SelectionDAG &DAG, unsigned NewOp) const {
8661 EVT T = Node->getValueType(0);
8662 DebugLoc dl = Node->getDebugLoc();
8663 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8665 SDValue Chain = Node->getOperand(0);
8666 SDValue In1 = Node->getOperand(1);
8667 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8668 Node->getOperand(2), DAG.getIntPtrConstant(0));
8669 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8670 Node->getOperand(2), DAG.getIntPtrConstant(1));
8671 SDValue Ops[] = { Chain, In1, In2L, In2H };
8672 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8673 SDValue Result =
8674 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8675 cast<MemSDNode>(Node)->getMemOperand());
8676 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8677 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8678 Results.push_back(Result.getValue(2));
8681 /// ReplaceNodeResults - Replace a node with an illegal result type
8682 /// with a new node built out of custom code.
8683 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8684 SmallVectorImpl<SDValue>&Results,
8685 SelectionDAG &DAG) const {
8686 DebugLoc dl = N->getDebugLoc();
8687 switch (N->getOpcode()) {
8688 default:
8689 assert(false && "Do not know how to custom type legalize this operation!");
8690 return;
8691 case ISD::FP_TO_SINT: {
8692 std::pair<SDValue,SDValue> Vals =
8693 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8694 SDValue FIST = Vals.first, StackSlot = Vals.second;
8695 if (FIST.getNode() != 0) {
8696 EVT VT = N->getValueType(0);
8697 // Return a load from the stack slot.
8698 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8699 MachinePointerInfo(), false, false, 0));
8701 return;
8703 case ISD::READCYCLECOUNTER: {
8704 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8705 SDValue TheChain = N->getOperand(0);
8706 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8707 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8708 rd.getValue(1));
8709 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8710 eax.getValue(2));
8711 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8712 SDValue Ops[] = { eax, edx };
8713 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8714 Results.push_back(edx.getValue(1));
8715 return;
8717 case ISD::ATOMIC_CMP_SWAP: {
8718 EVT T = N->getValueType(0);
8719 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8720 SDValue cpInL, cpInH;
8721 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8722 DAG.getConstant(0, MVT::i32));
8723 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8724 DAG.getConstant(1, MVT::i32));
8725 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8726 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8727 cpInL.getValue(1));
8728 SDValue swapInL, swapInH;
8729 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8730 DAG.getConstant(0, MVT::i32));
8731 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8732 DAG.getConstant(1, MVT::i32));
8733 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8734 cpInH.getValue(1));
8735 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8736 swapInL.getValue(1));
8737 SDValue Ops[] = { swapInH.getValue(0),
8738 N->getOperand(1),
8739 swapInH.getValue(1) };
8740 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8741 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8742 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8743 Ops, 3, T, MMO);
8744 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8745 MVT::i32, Result.getValue(1));
8746 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8747 MVT::i32, cpOutL.getValue(2));
8748 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8749 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8750 Results.push_back(cpOutH.getValue(1));
8751 return;
8753 case ISD::ATOMIC_LOAD_ADD:
8754 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8755 return;
8756 case ISD::ATOMIC_LOAD_AND:
8757 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8758 return;
8759 case ISD::ATOMIC_LOAD_NAND:
8760 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8761 return;
8762 case ISD::ATOMIC_LOAD_OR:
8763 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8764 return;
8765 case ISD::ATOMIC_LOAD_SUB:
8766 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8767 return;
8768 case ISD::ATOMIC_LOAD_XOR:
8769 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8770 return;
8771 case ISD::ATOMIC_SWAP:
8772 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8773 return;
8777 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8778 switch (Opcode) {
8779 default: return NULL;
8780 case X86ISD::BSF: return "X86ISD::BSF";
8781 case X86ISD::BSR: return "X86ISD::BSR";
8782 case X86ISD::SHLD: return "X86ISD::SHLD";
8783 case X86ISD::SHRD: return "X86ISD::SHRD";
8784 case X86ISD::FAND: return "X86ISD::FAND";
8785 case X86ISD::FOR: return "X86ISD::FOR";
8786 case X86ISD::FXOR: return "X86ISD::FXOR";
8787 case X86ISD::FSRL: return "X86ISD::FSRL";
8788 case X86ISD::FILD: return "X86ISD::FILD";
8789 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
8790 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8791 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8792 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8793 case X86ISD::FLD: return "X86ISD::FLD";
8794 case X86ISD::FST: return "X86ISD::FST";
8795 case X86ISD::CALL: return "X86ISD::CALL";
8796 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
8797 case X86ISD::BT: return "X86ISD::BT";
8798 case X86ISD::CMP: return "X86ISD::CMP";
8799 case X86ISD::COMI: return "X86ISD::COMI";
8800 case X86ISD::UCOMI: return "X86ISD::UCOMI";
8801 case X86ISD::SETCC: return "X86ISD::SETCC";
8802 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
8803 case X86ISD::CMOV: return "X86ISD::CMOV";
8804 case X86ISD::BRCOND: return "X86ISD::BRCOND";
8805 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
8806 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
8807 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
8808 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
8809 case X86ISD::Wrapper: return "X86ISD::Wrapper";
8810 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
8811 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
8812 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
8813 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
8814 case X86ISD::PINSRB: return "X86ISD::PINSRB";
8815 case X86ISD::PINSRW: return "X86ISD::PINSRW";
8816 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
8817 case X86ISD::FMAX: return "X86ISD::FMAX";
8818 case X86ISD::FMIN: return "X86ISD::FMIN";
8819 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
8820 case X86ISD::FRCP: return "X86ISD::FRCP";
8821 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
8822 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
8823 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
8824 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
8825 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
8826 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
8827 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
8828 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
8829 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
8830 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
8831 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
8832 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
8833 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
8834 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
8835 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
8836 case X86ISD::VSHL: return "X86ISD::VSHL";
8837 case X86ISD::VSRL: return "X86ISD::VSRL";
8838 case X86ISD::CMPPD: return "X86ISD::CMPPD";
8839 case X86ISD::CMPPS: return "X86ISD::CMPPS";
8840 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
8841 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
8842 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
8843 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
8844 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
8845 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
8846 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
8847 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
8848 case X86ISD::ADD: return "X86ISD::ADD";
8849 case X86ISD::SUB: return "X86ISD::SUB";
8850 case X86ISD::SMUL: return "X86ISD::SMUL";
8851 case X86ISD::UMUL: return "X86ISD::UMUL";
8852 case X86ISD::INC: return "X86ISD::INC";
8853 case X86ISD::DEC: return "X86ISD::DEC";
8854 case X86ISD::OR: return "X86ISD::OR";
8855 case X86ISD::XOR: return "X86ISD::XOR";
8856 case X86ISD::AND: return "X86ISD::AND";
8857 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
8858 case X86ISD::PTEST: return "X86ISD::PTEST";
8859 case X86ISD::TESTP: return "X86ISD::TESTP";
8860 case X86ISD::PALIGN: return "X86ISD::PALIGN";
8861 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
8862 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
8863 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
8864 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
8865 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
8866 case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
8867 case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
8868 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
8869 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
8870 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
8871 case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD";
8872 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
8873 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
8874 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
8875 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
8876 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
8877 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
8878 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
8879 case X86ISD::MOVSD: return "X86ISD::MOVSD";
8880 case X86ISD::MOVSS: return "X86ISD::MOVSS";
8881 case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
8882 case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
8883 case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
8884 case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
8885 case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
8886 case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
8887 case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
8888 case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
8889 case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
8890 case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
8891 case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
8892 case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
8893 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8894 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
8895 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
8899 // isLegalAddressingMode - Return true if the addressing mode represented
8900 // by AM is legal for this target, for a load/store of the specified type.
8901 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8902 const Type *Ty) const {
8903 // X86 supports extremely general addressing modes.
8904 CodeModel::Model M = getTargetMachine().getCodeModel();
8905 Reloc::Model R = getTargetMachine().getRelocationModel();
8907 // X86 allows a sign-extended 32-bit immediate field as a displacement.
8908 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8909 return false;
8911 if (AM.BaseGV) {
8912 unsigned GVFlags =
8913 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8915 // If a reference to this global requires an extra load, we can't fold it.
8916 if (isGlobalStubReference(GVFlags))
8917 return false;
8919 // If BaseGV requires a register for the PIC base, we cannot also have a
8920 // BaseReg specified.
8921 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8922 return false;
8924 // If lower 4G is not available, then we must use rip-relative addressing.
8925 if ((M != CodeModel::Small || R != Reloc::Static) &&
8926 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8927 return false;
8930 switch (AM.Scale) {
8931 case 0:
8932 case 1:
8933 case 2:
8934 case 4:
8935 case 8:
8936 // These scales always work.
8937 break;
8938 case 3:
8939 case 5:
8940 case 9:
8941 // These scales are formed with basereg+scalereg. Only accept if there is
8942 // no basereg yet.
8943 if (AM.HasBaseReg)
8944 return false;
8945 break;
8946 default: // Other stuff never works.
8947 return false;
8950 return true;
8954 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8955 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8956 return false;
8957 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8958 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8959 if (NumBits1 <= NumBits2)
8960 return false;
8961 return true;
8964 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8965 if (!VT1.isInteger() || !VT2.isInteger())
8966 return false;
8967 unsigned NumBits1 = VT1.getSizeInBits();
8968 unsigned NumBits2 = VT2.getSizeInBits();
8969 if (NumBits1 <= NumBits2)
8970 return false;
8971 return true;
8974 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8975 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8976 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8979 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8980 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8981 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8984 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8985 // i16 instructions are longer (0x66 prefix) and potentially slower.
8986 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8989 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8990 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8991 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8992 /// are assumed to be legal.
8993 bool
8994 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8995 EVT VT) const {
8996 // Very little shuffling can be done for 64-bit vectors right now.
8997 if (VT.getSizeInBits() == 64)
8998 return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9000 // FIXME: pshufb, blends, shifts.
9001 return (VT.getVectorNumElements() == 2 ||
9002 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9003 isMOVLMask(M, VT) ||
9004 isSHUFPMask(M, VT) ||
9005 isPSHUFDMask(M, VT) ||
9006 isPSHUFHWMask(M, VT) ||
9007 isPSHUFLWMask(M, VT) ||
9008 isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9009 isUNPCKLMask(M, VT) ||
9010 isUNPCKHMask(M, VT) ||
9011 isUNPCKL_v_undef_Mask(M, VT) ||
9012 isUNPCKH_v_undef_Mask(M, VT));
9015 bool
9016 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9017 EVT VT) const {
9018 unsigned NumElts = VT.getVectorNumElements();
9019 // FIXME: This collection of masks seems suspect.
9020 if (NumElts == 2)
9021 return true;
9022 if (NumElts == 4 && VT.getSizeInBits() == 128) {
9023 return (isMOVLMask(Mask, VT) ||
9024 isCommutedMOVLMask(Mask, VT, true) ||
9025 isSHUFPMask(Mask, VT) ||
9026 isCommutedSHUFPMask(Mask, VT));
9028 return false;
9031 //===----------------------------------------------------------------------===//
9032 // X86 Scheduler Hooks
9033 //===----------------------------------------------------------------------===//
9035 // private utility function
9036 MachineBasicBlock *
9037 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9038 MachineBasicBlock *MBB,
9039 unsigned regOpc,
9040 unsigned immOpc,
9041 unsigned LoadOpc,
9042 unsigned CXchgOpc,
9043 unsigned notOpc,
9044 unsigned EAXreg,
9045 TargetRegisterClass *RC,
9046 bool invSrc) const {
9047 // For the atomic bitwise operator, we generate
9048 // thisMBB:
9049 // newMBB:
9050 // ld t1 = [bitinstr.addr]
9051 // op t2 = t1, [bitinstr.val]
9052 // mov EAX = t1
9053 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9054 // bz newMBB
9055 // fallthrough -->nextMBB
9056 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9057 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9058 MachineFunction::iterator MBBIter = MBB;
9059 ++MBBIter;
9061 /// First build the CFG
9062 MachineFunction *F = MBB->getParent();
9063 MachineBasicBlock *thisMBB = MBB;
9064 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9065 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9066 F->insert(MBBIter, newMBB);
9067 F->insert(MBBIter, nextMBB);
9069 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9070 nextMBB->splice(nextMBB->begin(), thisMBB,
9071 llvm::next(MachineBasicBlock::iterator(bInstr)),
9072 thisMBB->end());
9073 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9075 // Update thisMBB to fall through to newMBB
9076 thisMBB->addSuccessor(newMBB);
9078 // newMBB jumps to itself and fall through to nextMBB
9079 newMBB->addSuccessor(nextMBB);
9080 newMBB->addSuccessor(newMBB);
9082 // Insert instructions into newMBB based on incoming instruction
9083 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9084 "unexpected number of operands");
9085 DebugLoc dl = bInstr->getDebugLoc();
9086 MachineOperand& destOper = bInstr->getOperand(0);
9087 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9088 int numArgs = bInstr->getNumOperands() - 1;
9089 for (int i=0; i < numArgs; ++i)
9090 argOpers[i] = &bInstr->getOperand(i+1);
9092 // x86 address has 4 operands: base, index, scale, and displacement
9093 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9094 int valArgIndx = lastAddrIndx + 1;
9096 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9097 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9098 for (int i=0; i <= lastAddrIndx; ++i)
9099 (*MIB).addOperand(*argOpers[i]);
9101 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9102 if (invSrc) {
9103 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9105 else
9106 tt = t1;
9108 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9109 assert((argOpers[valArgIndx]->isReg() ||
9110 argOpers[valArgIndx]->isImm()) &&
9111 "invalid operand");
9112 if (argOpers[valArgIndx]->isReg())
9113 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9114 else
9115 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9116 MIB.addReg(tt);
9117 (*MIB).addOperand(*argOpers[valArgIndx]);
9119 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9120 MIB.addReg(t1);
9122 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9123 for (int i=0; i <= lastAddrIndx; ++i)
9124 (*MIB).addOperand(*argOpers[i]);
9125 MIB.addReg(t2);
9126 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9127 (*MIB).setMemRefs(bInstr->memoperands_begin(),
9128 bInstr->memoperands_end());
9130 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9131 MIB.addReg(EAXreg);
9133 // insert branch
9134 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9136 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
9137 return nextMBB;
9140 // private utility function: 64 bit atomics on 32 bit host.
9141 MachineBasicBlock *
9142 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9143 MachineBasicBlock *MBB,
9144 unsigned regOpcL,
9145 unsigned regOpcH,
9146 unsigned immOpcL,
9147 unsigned immOpcH,
9148 bool invSrc) const {
9149 // For the atomic bitwise operator, we generate
9150 // thisMBB (instructions are in pairs, except cmpxchg8b)
9151 // ld t1,t2 = [bitinstr.addr]
9152 // newMBB:
9153 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9154 // op t5, t6 <- out1, out2, [bitinstr.val]
9155 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
9156 // mov ECX, EBX <- t5, t6
9157 // mov EAX, EDX <- t1, t2
9158 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
9159 // mov t3, t4 <- EAX, EDX
9160 // bz newMBB
9161 // result in out1, out2
9162 // fallthrough -->nextMBB
9164 const TargetRegisterClass *RC = X86::GR32RegisterClass;
9165 const unsigned LoadOpc = X86::MOV32rm;
9166 const unsigned NotOpc = X86::NOT32r;
9167 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9168 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9169 MachineFunction::iterator MBBIter = MBB;
9170 ++MBBIter;
9172 /// First build the CFG
9173 MachineFunction *F = MBB->getParent();
9174 MachineBasicBlock *thisMBB = MBB;
9175 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9176 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9177 F->insert(MBBIter, newMBB);
9178 F->insert(MBBIter, nextMBB);
9180 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9181 nextMBB->splice(nextMBB->begin(), thisMBB,
9182 llvm::next(MachineBasicBlock::iterator(bInstr)),
9183 thisMBB->end());
9184 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9186 // Update thisMBB to fall through to newMBB
9187 thisMBB->addSuccessor(newMBB);
9189 // newMBB jumps to itself and fall through to nextMBB
9190 newMBB->addSuccessor(nextMBB);
9191 newMBB->addSuccessor(newMBB);
9193 DebugLoc dl = bInstr->getDebugLoc();
9194 // Insert instructions into newMBB based on incoming instruction
9195 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9196 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9197 "unexpected number of operands");
9198 MachineOperand& dest1Oper = bInstr->getOperand(0);
9199 MachineOperand& dest2Oper = bInstr->getOperand(1);
9200 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9201 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9202 argOpers[i] = &bInstr->getOperand(i+2);
9204 // We use some of the operands multiple times, so conservatively just
9205 // clear any kill flags that might be present.
9206 if (argOpers[i]->isReg() && argOpers[i]->isUse())
9207 argOpers[i]->setIsKill(false);
9210 // x86 address has 5 operands: base, index, scale, displacement, and segment.
9211 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9213 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9214 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9215 for (int i=0; i <= lastAddrIndx; ++i)
9216 (*MIB).addOperand(*argOpers[i]);
9217 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9218 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9219 // add 4 to displacement.
9220 for (int i=0; i <= lastAddrIndx-2; ++i)
9221 (*MIB).addOperand(*argOpers[i]);
9222 MachineOperand newOp3 = *(argOpers[3]);
9223 if (newOp3.isImm())
9224 newOp3.setImm(newOp3.getImm()+4);
9225 else
9226 newOp3.setOffset(newOp3.getOffset()+4);
9227 (*MIB).addOperand(newOp3);
9228 (*MIB).addOperand(*argOpers[lastAddrIndx]);
9230 // t3/4 are defined later, at the bottom of the loop
9231 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9232 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9233 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9234 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9235 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9236 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9238 // The subsequent operations should be using the destination registers of
9239 //the PHI instructions.
9240 if (invSrc) {
9241 t1 = F->getRegInfo().createVirtualRegister(RC);
9242 t2 = F->getRegInfo().createVirtualRegister(RC);
9243 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9244 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9245 } else {
9246 t1 = dest1Oper.getReg();
9247 t2 = dest2Oper.getReg();
9250 int valArgIndx = lastAddrIndx + 1;
9251 assert((argOpers[valArgIndx]->isReg() ||
9252 argOpers[valArgIndx]->isImm()) &&
9253 "invalid operand");
9254 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9255 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9256 if (argOpers[valArgIndx]->isReg())
9257 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9258 else
9259 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9260 if (regOpcL != X86::MOV32rr)
9261 MIB.addReg(t1);
9262 (*MIB).addOperand(*argOpers[valArgIndx]);
9263 assert(argOpers[valArgIndx + 1]->isReg() ==
9264 argOpers[valArgIndx]->isReg());
9265 assert(argOpers[valArgIndx + 1]->isImm() ==
9266 argOpers[valArgIndx]->isImm());
9267 if (argOpers[valArgIndx + 1]->isReg())
9268 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9269 else
9270 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9271 if (regOpcH != X86::MOV32rr)
9272 MIB.addReg(t2);
9273 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9275 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9276 MIB.addReg(t1);
9277 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9278 MIB.addReg(t2);
9280 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9281 MIB.addReg(t5);
9282 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9283 MIB.addReg(t6);
9285 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9286 for (int i=0; i <= lastAddrIndx; ++i)
9287 (*MIB).addOperand(*argOpers[i]);
9289 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9290 (*MIB).setMemRefs(bInstr->memoperands_begin(),
9291 bInstr->memoperands_end());
9293 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9294 MIB.addReg(X86::EAX);
9295 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9296 MIB.addReg(X86::EDX);
9298 // insert branch
9299 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9301 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
9302 return nextMBB;
9305 // private utility function
9306 MachineBasicBlock *
9307 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9308 MachineBasicBlock *MBB,
9309 unsigned cmovOpc) const {
9310 // For the atomic min/max operator, we generate
9311 // thisMBB:
9312 // newMBB:
9313 // ld t1 = [min/max.addr]
9314 // mov t2 = [min/max.val]
9315 // cmp t1, t2
9316 // cmov[cond] t2 = t1
9317 // mov EAX = t1
9318 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9319 // bz newMBB
9320 // fallthrough -->nextMBB
9322 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9323 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9324 MachineFunction::iterator MBBIter = MBB;
9325 ++MBBIter;
9327 /// First build the CFG
9328 MachineFunction *F = MBB->getParent();
9329 MachineBasicBlock *thisMBB = MBB;
9330 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9331 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9332 F->insert(MBBIter, newMBB);
9333 F->insert(MBBIter, nextMBB);
9335 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9336 nextMBB->splice(nextMBB->begin(), thisMBB,
9337 llvm::next(MachineBasicBlock::iterator(mInstr)),
9338 thisMBB->end());
9339 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9341 // Update thisMBB to fall through to newMBB
9342 thisMBB->addSuccessor(newMBB);
9344 // newMBB jumps to newMBB and fall through to nextMBB
9345 newMBB->addSuccessor(nextMBB);
9346 newMBB->addSuccessor(newMBB);
9348 DebugLoc dl = mInstr->getDebugLoc();
9349 // Insert instructions into newMBB based on incoming instruction
9350 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9351 "unexpected number of operands");
9352 MachineOperand& destOper = mInstr->getOperand(0);
9353 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9354 int numArgs = mInstr->getNumOperands() - 1;
9355 for (int i=0; i < numArgs; ++i)
9356 argOpers[i] = &mInstr->getOperand(i+1);
9358 // x86 address has 4 operands: base, index, scale, and displacement
9359 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9360 int valArgIndx = lastAddrIndx + 1;
9362 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9363 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9364 for (int i=0; i <= lastAddrIndx; ++i)
9365 (*MIB).addOperand(*argOpers[i]);
9367 // We only support register and immediate values
9368 assert((argOpers[valArgIndx]->isReg() ||
9369 argOpers[valArgIndx]->isImm()) &&
9370 "invalid operand");
9372 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9373 if (argOpers[valArgIndx]->isReg())
9374 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9375 else
9376 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9377 (*MIB).addOperand(*argOpers[valArgIndx]);
9379 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9380 MIB.addReg(t1);
9382 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9383 MIB.addReg(t1);
9384 MIB.addReg(t2);
9386 // Generate movc
9387 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9388 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9389 MIB.addReg(t2);
9390 MIB.addReg(t1);
9392 // Cmp and exchange if none has modified the memory location
9393 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9394 for (int i=0; i <= lastAddrIndx; ++i)
9395 (*MIB).addOperand(*argOpers[i]);
9396 MIB.addReg(t3);
9397 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9398 (*MIB).setMemRefs(mInstr->memoperands_begin(),
9399 mInstr->memoperands_end());
9401 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9402 MIB.addReg(X86::EAX);
9404 // insert branch
9405 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9407 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
9408 return nextMBB;
9411 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9412 // or XMM0_V32I8 in AVX all of this code can be replaced with that
9413 // in the .td file.
9414 MachineBasicBlock *
9415 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9416 unsigned numArgs, bool memArg) const {
9418 assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9419 "Target must have SSE4.2 or AVX features enabled");
9421 DebugLoc dl = MI->getDebugLoc();
9422 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9424 unsigned Opc;
9426 if (!Subtarget->hasAVX()) {
9427 if (memArg)
9428 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9429 else
9430 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9431 } else {
9432 if (memArg)
9433 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9434 else
9435 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9438 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9440 for (unsigned i = 0; i < numArgs; ++i) {
9441 MachineOperand &Op = MI->getOperand(i+1);
9443 if (!(Op.isReg() && Op.isImplicit()))
9444 MIB.addOperand(Op);
9447 BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9448 .addReg(X86::XMM0);
9450 MI->eraseFromParent();
9452 return BB;
9455 MachineBasicBlock *
9456 X86TargetLowering::EmitVAARG64WithCustomInserter(
9457 MachineInstr *MI,
9458 MachineBasicBlock *MBB) const {
9459 // Emit va_arg instruction on X86-64.
9461 // Operands to this pseudo-instruction:
9462 // 0 ) Output : destination address (reg)
9463 // 1-5) Input : va_list address (addr, i64mem)
9464 // 6 ) ArgSize : Size (in bytes) of vararg type
9465 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9466 // 8 ) Align : Alignment of type
9467 // 9 ) EFLAGS (implicit-def)
9469 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9470 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9472 unsigned DestReg = MI->getOperand(0).getReg();
9473 MachineOperand &Base = MI->getOperand(1);
9474 MachineOperand &Scale = MI->getOperand(2);
9475 MachineOperand &Index = MI->getOperand(3);
9476 MachineOperand &Disp = MI->getOperand(4);
9477 MachineOperand &Segment = MI->getOperand(5);
9478 unsigned ArgSize = MI->getOperand(6).getImm();
9479 unsigned ArgMode = MI->getOperand(7).getImm();
9480 unsigned Align = MI->getOperand(8).getImm();
9482 // Memory Reference
9483 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9484 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9485 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9487 // Machine Information
9488 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9489 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9490 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9491 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9492 DebugLoc DL = MI->getDebugLoc();
9494 // struct va_list {
9495 // i32 gp_offset
9496 // i32 fp_offset
9497 // i64 overflow_area (address)
9498 // i64 reg_save_area (address)
9499 // }
9500 // sizeof(va_list) = 24
9501 // alignment(va_list) = 8
9503 unsigned TotalNumIntRegs = 6;
9504 unsigned TotalNumXMMRegs = 8;
9505 bool UseGPOffset = (ArgMode == 1);
9506 bool UseFPOffset = (ArgMode == 2);
9507 unsigned MaxOffset = TotalNumIntRegs * 8 +
9508 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9510 /* Align ArgSize to a multiple of 8 */
9511 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9512 bool NeedsAlign = (Align > 8);
9514 MachineBasicBlock *thisMBB = MBB;
9515 MachineBasicBlock *overflowMBB;
9516 MachineBasicBlock *offsetMBB;
9517 MachineBasicBlock *endMBB;
9519 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
9520 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
9521 unsigned OffsetReg = 0;
9523 if (!UseGPOffset && !UseFPOffset) {
9524 // If we only pull from the overflow region, we don't create a branch.
9525 // We don't need to alter control flow.
9526 OffsetDestReg = 0; // unused
9527 OverflowDestReg = DestReg;
9529 offsetMBB = NULL;
9530 overflowMBB = thisMBB;
9531 endMBB = thisMBB;
9532 } else {
9533 // First emit code to check if gp_offset (or fp_offset) is below the bound.
9534 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9535 // If not, pull from overflow_area. (branch to overflowMBB)
9537 // thisMBB
9538 // | .
9539 // | .
9540 // offsetMBB overflowMBB
9541 // | .
9542 // | .
9543 // endMBB
9545 // Registers for the PHI in endMBB
9546 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9547 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9549 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9550 MachineFunction *MF = MBB->getParent();
9551 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9552 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9553 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9555 MachineFunction::iterator MBBIter = MBB;
9556 ++MBBIter;
9558 // Insert the new basic blocks
9559 MF->insert(MBBIter, offsetMBB);
9560 MF->insert(MBBIter, overflowMBB);
9561 MF->insert(MBBIter, endMBB);
9563 // Transfer the remainder of MBB and its successor edges to endMBB.
9564 endMBB->splice(endMBB->begin(), thisMBB,
9565 llvm::next(MachineBasicBlock::iterator(MI)),
9566 thisMBB->end());
9567 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9569 // Make offsetMBB and overflowMBB successors of thisMBB
9570 thisMBB->addSuccessor(offsetMBB);
9571 thisMBB->addSuccessor(overflowMBB);
9573 // endMBB is a successor of both offsetMBB and overflowMBB
9574 offsetMBB->addSuccessor(endMBB);
9575 overflowMBB->addSuccessor(endMBB);
9577 // Load the offset value into a register
9578 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9579 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9580 .addOperand(Base)
9581 .addOperand(Scale)
9582 .addOperand(Index)
9583 .addDisp(Disp, UseFPOffset ? 4 : 0)
9584 .addOperand(Segment)
9585 .setMemRefs(MMOBegin, MMOEnd);
9587 // Check if there is enough room left to pull this argument.
9588 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9589 .addReg(OffsetReg)
9590 .addImm(MaxOffset + 8 - ArgSizeA8);
9592 // Branch to "overflowMBB" if offset >= max
9593 // Fall through to "offsetMBB" otherwise
9594 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9595 .addMBB(overflowMBB);
9598 // In offsetMBB, emit code to use the reg_save_area.
9599 if (offsetMBB) {
9600 assert(OffsetReg != 0);
9602 // Read the reg_save_area address.
9603 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9604 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9605 .addOperand(Base)
9606 .addOperand(Scale)
9607 .addOperand(Index)
9608 .addDisp(Disp, 16)
9609 .addOperand(Segment)
9610 .setMemRefs(MMOBegin, MMOEnd);
9612 // Zero-extend the offset
9613 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9614 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9615 .addImm(0)
9616 .addReg(OffsetReg)
9617 .addImm(X86::sub_32bit);
9619 // Add the offset to the reg_save_area to get the final address.
9620 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9621 .addReg(OffsetReg64)
9622 .addReg(RegSaveReg);
9624 // Compute the offset for the next argument
9625 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9626 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9627 .addReg(OffsetReg)
9628 .addImm(UseFPOffset ? 16 : 8);
9630 // Store it back into the va_list.
9631 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9632 .addOperand(Base)
9633 .addOperand(Scale)
9634 .addOperand(Index)
9635 .addDisp(Disp, UseFPOffset ? 4 : 0)
9636 .addOperand(Segment)
9637 .addReg(NextOffsetReg)
9638 .setMemRefs(MMOBegin, MMOEnd);
9640 // Jump to endMBB
9641 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9642 .addMBB(endMBB);
9646 // Emit code to use overflow area
9649 // Load the overflow_area address into a register.
9650 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9651 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9652 .addOperand(Base)
9653 .addOperand(Scale)
9654 .addOperand(Index)
9655 .addDisp(Disp, 8)
9656 .addOperand(Segment)
9657 .setMemRefs(MMOBegin, MMOEnd);
9659 // If we need to align it, do so. Otherwise, just copy the address
9660 // to OverflowDestReg.
9661 if (NeedsAlign) {
9662 // Align the overflow address
9663 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9664 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9666 // aligned_addr = (addr + (align-1)) & ~(align-1)
9667 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9668 .addReg(OverflowAddrReg)
9669 .addImm(Align-1);
9671 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9672 .addReg(TmpReg)
9673 .addImm(~(uint64_t)(Align-1));
9674 } else {
9675 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9676 .addReg(OverflowAddrReg);
9679 // Compute the next overflow address after this argument.
9680 // (the overflow address should be kept 8-byte aligned)
9681 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9682 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9683 .addReg(OverflowDestReg)
9684 .addImm(ArgSizeA8);
9686 // Store the new overflow address.
9687 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9688 .addOperand(Base)
9689 .addOperand(Scale)
9690 .addOperand(Index)
9691 .addDisp(Disp, 8)
9692 .addOperand(Segment)
9693 .addReg(NextAddrReg)
9694 .setMemRefs(MMOBegin, MMOEnd);
9696 // If we branched, emit the PHI to the front of endMBB.
9697 if (offsetMBB) {
9698 BuildMI(*endMBB, endMBB->begin(), DL,
9699 TII->get(X86::PHI), DestReg)
9700 .addReg(OffsetDestReg).addMBB(offsetMBB)
9701 .addReg(OverflowDestReg).addMBB(overflowMBB);
9704 // Erase the pseudo instruction
9705 MI->eraseFromParent();
9707 return endMBB;
9710 MachineBasicBlock *
9711 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9712 MachineInstr *MI,
9713 MachineBasicBlock *MBB) const {
9714 // Emit code to save XMM registers to the stack. The ABI says that the
9715 // number of registers to save is given in %al, so it's theoretically
9716 // possible to do an indirect jump trick to avoid saving all of them,
9717 // however this code takes a simpler approach and just executes all
9718 // of the stores if %al is non-zero. It's less code, and it's probably
9719 // easier on the hardware branch predictor, and stores aren't all that
9720 // expensive anyway.
9722 // Create the new basic blocks. One block contains all the XMM stores,
9723 // and one block is the final destination regardless of whether any
9724 // stores were performed.
9725 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9726 MachineFunction *F = MBB->getParent();
9727 MachineFunction::iterator MBBIter = MBB;
9728 ++MBBIter;
9729 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9730 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9731 F->insert(MBBIter, XMMSaveMBB);
9732 F->insert(MBBIter, EndMBB);
9734 // Transfer the remainder of MBB and its successor edges to EndMBB.
9735 EndMBB->splice(EndMBB->begin(), MBB,
9736 llvm::next(MachineBasicBlock::iterator(MI)),
9737 MBB->end());
9738 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9740 // The original block will now fall through to the XMM save block.
9741 MBB->addSuccessor(XMMSaveMBB);
9742 // The XMMSaveMBB will fall through to the end block.
9743 XMMSaveMBB->addSuccessor(EndMBB);
9745 // Now add the instructions.
9746 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9747 DebugLoc DL = MI->getDebugLoc();
9749 unsigned CountReg = MI->getOperand(0).getReg();
9750 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9751 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9753 if (!Subtarget->isTargetWin64()) {
9754 // If %al is 0, branch around the XMM save block.
9755 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9756 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9757 MBB->addSuccessor(EndMBB);
9760 // In the XMM save block, save all the XMM argument registers.
9761 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9762 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9763 MachineMemOperand *MMO =
9764 F->getMachineMemOperand(
9765 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9766 MachineMemOperand::MOStore,
9767 /*Size=*/16, /*Align=*/16);
9768 BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9769 .addFrameIndex(RegSaveFrameIndex)
9770 .addImm(/*Scale=*/1)
9771 .addReg(/*IndexReg=*/0)
9772 .addImm(/*Disp=*/Offset)
9773 .addReg(/*Segment=*/0)
9774 .addReg(MI->getOperand(i).getReg())
9775 .addMemOperand(MMO);
9778 MI->eraseFromParent(); // The pseudo instruction is gone now.
9780 return EndMBB;
9783 MachineBasicBlock *
9784 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9785 MachineBasicBlock *BB) const {
9786 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9787 DebugLoc DL = MI->getDebugLoc();
9789 // To "insert" a SELECT_CC instruction, we actually have to insert the
9790 // diamond control-flow pattern. The incoming instruction knows the
9791 // destination vreg to set, the condition code register to branch on, the
9792 // true/false values to select between, and a branch opcode to use.
9793 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9794 MachineFunction::iterator It = BB;
9795 ++It;
9797 // thisMBB:
9798 // ...
9799 // TrueVal = ...
9800 // cmpTY ccX, r1, r2
9801 // bCC copy1MBB
9802 // fallthrough --> copy0MBB
9803 MachineBasicBlock *thisMBB = BB;
9804 MachineFunction *F = BB->getParent();
9805 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9806 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9807 F->insert(It, copy0MBB);
9808 F->insert(It, sinkMBB);
9810 // If the EFLAGS register isn't dead in the terminator, then claim that it's
9811 // live into the sink and copy blocks.
9812 const MachineFunction *MF = BB->getParent();
9813 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9814 BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9816 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9817 const MachineOperand &MO = MI->getOperand(I);
9818 if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9819 unsigned Reg = MO.getReg();
9820 if (Reg != X86::EFLAGS) continue;
9821 copy0MBB->addLiveIn(Reg);
9822 sinkMBB->addLiveIn(Reg);
9825 // Transfer the remainder of BB and its successor edges to sinkMBB.
9826 sinkMBB->splice(sinkMBB->begin(), BB,
9827 llvm::next(MachineBasicBlock::iterator(MI)),
9828 BB->end());
9829 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9831 // Add the true and fallthrough blocks as its successors.
9832 BB->addSuccessor(copy0MBB);
9833 BB->addSuccessor(sinkMBB);
9835 // Create the conditional branch instruction.
9836 unsigned Opc =
9837 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9838 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9840 // copy0MBB:
9841 // %FalseValue = ...
9842 // # fallthrough to sinkMBB
9843 copy0MBB->addSuccessor(sinkMBB);
9845 // sinkMBB:
9846 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9847 // ...
9848 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9849 TII->get(X86::PHI), MI->getOperand(0).getReg())
9850 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9851 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9853 MI->eraseFromParent(); // The pseudo instruction is gone now.
9854 return sinkMBB;
9857 MachineBasicBlock *
9858 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9859 MachineBasicBlock *BB) const {
9860 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9861 DebugLoc DL = MI->getDebugLoc();
9863 // The lowering is pretty easy: we're just emitting the call to _alloca. The
9864 // non-trivial part is impdef of ESP.
9865 // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9866 // mingw-w64.
9868 const char *StackProbeSymbol =
9869 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9871 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9872 .addExternalSymbol(StackProbeSymbol)
9873 .addReg(X86::EAX, RegState::Implicit)
9874 .addReg(X86::ESP, RegState::Implicit)
9875 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9876 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9877 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9879 MI->eraseFromParent(); // The pseudo instruction is gone now.
9880 return BB;
9883 MachineBasicBlock *
9884 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9885 MachineBasicBlock *BB) const {
9886 // This is pretty easy. We're taking the value that we received from
9887 // our load from the relocation, sticking it in either RDI (x86-64)
9888 // or EAX and doing an indirect call. The return value will then
9889 // be in the normal return register.
9890 const X86InstrInfo *TII
9891 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9892 DebugLoc DL = MI->getDebugLoc();
9893 MachineFunction *F = BB->getParent();
9895 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9896 assert(MI->getOperand(3).isGlobal() && "This should be a global");
9898 if (Subtarget->is64Bit()) {
9899 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9900 TII->get(X86::MOV64rm), X86::RDI)
9901 .addReg(X86::RIP)
9902 .addImm(0).addReg(0)
9903 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9904 MI->getOperand(3).getTargetFlags())
9905 .addReg(0);
9906 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9907 addDirectMem(MIB, X86::RDI);
9908 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9909 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9910 TII->get(X86::MOV32rm), X86::EAX)
9911 .addReg(0)
9912 .addImm(0).addReg(0)
9913 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9914 MI->getOperand(3).getTargetFlags())
9915 .addReg(0);
9916 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9917 addDirectMem(MIB, X86::EAX);
9918 } else {
9919 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9920 TII->get(X86::MOV32rm), X86::EAX)
9921 .addReg(TII->getGlobalBaseReg(F))
9922 .addImm(0).addReg(0)
9923 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9924 MI->getOperand(3).getTargetFlags())
9925 .addReg(0);
9926 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9927 addDirectMem(MIB, X86::EAX);
9930 MI->eraseFromParent(); // The pseudo instruction is gone now.
9931 return BB;
9934 MachineBasicBlock *
9935 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9936 MachineBasicBlock *BB) const {
9937 switch (MI->getOpcode()) {
9938 default: assert(false && "Unexpected instr type to insert");
9939 case X86::WIN_ALLOCA:
9940 return EmitLoweredWinAlloca(MI, BB);
9941 case X86::TLSCall_32:
9942 case X86::TLSCall_64:
9943 return EmitLoweredTLSCall(MI, BB);
9944 case X86::CMOV_GR8:
9945 case X86::CMOV_FR32:
9946 case X86::CMOV_FR64:
9947 case X86::CMOV_V4F32:
9948 case X86::CMOV_V2F64:
9949 case X86::CMOV_V2I64:
9950 case X86::CMOV_GR16:
9951 case X86::CMOV_GR32:
9952 case X86::CMOV_RFP32:
9953 case X86::CMOV_RFP64:
9954 case X86::CMOV_RFP80:
9955 return EmitLoweredSelect(MI, BB);
9957 case X86::FP32_TO_INT16_IN_MEM:
9958 case X86::FP32_TO_INT32_IN_MEM:
9959 case X86::FP32_TO_INT64_IN_MEM:
9960 case X86::FP64_TO_INT16_IN_MEM:
9961 case X86::FP64_TO_INT32_IN_MEM:
9962 case X86::FP64_TO_INT64_IN_MEM:
9963 case X86::FP80_TO_INT16_IN_MEM:
9964 case X86::FP80_TO_INT32_IN_MEM:
9965 case X86::FP80_TO_INT64_IN_MEM: {
9966 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9967 DebugLoc DL = MI->getDebugLoc();
9969 // Change the floating point control register to use "round towards zero"
9970 // mode when truncating to an integer value.
9971 MachineFunction *F = BB->getParent();
9972 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9973 addFrameReference(BuildMI(*BB, MI, DL,
9974 TII->get(X86::FNSTCW16m)), CWFrameIdx);
9976 // Load the old value of the high byte of the control word...
9977 unsigned OldCW =
9978 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9979 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9980 CWFrameIdx);
9982 // Set the high part to be round to zero...
9983 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9984 .addImm(0xC7F);
9986 // Reload the modified control word now...
9987 addFrameReference(BuildMI(*BB, MI, DL,
9988 TII->get(X86::FLDCW16m)), CWFrameIdx);
9990 // Restore the memory image of control word to original value
9991 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9992 .addReg(OldCW);
9994 // Get the X86 opcode to use.
9995 unsigned Opc;
9996 switch (MI->getOpcode()) {
9997 default: llvm_unreachable("illegal opcode!");
9998 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9999 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10000 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10001 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10002 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10003 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10004 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10005 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10006 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10009 X86AddressMode AM;
10010 MachineOperand &Op = MI->getOperand(0);
10011 if (Op.isReg()) {
10012 AM.BaseType = X86AddressMode::RegBase;
10013 AM.Base.Reg = Op.getReg();
10014 } else {
10015 AM.BaseType = X86AddressMode::FrameIndexBase;
10016 AM.Base.FrameIndex = Op.getIndex();
10018 Op = MI->getOperand(1);
10019 if (Op.isImm())
10020 AM.Scale = Op.getImm();
10021 Op = MI->getOperand(2);
10022 if (Op.isImm())
10023 AM.IndexReg = Op.getImm();
10024 Op = MI->getOperand(3);
10025 if (Op.isGlobal()) {
10026 AM.GV = Op.getGlobal();
10027 } else {
10028 AM.Disp = Op.getImm();
10030 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10031 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10033 // Reload the original control word now.
10034 addFrameReference(BuildMI(*BB, MI, DL,
10035 TII->get(X86::FLDCW16m)), CWFrameIdx);
10037 MI->eraseFromParent(); // The pseudo instruction is gone now.
10038 return BB;
10040 // String/text processing lowering.
10041 case X86::PCMPISTRM128REG:
10042 case X86::VPCMPISTRM128REG:
10043 return EmitPCMP(MI, BB, 3, false /* in-mem */);
10044 case X86::PCMPISTRM128MEM:
10045 case X86::VPCMPISTRM128MEM:
10046 return EmitPCMP(MI, BB, 3, true /* in-mem */);
10047 case X86::PCMPESTRM128REG:
10048 case X86::VPCMPESTRM128REG:
10049 return EmitPCMP(MI, BB, 5, false /* in mem */);
10050 case X86::PCMPESTRM128MEM:
10051 case X86::VPCMPESTRM128MEM:
10052 return EmitPCMP(MI, BB, 5, true /* in mem */);
10054 // Atomic Lowering.
10055 case X86::ATOMAND32:
10056 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10057 X86::AND32ri, X86::MOV32rm,
10058 X86::LCMPXCHG32,
10059 X86::NOT32r, X86::EAX,
10060 X86::GR32RegisterClass);
10061 case X86::ATOMOR32:
10062 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10063 X86::OR32ri, X86::MOV32rm,
10064 X86::LCMPXCHG32,
10065 X86::NOT32r, X86::EAX,
10066 X86::GR32RegisterClass);
10067 case X86::ATOMXOR32:
10068 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10069 X86::XOR32ri, X86::MOV32rm,
10070 X86::LCMPXCHG32,
10071 X86::NOT32r, X86::EAX,
10072 X86::GR32RegisterClass);
10073 case X86::ATOMNAND32:
10074 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10075 X86::AND32ri, X86::MOV32rm,
10076 X86::LCMPXCHG32,
10077 X86::NOT32r, X86::EAX,
10078 X86::GR32RegisterClass, true);
10079 case X86::ATOMMIN32:
10080 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10081 case X86::ATOMMAX32:
10082 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10083 case X86::ATOMUMIN32:
10084 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10085 case X86::ATOMUMAX32:
10086 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10088 case X86::ATOMAND16:
10089 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10090 X86::AND16ri, X86::MOV16rm,
10091 X86::LCMPXCHG16,
10092 X86::NOT16r, X86::AX,
10093 X86::GR16RegisterClass);
10094 case X86::ATOMOR16:
10095 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10096 X86::OR16ri, X86::MOV16rm,
10097 X86::LCMPXCHG16,
10098 X86::NOT16r, X86::AX,
10099 X86::GR16RegisterClass);
10100 case X86::ATOMXOR16:
10101 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10102 X86::XOR16ri, X86::MOV16rm,
10103 X86::LCMPXCHG16,
10104 X86::NOT16r, X86::AX,
10105 X86::GR16RegisterClass);
10106 case X86::ATOMNAND16:
10107 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10108 X86::AND16ri, X86::MOV16rm,
10109 X86::LCMPXCHG16,
10110 X86::NOT16r, X86::AX,
10111 X86::GR16RegisterClass, true);
10112 case X86::ATOMMIN16:
10113 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10114 case X86::ATOMMAX16:
10115 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10116 case X86::ATOMUMIN16:
10117 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10118 case X86::ATOMUMAX16:
10119 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10121 case X86::ATOMAND8:
10122 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10123 X86::AND8ri, X86::MOV8rm,
10124 X86::LCMPXCHG8,
10125 X86::NOT8r, X86::AL,
10126 X86::GR8RegisterClass);
10127 case X86::ATOMOR8:
10128 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10129 X86::OR8ri, X86::MOV8rm,
10130 X86::LCMPXCHG8,
10131 X86::NOT8r, X86::AL,
10132 X86::GR8RegisterClass);
10133 case X86::ATOMXOR8:
10134 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10135 X86::XOR8ri, X86::MOV8rm,
10136 X86::LCMPXCHG8,
10137 X86::NOT8r, X86::AL,
10138 X86::GR8RegisterClass);
10139 case X86::ATOMNAND8:
10140 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10141 X86::AND8ri, X86::MOV8rm,
10142 X86::LCMPXCHG8,
10143 X86::NOT8r, X86::AL,
10144 X86::GR8RegisterClass, true);
10145 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10146 // This group is for 64-bit host.
10147 case X86::ATOMAND64:
10148 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10149 X86::AND64ri32, X86::MOV64rm,
10150 X86::LCMPXCHG64,
10151 X86::NOT64r, X86::RAX,
10152 X86::GR64RegisterClass);
10153 case X86::ATOMOR64:
10154 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10155 X86::OR64ri32, X86::MOV64rm,
10156 X86::LCMPXCHG64,
10157 X86::NOT64r, X86::RAX,
10158 X86::GR64RegisterClass);
10159 case X86::ATOMXOR64:
10160 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10161 X86::XOR64ri32, X86::MOV64rm,
10162 X86::LCMPXCHG64,
10163 X86::NOT64r, X86::RAX,
10164 X86::GR64RegisterClass);
10165 case X86::ATOMNAND64:
10166 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10167 X86::AND64ri32, X86::MOV64rm,
10168 X86::LCMPXCHG64,
10169 X86::NOT64r, X86::RAX,
10170 X86::GR64RegisterClass, true);
10171 case X86::ATOMMIN64:
10172 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10173 case X86::ATOMMAX64:
10174 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10175 case X86::ATOMUMIN64:
10176 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10177 case X86::ATOMUMAX64:
10178 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10180 // This group does 64-bit operations on a 32-bit host.
10181 case X86::ATOMAND6432:
10182 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10183 X86::AND32rr, X86::AND32rr,
10184 X86::AND32ri, X86::AND32ri,
10185 false);
10186 case X86::ATOMOR6432:
10187 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10188 X86::OR32rr, X86::OR32rr,
10189 X86::OR32ri, X86::OR32ri,
10190 false);
10191 case X86::ATOMXOR6432:
10192 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10193 X86::XOR32rr, X86::XOR32rr,
10194 X86::XOR32ri, X86::XOR32ri,
10195 false);
10196 case X86::ATOMNAND6432:
10197 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10198 X86::AND32rr, X86::AND32rr,
10199 X86::AND32ri, X86::AND32ri,
10200 true);
10201 case X86::ATOMADD6432:
10202 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10203 X86::ADD32rr, X86::ADC32rr,
10204 X86::ADD32ri, X86::ADC32ri,
10205 false);
10206 case X86::ATOMSUB6432:
10207 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10208 X86::SUB32rr, X86::SBB32rr,
10209 X86::SUB32ri, X86::SBB32ri,
10210 false);
10211 case X86::ATOMSWAP6432:
10212 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10213 X86::MOV32rr, X86::MOV32rr,
10214 X86::MOV32ri, X86::MOV32ri,
10215 false);
10216 case X86::VASTART_SAVE_XMM_REGS:
10217 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10219 case X86::VAARG_64:
10220 return EmitVAARG64WithCustomInserter(MI, BB);
10224 //===----------------------------------------------------------------------===//
10225 // X86 Optimization Hooks
10226 //===----------------------------------------------------------------------===//
10228 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10229 const APInt &Mask,
10230 APInt &KnownZero,
10231 APInt &KnownOne,
10232 const SelectionDAG &DAG,
10233 unsigned Depth) const {
10234 unsigned Opc = Op.getOpcode();
10235 assert((Opc >= ISD::BUILTIN_OP_END ||
10236 Opc == ISD::INTRINSIC_WO_CHAIN ||
10237 Opc == ISD::INTRINSIC_W_CHAIN ||
10238 Opc == ISD::INTRINSIC_VOID) &&
10239 "Should use MaskedValueIsZero if you don't know whether Op"
10240 " is a target node!");
10242 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
10243 switch (Opc) {
10244 default: break;
10245 case X86ISD::ADD:
10246 case X86ISD::SUB:
10247 case X86ISD::SMUL:
10248 case X86ISD::UMUL:
10249 case X86ISD::INC:
10250 case X86ISD::DEC:
10251 case X86ISD::OR:
10252 case X86ISD::XOR:
10253 case X86ISD::AND:
10254 // These nodes' second result is a boolean.
10255 if (Op.getResNo() == 0)
10256 break;
10257 // Fallthrough
10258 case X86ISD::SETCC:
10259 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10260 Mask.getBitWidth() - 1);
10261 break;
10265 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10266 unsigned Depth) const {
10267 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10268 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10269 return Op.getValueType().getScalarType().getSizeInBits();
10271 // Fallback case.
10272 return 1;
10275 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10276 /// node is a GlobalAddress + offset.
10277 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10278 const GlobalValue* &GA,
10279 int64_t &Offset) const {
10280 if (N->getOpcode() == X86ISD::Wrapper) {
10281 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10282 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10283 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10284 return true;
10287 return TargetLowering::isGAPlusOffset(N, GA, Offset);
10290 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10291 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10292 /// if the load addresses are consecutive, non-overlapping, and in the right
10293 /// order.
10294 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10295 const TargetLowering &TLI) {
10296 DebugLoc dl = N->getDebugLoc();
10297 EVT VT = N->getValueType(0);
10299 if (VT.getSizeInBits() != 128)
10300 return SDValue();
10302 SmallVector<SDValue, 16> Elts;
10303 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10304 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10306 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10309 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10310 /// generation and convert it from being a bunch of shuffles and extracts
10311 /// to a simple store and scalar loads to extract the elements.
10312 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10313 const TargetLowering &TLI) {
10314 SDValue InputVector = N->getOperand(0);
10316 // Only operate on vectors of 4 elements, where the alternative shuffling
10317 // gets to be more expensive.
10318 if (InputVector.getValueType() != MVT::v4i32)
10319 return SDValue();
10321 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10322 // single use which is a sign-extend or zero-extend, and all elements are
10323 // used.
10324 SmallVector<SDNode *, 4> Uses;
10325 unsigned ExtractedElements = 0;
10326 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10327 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10328 if (UI.getUse().getResNo() != InputVector.getResNo())
10329 return SDValue();
10331 SDNode *Extract = *UI;
10332 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10333 return SDValue();
10335 if (Extract->getValueType(0) != MVT::i32)
10336 return SDValue();
10337 if (!Extract->hasOneUse())
10338 return SDValue();
10339 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10340 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10341 return SDValue();
10342 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10343 return SDValue();
10345 // Record which element was extracted.
10346 ExtractedElements |=
10347 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10349 Uses.push_back(Extract);
10352 // If not all the elements were used, this may not be worthwhile.
10353 if (ExtractedElements != 15)
10354 return SDValue();
10356 // Ok, we've now decided to do the transformation.
10357 DebugLoc dl = InputVector.getDebugLoc();
10359 // Store the value to a temporary stack slot.
10360 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10361 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10362 MachinePointerInfo(), false, false, 0);
10364 // Replace each use (extract) with a load of the appropriate element.
10365 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10366 UE = Uses.end(); UI != UE; ++UI) {
10367 SDNode *Extract = *UI;
10369 // Compute the element's address.
10370 SDValue Idx = Extract->getOperand(1);
10371 unsigned EltSize =
10372 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10373 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10374 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10376 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10377 StackPtr, OffsetVal);
10379 // Load the scalar.
10380 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10381 ScalarAddr, MachinePointerInfo(),
10382 false, false, 0);
10384 // Replace the exact with the load.
10385 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10388 // The replacement was made in place; don't return anything.
10389 return SDValue();
10392 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10393 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10394 const X86Subtarget *Subtarget) {
10395 DebugLoc DL = N->getDebugLoc();
10396 SDValue Cond = N->getOperand(0);
10397 // Get the LHS/RHS of the select.
10398 SDValue LHS = N->getOperand(1);
10399 SDValue RHS = N->getOperand(2);
10401 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10402 // instructions match the semantics of the common C idiom x<y?x:y but not
10403 // x<=y?x:y, because of how they handle negative zero (which can be
10404 // ignored in unsafe-math mode).
10405 if (Subtarget->hasSSE2() &&
10406 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10407 Cond.getOpcode() == ISD::SETCC) {
10408 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10410 unsigned Opcode = 0;
10411 // Check for x CC y ? x : y.
10412 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10413 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10414 switch (CC) {
10415 default: break;
10416 case ISD::SETULT:
10417 // Converting this to a min would handle NaNs incorrectly, and swapping
10418 // the operands would cause it to handle comparisons between positive
10419 // and negative zero incorrectly.
10420 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10421 if (!UnsafeFPMath &&
10422 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10423 break;
10424 std::swap(LHS, RHS);
10426 Opcode = X86ISD::FMIN;
10427 break;
10428 case ISD::SETOLE:
10429 // Converting this to a min would handle comparisons between positive
10430 // and negative zero incorrectly.
10431 if (!UnsafeFPMath &&
10432 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10433 break;
10434 Opcode = X86ISD::FMIN;
10435 break;
10436 case ISD::SETULE:
10437 // Converting this to a min would handle both negative zeros and NaNs
10438 // incorrectly, but we can swap the operands to fix both.
10439 std::swap(LHS, RHS);
10440 case ISD::SETOLT:
10441 case ISD::SETLT:
10442 case ISD::SETLE:
10443 Opcode = X86ISD::FMIN;
10444 break;
10446 case ISD::SETOGE:
10447 // Converting this to a max would handle comparisons between positive
10448 // and negative zero incorrectly.
10449 if (!UnsafeFPMath &&
10450 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10451 break;
10452 Opcode = X86ISD::FMAX;
10453 break;
10454 case ISD::SETUGT:
10455 // Converting this to a max would handle NaNs incorrectly, and swapping
10456 // the operands would cause it to handle comparisons between positive
10457 // and negative zero incorrectly.
10458 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10459 if (!UnsafeFPMath &&
10460 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10461 break;
10462 std::swap(LHS, RHS);
10464 Opcode = X86ISD::FMAX;
10465 break;
10466 case ISD::SETUGE:
10467 // Converting this to a max would handle both negative zeros and NaNs
10468 // incorrectly, but we can swap the operands to fix both.
10469 std::swap(LHS, RHS);
10470 case ISD::SETOGT:
10471 case ISD::SETGT:
10472 case ISD::SETGE:
10473 Opcode = X86ISD::FMAX;
10474 break;
10476 // Check for x CC y ? y : x -- a min/max with reversed arms.
10477 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10478 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10479 switch (CC) {
10480 default: break;
10481 case ISD::SETOGE:
10482 // Converting this to a min would handle comparisons between positive
10483 // and negative zero incorrectly, and swapping the operands would
10484 // cause it to handle NaNs incorrectly.
10485 if (!UnsafeFPMath &&
10486 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10487 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10488 break;
10489 std::swap(LHS, RHS);
10491 Opcode = X86ISD::FMIN;
10492 break;
10493 case ISD::SETUGT:
10494 // Converting this to a min would handle NaNs incorrectly.
10495 if (!UnsafeFPMath &&
10496 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10497 break;
10498 Opcode = X86ISD::FMIN;
10499 break;
10500 case ISD::SETUGE:
10501 // Converting this to a min would handle both negative zeros and NaNs
10502 // incorrectly, but we can swap the operands to fix both.
10503 std::swap(LHS, RHS);
10504 case ISD::SETOGT:
10505 case ISD::SETGT:
10506 case ISD::SETGE:
10507 Opcode = X86ISD::FMIN;
10508 break;
10510 case ISD::SETULT:
10511 // Converting this to a max would handle NaNs incorrectly.
10512 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10513 break;
10514 Opcode = X86ISD::FMAX;
10515 break;
10516 case ISD::SETOLE:
10517 // Converting this to a max would handle comparisons between positive
10518 // and negative zero incorrectly, and swapping the operands would
10519 // cause it to handle NaNs incorrectly.
10520 if (!UnsafeFPMath &&
10521 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10522 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10523 break;
10524 std::swap(LHS, RHS);
10526 Opcode = X86ISD::FMAX;
10527 break;
10528 case ISD::SETULE:
10529 // Converting this to a max would handle both negative zeros and NaNs
10530 // incorrectly, but we can swap the operands to fix both.
10531 std::swap(LHS, RHS);
10532 case ISD::SETOLT:
10533 case ISD::SETLT:
10534 case ISD::SETLE:
10535 Opcode = X86ISD::FMAX;
10536 break;
10540 if (Opcode)
10541 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10544 // If this is a select between two integer constants, try to do some
10545 // optimizations.
10546 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10547 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10548 // Don't do this for crazy integer types.
10549 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10550 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10551 // so that TrueC (the true value) is larger than FalseC.
10552 bool NeedsCondInvert = false;
10554 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10555 // Efficiently invertible.
10556 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
10557 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
10558 isa<ConstantSDNode>(Cond.getOperand(1))))) {
10559 NeedsCondInvert = true;
10560 std::swap(TrueC, FalseC);
10563 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
10564 if (FalseC->getAPIntValue() == 0 &&
10565 TrueC->getAPIntValue().isPowerOf2()) {
10566 if (NeedsCondInvert) // Invert the condition if needed.
10567 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10568 DAG.getConstant(1, Cond.getValueType()));
10570 // Zero extend the condition if needed.
10571 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10573 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10574 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10575 DAG.getConstant(ShAmt, MVT::i8));
10578 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10579 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10580 if (NeedsCondInvert) // Invert the condition if needed.
10581 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10582 DAG.getConstant(1, Cond.getValueType()));
10584 // Zero extend the condition if needed.
10585 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10586 FalseC->getValueType(0), Cond);
10587 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10588 SDValue(FalseC, 0));
10591 // Optimize cases that will turn into an LEA instruction. This requires
10592 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10593 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10594 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10595 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10597 bool isFastMultiplier = false;
10598 if (Diff < 10) {
10599 switch ((unsigned char)Diff) {
10600 default: break;
10601 case 1: // result = add base, cond
10602 case 2: // result = lea base( , cond*2)
10603 case 3: // result = lea base(cond, cond*2)
10604 case 4: // result = lea base( , cond*4)
10605 case 5: // result = lea base(cond, cond*4)
10606 case 8: // result = lea base( , cond*8)
10607 case 9: // result = lea base(cond, cond*8)
10608 isFastMultiplier = true;
10609 break;
10613 if (isFastMultiplier) {
10614 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10615 if (NeedsCondInvert) // Invert the condition if needed.
10616 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10617 DAG.getConstant(1, Cond.getValueType()));
10619 // Zero extend the condition if needed.
10620 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10621 Cond);
10622 // Scale the condition by the difference.
10623 if (Diff != 1)
10624 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10625 DAG.getConstant(Diff, Cond.getValueType()));
10627 // Add the base if non-zero.
10628 if (FalseC->getAPIntValue() != 0)
10629 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10630 SDValue(FalseC, 0));
10631 return Cond;
10637 return SDValue();
10640 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10641 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10642 TargetLowering::DAGCombinerInfo &DCI) {
10643 DebugLoc DL = N->getDebugLoc();
10645 // If the flag operand isn't dead, don't touch this CMOV.
10646 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10647 return SDValue();
10649 // If this is a select between two integer constants, try to do some
10650 // optimizations. Note that the operands are ordered the opposite of SELECT
10651 // operands.
10652 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10653 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10654 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10655 // larger than FalseC (the false value).
10656 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10658 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10659 CC = X86::GetOppositeBranchCondition(CC);
10660 std::swap(TrueC, FalseC);
10663 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
10664 // This is efficient for any integer data type (including i8/i16) and
10665 // shift amount.
10666 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10667 SDValue Cond = N->getOperand(3);
10668 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10669 DAG.getConstant(CC, MVT::i8), Cond);
10671 // Zero extend the condition if needed.
10672 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10674 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10675 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10676 DAG.getConstant(ShAmt, MVT::i8));
10677 if (N->getNumValues() == 2) // Dead flag value?
10678 return DCI.CombineTo(N, Cond, SDValue());
10679 return Cond;
10682 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
10683 // for any integer data type, including i8/i16.
10684 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10685 SDValue Cond = N->getOperand(3);
10686 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10687 DAG.getConstant(CC, MVT::i8), Cond);
10689 // Zero extend the condition if needed.
10690 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10691 FalseC->getValueType(0), Cond);
10692 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10693 SDValue(FalseC, 0));
10695 if (N->getNumValues() == 2) // Dead flag value?
10696 return DCI.CombineTo(N, Cond, SDValue());
10697 return Cond;
10700 // Optimize cases that will turn into an LEA instruction. This requires
10701 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10702 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10703 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10704 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10706 bool isFastMultiplier = false;
10707 if (Diff < 10) {
10708 switch ((unsigned char)Diff) {
10709 default: break;
10710 case 1: // result = add base, cond
10711 case 2: // result = lea base( , cond*2)
10712 case 3: // result = lea base(cond, cond*2)
10713 case 4: // result = lea base( , cond*4)
10714 case 5: // result = lea base(cond, cond*4)
10715 case 8: // result = lea base( , cond*8)
10716 case 9: // result = lea base(cond, cond*8)
10717 isFastMultiplier = true;
10718 break;
10722 if (isFastMultiplier) {
10723 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10724 SDValue Cond = N->getOperand(3);
10725 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10726 DAG.getConstant(CC, MVT::i8), Cond);
10727 // Zero extend the condition if needed.
10728 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10729 Cond);
10730 // Scale the condition by the difference.
10731 if (Diff != 1)
10732 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10733 DAG.getConstant(Diff, Cond.getValueType()));
10735 // Add the base if non-zero.
10736 if (FalseC->getAPIntValue() != 0)
10737 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10738 SDValue(FalseC, 0));
10739 if (N->getNumValues() == 2) // Dead flag value?
10740 return DCI.CombineTo(N, Cond, SDValue());
10741 return Cond;
10746 return SDValue();
10750 /// PerformMulCombine - Optimize a single multiply with constant into two
10751 /// in order to implement it with two cheaper instructions, e.g.
10752 /// LEA + SHL, LEA + LEA.
10753 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10754 TargetLowering::DAGCombinerInfo &DCI) {
10755 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10756 return SDValue();
10758 EVT VT = N->getValueType(0);
10759 if (VT != MVT::i64)
10760 return SDValue();
10762 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10763 if (!C)
10764 return SDValue();
10765 uint64_t MulAmt = C->getZExtValue();
10766 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10767 return SDValue();
10769 uint64_t MulAmt1 = 0;
10770 uint64_t MulAmt2 = 0;
10771 if ((MulAmt % 9) == 0) {
10772 MulAmt1 = 9;
10773 MulAmt2 = MulAmt / 9;
10774 } else if ((MulAmt % 5) == 0) {
10775 MulAmt1 = 5;
10776 MulAmt2 = MulAmt / 5;
10777 } else if ((MulAmt % 3) == 0) {
10778 MulAmt1 = 3;
10779 MulAmt2 = MulAmt / 3;
10781 if (MulAmt2 &&
10782 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10783 DebugLoc DL = N->getDebugLoc();
10785 if (isPowerOf2_64(MulAmt2) &&
10786 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10787 // If second multiplifer is pow2, issue it first. We want the multiply by
10788 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10789 // is an add.
10790 std::swap(MulAmt1, MulAmt2);
10792 SDValue NewMul;
10793 if (isPowerOf2_64(MulAmt1))
10794 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10795 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10796 else
10797 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10798 DAG.getConstant(MulAmt1, VT));
10800 if (isPowerOf2_64(MulAmt2))
10801 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10802 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10803 else
10804 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10805 DAG.getConstant(MulAmt2, VT));
10807 // Do not add new nodes to DAG combiner worklist.
10808 DCI.CombineTo(N, NewMul, false);
10810 return SDValue();
10813 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10814 SDValue N0 = N->getOperand(0);
10815 SDValue N1 = N->getOperand(1);
10816 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10817 EVT VT = N0.getValueType();
10819 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10820 // since the result of setcc_c is all zero's or all ones.
10821 if (N1C && N0.getOpcode() == ISD::AND &&
10822 N0.getOperand(1).getOpcode() == ISD::Constant) {
10823 SDValue N00 = N0.getOperand(0);
10824 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10825 ((N00.getOpcode() == ISD::ANY_EXTEND ||
10826 N00.getOpcode() == ISD::ZERO_EXTEND) &&
10827 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10828 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10829 APInt ShAmt = N1C->getAPIntValue();
10830 Mask = Mask.shl(ShAmt);
10831 if (Mask != 0)
10832 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10833 N00, DAG.getConstant(Mask, VT));
10837 return SDValue();
10840 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10841 /// when possible.
10842 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10843 const X86Subtarget *Subtarget) {
10844 EVT VT = N->getValueType(0);
10845 if (!VT.isVector() && VT.isInteger() &&
10846 N->getOpcode() == ISD::SHL)
10847 return PerformSHLCombine(N, DAG);
10849 // On X86 with SSE2 support, we can transform this to a vector shift if
10850 // all elements are shifted by the same amount. We can't do this in legalize
10851 // because the a constant vector is typically transformed to a constant pool
10852 // so we have no knowledge of the shift amount.
10853 if (!Subtarget->hasSSE2())
10854 return SDValue();
10856 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10857 return SDValue();
10859 SDValue ShAmtOp = N->getOperand(1);
10860 EVT EltVT = VT.getVectorElementType();
10861 DebugLoc DL = N->getDebugLoc();
10862 SDValue BaseShAmt = SDValue();
10863 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10864 unsigned NumElts = VT.getVectorNumElements();
10865 unsigned i = 0;
10866 for (; i != NumElts; ++i) {
10867 SDValue Arg = ShAmtOp.getOperand(i);
10868 if (Arg.getOpcode() == ISD::UNDEF) continue;
10869 BaseShAmt = Arg;
10870 break;
10872 for (; i != NumElts; ++i) {
10873 SDValue Arg = ShAmtOp.getOperand(i);
10874 if (Arg.getOpcode() == ISD::UNDEF) continue;
10875 if (Arg != BaseShAmt) {
10876 return SDValue();
10879 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10880 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10881 SDValue InVec = ShAmtOp.getOperand(0);
10882 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10883 unsigned NumElts = InVec.getValueType().getVectorNumElements();
10884 unsigned i = 0;
10885 for (; i != NumElts; ++i) {
10886 SDValue Arg = InVec.getOperand(i);
10887 if (Arg.getOpcode() == ISD::UNDEF) continue;
10888 BaseShAmt = Arg;
10889 break;
10891 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10892 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10893 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10894 if (C->getZExtValue() == SplatIdx)
10895 BaseShAmt = InVec.getOperand(1);
10898 if (BaseShAmt.getNode() == 0)
10899 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10900 DAG.getIntPtrConstant(0));
10901 } else
10902 return SDValue();
10904 // The shift amount is an i32.
10905 if (EltVT.bitsGT(MVT::i32))
10906 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10907 else if (EltVT.bitsLT(MVT::i32))
10908 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10910 // The shift amount is identical so we can do a vector shift.
10911 SDValue ValOp = N->getOperand(0);
10912 switch (N->getOpcode()) {
10913 default:
10914 llvm_unreachable("Unknown shift opcode!");
10915 break;
10916 case ISD::SHL:
10917 if (VT == MVT::v2i64)
10918 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10919 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10920 ValOp, BaseShAmt);
10921 if (VT == MVT::v4i32)
10922 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10923 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10924 ValOp, BaseShAmt);
10925 if (VT == MVT::v8i16)
10926 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10927 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10928 ValOp, BaseShAmt);
10929 break;
10930 case ISD::SRA:
10931 if (VT == MVT::v4i32)
10932 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10933 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10934 ValOp, BaseShAmt);
10935 if (VT == MVT::v8i16)
10936 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10937 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10938 ValOp, BaseShAmt);
10939 break;
10940 case ISD::SRL:
10941 if (VT == MVT::v2i64)
10942 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10943 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10944 ValOp, BaseShAmt);
10945 if (VT == MVT::v4i32)
10946 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10947 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10948 ValOp, BaseShAmt);
10949 if (VT == MVT::v8i16)
10950 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10951 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10952 ValOp, BaseShAmt);
10953 break;
10955 return SDValue();
10958 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10959 TargetLowering::DAGCombinerInfo &DCI,
10960 const X86Subtarget *Subtarget) {
10961 if (DCI.isBeforeLegalizeOps())
10962 return SDValue();
10964 EVT VT = N->getValueType(0);
10965 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10966 return SDValue();
10968 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10969 SDValue N0 = N->getOperand(0);
10970 SDValue N1 = N->getOperand(1);
10971 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10972 std::swap(N0, N1);
10973 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10974 return SDValue();
10975 if (!N0.hasOneUse() || !N1.hasOneUse())
10976 return SDValue();
10978 SDValue ShAmt0 = N0.getOperand(1);
10979 if (ShAmt0.getValueType() != MVT::i8)
10980 return SDValue();
10981 SDValue ShAmt1 = N1.getOperand(1);
10982 if (ShAmt1.getValueType() != MVT::i8)
10983 return SDValue();
10984 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10985 ShAmt0 = ShAmt0.getOperand(0);
10986 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10987 ShAmt1 = ShAmt1.getOperand(0);
10989 DebugLoc DL = N->getDebugLoc();
10990 unsigned Opc = X86ISD::SHLD;
10991 SDValue Op0 = N0.getOperand(0);
10992 SDValue Op1 = N1.getOperand(0);
10993 if (ShAmt0.getOpcode() == ISD::SUB) {
10994 Opc = X86ISD::SHRD;
10995 std::swap(Op0, Op1);
10996 std::swap(ShAmt0, ShAmt1);
10999 unsigned Bits = VT.getSizeInBits();
11000 if (ShAmt1.getOpcode() == ISD::SUB) {
11001 SDValue Sum = ShAmt1.getOperand(0);
11002 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11003 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11004 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11005 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11006 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11007 return DAG.getNode(Opc, DL, VT,
11008 Op0, Op1,
11009 DAG.getNode(ISD::TRUNCATE, DL,
11010 MVT::i8, ShAmt0));
11012 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11013 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11014 if (ShAmt0C &&
11015 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11016 return DAG.getNode(Opc, DL, VT,
11017 N0.getOperand(0), N1.getOperand(0),
11018 DAG.getNode(ISD::TRUNCATE, DL,
11019 MVT::i8, ShAmt0));
11022 return SDValue();
11025 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11026 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11027 const X86Subtarget *Subtarget) {
11028 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
11029 // the FP state in cases where an emms may be missing.
11030 // A preferable solution to the general problem is to figure out the right
11031 // places to insert EMMS. This qualifies as a quick hack.
11033 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11034 StoreSDNode *St = cast<StoreSDNode>(N);
11035 EVT VT = St->getValue().getValueType();
11036 if (VT.getSizeInBits() != 64)
11037 return SDValue();
11039 const Function *F = DAG.getMachineFunction().getFunction();
11040 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11041 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11042 && Subtarget->hasSSE2();
11043 if ((VT.isVector() ||
11044 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11045 isa<LoadSDNode>(St->getValue()) &&
11046 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11047 St->getChain().hasOneUse() && !St->isVolatile()) {
11048 SDNode* LdVal = St->getValue().getNode();
11049 LoadSDNode *Ld = 0;
11050 int TokenFactorIndex = -1;
11051 SmallVector<SDValue, 8> Ops;
11052 SDNode* ChainVal = St->getChain().getNode();
11053 // Must be a store of a load. We currently handle two cases: the load
11054 // is a direct child, and it's under an intervening TokenFactor. It is
11055 // possible to dig deeper under nested TokenFactors.
11056 if (ChainVal == LdVal)
11057 Ld = cast<LoadSDNode>(St->getChain());
11058 else if (St->getValue().hasOneUse() &&
11059 ChainVal->getOpcode() == ISD::TokenFactor) {
11060 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11061 if (ChainVal->getOperand(i).getNode() == LdVal) {
11062 TokenFactorIndex = i;
11063 Ld = cast<LoadSDNode>(St->getValue());
11064 } else
11065 Ops.push_back(ChainVal->getOperand(i));
11069 if (!Ld || !ISD::isNormalLoad(Ld))
11070 return SDValue();
11072 // If this is not the MMX case, i.e. we are just turning i64 load/store
11073 // into f64 load/store, avoid the transformation if there are multiple
11074 // uses of the loaded value.
11075 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11076 return SDValue();
11078 DebugLoc LdDL = Ld->getDebugLoc();
11079 DebugLoc StDL = N->getDebugLoc();
11080 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11081 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11082 // pair instead.
11083 if (Subtarget->is64Bit() || F64IsLegal) {
11084 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11085 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11086 Ld->getPointerInfo(), Ld->isVolatile(),
11087 Ld->isNonTemporal(), Ld->getAlignment());
11088 SDValue NewChain = NewLd.getValue(1);
11089 if (TokenFactorIndex != -1) {
11090 Ops.push_back(NewChain);
11091 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11092 Ops.size());
11094 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11095 St->getPointerInfo(),
11096 St->isVolatile(), St->isNonTemporal(),
11097 St->getAlignment());
11100 // Otherwise, lower to two pairs of 32-bit loads / stores.
11101 SDValue LoAddr = Ld->getBasePtr();
11102 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11103 DAG.getConstant(4, MVT::i32));
11105 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11106 Ld->getPointerInfo(),
11107 Ld->isVolatile(), Ld->isNonTemporal(),
11108 Ld->getAlignment());
11109 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11110 Ld->getPointerInfo().getWithOffset(4),
11111 Ld->isVolatile(), Ld->isNonTemporal(),
11112 MinAlign(Ld->getAlignment(), 4));
11114 SDValue NewChain = LoLd.getValue(1);
11115 if (TokenFactorIndex != -1) {
11116 Ops.push_back(LoLd);
11117 Ops.push_back(HiLd);
11118 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11119 Ops.size());
11122 LoAddr = St->getBasePtr();
11123 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11124 DAG.getConstant(4, MVT::i32));
11126 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11127 St->getPointerInfo(),
11128 St->isVolatile(), St->isNonTemporal(),
11129 St->getAlignment());
11130 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11131 St->getPointerInfo().getWithOffset(4),
11132 St->isVolatile(),
11133 St->isNonTemporal(),
11134 MinAlign(St->getAlignment(), 4));
11135 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11137 return SDValue();
11140 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11141 /// X86ISD::FXOR nodes.
11142 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11143 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11144 // F[X]OR(0.0, x) -> x
11145 // F[X]OR(x, 0.0) -> x
11146 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11147 if (C->getValueAPF().isPosZero())
11148 return N->getOperand(1);
11149 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11150 if (C->getValueAPF().isPosZero())
11151 return N->getOperand(0);
11152 return SDValue();
11155 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11156 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11157 // FAND(0.0, x) -> 0.0
11158 // FAND(x, 0.0) -> 0.0
11159 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11160 if (C->getValueAPF().isPosZero())
11161 return N->getOperand(0);
11162 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11163 if (C->getValueAPF().isPosZero())
11164 return N->getOperand(1);
11165 return SDValue();
11168 static SDValue PerformBTCombine(SDNode *N,
11169 SelectionDAG &DAG,
11170 TargetLowering::DAGCombinerInfo &DCI) {
11171 // BT ignores high bits in the bit index operand.
11172 SDValue Op1 = N->getOperand(1);
11173 if (Op1.hasOneUse()) {
11174 unsigned BitWidth = Op1.getValueSizeInBits();
11175 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11176 APInt KnownZero, KnownOne;
11177 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11178 !DCI.isBeforeLegalizeOps());
11179 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11180 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11181 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11182 DCI.CommitTargetLoweringOpt(TLO);
11184 return SDValue();
11187 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11188 SDValue Op = N->getOperand(0);
11189 if (Op.getOpcode() == ISD::BIT_CONVERT)
11190 Op = Op.getOperand(0);
11191 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11192 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11193 VT.getVectorElementType().getSizeInBits() ==
11194 OpVT.getVectorElementType().getSizeInBits()) {
11195 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
11197 return SDValue();
11200 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11201 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
11202 // (and (i32 x86isd::setcc_carry), 1)
11203 // This eliminates the zext. This transformation is necessary because
11204 // ISD::SETCC is always legalized to i8.
11205 DebugLoc dl = N->getDebugLoc();
11206 SDValue N0 = N->getOperand(0);
11207 EVT VT = N->getValueType(0);
11208 if (N0.getOpcode() == ISD::AND &&
11209 N0.hasOneUse() &&
11210 N0.getOperand(0).hasOneUse()) {
11211 SDValue N00 = N0.getOperand(0);
11212 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11213 return SDValue();
11214 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11215 if (!C || C->getZExtValue() != 1)
11216 return SDValue();
11217 return DAG.getNode(ISD::AND, dl, VT,
11218 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11219 N00.getOperand(0), N00.getOperand(1)),
11220 DAG.getConstant(1, VT));
11223 return SDValue();
11226 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11227 DAGCombinerInfo &DCI) const {
11228 SelectionDAG &DAG = DCI.DAG;
11229 switch (N->getOpcode()) {
11230 default: break;
11231 case ISD::EXTRACT_VECTOR_ELT:
11232 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11233 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
11234 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
11235 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
11236 case ISD::SHL:
11237 case ISD::SRA:
11238 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
11239 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
11240 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
11241 case X86ISD::FXOR:
11242 case X86ISD::FOR: return PerformFORCombine(N, DAG);
11243 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
11244 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
11245 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
11246 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
11247 case X86ISD::SHUFPS: // Handle all target specific shuffles
11248 case X86ISD::SHUFPD:
11249 case X86ISD::PALIGN:
11250 case X86ISD::PUNPCKHBW:
11251 case X86ISD::PUNPCKHWD:
11252 case X86ISD::PUNPCKHDQ:
11253 case X86ISD::PUNPCKHQDQ:
11254 case X86ISD::UNPCKHPS:
11255 case X86ISD::UNPCKHPD:
11256 case X86ISD::PUNPCKLBW:
11257 case X86ISD::PUNPCKLWD:
11258 case X86ISD::PUNPCKLDQ:
11259 case X86ISD::PUNPCKLQDQ:
11260 case X86ISD::UNPCKLPS:
11261 case X86ISD::UNPCKLPD:
11262 case X86ISD::MOVHLPS:
11263 case X86ISD::MOVLHPS:
11264 case X86ISD::PSHUFD:
11265 case X86ISD::PSHUFHW:
11266 case X86ISD::PSHUFLW:
11267 case X86ISD::MOVSS:
11268 case X86ISD::MOVSD:
11269 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11272 return SDValue();
11275 /// isTypeDesirableForOp - Return true if the target has native support for
11276 /// the specified value type and it is 'desirable' to use the type for the
11277 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11278 /// instruction encodings are longer and some i16 instructions are slow.
11279 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11280 if (!isTypeLegal(VT))
11281 return false;
11282 if (VT != MVT::i16)
11283 return true;
11285 switch (Opc) {
11286 default:
11287 return true;
11288 case ISD::LOAD:
11289 case ISD::SIGN_EXTEND:
11290 case ISD::ZERO_EXTEND:
11291 case ISD::ANY_EXTEND:
11292 case ISD::SHL:
11293 case ISD::SRL:
11294 case ISD::SUB:
11295 case ISD::ADD:
11296 case ISD::MUL:
11297 case ISD::AND:
11298 case ISD::OR:
11299 case ISD::XOR:
11300 return false;
11304 /// IsDesirableToPromoteOp - This method query the target whether it is
11305 /// beneficial for dag combiner to promote the specified node. If true, it
11306 /// should return the desired promotion type by reference.
11307 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11308 EVT VT = Op.getValueType();
11309 if (VT != MVT::i16)
11310 return false;
11312 bool Promote = false;
11313 bool Commute = false;
11314 switch (Op.getOpcode()) {
11315 default: break;
11316 case ISD::LOAD: {
11317 LoadSDNode *LD = cast<LoadSDNode>(Op);
11318 // If the non-extending load has a single use and it's not live out, then it
11319 // might be folded.
11320 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11321 Op.hasOneUse()*/) {
11322 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11323 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11324 // The only case where we'd want to promote LOAD (rather then it being
11325 // promoted as an operand is when it's only use is liveout.
11326 if (UI->getOpcode() != ISD::CopyToReg)
11327 return false;
11330 Promote = true;
11331 break;
11333 case ISD::SIGN_EXTEND:
11334 case ISD::ZERO_EXTEND:
11335 case ISD::ANY_EXTEND:
11336 Promote = true;
11337 break;
11338 case ISD::SHL:
11339 case ISD::SRL: {
11340 SDValue N0 = Op.getOperand(0);
11341 // Look out for (store (shl (load), x)).
11342 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11343 return false;
11344 Promote = true;
11345 break;
11347 case ISD::ADD:
11348 case ISD::MUL:
11349 case ISD::AND:
11350 case ISD::OR:
11351 case ISD::XOR:
11352 Commute = true;
11353 // fallthrough
11354 case ISD::SUB: {
11355 SDValue N0 = Op.getOperand(0);
11356 SDValue N1 = Op.getOperand(1);
11357 if (!Commute && MayFoldLoad(N1))
11358 return false;
11359 // Avoid disabling potential load folding opportunities.
11360 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11361 return false;
11362 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11363 return false;
11364 Promote = true;
11368 PVT = MVT::i32;
11369 return Promote;
11372 //===----------------------------------------------------------------------===//
11373 // X86 Inline Assembly Support
11374 //===----------------------------------------------------------------------===//
11376 static bool LowerToBSwap(CallInst *CI) {
11377 // FIXME: this should verify that we are targetting a 486 or better. If not,
11378 // we will turn this bswap into something that will be lowered to logical ops
11379 // instead of emitting the bswap asm. For now, we don't support 486 or lower
11380 // so don't worry about this.
11382 // Verify this is a simple bswap.
11383 if (CI->getNumArgOperands() != 1 ||
11384 CI->getType() != CI->getArgOperand(0)->getType() ||
11385 !CI->getType()->isIntegerTy())
11386 return false;
11388 const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11389 if (!Ty || Ty->getBitWidth() % 16 != 0)
11390 return false;
11392 // Okay, we can do this xform, do so now.
11393 const Type *Tys[] = { Ty };
11394 Module *M = CI->getParent()->getParent()->getParent();
11395 Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11397 Value *Op = CI->getArgOperand(0);
11398 Op = CallInst::Create(Int, Op, CI->getName(), CI);
11400 CI->replaceAllUsesWith(Op);
11401 CI->eraseFromParent();
11402 return true;
11405 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11406 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11407 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11409 std::string AsmStr = IA->getAsmString();
11411 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11412 SmallVector<StringRef, 4> AsmPieces;
11413 SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
11415 switch (AsmPieces.size()) {
11416 default: return false;
11417 case 1:
11418 AsmStr = AsmPieces[0];
11419 AsmPieces.clear();
11420 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
11422 // bswap $0
11423 if (AsmPieces.size() == 2 &&
11424 (AsmPieces[0] == "bswap" ||
11425 AsmPieces[0] == "bswapq" ||
11426 AsmPieces[0] == "bswapl") &&
11427 (AsmPieces[1] == "$0" ||
11428 AsmPieces[1] == "${0:q}")) {
11429 // No need to check constraints, nothing other than the equivalent of
11430 // "=r,0" would be valid here.
11431 return LowerToBSwap(CI);
11433 // rorw $$8, ${0:w} --> llvm.bswap.i16
11434 if (CI->getType()->isIntegerTy(16) &&
11435 AsmPieces.size() == 3 &&
11436 (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11437 AsmPieces[1] == "$$8," &&
11438 AsmPieces[2] == "${0:w}" &&
11439 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11440 AsmPieces.clear();
11441 const std::string &Constraints = IA->getConstraintString();
11442 SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11443 std::sort(AsmPieces.begin(), AsmPieces.end());
11444 if (AsmPieces.size() == 4 &&
11445 AsmPieces[0] == "~{cc}" &&
11446 AsmPieces[1] == "~{dirflag}" &&
11447 AsmPieces[2] == "~{flags}" &&
11448 AsmPieces[3] == "~{fpsr}") {
11449 return LowerToBSwap(CI);
11452 break;
11453 case 3:
11454 if (CI->getType()->isIntegerTy(64) &&
11455 Constraints.size() >= 2 &&
11456 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11457 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11458 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
11459 SmallVector<StringRef, 4> Words;
11460 SplitString(AsmPieces[0], Words, " \t");
11461 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11462 Words.clear();
11463 SplitString(AsmPieces[1], Words, " \t");
11464 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11465 Words.clear();
11466 SplitString(AsmPieces[2], Words, " \t,");
11467 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11468 Words[2] == "%edx") {
11469 return LowerToBSwap(CI);
11474 break;
11476 return false;
11481 /// getConstraintType - Given a constraint letter, return the type of
11482 /// constraint it is for this target.
11483 X86TargetLowering::ConstraintType
11484 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11485 if (Constraint.size() == 1) {
11486 switch (Constraint[0]) {
11487 case 'R':
11488 case 'q':
11489 case 'Q':
11490 case 'f':
11491 case 't':
11492 case 'u':
11493 case 'y':
11494 case 'x':
11495 case 'Y':
11496 return C_RegisterClass;
11497 case 'a':
11498 case 'b':
11499 case 'c':
11500 case 'd':
11501 case 'S':
11502 case 'D':
11503 case 'A':
11504 return C_Register;
11505 case 'I':
11506 case 'J':
11507 case 'K':
11508 case 'L':
11509 case 'M':
11510 case 'N':
11511 case 'G':
11512 case 'C':
11513 case 'e':
11514 case 'Z':
11515 return C_Other;
11516 default:
11517 break;
11520 return TargetLowering::getConstraintType(Constraint);
11523 /// Examine constraint type and operand type and determine a weight value.
11524 /// This object must already have been set up with the operand type
11525 /// and the current alternative constraint selected.
11526 TargetLowering::ConstraintWeight
11527 X86TargetLowering::getSingleConstraintMatchWeight(
11528 AsmOperandInfo &info, const char *constraint) const {
11529 ConstraintWeight weight = CW_Invalid;
11530 Value *CallOperandVal = info.CallOperandVal;
11531 // If we don't have a value, we can't do a match,
11532 // but allow it at the lowest weight.
11533 if (CallOperandVal == NULL)
11534 return CW_Default;
11535 const Type *type = CallOperandVal->getType();
11536 // Look at the constraint type.
11537 switch (*constraint) {
11538 default:
11539 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11540 case 'R':
11541 case 'q':
11542 case 'Q':
11543 case 'a':
11544 case 'b':
11545 case 'c':
11546 case 'd':
11547 case 'S':
11548 case 'D':
11549 case 'A':
11550 if (CallOperandVal->getType()->isIntegerTy())
11551 weight = CW_SpecificReg;
11552 break;
11553 case 'f':
11554 case 't':
11555 case 'u':
11556 if (type->isFloatingPointTy())
11557 weight = CW_SpecificReg;
11558 break;
11559 case 'y':
11560 if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
11561 weight = CW_SpecificReg;
11562 break;
11563 case 'x':
11564 case 'Y':
11565 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
11566 weight = CW_Register;
11567 break;
11568 case 'I':
11569 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11570 if (C->getZExtValue() <= 31)
11571 weight = CW_Constant;
11573 break;
11574 case 'J':
11575 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11576 if (C->getZExtValue() <= 63)
11577 weight = CW_Constant;
11579 break;
11580 case 'K':
11581 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11582 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11583 weight = CW_Constant;
11585 break;
11586 case 'L':
11587 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11588 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11589 weight = CW_Constant;
11591 break;
11592 case 'M':
11593 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11594 if (C->getZExtValue() <= 3)
11595 weight = CW_Constant;
11597 break;
11598 case 'N':
11599 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11600 if (C->getZExtValue() <= 0xff)
11601 weight = CW_Constant;
11603 break;
11604 case 'G':
11605 case 'C':
11606 if (dyn_cast<ConstantFP>(CallOperandVal)) {
11607 weight = CW_Constant;
11609 break;
11610 case 'e':
11611 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11612 if ((C->getSExtValue() >= -0x80000000LL) &&
11613 (C->getSExtValue() <= 0x7fffffffLL))
11614 weight = CW_Constant;
11616 break;
11617 case 'Z':
11618 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11619 if (C->getZExtValue() <= 0xffffffff)
11620 weight = CW_Constant;
11622 break;
11624 return weight;
11627 /// LowerXConstraint - try to replace an X constraint, which matches anything,
11628 /// with another that has more specific requirements based on the type of the
11629 /// corresponding operand.
11630 const char *X86TargetLowering::
11631 LowerXConstraint(EVT ConstraintVT) const {
11632 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11633 // 'f' like normal targets.
11634 if (ConstraintVT.isFloatingPoint()) {
11635 if (Subtarget->hasSSE2())
11636 return "Y";
11637 if (Subtarget->hasSSE1())
11638 return "x";
11641 return TargetLowering::LowerXConstraint(ConstraintVT);
11644 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11645 /// vector. If it is invalid, don't add anything to Ops.
11646 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11647 char Constraint,
11648 std::vector<SDValue>&Ops,
11649 SelectionDAG &DAG) const {
11650 SDValue Result(0, 0);
11652 switch (Constraint) {
11653 default: break;
11654 case 'I':
11655 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11656 if (C->getZExtValue() <= 31) {
11657 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11658 break;
11661 return;
11662 case 'J':
11663 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11664 if (C->getZExtValue() <= 63) {
11665 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11666 break;
11669 return;
11670 case 'K':
11671 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11672 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11673 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11674 break;
11677 return;
11678 case 'N':
11679 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11680 if (C->getZExtValue() <= 255) {
11681 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11682 break;
11685 return;
11686 case 'e': {
11687 // 32-bit signed value
11688 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11689 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11690 C->getSExtValue())) {
11691 // Widen to 64 bits here to get it sign extended.
11692 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11693 break;
11695 // FIXME gcc accepts some relocatable values here too, but only in certain
11696 // memory models; it's complicated.
11698 return;
11700 case 'Z': {
11701 // 32-bit unsigned value
11702 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11703 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11704 C->getZExtValue())) {
11705 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11706 break;
11709 // FIXME gcc accepts some relocatable values here too, but only in certain
11710 // memory models; it's complicated.
11711 return;
11713 case 'i': {
11714 // Literal immediates are always ok.
11715 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11716 // Widen to 64 bits here to get it sign extended.
11717 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11718 break;
11721 // In any sort of PIC mode addresses need to be computed at runtime by
11722 // adding in a register or some sort of table lookup. These can't
11723 // be used as immediates.
11724 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11725 return;
11727 // If we are in non-pic codegen mode, we allow the address of a global (with
11728 // an optional displacement) to be used with 'i'.
11729 GlobalAddressSDNode *GA = 0;
11730 int64_t Offset = 0;
11732 // Match either (GA), (GA+C), (GA+C1+C2), etc.
11733 while (1) {
11734 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11735 Offset += GA->getOffset();
11736 break;
11737 } else if (Op.getOpcode() == ISD::ADD) {
11738 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11739 Offset += C->getZExtValue();
11740 Op = Op.getOperand(0);
11741 continue;
11743 } else if (Op.getOpcode() == ISD::SUB) {
11744 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11745 Offset += -C->getZExtValue();
11746 Op = Op.getOperand(0);
11747 continue;
11751 // Otherwise, this isn't something we can handle, reject it.
11752 return;
11755 const GlobalValue *GV = GA->getGlobal();
11756 // If we require an extra load to get this address, as in PIC mode, we
11757 // can't accept it.
11758 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11759 getTargetMachine())))
11760 return;
11762 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11763 GA->getValueType(0), Offset);
11764 break;
11768 if (Result.getNode()) {
11769 Ops.push_back(Result);
11770 return;
11772 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11775 std::vector<unsigned> X86TargetLowering::
11776 getRegClassForInlineAsmConstraint(const std::string &Constraint,
11777 EVT VT) const {
11778 if (Constraint.size() == 1) {
11779 // FIXME: not handling fp-stack yet!
11780 switch (Constraint[0]) { // GCC X86 Constraint Letters
11781 default: break; // Unknown constraint letter
11782 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11783 if (Subtarget->is64Bit()) {
11784 if (VT == MVT::i32)
11785 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11786 X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11787 X86::R10D,X86::R11D,X86::R12D,
11788 X86::R13D,X86::R14D,X86::R15D,
11789 X86::EBP, X86::ESP, 0);
11790 else if (VT == MVT::i16)
11791 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
11792 X86::SI, X86::DI, X86::R8W,X86::R9W,
11793 X86::R10W,X86::R11W,X86::R12W,
11794 X86::R13W,X86::R14W,X86::R15W,
11795 X86::BP, X86::SP, 0);
11796 else if (VT == MVT::i8)
11797 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
11798 X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11799 X86::R10B,X86::R11B,X86::R12B,
11800 X86::R13B,X86::R14B,X86::R15B,
11801 X86::BPL, X86::SPL, 0);
11803 else if (VT == MVT::i64)
11804 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11805 X86::RSI, X86::RDI, X86::R8, X86::R9,
11806 X86::R10, X86::R11, X86::R12,
11807 X86::R13, X86::R14, X86::R15,
11808 X86::RBP, X86::RSP, 0);
11810 break;
11812 // 32-bit fallthrough
11813 case 'Q': // Q_REGS
11814 if (VT == MVT::i32)
11815 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11816 else if (VT == MVT::i16)
11817 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11818 else if (VT == MVT::i8)
11819 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11820 else if (VT == MVT::i64)
11821 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11822 break;
11826 return std::vector<unsigned>();
11829 std::pair<unsigned, const TargetRegisterClass*>
11830 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11831 EVT VT) const {
11832 // First, see if this is a constraint that directly corresponds to an LLVM
11833 // register class.
11834 if (Constraint.size() == 1) {
11835 // GCC Constraint Letters
11836 switch (Constraint[0]) {
11837 default: break;
11838 case 'r': // GENERAL_REGS
11839 case 'l': // INDEX_REGS
11840 if (VT == MVT::i8)
11841 return std::make_pair(0U, X86::GR8RegisterClass);
11842 if (VT == MVT::i16)
11843 return std::make_pair(0U, X86::GR16RegisterClass);
11844 if (VT == MVT::i32 || !Subtarget->is64Bit())
11845 return std::make_pair(0U, X86::GR32RegisterClass);
11846 return std::make_pair(0U, X86::GR64RegisterClass);
11847 case 'R': // LEGACY_REGS
11848 if (VT == MVT::i8)
11849 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11850 if (VT == MVT::i16)
11851 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11852 if (VT == MVT::i32 || !Subtarget->is64Bit())
11853 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11854 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11855 case 'f': // FP Stack registers.
11856 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11857 // value to the correct fpstack register class.
11858 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11859 return std::make_pair(0U, X86::RFP32RegisterClass);
11860 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11861 return std::make_pair(0U, X86::RFP64RegisterClass);
11862 return std::make_pair(0U, X86::RFP80RegisterClass);
11863 case 'y': // MMX_REGS if MMX allowed.
11864 if (!Subtarget->hasMMX()) break;
11865 return std::make_pair(0U, X86::VR64RegisterClass);
11866 case 'Y': // SSE_REGS if SSE2 allowed
11867 if (!Subtarget->hasSSE2()) break;
11868 // FALL THROUGH.
11869 case 'x': // SSE_REGS if SSE1 allowed
11870 if (!Subtarget->hasSSE1()) break;
11872 switch (VT.getSimpleVT().SimpleTy) {
11873 default: break;
11874 // Scalar SSE types.
11875 case MVT::f32:
11876 case MVT::i32:
11877 return std::make_pair(0U, X86::FR32RegisterClass);
11878 case MVT::f64:
11879 case MVT::i64:
11880 return std::make_pair(0U, X86::FR64RegisterClass);
11881 // Vector types.
11882 case MVT::v16i8:
11883 case MVT::v8i16:
11884 case MVT::v4i32:
11885 case MVT::v2i64:
11886 case MVT::v4f32:
11887 case MVT::v2f64:
11888 return std::make_pair(0U, X86::VR128RegisterClass);
11890 break;
11894 // Use the default implementation in TargetLowering to convert the register
11895 // constraint into a member of a register class.
11896 std::pair<unsigned, const TargetRegisterClass*> Res;
11897 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11899 // Not found as a standard register?
11900 if (Res.second == 0) {
11901 // Map st(0) -> st(7) -> ST0
11902 if (Constraint.size() == 7 && Constraint[0] == '{' &&
11903 tolower(Constraint[1]) == 's' &&
11904 tolower(Constraint[2]) == 't' &&
11905 Constraint[3] == '(' &&
11906 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11907 Constraint[5] == ')' &&
11908 Constraint[6] == '}') {
11910 Res.first = X86::ST0+Constraint[4]-'0';
11911 Res.second = X86::RFP80RegisterClass;
11912 return Res;
11915 // GCC allows "st(0)" to be called just plain "st".
11916 if (StringRef("{st}").equals_lower(Constraint)) {
11917 Res.first = X86::ST0;
11918 Res.second = X86::RFP80RegisterClass;
11919 return Res;
11922 // flags -> EFLAGS
11923 if (StringRef("{flags}").equals_lower(Constraint)) {
11924 Res.first = X86::EFLAGS;
11925 Res.second = X86::CCRRegisterClass;
11926 return Res;
11929 // 'A' means EAX + EDX.
11930 if (Constraint == "A") {
11931 Res.first = X86::EAX;
11932 Res.second = X86::GR32_ADRegisterClass;
11933 return Res;
11935 return Res;
11938 // Otherwise, check to see if this is a register class of the wrong value
11939 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11940 // turn into {ax},{dx}.
11941 if (Res.second->hasType(VT))
11942 return Res; // Correct type already, nothing to do.
11944 // All of the single-register GCC register classes map their values onto
11945 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
11946 // really want an 8-bit or 32-bit register, map to the appropriate register
11947 // class and return the appropriate register.
11948 if (Res.second == X86::GR16RegisterClass) {
11949 if (VT == MVT::i8) {
11950 unsigned DestReg = 0;
11951 switch (Res.first) {
11952 default: break;
11953 case X86::AX: DestReg = X86::AL; break;
11954 case X86::DX: DestReg = X86::DL; break;
11955 case X86::CX: DestReg = X86::CL; break;
11956 case X86::BX: DestReg = X86::BL; break;
11958 if (DestReg) {
11959 Res.first = DestReg;
11960 Res.second = X86::GR8RegisterClass;
11962 } else if (VT == MVT::i32) {
11963 unsigned DestReg = 0;
11964 switch (Res.first) {
11965 default: break;
11966 case X86::AX: DestReg = X86::EAX; break;
11967 case X86::DX: DestReg = X86::EDX; break;
11968 case X86::CX: DestReg = X86::ECX; break;
11969 case X86::BX: DestReg = X86::EBX; break;
11970 case X86::SI: DestReg = X86::ESI; break;
11971 case X86::DI: DestReg = X86::EDI; break;
11972 case X86::BP: DestReg = X86::EBP; break;
11973 case X86::SP: DestReg = X86::ESP; break;
11975 if (DestReg) {
11976 Res.first = DestReg;
11977 Res.second = X86::GR32RegisterClass;
11979 } else if (VT == MVT::i64) {
11980 unsigned DestReg = 0;
11981 switch (Res.first) {
11982 default: break;
11983 case X86::AX: DestReg = X86::RAX; break;
11984 case X86::DX: DestReg = X86::RDX; break;
11985 case X86::CX: DestReg = X86::RCX; break;
11986 case X86::BX: DestReg = X86::RBX; break;
11987 case X86::SI: DestReg = X86::RSI; break;
11988 case X86::DI: DestReg = X86::RDI; break;
11989 case X86::BP: DestReg = X86::RBP; break;
11990 case X86::SP: DestReg = X86::RSP; break;
11992 if (DestReg) {
11993 Res.first = DestReg;
11994 Res.second = X86::GR64RegisterClass;
11997 } else if (Res.second == X86::FR32RegisterClass ||
11998 Res.second == X86::FR64RegisterClass ||
11999 Res.second == X86::VR128RegisterClass) {
12000 // Handle references to XMM physical registers that got mapped into the
12001 // wrong class. This can happen with constraints like {xmm0} where the
12002 // target independent register mapper will just pick the first match it can
12003 // find, ignoring the required type.
12004 if (VT == MVT::f32)
12005 Res.second = X86::FR32RegisterClass;
12006 else if (VT == MVT::f64)
12007 Res.second = X86::FR64RegisterClass;
12008 else if (X86::VR128RegisterClass->hasType(VT))
12009 Res.second = X86::VR128RegisterClass;
12012 return Res;