1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86ShuffleDecode.h"
20 #include "X86TargetMachine.h"
21 #include "X86TargetObjectFile.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VectorExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Dwarf.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
54 using namespace dwarf
;
56 STATISTIC(NumTailCalls
, "Number of tail calls");
59 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
61 // Forward declarations.
62 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
65 static TargetLoweringObjectFile
*createTLOF(X86TargetMachine
&TM
) {
67 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
69 if (TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin()) {
70 if (is64Bit
) return new X8664_MachoTargetObjectFile();
71 return new TargetLoweringObjectFileMachO();
72 } else if (TM
.getSubtarget
<X86Subtarget
>().isTargetELF() ){
73 if (is64Bit
) return new X8664_ELFTargetObjectFile(TM
);
74 return new X8632_ELFTargetObjectFile(TM
);
75 } else if (TM
.getSubtarget
<X86Subtarget
>().isTargetCOFF()) {
76 return new TargetLoweringObjectFileCOFF();
78 llvm_unreachable("unknown subtarget type");
81 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
82 : TargetLowering(TM
, createTLOF(TM
)) {
83 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
84 X86ScalarSSEf64
= Subtarget
->hasSSE2();
85 X86ScalarSSEf32
= Subtarget
->hasSSE1();
86 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
88 RegInfo
= TM
.getRegisterInfo();
91 // Set up the TargetLowering object.
93 // X86 is weird, it always uses i8 for shift amounts and setcc results.
94 setShiftAmountType(MVT::i8
);
95 setBooleanContents(ZeroOrOneBooleanContent
);
96 setSchedulingPreference(Sched::RegPressure
);
97 setStackPointerRegisterToSaveRestore(X86StackPtr
);
99 if (Subtarget
->isTargetWindows() && !Subtarget
->isTargetCygMing()) {
100 // Setup Windows compiler runtime calls.
101 setLibcallName(RTLIB::SDIV_I64
, "_alldiv");
102 setLibcallName(RTLIB::UDIV_I64
, "_aulldiv");
103 setLibcallName(RTLIB::FPTOUINT_F64_I64
, "_ftol2");
104 setLibcallName(RTLIB::FPTOUINT_F32_I64
, "_ftol2");
105 setLibcallCallingConv(RTLIB::SDIV_I64
, CallingConv::X86_StdCall
);
106 setLibcallCallingConv(RTLIB::UDIV_I64
, CallingConv::X86_StdCall
);
107 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64
, CallingConv::C
);
108 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64
, CallingConv::C
);
111 if (Subtarget
->isTargetDarwin()) {
112 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113 setUseUnderscoreSetJmp(false);
114 setUseUnderscoreLongJmp(false);
115 } else if (Subtarget
->isTargetMingw()) {
116 // MS runtime is weird: it exports _setjmp, but longjmp!
117 setUseUnderscoreSetJmp(true);
118 setUseUnderscoreLongJmp(false);
120 setUseUnderscoreSetJmp(true);
121 setUseUnderscoreLongJmp(true);
124 // Set up the register classes.
125 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
126 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
127 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
128 if (Subtarget
->is64Bit())
129 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
131 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
133 // We don't accept any truncstore of integer registers.
134 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
135 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
136 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
137 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
138 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
139 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
141 // SETOEQ and SETUNE require checking two conditions.
142 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
143 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
144 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
145 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
146 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
147 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
149 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
151 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
152 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
153 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
155 if (Subtarget
->is64Bit()) {
156 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
157 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
158 } else if (!UseSoftFloat
) {
159 // We have an algorithm for SSE2->double, and we turn this into a
160 // 64-bit FILD followed by conditional FADD for other targets.
161 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
162 // We have an algorithm for SSE2, and we turn this into a 64-bit
163 // FILD for other targets.
164 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
167 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
170 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
173 // SSE has no i16 to fp conversion, only i32
174 if (X86ScalarSSEf32
) {
175 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
176 // f32 and f64 cases are Legal, f80 case is not
177 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
179 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
180 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
183 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
184 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
187 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
188 // are Legal, f80 is custom lowered.
189 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
190 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
192 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
195 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
197 if (X86ScalarSSEf32
) {
198 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
199 // f32 and f64 cases are Legal, f80 case is not
200 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
202 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
203 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
206 // Handle FP_TO_UINT by promoting the destination to a larger signed
208 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
209 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
210 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
212 if (Subtarget
->is64Bit()) {
213 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
214 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
215 } else if (!UseSoftFloat
) {
216 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
217 // Expand FP_TO_UINT into a select.
218 // FIXME: We would like to use a Custom expander here eventually to do
219 // the optimal thing for SSE vs. the default expansion in the legalizer.
220 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
222 // With SSE3 we can use fisttpll to convert to a signed i64; without
223 // SSE, we're stuck with a fistpll.
224 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
227 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228 if (!X86ScalarSSEf64
) {
229 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
230 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
231 if (Subtarget
->is64Bit()) {
232 setOperationAction(ISD::BIT_CONVERT
, MVT::f64
, Expand
);
233 // Without SSE, i64->f64 goes through memory.
234 setOperationAction(ISD::BIT_CONVERT
, MVT::i64
, Expand
);
238 // Scalar integer divide and remainder are lowered to use operations that
239 // produce two results, to match the available instructions. This exposes
240 // the two-result form to trivial CSE, which is able to combine x/y and x%y
241 // into a single instruction.
243 // Scalar integer multiply-high is also lowered to use two-result
244 // operations, to match the available instructions. However, plain multiply
245 // (low) operations are left as Legal, as there are single-result
246 // instructions for this in x86. Using the two-result multiply instructions
247 // when both high and low results are needed must be arranged by dagcombine.
248 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
249 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
250 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
251 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
252 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
253 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
254 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
255 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
256 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
257 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
258 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
259 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
260 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
261 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
262 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
263 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
264 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
265 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
266 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
267 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
268 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
269 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
270 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
271 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
273 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
274 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
275 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
276 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
277 if (Subtarget
->is64Bit())
278 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
279 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
280 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
281 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
282 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
283 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
284 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
285 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
286 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
288 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
289 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
290 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
291 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
292 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
293 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
294 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
295 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
296 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
297 if (Subtarget
->is64Bit()) {
298 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
299 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
300 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
303 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
304 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
306 // These should be promoted to a larger select which is supported.
307 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
308 // X86 wants to expand cmov itself.
309 setOperationAction(ISD::SELECT
, MVT::i8
, Custom
);
310 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
311 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
312 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
313 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
314 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
315 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
316 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
317 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
318 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
319 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
320 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
321 if (Subtarget
->is64Bit()) {
322 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
323 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
325 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
328 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
329 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
330 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
331 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
332 if (Subtarget
->is64Bit())
333 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
334 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
335 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
336 if (Subtarget
->is64Bit()) {
337 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
338 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
339 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
340 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
341 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
343 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
345 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
346 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
347 if (Subtarget
->is64Bit()) {
348 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
349 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
350 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
353 if (Subtarget
->hasSSE1())
354 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
356 // We may not have a libcall for MEMBARRIER so we should lower this.
357 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Custom
);
359 // On X86 and X86-64, atomic operations are lowered to locked instructions.
360 // Locked instructions, in turn, have implicit fence semantics (all memory
361 // operations are flushed before issuing the locked instruction, and they
362 // are not buffered), so we can fold away the common pattern of
363 // fence-atomic-fence.
364 setShouldFoldAtomicFences(true);
366 // Expand certain atomics
367 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
368 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
369 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
370 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
372 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
373 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
374 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
375 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
377 if (!Subtarget
->is64Bit()) {
378 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
379 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
380 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
381 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
382 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
383 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
384 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
387 // FIXME - use subtarget debug flags
388 if (!Subtarget
->isTargetDarwin() &&
389 !Subtarget
->isTargetELF() &&
390 !Subtarget
->isTargetCygMing()) {
391 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
394 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
395 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
396 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
397 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
398 if (Subtarget
->is64Bit()) {
399 setExceptionPointerRegister(X86::RAX
);
400 setExceptionSelectorRegister(X86::RDX
);
402 setExceptionPointerRegister(X86::EAX
);
403 setExceptionSelectorRegister(X86::EDX
);
405 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
406 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
408 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
410 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
412 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
414 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
415 if (Subtarget
->is64Bit()) {
416 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
417 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
419 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
420 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
423 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
424 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
425 if (Subtarget
->is64Bit())
426 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
427 if (Subtarget
->isTargetCygMing() || Subtarget
->isTargetWindows())
428 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
430 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
432 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
433 // f32 and f64 use SSE.
434 // Set up the FP register classes.
435 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
436 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
438 // Use ANDPD to simulate FABS.
439 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
440 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
442 // Use XORP to simulate FNEG.
443 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
444 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
446 // Use ANDPD and ORPD to simulate FCOPYSIGN.
447 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
448 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
450 // We don't support sin/cos/fmod
451 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
452 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
453 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
454 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
456 // Expand FP immediates into loads from the stack, except for the special
458 addLegalFPImmediate(APFloat(+0.0)); // xorpd
459 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
460 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
461 // Use SSE for f32, x87 for f64.
462 // Set up the FP register classes.
463 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
464 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
466 // Use ANDPS to simulate FABS.
467 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
469 // Use XORP to simulate FNEG.
470 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
472 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
474 // Use ANDPS and ORPS to simulate FCOPYSIGN.
475 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
476 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
478 // We don't support sin/cos/fmod
479 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
480 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
482 // Special cases we handle for FP constants.
483 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
484 addLegalFPImmediate(APFloat(+0.0)); // FLD0
485 addLegalFPImmediate(APFloat(+1.0)); // FLD1
486 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
490 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
491 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
493 } else if (!UseSoftFloat
) {
494 // f32 and f64 in x87.
495 // Set up the FP register classes.
496 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
497 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
499 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
500 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
501 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
502 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
505 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
506 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
508 addLegalFPImmediate(APFloat(+0.0)); // FLD0
509 addLegalFPImmediate(APFloat(+1.0)); // FLD1
510 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
513 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
514 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
515 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
518 // Long double always uses X87.
520 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
521 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
522 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
525 APFloat
TmpFlt(+0.0);
526 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
528 addLegalFPImmediate(TmpFlt
); // FLD0
530 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
531 APFloat
TmpFlt2(+1.0);
532 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
534 addLegalFPImmediate(TmpFlt2
); // FLD1
535 TmpFlt2
.changeSign();
536 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
540 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
541 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
545 // Always use a library call for pow.
546 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
547 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
548 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
550 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
551 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
552 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
553 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
554 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
556 // First set operation action for all vector types to either promote
557 // (for widening) or expand (for scalarization). Then we will selectively
558 // turn on ones that can be effectively codegen'd.
559 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
560 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
561 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
562 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
563 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
564 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
565 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
567 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
568 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
569 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
570 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
571 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
572 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
573 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
574 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
575 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
576 setOperationAction(ISD::EXTRACT_SUBVECTOR
,(MVT::SimpleValueType
)VT
,Expand
);
577 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
578 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
579 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
580 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
581 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
582 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
583 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
584 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
585 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
586 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
587 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
588 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
589 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
590 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
591 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
592 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
593 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
594 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
595 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
596 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
597 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
598 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
599 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
600 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
601 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
602 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
603 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
604 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
605 setOperationAction(ISD::FP_TO_UINT
, (MVT::SimpleValueType
)VT
, Expand
);
606 setOperationAction(ISD::FP_TO_SINT
, (MVT::SimpleValueType
)VT
, Expand
);
607 setOperationAction(ISD::UINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
608 setOperationAction(ISD::SINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
609 setOperationAction(ISD::SIGN_EXTEND_INREG
, (MVT::SimpleValueType
)VT
,Expand
);
610 setOperationAction(ISD::TRUNCATE
, (MVT::SimpleValueType
)VT
, Expand
);
611 setOperationAction(ISD::SIGN_EXTEND
, (MVT::SimpleValueType
)VT
, Expand
);
612 setOperationAction(ISD::ZERO_EXTEND
, (MVT::SimpleValueType
)VT
, Expand
);
613 setOperationAction(ISD::ANY_EXTEND
, (MVT::SimpleValueType
)VT
, Expand
);
614 for (unsigned InnerVT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
615 InnerVT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++InnerVT
)
616 setTruncStoreAction((MVT::SimpleValueType
)VT
,
617 (MVT::SimpleValueType
)InnerVT
, Expand
);
618 setLoadExtAction(ISD::SEXTLOAD
, (MVT::SimpleValueType
)VT
, Expand
);
619 setLoadExtAction(ISD::ZEXTLOAD
, (MVT::SimpleValueType
)VT
, Expand
);
620 setLoadExtAction(ISD::EXTLOAD
, (MVT::SimpleValueType
)VT
, Expand
);
623 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624 // with -msoft-float, disable use of MMX as well.
625 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
626 addRegisterClass(MVT::x86mmx
, X86::VR64RegisterClass
);
627 // No operations on x86mmx supported, everything uses intrinsics.
630 // MMX-sized vectors (other than x86mmx) are expected to be expanded
631 // into smaller operations.
632 setOperationAction(ISD::MULHS
, MVT::v8i8
, Expand
);
633 setOperationAction(ISD::MULHS
, MVT::v4i16
, Expand
);
634 setOperationAction(ISD::MULHS
, MVT::v2i32
, Expand
);
635 setOperationAction(ISD::MULHS
, MVT::v1i64
, Expand
);
636 setOperationAction(ISD::AND
, MVT::v8i8
, Expand
);
637 setOperationAction(ISD::AND
, MVT::v4i16
, Expand
);
638 setOperationAction(ISD::AND
, MVT::v2i32
, Expand
);
639 setOperationAction(ISD::AND
, MVT::v1i64
, Expand
);
640 setOperationAction(ISD::OR
, MVT::v8i8
, Expand
);
641 setOperationAction(ISD::OR
, MVT::v4i16
, Expand
);
642 setOperationAction(ISD::OR
, MVT::v2i32
, Expand
);
643 setOperationAction(ISD::OR
, MVT::v1i64
, Expand
);
644 setOperationAction(ISD::XOR
, MVT::v8i8
, Expand
);
645 setOperationAction(ISD::XOR
, MVT::v4i16
, Expand
);
646 setOperationAction(ISD::XOR
, MVT::v2i32
, Expand
);
647 setOperationAction(ISD::XOR
, MVT::v1i64
, Expand
);
648 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Expand
);
649 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Expand
);
650 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2i32
, Expand
);
651 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Expand
);
652 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v1i64
, Expand
);
653 setOperationAction(ISD::SELECT
, MVT::v8i8
, Expand
);
654 setOperationAction(ISD::SELECT
, MVT::v4i16
, Expand
);
655 setOperationAction(ISD::SELECT
, MVT::v2i32
, Expand
);
656 setOperationAction(ISD::SELECT
, MVT::v1i64
, Expand
);
657 setOperationAction(ISD::BIT_CONVERT
, MVT::v8i8
, Expand
);
658 setOperationAction(ISD::BIT_CONVERT
, MVT::v4i16
, Expand
);
659 setOperationAction(ISD::BIT_CONVERT
, MVT::v2i32
, Expand
);
660 setOperationAction(ISD::BIT_CONVERT
, MVT::v1i64
, Expand
);
662 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
663 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
665 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
666 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
667 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
668 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
669 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
670 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
671 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
672 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
673 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
674 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
675 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
676 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
679 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
680 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
682 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683 // registers cannot be used even for integer operations.
684 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
685 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
686 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
687 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
689 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
690 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
691 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
692 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
693 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
694 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
695 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
696 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
697 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
698 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
699 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
700 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
701 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
702 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
703 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
704 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
706 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
707 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
708 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
709 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
711 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
712 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
713 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
714 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
715 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
717 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v2f64
, Custom
);
718 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v2i64
, Custom
);
719 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v16i8
, Custom
);
720 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i16
, Custom
);
721 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
723 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
725 EVT VT
= (MVT::SimpleValueType
)i
;
726 // Do not attempt to custom lower non-power-of-2 vectors
727 if (!isPowerOf2_32(VT
.getVectorNumElements()))
729 // Do not attempt to custom lower non-128-bit vectors
730 if (!VT
.is128BitVector())
732 setOperationAction(ISD::BUILD_VECTOR
,
733 VT
.getSimpleVT().SimpleTy
, Custom
);
734 setOperationAction(ISD::VECTOR_SHUFFLE
,
735 VT
.getSimpleVT().SimpleTy
, Custom
);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,
737 VT
.getSimpleVT().SimpleTy
, Custom
);
740 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
741 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
742 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
743 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
744 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
745 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
747 if (Subtarget
->is64Bit()) {
748 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
749 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
752 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; i
++) {
754 MVT::SimpleValueType SVT
= (MVT::SimpleValueType
)i
;
757 // Do not attempt to promote non-128-bit vectors
758 if (!VT
.is128BitVector())
761 setOperationAction(ISD::AND
, SVT
, Promote
);
762 AddPromotedToType (ISD::AND
, SVT
, MVT::v2i64
);
763 setOperationAction(ISD::OR
, SVT
, Promote
);
764 AddPromotedToType (ISD::OR
, SVT
, MVT::v2i64
);
765 setOperationAction(ISD::XOR
, SVT
, Promote
);
766 AddPromotedToType (ISD::XOR
, SVT
, MVT::v2i64
);
767 setOperationAction(ISD::LOAD
, SVT
, Promote
);
768 AddPromotedToType (ISD::LOAD
, SVT
, MVT::v2i64
);
769 setOperationAction(ISD::SELECT
, SVT
, Promote
);
770 AddPromotedToType (ISD::SELECT
, SVT
, MVT::v2i64
);
773 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
775 // Custom lower v2i64 and v2f64 selects.
776 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
777 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
778 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
779 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
781 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
782 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
785 if (Subtarget
->hasSSE41()) {
786 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
787 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
788 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
789 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
790 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
791 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
792 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
793 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
794 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
795 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
797 // FIXME: Do we need to handle scalar-to-vector here?
798 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
800 // Can turn SHL into an integer multiply.
801 setOperationAction(ISD::SHL
, MVT::v4i32
, Custom
);
802 setOperationAction(ISD::SHL
, MVT::v16i8
, Custom
);
804 // i8 and i16 vectors are custom , because the source register and source
805 // source memory operand types are not the same width. f32 vectors are
806 // custom since the immediate controlling the insert encodes additional
808 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
809 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
810 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
811 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
813 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
814 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
815 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
816 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
818 if (Subtarget
->is64Bit()) {
819 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
820 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
824 if (Subtarget
->hasSSE42()) {
825 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
828 if (!UseSoftFloat
&& Subtarget
->hasAVX()) {
829 addRegisterClass(MVT::v8f32
, X86::VR256RegisterClass
);
830 addRegisterClass(MVT::v4f64
, X86::VR256RegisterClass
);
831 addRegisterClass(MVT::v8i32
, X86::VR256RegisterClass
);
832 addRegisterClass(MVT::v4i64
, X86::VR256RegisterClass
);
833 addRegisterClass(MVT::v32i8
, X86::VR256RegisterClass
);
835 setOperationAction(ISD::LOAD
, MVT::v8f32
, Legal
);
836 setOperationAction(ISD::LOAD
, MVT::v8i32
, Legal
);
837 setOperationAction(ISD::LOAD
, MVT::v4f64
, Legal
);
838 setOperationAction(ISD::LOAD
, MVT::v4i64
, Legal
);
839 setOperationAction(ISD::FADD
, MVT::v8f32
, Legal
);
840 setOperationAction(ISD::FSUB
, MVT::v8f32
, Legal
);
841 setOperationAction(ISD::FMUL
, MVT::v8f32
, Legal
);
842 setOperationAction(ISD::FDIV
, MVT::v8f32
, Legal
);
843 setOperationAction(ISD::FSQRT
, MVT::v8f32
, Legal
);
844 setOperationAction(ISD::FNEG
, MVT::v8f32
, Custom
);
845 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8f32
, Custom
);
846 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
847 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
849 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
851 // Operations to consider commented out -v16i16 v32i8
852 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
853 setOperationAction(ISD::ADD
, MVT::v8i32
, Custom
);
854 setOperationAction(ISD::ADD
, MVT::v4i64
, Custom
);
855 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
856 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
857 setOperationAction(ISD::SUB
, MVT::v8i32
, Custom
);
858 setOperationAction(ISD::SUB
, MVT::v4i64
, Custom
);
859 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
860 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
861 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
862 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
863 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
864 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
865 setOperationAction(ISD::FNEG
, MVT::v4f64
, Custom
);
867 setOperationAction(ISD::VSETCC
, MVT::v4f64
, Custom
);
868 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
869 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
870 setOperationAction(ISD::VSETCC
, MVT::v8i32
, Custom
);
872 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
873 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
874 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
875 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i32
, Custom
);
876 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8f32
, Custom
);
878 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
879 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i64
, Custom
);
880 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
881 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i64
, Custom
);
882 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Custom
);
883 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Custom
);
886 // Not sure we want to do this since there are no 256-bit integer
889 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890 // This includes 256-bit vectors
891 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; ++i
) {
892 EVT VT
= (MVT::SimpleValueType
)i
;
894 // Do not attempt to custom lower non-power-of-2 vectors
895 if (!isPowerOf2_32(VT
.getVectorNumElements()))
898 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
899 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
900 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
903 if (Subtarget
->is64Bit()) {
904 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i64
, Custom
);
905 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i64
, Custom
);
910 // Not sure we want to do this since there are no 256-bit integer
913 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914 // Including 256-bit vectors
915 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; i
++) {
916 EVT VT
= (MVT::SimpleValueType
)i
;
918 if (!VT
.is256BitVector()) {
921 setOperationAction(ISD::AND
, VT
, Promote
);
922 AddPromotedToType (ISD::AND
, VT
, MVT::v4i64
);
923 setOperationAction(ISD::OR
, VT
, Promote
);
924 AddPromotedToType (ISD::OR
, VT
, MVT::v4i64
);
925 setOperationAction(ISD::XOR
, VT
, Promote
);
926 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i64
);
927 setOperationAction(ISD::LOAD
, VT
, Promote
);
928 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i64
);
929 setOperationAction(ISD::SELECT
, VT
, Promote
);
930 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i64
);
933 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
937 // We want to custom lower some of our intrinsics.
938 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
940 // Add/Sub/Mul with overflow operations are custom lowered.
941 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
942 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
943 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
944 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
945 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
947 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948 // handle type legalization for these operations here.
950 // FIXME: We really should do custom legalization for addition and
951 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
952 // than generic legalization for 64-bit multiplication-with-overflow, though.
953 if (Subtarget
->is64Bit()) {
954 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
955 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
956 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
957 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
958 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
961 if (!Subtarget
->is64Bit()) {
962 // These libcalls are not available in 32-bit.
963 setLibcallName(RTLIB::SHL_I128
, 0);
964 setLibcallName(RTLIB::SRL_I128
, 0);
965 setLibcallName(RTLIB::SRA_I128
, 0);
968 // We have target-specific dag combine patterns for the following nodes:
969 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
970 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT
);
971 setTargetDAGCombine(ISD::BUILD_VECTOR
);
972 setTargetDAGCombine(ISD::SELECT
);
973 setTargetDAGCombine(ISD::SHL
);
974 setTargetDAGCombine(ISD::SRA
);
975 setTargetDAGCombine(ISD::SRL
);
976 setTargetDAGCombine(ISD::OR
);
977 setTargetDAGCombine(ISD::STORE
);
978 setTargetDAGCombine(ISD::ZERO_EXTEND
);
979 if (Subtarget
->is64Bit())
980 setTargetDAGCombine(ISD::MUL
);
982 computeRegisterProperties();
984 // FIXME: These should be based on subtarget info. Plus, the values should
985 // be smaller when we are in optimizing for size mode.
986 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
987 maxStoresPerMemcpy
= 8; // For @llvm.memcpy -> sequence of stores
988 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
989 setPrefLoopAlignment(16);
990 benefitFromCodePlacementOpt
= true;
994 MVT::SimpleValueType
X86TargetLowering::getSetCCResultType(EVT VT
) const {
999 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000 /// the desired ByVal argument alignment.
1001 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
1004 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1005 if (VTy
->getBitWidth() == 128)
1007 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1008 unsigned EltAlign
= 0;
1009 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
1010 if (EltAlign
> MaxAlign
)
1011 MaxAlign
= EltAlign
;
1012 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1013 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1014 unsigned EltAlign
= 0;
1015 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
1016 if (EltAlign
> MaxAlign
)
1017 MaxAlign
= EltAlign
;
1025 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026 /// function arguments in the caller parameter area. For X86, aggregates
1027 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028 /// are at 4-byte boundaries.
1029 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
1030 if (Subtarget
->is64Bit()) {
1031 // Max of 8 and alignment of type.
1032 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
1039 if (Subtarget
->hasSSE1())
1040 getMaxByValAlign(Ty
, Align
);
1044 /// getOptimalMemOpType - Returns the target specific optimal type for load
1045 /// and store operations as a result of memset, memcpy, and memmove
1046 /// lowering. If DstAlign is zero that means it's safe to destination
1047 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048 /// means there isn't a need to check it against alignment requirement,
1049 /// probably because the source does not need to be loaded. If
1050 /// 'NonScalarIntSafe' is true, that means it's safe to return a
1051 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053 /// constant so it does not need to be loaded.
1054 /// It returns EVT::Other if the type should be determined using generic
1055 /// target-independent logic.
1057 X86TargetLowering::getOptimalMemOpType(uint64_t Size
,
1058 unsigned DstAlign
, unsigned SrcAlign
,
1059 bool NonScalarIntSafe
,
1061 MachineFunction
&MF
) const {
1062 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063 // linux. This is because the stack realignment code can't handle certain
1064 // cases like PR2962. This should be removed when PR2962 is fixed.
1065 const Function
*F
= MF
.getFunction();
1066 if (NonScalarIntSafe
&&
1067 !F
->hasFnAttr(Attribute::NoImplicitFloat
)) {
1069 (Subtarget
->isUnalignedMemAccessFast() ||
1070 ((DstAlign
== 0 || DstAlign
>= 16) &&
1071 (SrcAlign
== 0 || SrcAlign
>= 16))) &&
1072 Subtarget
->getStackAlignment() >= 16) {
1073 if (Subtarget
->hasSSE2())
1075 if (Subtarget
->hasSSE1())
1077 } else if (!MemcpyStrSrc
&& Size
>= 8 &&
1078 !Subtarget
->is64Bit() &&
1079 Subtarget
->getStackAlignment() >= 8 &&
1080 Subtarget
->hasSSE2()) {
1081 // Do not use f64 to lower memcpy if source is string constant. It's
1082 // better to use i32 to avoid the loads.
1086 if (Subtarget
->is64Bit() && Size
>= 8)
1091 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092 /// current function. The returned value is a member of the
1093 /// MachineJumpTableInfo::JTEntryKind enum.
1094 unsigned X86TargetLowering::getJumpTableEncoding() const {
1095 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1097 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1098 Subtarget
->isPICStyleGOT())
1099 return MachineJumpTableInfo::EK_Custom32
;
1101 // Otherwise, use the normal jump table encoding heuristics.
1102 return TargetLowering::getJumpTableEncoding();
1105 /// getPICBaseSymbol - Return the X86-32 PIC base.
1107 X86TargetLowering::getPICBaseSymbol(const MachineFunction
*MF
,
1108 MCContext
&Ctx
) const {
1109 const MCAsmInfo
&MAI
= *getTargetMachine().getMCAsmInfo();
1110 return Ctx
.GetOrCreateSymbol(Twine(MAI
.getPrivateGlobalPrefix())+
1111 Twine(MF
->getFunctionNumber())+"$pb");
1116 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
1117 const MachineBasicBlock
*MBB
,
1118 unsigned uid
,MCContext
&Ctx
) const{
1119 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1120 Subtarget
->isPICStyleGOT());
1121 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1123 return MCSymbolRefExpr::Create(MBB
->getSymbol(),
1124 MCSymbolRefExpr::VK_GOTOFF
, Ctx
);
1127 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1129 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1130 SelectionDAG
&DAG
) const {
1131 if (!Subtarget
->is64Bit())
1132 // This doesn't have DebugLoc associated with it, but is not really the
1133 // same as a Register.
1134 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc(), getPointerTy());
1138 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1141 const MCExpr
*X86TargetLowering::
1142 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
, unsigned JTI
,
1143 MCContext
&Ctx
) const {
1144 // X86-64 uses RIP relative addressing based on the jump table label.
1145 if (Subtarget
->isPICStyleRIPRel())
1146 return TargetLowering::getPICJumpTableRelocBaseExpr(MF
, JTI
, Ctx
);
1148 // Otherwise, the reference is relative to the PIC base.
1149 return MCSymbolRefExpr::Create(getPICBaseSymbol(MF
, Ctx
), Ctx
);
1152 /// getFunctionAlignment - Return the Log2 alignment of this function.
1153 unsigned X86TargetLowering::getFunctionAlignment(const Function
*F
) const {
1154 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 0 : 4;
1157 std::pair
<const TargetRegisterClass
*, uint8_t>
1158 X86TargetLowering::findRepresentativeClass(EVT VT
) const{
1159 const TargetRegisterClass
*RRC
= 0;
1161 switch (VT
.getSimpleVT().SimpleTy
) {
1163 return TargetLowering::findRepresentativeClass(VT
);
1164 case MVT::i8
: case MVT::i16
: case MVT::i32
: case MVT::i64
:
1165 RRC
= (Subtarget
->is64Bit()
1166 ? X86::GR64RegisterClass
: X86::GR32RegisterClass
);
1169 RRC
= X86::VR64RegisterClass
;
1171 case MVT::f32
: case MVT::f64
:
1172 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1173 case MVT::v4f32
: case MVT::v2f64
:
1174 case MVT::v32i8
: case MVT::v8i32
: case MVT::v4i64
: case MVT::v8f32
:
1176 RRC
= X86::VR128RegisterClass
;
1179 return std::make_pair(RRC
, Cost
);
1183 X86TargetLowering::getRegPressureLimit(const TargetRegisterClass
*RC
,
1184 MachineFunction
&MF
) const {
1185 unsigned FPDiff
= RegInfo
->hasFP(MF
) ? 1 : 0;
1186 switch (RC
->getID()) {
1189 case X86::GR32RegClassID
:
1191 case X86::GR64RegClassID
:
1193 case X86::VR128RegClassID
:
1194 return Subtarget
->is64Bit() ? 10 : 4;
1195 case X86::VR64RegClassID
:
1200 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace
,
1201 unsigned &Offset
) const {
1202 if (!Subtarget
->isTargetLinux())
1205 if (Subtarget
->is64Bit()) {
1206 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1208 if (getTargetMachine().getCodeModel() == CodeModel::Kernel
)
1221 //===----------------------------------------------------------------------===//
1222 // Return Value Calling Convention Implementation
1223 //===----------------------------------------------------------------------===//
1225 #include "X86GenCallingConv.inc"
1228 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv
, bool isVarArg
,
1229 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1230 LLVMContext
&Context
) const {
1231 SmallVector
<CCValAssign
, 16> RVLocs
;
1232 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1234 return CCInfo
.CheckReturn(Outs
, RetCC_X86
);
1238 X86TargetLowering::LowerReturn(SDValue Chain
,
1239 CallingConv::ID CallConv
, bool isVarArg
,
1240 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1241 const SmallVectorImpl
<SDValue
> &OutVals
,
1242 DebugLoc dl
, SelectionDAG
&DAG
) const {
1243 MachineFunction
&MF
= DAG
.getMachineFunction();
1244 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1246 SmallVector
<CCValAssign
, 16> RVLocs
;
1247 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1248 RVLocs
, *DAG
.getContext());
1249 CCInfo
.AnalyzeReturn(Outs
, RetCC_X86
);
1251 // Add the regs to the liveout set for the function.
1252 MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
1253 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1254 if (RVLocs
[i
].isRegLoc() && !MRI
.isLiveOut(RVLocs
[i
].getLocReg()))
1255 MRI
.addLiveOut(RVLocs
[i
].getLocReg());
1259 SmallVector
<SDValue
, 6> RetOps
;
1260 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
1261 // Operand #1 = Bytes To Pop
1262 RetOps
.push_back(DAG
.getTargetConstant(FuncInfo
->getBytesToPopOnReturn(),
1265 // Copy the result values into the output registers.
1266 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1267 CCValAssign
&VA
= RVLocs
[i
];
1268 assert(VA
.isRegLoc() && "Can only return in registers!");
1269 SDValue ValToCopy
= OutVals
[i
];
1270 EVT ValVT
= ValToCopy
.getValueType();
1272 // If this is x86-64, and we disabled SSE, we can't return FP values,
1273 // or SSE or MMX vectors.
1274 if ((ValVT
== MVT::f32
|| ValVT
== MVT::f64
||
1275 VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) &&
1276 (Subtarget
->is64Bit() && !Subtarget
->hasSSE1())) {
1277 report_fatal_error("SSE register return with SSE disabled");
1279 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1280 // llvm-gcc has never done it right and no one has noticed, so this
1281 // should be OK for now.
1282 if (ValVT
== MVT::f64
&&
1283 (Subtarget
->is64Bit() && !Subtarget
->hasSSE2()))
1284 report_fatal_error("SSE2 register return with SSE2 disabled");
1286 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1287 // the RET instruction and handled by the FP Stackifier.
1288 if (VA
.getLocReg() == X86::ST0
||
1289 VA
.getLocReg() == X86::ST1
) {
1290 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1291 // change the value to the FP stack register class.
1292 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1293 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1294 RetOps
.push_back(ValToCopy
);
1295 // Don't emit a copytoreg.
1299 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1300 // which is returned in RAX / RDX.
1301 if (Subtarget
->is64Bit()) {
1302 if (ValVT
== MVT::x86mmx
) {
1303 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1304 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1305 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
,
1307 // If we don't have SSE2 available, convert to v4f32 so the generated
1308 // register is legal.
1309 if (!Subtarget
->hasSSE2())
1310 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
,ValToCopy
);
1315 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1316 Flag
= Chain
.getValue(1);
1319 // The x86-64 ABI for returning structs by value requires that we copy
1320 // the sret argument into %rax for the return. We saved the argument into
1321 // a virtual register in the entry block, so now we copy the value out
1323 if (Subtarget
->is64Bit() &&
1324 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1325 MachineFunction
&MF
= DAG
.getMachineFunction();
1326 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1327 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1329 "SRetReturnReg should have been set in LowerFormalArguments().");
1330 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1332 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1333 Flag
= Chain
.getValue(1);
1335 // RAX now acts like a return value.
1336 MRI
.addLiveOut(X86::RAX
);
1339 RetOps
[0] = Chain
; // Update chain.
1341 // Add the flag if we have it.
1343 RetOps
.push_back(Flag
);
1345 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1346 MVT::Other
, &RetOps
[0], RetOps
.size());
1349 /// LowerCallResult - Lower the result values of a call into the
1350 /// appropriate copies out of appropriate physical registers.
1353 X86TargetLowering::LowerCallResult(SDValue Chain
, SDValue InFlag
,
1354 CallingConv::ID CallConv
, bool isVarArg
,
1355 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1356 DebugLoc dl
, SelectionDAG
&DAG
,
1357 SmallVectorImpl
<SDValue
> &InVals
) const {
1359 // Assign locations to each value returned by this call.
1360 SmallVector
<CCValAssign
, 16> RVLocs
;
1361 bool Is64Bit
= Subtarget
->is64Bit();
1362 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1363 RVLocs
, *DAG
.getContext());
1364 CCInfo
.AnalyzeCallResult(Ins
, RetCC_X86
);
1366 // Copy all of the result registers out of their specified physreg.
1367 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1368 CCValAssign
&VA
= RVLocs
[i
];
1369 EVT CopyVT
= VA
.getValVT();
1371 // If this is x86-64, and we disabled SSE, we can't return FP values
1372 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1373 ((Is64Bit
|| Ins
[i
].Flags
.isInReg()) && !Subtarget
->hasSSE1())) {
1374 report_fatal_error("SSE register return with SSE disabled");
1379 // If this is a call to a function that returns an fp value on the floating
1380 // point stack, we must guarantee the the value is popped from the stack, so
1381 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1382 // if the return value is not used. We use the FpGET_ST0 instructions
1384 if (VA
.getLocReg() == X86::ST0
|| VA
.getLocReg() == X86::ST1
) {
1385 // If we prefer to use the value in xmm registers, copy it out as f80 and
1386 // use a truncate to move it from fp stack reg to xmm reg.
1387 if (isScalarFPTypeInSSEReg(VA
.getValVT())) CopyVT
= MVT::f80
;
1388 bool isST0
= VA
.getLocReg() == X86::ST0
;
1390 if (CopyVT
== MVT::f32
) Opc
= isST0
? X86::FpGET_ST0_32
:X86::FpGET_ST1_32
;
1391 if (CopyVT
== MVT::f64
) Opc
= isST0
? X86::FpGET_ST0_64
:X86::FpGET_ST1_64
;
1392 if (CopyVT
== MVT::f80
) Opc
= isST0
? X86::FpGET_ST0_80
:X86::FpGET_ST1_80
;
1393 SDValue Ops
[] = { Chain
, InFlag
};
1394 Chain
= SDValue(DAG
.getMachineNode(Opc
, dl
, CopyVT
, MVT::Other
, MVT::Flag
,
1396 Val
= Chain
.getValue(0);
1398 // Round the f80 to the right size, which also moves it to the appropriate
1400 if (CopyVT
!= VA
.getValVT())
1401 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1402 // This truncation won't change the value.
1403 DAG
.getIntPtrConstant(1));
1404 } else if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1405 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1406 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1407 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1408 MVT::v2i64
, InFlag
).getValue(1);
1409 Val
= Chain
.getValue(0);
1410 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1411 Val
, DAG
.getConstant(0, MVT::i64
));
1413 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1414 MVT::i64
, InFlag
).getValue(1);
1415 Val
= Chain
.getValue(0);
1417 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1419 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1420 CopyVT
, InFlag
).getValue(1);
1421 Val
= Chain
.getValue(0);
1423 InFlag
= Chain
.getValue(2);
1424 InVals
.push_back(Val
);
1431 //===----------------------------------------------------------------------===//
1432 // C & StdCall & Fast Calling Convention implementation
1433 //===----------------------------------------------------------------------===//
1434 // StdCall calling convention seems to be standard for many Windows' API
1435 // routines and around. It differs from C calling convention just a little:
1436 // callee should clean up the stack, not caller. Symbols should be also
1437 // decorated in some fancy way :) It doesn't support any vector arguments.
1438 // For info on fast calling convention see Fast Calling Convention (tail call)
1439 // implementation LowerX86_32FastCCCallTo.
1441 /// CallIsStructReturn - Determines whether a call uses struct return
1443 static bool CallIsStructReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
1447 return Outs
[0].Flags
.isSRet();
1450 /// ArgsAreStructReturn - Determines whether a function uses struct
1451 /// return semantics.
1453 ArgsAreStructReturn(const SmallVectorImpl
<ISD::InputArg
> &Ins
) {
1457 return Ins
[0].Flags
.isSRet();
1460 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1461 /// by "Src" to address "Dst" with size and alignment information specified by
1462 /// the specific parameter attribute. The copy will be passed as a byval
1463 /// function parameter.
1465 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1466 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1468 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1470 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1471 /*isVolatile*/false, /*AlwaysInline=*/true,
1472 MachinePointerInfo(), MachinePointerInfo());
1475 /// IsTailCallConvention - Return true if the calling convention is one that
1476 /// supports tail call optimization.
1477 static bool IsTailCallConvention(CallingConv::ID CC
) {
1478 return (CC
== CallingConv::Fast
|| CC
== CallingConv::GHC
);
1481 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1482 /// a tailcall target by changing its ABI.
1483 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC
) {
1484 return GuaranteedTailCallOpt
&& IsTailCallConvention(CC
);
1488 X86TargetLowering::LowerMemArgument(SDValue Chain
,
1489 CallingConv::ID CallConv
,
1490 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1491 DebugLoc dl
, SelectionDAG
&DAG
,
1492 const CCValAssign
&VA
,
1493 MachineFrameInfo
*MFI
,
1495 // Create the nodes corresponding to a load from this parameter slot.
1496 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
1497 bool AlwaysUseMutable
= FuncIsMadeTailCallSafe(CallConv
);
1498 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1501 // If value is passed by pointer we have address passed instead of the value
1503 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1504 ValVT
= VA
.getLocVT();
1506 ValVT
= VA
.getValVT();
1508 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1509 // changed with more analysis.
1510 // In case of tail call optimization mark all arguments mutable. Since they
1511 // could be overwritten by lowering of arguments in case of a tail call.
1512 if (Flags
.isByVal()) {
1513 int FI
= MFI
->CreateFixedObject(Flags
.getByValSize(),
1514 VA
.getLocMemOffset(), isImmutable
);
1515 return DAG
.getFrameIndex(FI
, getPointerTy());
1517 int FI
= MFI
->CreateFixedObject(ValVT
.getSizeInBits()/8,
1518 VA
.getLocMemOffset(), isImmutable
);
1519 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1520 return DAG
.getLoad(ValVT
, dl
, Chain
, FIN
,
1521 MachinePointerInfo::getFixedStack(FI
),
1527 X86TargetLowering::LowerFormalArguments(SDValue Chain
,
1528 CallingConv::ID CallConv
,
1530 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1533 SmallVectorImpl
<SDValue
> &InVals
)
1535 MachineFunction
&MF
= DAG
.getMachineFunction();
1536 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1538 const Function
* Fn
= MF
.getFunction();
1539 if (Fn
->hasExternalLinkage() &&
1540 Subtarget
->isTargetCygMing() &&
1541 Fn
->getName() == "main")
1542 FuncInfo
->setForceFramePointer(true);
1544 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1545 bool Is64Bit
= Subtarget
->is64Bit();
1546 bool IsWin64
= Subtarget
->isTargetWin64();
1548 assert(!(isVarArg
&& IsTailCallConvention(CallConv
)) &&
1549 "Var args not supported with calling convention fastcc or ghc");
1551 // Assign locations to all of the incoming arguments.
1552 SmallVector
<CCValAssign
, 16> ArgLocs
;
1553 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1554 ArgLocs
, *DAG
.getContext());
1555 CCInfo
.AnalyzeFormalArguments(Ins
, CC_X86
);
1557 unsigned LastVal
= ~0U;
1559 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1560 CCValAssign
&VA
= ArgLocs
[i
];
1561 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1563 assert(VA
.getValNo() != LastVal
&&
1564 "Don't support value assigned to multiple locs yet");
1565 LastVal
= VA
.getValNo();
1567 if (VA
.isRegLoc()) {
1568 EVT RegVT
= VA
.getLocVT();
1569 TargetRegisterClass
*RC
= NULL
;
1570 if (RegVT
== MVT::i32
)
1571 RC
= X86::GR32RegisterClass
;
1572 else if (Is64Bit
&& RegVT
== MVT::i64
)
1573 RC
= X86::GR64RegisterClass
;
1574 else if (RegVT
== MVT::f32
)
1575 RC
= X86::FR32RegisterClass
;
1576 else if (RegVT
== MVT::f64
)
1577 RC
= X86::FR64RegisterClass
;
1578 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 256)
1579 RC
= X86::VR256RegisterClass
;
1580 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1581 RC
= X86::VR128RegisterClass
;
1582 else if (RegVT
== MVT::x86mmx
)
1583 RC
= X86::VR64RegisterClass
;
1585 llvm_unreachable("Unknown argument type!");
1587 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1588 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
1590 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1591 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1593 if (VA
.getLocInfo() == CCValAssign::SExt
)
1594 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1595 DAG
.getValueType(VA
.getValVT()));
1596 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1597 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1598 DAG
.getValueType(VA
.getValVT()));
1599 else if (VA
.getLocInfo() == CCValAssign::BCvt
)
1600 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getValVT(), ArgValue
);
1602 if (VA
.isExtInLoc()) {
1603 // Handle MMX values passed in XMM regs.
1604 if (RegVT
.isVector()) {
1605 ArgValue
= DAG
.getNode(X86ISD::MOVDQ2Q
, dl
, VA
.getValVT(),
1608 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1611 assert(VA
.isMemLoc());
1612 ArgValue
= LowerMemArgument(Chain
, CallConv
, Ins
, dl
, DAG
, VA
, MFI
, i
);
1615 // If value is passed via pointer - do a load.
1616 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1617 ArgValue
= DAG
.getLoad(VA
.getValVT(), dl
, Chain
, ArgValue
,
1618 MachinePointerInfo(), false, false, 0);
1620 InVals
.push_back(ArgValue
);
1623 // The x86-64 ABI for returning structs by value requires that we copy
1624 // the sret argument into %rax for the return. Save the argument into
1625 // a virtual register so that we can access it from the return points.
1626 if (Is64Bit
&& MF
.getFunction()->hasStructRetAttr()) {
1627 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1628 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1630 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1631 FuncInfo
->setSRetReturnReg(Reg
);
1633 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, InVals
[0]);
1634 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Chain
);
1637 unsigned StackSize
= CCInfo
.getNextStackOffset();
1638 // Align stack specially for tail calls.
1639 if (FuncIsMadeTailCallSafe(CallConv
))
1640 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1642 // If the function takes variable number of arguments, make a frame index for
1643 // the start of the first vararg value... for expansion of llvm.va_start.
1645 if (!IsWin64
&& (Is64Bit
|| (CallConv
!= CallingConv::X86_FastCall
&&
1646 CallConv
!= CallingConv::X86_ThisCall
))) {
1647 FuncInfo
->setVarArgsFrameIndex(MFI
->CreateFixedObject(1, StackSize
,true));
1650 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1652 // FIXME: We should really autogenerate these arrays
1653 static const unsigned GPR64ArgRegsWin64
[] = {
1654 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1656 static const unsigned GPR64ArgRegs64Bit
[] = {
1657 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1659 static const unsigned XMMArgRegs64Bit
[] = {
1660 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1661 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1663 const unsigned *GPR64ArgRegs
;
1664 unsigned NumXMMRegs
= 0;
1667 // The XMM registers which might contain var arg parameters are shadowed
1668 // in their paired GPR. So we only need to save the GPR to their home
1670 TotalNumIntRegs
= 4;
1671 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1673 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1674 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1676 NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs64Bit
, TotalNumXMMRegs
);
1678 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1681 bool NoImplicitFloatOps
= Fn
->hasFnAttr(Attribute::NoImplicitFloat
);
1682 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1683 "SSE register cannot be used when SSE is disabled!");
1684 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloatOps
) &&
1685 "SSE register cannot be used when SSE is disabled!");
1686 if (UseSoftFloat
|| NoImplicitFloatOps
|| !Subtarget
->hasSSE1())
1687 // Kernel mode asks for SSE to be disabled, so don't push them
1689 TotalNumXMMRegs
= 0;
1692 const TargetFrameInfo
&TFI
= *getTargetMachine().getFrameInfo();
1693 // Get to the caller-allocated home save location. Add 8 to account
1694 // for the return address.
1695 int HomeOffset
= TFI
.getOffsetOfLocalArea() + 8;
1696 FuncInfo
->setRegSaveFrameIndex(
1697 MFI
->CreateFixedObject(1, NumIntRegs
* 8 + HomeOffset
, false));
1698 FuncInfo
->setVarArgsFrameIndex(FuncInfo
->getRegSaveFrameIndex());
1700 // For X86-64, if there are vararg parameters that are passed via
1701 // registers, then we must store them to their spots on the stack so they
1702 // may be loaded by deferencing the result of va_next.
1703 FuncInfo
->setVarArgsGPOffset(NumIntRegs
* 8);
1704 FuncInfo
->setVarArgsFPOffset(TotalNumIntRegs
* 8 + NumXMMRegs
* 16);
1705 FuncInfo
->setRegSaveFrameIndex(
1706 MFI
->CreateStackObject(TotalNumIntRegs
* 8 + TotalNumXMMRegs
* 16, 16,
1710 // Store the integer parameter registers.
1711 SmallVector
<SDValue
, 8> MemOps
;
1712 SDValue RSFIN
= DAG
.getFrameIndex(FuncInfo
->getRegSaveFrameIndex(),
1714 unsigned Offset
= FuncInfo
->getVarArgsGPOffset();
1715 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1716 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1717 DAG
.getIntPtrConstant(Offset
));
1718 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1719 X86::GR64RegisterClass
);
1720 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
1722 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1723 MachinePointerInfo::getFixedStack(
1724 FuncInfo
->getRegSaveFrameIndex(), Offset
),
1726 MemOps
.push_back(Store
);
1730 if (TotalNumXMMRegs
!= 0 && NumXMMRegs
!= TotalNumXMMRegs
) {
1731 // Now store the XMM (fp + vector) parameter registers.
1732 SmallVector
<SDValue
, 11> SaveXMMOps
;
1733 SaveXMMOps
.push_back(Chain
);
1735 unsigned AL
= MF
.addLiveIn(X86::AL
, X86::GR8RegisterClass
);
1736 SDValue ALVal
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, AL
, MVT::i8
);
1737 SaveXMMOps
.push_back(ALVal
);
1739 SaveXMMOps
.push_back(DAG
.getIntPtrConstant(
1740 FuncInfo
->getRegSaveFrameIndex()));
1741 SaveXMMOps
.push_back(DAG
.getIntPtrConstant(
1742 FuncInfo
->getVarArgsFPOffset()));
1744 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1745 unsigned VReg
= MF
.addLiveIn(XMMArgRegs64Bit
[NumXMMRegs
],
1746 X86::VR128RegisterClass
);
1747 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::v4f32
);
1748 SaveXMMOps
.push_back(Val
);
1750 MemOps
.push_back(DAG
.getNode(X86ISD::VASTART_SAVE_XMM_REGS
, dl
,
1752 &SaveXMMOps
[0], SaveXMMOps
.size()));
1755 if (!MemOps
.empty())
1756 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1757 &MemOps
[0], MemOps
.size());
1761 // Some CCs need callee pop.
1762 if (Subtarget
->IsCalleePop(isVarArg
, CallConv
)) {
1763 FuncInfo
->setBytesToPopOnReturn(StackSize
); // Callee pops everything.
1765 FuncInfo
->setBytesToPopOnReturn(0); // Callee pops nothing.
1766 // If this is an sret function, the return should pop the hidden pointer.
1767 if (!Is64Bit
&& !IsTailCallConvention(CallConv
) && ArgsAreStructReturn(Ins
))
1768 FuncInfo
->setBytesToPopOnReturn(4);
1772 // RegSaveFrameIndex is X86-64 only.
1773 FuncInfo
->setRegSaveFrameIndex(0xAAAAAAA);
1774 if (CallConv
== CallingConv::X86_FastCall
||
1775 CallConv
== CallingConv::X86_ThisCall
)
1776 // fastcc functions can't have varargs.
1777 FuncInfo
->setVarArgsFrameIndex(0xAAAAAAA);
1784 X86TargetLowering::LowerMemOpCallTo(SDValue Chain
,
1785 SDValue StackPtr
, SDValue Arg
,
1786 DebugLoc dl
, SelectionDAG
&DAG
,
1787 const CCValAssign
&VA
,
1788 ISD::ArgFlagsTy Flags
) const {
1789 const unsigned FirstStackArgOffset
= (Subtarget
->isTargetWin64() ? 32 : 0);
1790 unsigned LocMemOffset
= FirstStackArgOffset
+ VA
.getLocMemOffset();
1791 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1792 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1793 if (Flags
.isByVal())
1794 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1796 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1797 MachinePointerInfo::getStack(LocMemOffset
),
1801 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1802 /// optimization is performed and it is required.
1804 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1805 SDValue
&OutRetAddr
, SDValue Chain
,
1806 bool IsTailCall
, bool Is64Bit
,
1807 int FPDiff
, DebugLoc dl
) const {
1808 // Adjust the Return address stack slot.
1809 EVT VT
= getPointerTy();
1810 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1812 // Load the "old" Return address.
1813 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, MachinePointerInfo(),
1815 return SDValue(OutRetAddr
.getNode(), 1);
1818 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1819 /// optimization is performed and it is required (FPDiff!=0).
1821 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1822 SDValue Chain
, SDValue RetAddrFrIdx
,
1823 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1824 // Store the return address to the appropriate stack slot.
1825 if (!FPDiff
) return Chain
;
1826 // Calculate the new stack slot for the return address.
1827 int SlotSize
= Is64Bit
? 8 : 4;
1828 int NewReturnAddrFI
=
1829 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
, false);
1830 EVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1831 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1832 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1833 MachinePointerInfo::getFixedStack(NewReturnAddrFI
),
1839 X86TargetLowering::LowerCall(SDValue Chain
, SDValue Callee
,
1840 CallingConv::ID CallConv
, bool isVarArg
,
1842 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1843 const SmallVectorImpl
<SDValue
> &OutVals
,
1844 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1845 DebugLoc dl
, SelectionDAG
&DAG
,
1846 SmallVectorImpl
<SDValue
> &InVals
) const {
1847 MachineFunction
&MF
= DAG
.getMachineFunction();
1848 bool Is64Bit
= Subtarget
->is64Bit();
1849 bool IsStructRet
= CallIsStructReturn(Outs
);
1850 bool IsSibcall
= false;
1853 // Check if it's really possible to do a tail call.
1854 isTailCall
= IsEligibleForTailCallOptimization(Callee
, CallConv
,
1855 isVarArg
, IsStructRet
, MF
.getFunction()->hasStructRetAttr(),
1856 Outs
, OutVals
, Ins
, DAG
);
1858 // Sibcalls are automatically detected tailcalls which do not require
1860 if (!GuaranteedTailCallOpt
&& isTailCall
)
1867 assert(!(isVarArg
&& IsTailCallConvention(CallConv
)) &&
1868 "Var args not supported with calling convention fastcc or ghc");
1870 // Analyze operands of the call, assigning locations to each operand.
1871 SmallVector
<CCValAssign
, 16> ArgLocs
;
1872 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1873 ArgLocs
, *DAG
.getContext());
1874 CCInfo
.AnalyzeCallOperands(Outs
, CC_X86
);
1876 // Get a count of how many bytes are to be pushed on the stack.
1877 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1879 // This is a sibcall. The memory operands are available in caller's
1880 // own caller's stack.
1882 else if (GuaranteedTailCallOpt
&& IsTailCallConvention(CallConv
))
1883 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1886 if (isTailCall
&& !IsSibcall
) {
1887 // Lower arguments at fp - stackoffset + fpdiff.
1888 unsigned NumBytesCallerPushed
=
1889 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1890 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1892 // Set the delta of movement of the returnaddr stackslot.
1893 // But only set if delta is greater than previous delta.
1894 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1895 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1899 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1901 SDValue RetAddrFrIdx
;
1902 // Load return adress for tail calls.
1903 if (isTailCall
&& FPDiff
)
1904 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, isTailCall
,
1905 Is64Bit
, FPDiff
, dl
);
1907 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1908 SmallVector
<SDValue
, 8> MemOpChains
;
1911 // Walk the register/memloc assignments, inserting copies/loads. In the case
1912 // of tail call optimization arguments are handle later.
1913 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1914 CCValAssign
&VA
= ArgLocs
[i
];
1915 EVT RegVT
= VA
.getLocVT();
1916 SDValue Arg
= OutVals
[i
];
1917 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
1918 bool isByVal
= Flags
.isByVal();
1920 // Promote the value if needed.
1921 switch (VA
.getLocInfo()) {
1922 default: llvm_unreachable("Unknown loc info!");
1923 case CCValAssign::Full
: break;
1924 case CCValAssign::SExt
:
1925 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, RegVT
, Arg
);
1927 case CCValAssign::ZExt
:
1928 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, RegVT
, Arg
);
1930 case CCValAssign::AExt
:
1931 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128) {
1932 // Special case: passing MMX values in XMM registers.
1933 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1934 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1935 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1937 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, RegVT
, Arg
);
1939 case CCValAssign::BCvt
:
1940 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RegVT
, Arg
);
1942 case CCValAssign::Indirect
: {
1943 // Store the argument.
1944 SDValue SpillSlot
= DAG
.CreateStackTemporary(VA
.getValVT());
1945 int FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
1946 Chain
= DAG
.getStore(Chain
, dl
, Arg
, SpillSlot
,
1947 MachinePointerInfo::getFixedStack(FI
),
1954 if (VA
.isRegLoc()) {
1955 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1956 if (isVarArg
&& Subtarget
->isTargetWin64()) {
1957 // Win64 ABI requires argument XMM reg to be copied to the corresponding
1958 // shadow reg if callee is a varargs function.
1959 unsigned ShadowReg
= 0;
1960 switch (VA
.getLocReg()) {
1961 case X86::XMM0
: ShadowReg
= X86::RCX
; break;
1962 case X86::XMM1
: ShadowReg
= X86::RDX
; break;
1963 case X86::XMM2
: ShadowReg
= X86::R8
; break;
1964 case X86::XMM3
: ShadowReg
= X86::R9
; break;
1967 RegsToPass
.push_back(std::make_pair(ShadowReg
, Arg
));
1969 } else if (!IsSibcall
&& (!isTailCall
|| isByVal
)) {
1970 assert(VA
.isMemLoc());
1971 if (StackPtr
.getNode() == 0)
1972 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1973 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
1974 dl
, DAG
, VA
, Flags
));
1978 if (!MemOpChains
.empty())
1979 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1980 &MemOpChains
[0], MemOpChains
.size());
1982 // Build a sequence of copy-to-reg nodes chained together with token chain
1983 // and flag operands which copy the outgoing args into registers.
1985 // Tail call byval lowering might overwrite argument registers so in case of
1986 // tail call optimization the copies to registers are lowered later.
1988 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1989 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1990 RegsToPass
[i
].second
, InFlag
);
1991 InFlag
= Chain
.getValue(1);
1994 if (Subtarget
->isPICStyleGOT()) {
1995 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1998 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1999 DAG
.getNode(X86ISD::GlobalBaseReg
,
2000 DebugLoc(), getPointerTy()),
2002 InFlag
= Chain
.getValue(1);
2004 // If we are tail calling and generating PIC/GOT style code load the
2005 // address of the callee into ECX. The value in ecx is used as target of
2006 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2007 // for tail calls on PIC/GOT architectures. Normally we would just put the
2008 // address of GOT into ebx and then call target@PLT. But for tail calls
2009 // ebx would be restored (since ebx is callee saved) before jumping to the
2012 // Note: The actual moving to ECX is done further down.
2013 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
2014 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
2015 !G
->getGlobal()->hasProtectedVisibility())
2016 Callee
= LowerGlobalAddress(Callee
, DAG
);
2017 else if (isa
<ExternalSymbolSDNode
>(Callee
))
2018 Callee
= LowerExternalSymbol(Callee
, DAG
);
2022 if (Is64Bit
&& isVarArg
&& !Subtarget
->isTargetWin64()) {
2023 // From AMD64 ABI document:
2024 // For calls that may call functions that use varargs or stdargs
2025 // (prototype-less calls or calls to functions containing ellipsis (...) in
2026 // the declaration) %al is used as hidden argument to specify the number
2027 // of SSE registers used. The contents of %al do not need to match exactly
2028 // the number of registers, but must be an ubound on the number of SSE
2029 // registers used and is in the range 0 - 8 inclusive.
2031 // Count the number of XMM registers allocated.
2032 static const unsigned XMMArgRegs
[] = {
2033 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
2034 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
2036 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
2037 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
2038 && "SSE registers cannot be used when SSE is disabled");
2040 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
2041 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
2042 InFlag
= Chain
.getValue(1);
2046 // For tail calls lower the arguments to the 'real' stack slot.
2048 // Force all the incoming stack arguments to be loaded from the stack
2049 // before any new outgoing arguments are stored to the stack, because the
2050 // outgoing stack slots may alias the incoming argument stack slots, and
2051 // the alias isn't otherwise explicit. This is slightly more conservative
2052 // than necessary, because it means that each store effectively depends
2053 // on every argument instead of just those arguments it would clobber.
2054 SDValue ArgChain
= DAG
.getStackArgumentTokenFactor(Chain
);
2056 SmallVector
<SDValue
, 8> MemOpChains2
;
2059 // Do not flag preceeding copytoreg stuff together with the following stuff.
2061 if (GuaranteedTailCallOpt
) {
2062 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
2063 CCValAssign
&VA
= ArgLocs
[i
];
2066 assert(VA
.isMemLoc());
2067 SDValue Arg
= OutVals
[i
];
2068 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2069 // Create frame index.
2070 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
2071 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
2072 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
, true);
2073 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
2075 if (Flags
.isByVal()) {
2076 // Copy relative to framepointer.
2077 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
2078 if (StackPtr
.getNode() == 0)
2079 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
2081 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
2083 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
,
2087 // Store relative to framepointer.
2088 MemOpChains2
.push_back(
2089 DAG
.getStore(ArgChain
, dl
, Arg
, FIN
,
2090 MachinePointerInfo::getFixedStack(FI
),
2096 if (!MemOpChains2
.empty())
2097 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2098 &MemOpChains2
[0], MemOpChains2
.size());
2100 // Copy arguments to their registers.
2101 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2102 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2103 RegsToPass
[i
].second
, InFlag
);
2104 InFlag
= Chain
.getValue(1);
2108 // Store the return address to the appropriate stack slot.
2109 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
2113 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
2114 assert(Is64Bit
&& "Large code model is only legal in 64-bit mode.");
2115 // In the 64-bit large code model, we have to make all calls
2116 // through a register, since the call instruction's 32-bit
2117 // pc-relative offset may not be large enough to hold the whole
2119 } else if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2120 // If the callee is a GlobalAddress node (quite common, every direct call
2121 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2124 // We should use extra load for direct calls to dllimported functions in
2126 const GlobalValue
*GV
= G
->getGlobal();
2127 if (!GV
->hasDLLImportLinkage()) {
2128 unsigned char OpFlags
= 0;
2130 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2131 // external symbols most go through the PLT in PIC mode. If the symbol
2132 // has hidden or protected visibility, or if it is static or local, then
2133 // we don't need to use the PLT - we can directly call it.
2134 if (Subtarget
->isTargetELF() &&
2135 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
2136 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
2137 OpFlags
= X86II::MO_PLT
;
2138 } else if (Subtarget
->isPICStyleStubAny() &&
2139 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
2140 Subtarget
->getDarwinVers() < 9) {
2141 // PC-relative references to external symbols should go through $stub,
2142 // unless we're building with the leopard linker or later, which
2143 // automatically synthesizes these stubs.
2144 OpFlags
= X86II::MO_DARWIN_STUB
;
2147 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, getPointerTy(),
2148 G
->getOffset(), OpFlags
);
2150 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2151 unsigned char OpFlags
= 0;
2153 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2154 // symbols should go through the PLT.
2155 if (Subtarget
->isTargetELF() &&
2156 getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
2157 OpFlags
= X86II::MO_PLT
;
2158 } else if (Subtarget
->isPICStyleStubAny() &&
2159 Subtarget
->getDarwinVers() < 9) {
2160 // PC-relative references to external symbols should go through $stub,
2161 // unless we're building with the leopard linker or later, which
2162 // automatically synthesizes these stubs.
2163 OpFlags
= X86II::MO_DARWIN_STUB
;
2166 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy(),
2170 // Returns a chain & a flag for retval copy to use.
2171 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
2172 SmallVector
<SDValue
, 8> Ops
;
2174 if (!IsSibcall
&& isTailCall
) {
2175 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2176 DAG
.getIntPtrConstant(0, true), InFlag
);
2177 InFlag
= Chain
.getValue(1);
2180 Ops
.push_back(Chain
);
2181 Ops
.push_back(Callee
);
2184 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
2186 // Add argument registers to the end of the list so that they are known live
2188 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2189 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2190 RegsToPass
[i
].second
.getValueType()));
2192 // Add an implicit use GOT pointer in EBX.
2193 if (!isTailCall
&& Subtarget
->isPICStyleGOT())
2194 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
2196 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2197 if (Is64Bit
&& isVarArg
&& !Subtarget
->isTargetWin64())
2198 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
2200 if (InFlag
.getNode())
2201 Ops
.push_back(InFlag
);
2205 //// If this is the first return lowered for this function, add the regs
2206 //// to the liveout set for the function.
2207 // This isn't right, although it's probably harmless on x86; liveouts
2208 // should be computed from returns not tail calls. Consider a void
2209 // function making a tail call to a function returning int.
2210 return DAG
.getNode(X86ISD::TC_RETURN
, dl
,
2211 NodeTys
, &Ops
[0], Ops
.size());
2214 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2215 InFlag
= Chain
.getValue(1);
2217 // Create the CALLSEQ_END node.
2218 unsigned NumBytesForCalleeToPush
;
2219 if (Subtarget
->IsCalleePop(isVarArg
, CallConv
))
2220 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
2221 else if (!Is64Bit
&& !IsTailCallConvention(CallConv
) && IsStructRet
)
2222 // If this is a call to a struct-return function, the callee
2223 // pops the hidden struct pointer, so we have to push it back.
2224 // This is common for Darwin/X86, Linux & Mingw32 targets.
2225 NumBytesForCalleeToPush
= 4;
2227 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
2229 // Returns a flag for retval copy to use.
2231 Chain
= DAG
.getCALLSEQ_END(Chain
,
2232 DAG
.getIntPtrConstant(NumBytes
, true),
2233 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
2236 InFlag
= Chain
.getValue(1);
2239 // Handle result values, copying them out of physregs into vregs that we
2241 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
2242 Ins
, dl
, DAG
, InVals
);
2246 //===----------------------------------------------------------------------===//
2247 // Fast Calling Convention (tail call) implementation
2248 //===----------------------------------------------------------------------===//
2250 // Like std call, callee cleans arguments, convention except that ECX is
2251 // reserved for storing the tail called function address. Only 2 registers are
2252 // free for argument passing (inreg). Tail call optimization is performed
2254 // * tailcallopt is enabled
2255 // * caller/callee are fastcc
2256 // On X86_64 architecture with GOT-style position independent code only local
2257 // (within module) calls are supported at the moment.
2258 // To keep the stack aligned according to platform abi the function
2259 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2260 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2261 // If a tail called function callee has more arguments than the caller the
2262 // caller needs to make sure that there is room to move the RETADDR to. This is
2263 // achieved by reserving an area the size of the argument delta right after the
2264 // original REtADDR, but before the saved framepointer or the spilled registers
2265 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2277 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2278 /// for a 16 byte align requirement.
2280 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
2281 SelectionDAG
& DAG
) const {
2282 MachineFunction
&MF
= DAG
.getMachineFunction();
2283 const TargetMachine
&TM
= MF
.getTarget();
2284 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
2285 unsigned StackAlignment
= TFI
.getStackAlignment();
2286 uint64_t AlignMask
= StackAlignment
- 1;
2287 int64_t Offset
= StackSize
;
2288 uint64_t SlotSize
= TD
->getPointerSize();
2289 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
2290 // Number smaller than 12 so just add the difference.
2291 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
2293 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2294 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
2295 (StackAlignment
-SlotSize
);
2300 /// MatchingStackOffset - Return true if the given stack call argument is
2301 /// already available in the same position (relatively) of the caller's
2302 /// incoming argument stack.
2304 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2305 MachineFrameInfo
*MFI
, const MachineRegisterInfo
*MRI
,
2306 const X86InstrInfo
*TII
) {
2307 unsigned Bytes
= Arg
.getValueType().getSizeInBits() / 8;
2309 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2310 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2311 if (!VR
|| TargetRegisterInfo::isPhysicalRegister(VR
))
2313 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2316 if (!Flags
.isByVal()) {
2317 if (!TII
->isLoadFromStackSlot(Def
, FI
))
2320 unsigned Opcode
= Def
->getOpcode();
2321 if ((Opcode
== X86::LEA32r
|| Opcode
== X86::LEA64r
) &&
2322 Def
->getOperand(1).isFI()) {
2323 FI
= Def
->getOperand(1).getIndex();
2324 Bytes
= Flags
.getByValSize();
2328 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2329 if (Flags
.isByVal())
2330 // ByVal argument is passed in as a pointer but it's now being
2331 // dereferenced. e.g.
2332 // define @foo(%struct.X* %A) {
2333 // tail call @bar(%struct.X* byval %A)
2336 SDValue Ptr
= Ld
->getBasePtr();
2337 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2340 FI
= FINode
->getIndex();
2344 assert(FI
!= INT_MAX
);
2345 if (!MFI
->isFixedObjectIndex(FI
))
2347 return Offset
== MFI
->getObjectOffset(FI
) && Bytes
== MFI
->getObjectSize(FI
);
2350 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2351 /// for tail call optimization. Targets which want to do tail call
2352 /// optimization should implement this function.
2354 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
2355 CallingConv::ID CalleeCC
,
2357 bool isCalleeStructRet
,
2358 bool isCallerStructRet
,
2359 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2360 const SmallVectorImpl
<SDValue
> &OutVals
,
2361 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2362 SelectionDAG
& DAG
) const {
2363 if (!IsTailCallConvention(CalleeCC
) &&
2364 CalleeCC
!= CallingConv::C
)
2367 // If -tailcallopt is specified, make fastcc functions tail-callable.
2368 const MachineFunction
&MF
= DAG
.getMachineFunction();
2369 const Function
*CallerF
= DAG
.getMachineFunction().getFunction();
2370 CallingConv::ID CallerCC
= CallerF
->getCallingConv();
2371 bool CCMatch
= CallerCC
== CalleeCC
;
2373 if (GuaranteedTailCallOpt
) {
2374 if (IsTailCallConvention(CalleeCC
) && CCMatch
)
2379 // Look for obvious safe cases to perform tail call optimization that do not
2380 // require ABI changes. This is what gcc calls sibcall.
2382 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2383 // emit a special epilogue.
2384 if (RegInfo
->needsStackRealignment(MF
))
2387 // Do not sibcall optimize vararg calls unless the call site is not passing
2389 if (isVarArg
&& !Outs
.empty())
2392 // Also avoid sibcall optimization if either caller or callee uses struct
2393 // return semantics.
2394 if (isCalleeStructRet
|| isCallerStructRet
)
2397 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2398 // Therefore if it's not used by the call it is not safe to optimize this into
2400 bool Unused
= false;
2401 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
2408 SmallVector
<CCValAssign
, 16> RVLocs
;
2409 CCState
CCInfo(CalleeCC
, false, getTargetMachine(),
2410 RVLocs
, *DAG
.getContext());
2411 CCInfo
.AnalyzeCallResult(Ins
, RetCC_X86
);
2412 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
2413 CCValAssign
&VA
= RVLocs
[i
];
2414 if (VA
.getLocReg() == X86::ST0
|| VA
.getLocReg() == X86::ST1
)
2419 // If the calling conventions do not match, then we'd better make sure the
2420 // results are returned in the same way as what the caller expects.
2422 SmallVector
<CCValAssign
, 16> RVLocs1
;
2423 CCState
CCInfo1(CalleeCC
, false, getTargetMachine(),
2424 RVLocs1
, *DAG
.getContext());
2425 CCInfo1
.AnalyzeCallResult(Ins
, RetCC_X86
);
2427 SmallVector
<CCValAssign
, 16> RVLocs2
;
2428 CCState
CCInfo2(CallerCC
, false, getTargetMachine(),
2429 RVLocs2
, *DAG
.getContext());
2430 CCInfo2
.AnalyzeCallResult(Ins
, RetCC_X86
);
2432 if (RVLocs1
.size() != RVLocs2
.size())
2434 for (unsigned i
= 0, e
= RVLocs1
.size(); i
!= e
; ++i
) {
2435 if (RVLocs1
[i
].isRegLoc() != RVLocs2
[i
].isRegLoc())
2437 if (RVLocs1
[i
].getLocInfo() != RVLocs2
[i
].getLocInfo())
2439 if (RVLocs1
[i
].isRegLoc()) {
2440 if (RVLocs1
[i
].getLocReg() != RVLocs2
[i
].getLocReg())
2443 if (RVLocs1
[i
].getLocMemOffset() != RVLocs2
[i
].getLocMemOffset())
2449 // If the callee takes no arguments then go on to check the results of the
2451 if (!Outs
.empty()) {
2452 // Check if stack adjustment is needed. For now, do not do this if any
2453 // argument is passed on the stack.
2454 SmallVector
<CCValAssign
, 16> ArgLocs
;
2455 CCState
CCInfo(CalleeCC
, isVarArg
, getTargetMachine(),
2456 ArgLocs
, *DAG
.getContext());
2457 CCInfo
.AnalyzeCallOperands(Outs
, CC_X86
);
2458 if (CCInfo
.getNextStackOffset()) {
2459 MachineFunction
&MF
= DAG
.getMachineFunction();
2460 if (MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn())
2462 if (Subtarget
->isTargetWin64())
2463 // Win64 ABI has additional complications.
2466 // Check if the arguments are already laid out in the right way as
2467 // the caller's fixed stack objects.
2468 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
2469 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2470 const X86InstrInfo
*TII
=
2471 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
2472 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
2473 CCValAssign
&VA
= ArgLocs
[i
];
2474 SDValue Arg
= OutVals
[i
];
2475 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2476 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2478 if (!VA
.isRegLoc()) {
2479 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2486 // If the tailcall address may be in a register, then make sure it's
2487 // possible to register allocate for it. In 32-bit, the call address can
2488 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2489 // callee-saved registers are restored. These happen to be the same
2490 // registers used to pass 'inreg' arguments so watch out for those.
2491 if (!Subtarget
->is64Bit() &&
2492 !isa
<GlobalAddressSDNode
>(Callee
) &&
2493 !isa
<ExternalSymbolSDNode
>(Callee
)) {
2494 unsigned NumInRegs
= 0;
2495 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
2496 CCValAssign
&VA
= ArgLocs
[i
];
2499 unsigned Reg
= VA
.getLocReg();
2502 case X86::EAX
: case X86::EDX
: case X86::ECX
:
2503 if (++NumInRegs
== 3)
2511 // An stdcall caller is expected to clean up its arguments; the callee
2512 // isn't going to do that. PR 8461.
2513 if (!CCMatch
&& CallerCC
==CallingConv::X86_StdCall
)
2520 X86TargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
) const {
2521 return X86::createFastISel(funcInfo
);
2525 //===----------------------------------------------------------------------===//
2526 // Other Lowering Hooks
2527 //===----------------------------------------------------------------------===//
2529 static bool MayFoldLoad(SDValue Op
) {
2530 return Op
.hasOneUse() && ISD::isNormalLoad(Op
.getNode());
2533 static bool MayFoldIntoStore(SDValue Op
) {
2534 return Op
.hasOneUse() && ISD::isNormalStore(*Op
.getNode()->use_begin());
2537 static bool isTargetShuffle(unsigned Opcode
) {
2539 default: return false;
2540 case X86ISD::PSHUFD
:
2541 case X86ISD::PSHUFHW
:
2542 case X86ISD::PSHUFLW
:
2543 case X86ISD::SHUFPD
:
2544 case X86ISD::PALIGN
:
2545 case X86ISD::SHUFPS
:
2546 case X86ISD::MOVLHPS
:
2547 case X86ISD::MOVLHPD
:
2548 case X86ISD::MOVHLPS
:
2549 case X86ISD::MOVLPS
:
2550 case X86ISD::MOVLPD
:
2551 case X86ISD::MOVSHDUP
:
2552 case X86ISD::MOVSLDUP
:
2553 case X86ISD::MOVDDUP
:
2556 case X86ISD::UNPCKLPS
:
2557 case X86ISD::UNPCKLPD
:
2558 case X86ISD::PUNPCKLWD
:
2559 case X86ISD::PUNPCKLBW
:
2560 case X86ISD::PUNPCKLDQ
:
2561 case X86ISD::PUNPCKLQDQ
:
2562 case X86ISD::UNPCKHPS
:
2563 case X86ISD::UNPCKHPD
:
2564 case X86ISD::PUNPCKHWD
:
2565 case X86ISD::PUNPCKHBW
:
2566 case X86ISD::PUNPCKHDQ
:
2567 case X86ISD::PUNPCKHQDQ
:
2573 static SDValue
getTargetShuffleNode(unsigned Opc
, DebugLoc dl
, EVT VT
,
2574 SDValue V1
, SelectionDAG
&DAG
) {
2576 default: llvm_unreachable("Unknown x86 shuffle node");
2577 case X86ISD::MOVSHDUP
:
2578 case X86ISD::MOVSLDUP
:
2579 case X86ISD::MOVDDUP
:
2580 return DAG
.getNode(Opc
, dl
, VT
, V1
);
2586 static SDValue
getTargetShuffleNode(unsigned Opc
, DebugLoc dl
, EVT VT
,
2587 SDValue V1
, unsigned TargetMask
, SelectionDAG
&DAG
) {
2589 default: llvm_unreachable("Unknown x86 shuffle node");
2590 case X86ISD::PSHUFD
:
2591 case X86ISD::PSHUFHW
:
2592 case X86ISD::PSHUFLW
:
2593 return DAG
.getNode(Opc
, dl
, VT
, V1
, DAG
.getConstant(TargetMask
, MVT::i8
));
2599 static SDValue
getTargetShuffleNode(unsigned Opc
, DebugLoc dl
, EVT VT
,
2600 SDValue V1
, SDValue V2
, unsigned TargetMask
, SelectionDAG
&DAG
) {
2602 default: llvm_unreachable("Unknown x86 shuffle node");
2603 case X86ISD::PALIGN
:
2604 case X86ISD::SHUFPD
:
2605 case X86ISD::SHUFPS
:
2606 return DAG
.getNode(Opc
, dl
, VT
, V1
, V2
,
2607 DAG
.getConstant(TargetMask
, MVT::i8
));
2612 static SDValue
getTargetShuffleNode(unsigned Opc
, DebugLoc dl
, EVT VT
,
2613 SDValue V1
, SDValue V2
, SelectionDAG
&DAG
) {
2615 default: llvm_unreachable("Unknown x86 shuffle node");
2616 case X86ISD::MOVLHPS
:
2617 case X86ISD::MOVLHPD
:
2618 case X86ISD::MOVHLPS
:
2619 case X86ISD::MOVLPS
:
2620 case X86ISD::MOVLPD
:
2623 case X86ISD::UNPCKLPS
:
2624 case X86ISD::UNPCKLPD
:
2625 case X86ISD::PUNPCKLWD
:
2626 case X86ISD::PUNPCKLBW
:
2627 case X86ISD::PUNPCKLDQ
:
2628 case X86ISD::PUNPCKLQDQ
:
2629 case X86ISD::UNPCKHPS
:
2630 case X86ISD::UNPCKHPD
:
2631 case X86ISD::PUNPCKHWD
:
2632 case X86ISD::PUNPCKHBW
:
2633 case X86ISD::PUNPCKHDQ
:
2634 case X86ISD::PUNPCKHQDQ
:
2635 return DAG
.getNode(Opc
, dl
, VT
, V1
, V2
);
2640 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) const {
2641 MachineFunction
&MF
= DAG
.getMachineFunction();
2642 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2643 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2645 if (ReturnAddrIndex
== 0) {
2646 // Set up a frame object for the return address.
2647 uint64_t SlotSize
= TD
->getPointerSize();
2648 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
,
2650 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2653 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2657 bool X86::isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
2658 bool hasSymbolicDisplacement
) {
2659 // Offset should fit into 32 bit immediate field.
2660 if (!isInt
<32>(Offset
))
2663 // If we don't have a symbolic displacement - we don't have any extra
2665 if (!hasSymbolicDisplacement
)
2668 // FIXME: Some tweaks might be needed for medium code model.
2669 if (M
!= CodeModel::Small
&& M
!= CodeModel::Kernel
)
2672 // For small code model we assume that latest object is 16MB before end of 31
2673 // bits boundary. We may also accept pretty large negative constants knowing
2674 // that all objects are in the positive half of address space.
2675 if (M
== CodeModel::Small
&& Offset
< 16*1024*1024)
2678 // For kernel code model we know that all object resist in the negative half
2679 // of 32bits address space. We may not accept negative offsets, since they may
2680 // be just off and we may accept pretty large positive ones.
2681 if (M
== CodeModel::Kernel
&& Offset
> 0)
2687 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2688 /// specific condition code, returning the condition code and the LHS/RHS of the
2689 /// comparison to make.
2690 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2691 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2693 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2694 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2695 // X > -1 -> X == 0, jump !sign.
2696 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2697 return X86::COND_NS
;
2698 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2699 // X < 0 -> X == 0, jump on sign.
2701 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2703 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2704 return X86::COND_LE
;
2708 switch (SetCCOpcode
) {
2709 default: llvm_unreachable("Invalid integer condition!");
2710 case ISD::SETEQ
: return X86::COND_E
;
2711 case ISD::SETGT
: return X86::COND_G
;
2712 case ISD::SETGE
: return X86::COND_GE
;
2713 case ISD::SETLT
: return X86::COND_L
;
2714 case ISD::SETLE
: return X86::COND_LE
;
2715 case ISD::SETNE
: return X86::COND_NE
;
2716 case ISD::SETULT
: return X86::COND_B
;
2717 case ISD::SETUGT
: return X86::COND_A
;
2718 case ISD::SETULE
: return X86::COND_BE
;
2719 case ISD::SETUGE
: return X86::COND_AE
;
2723 // First determine if it is required or is profitable to flip the operands.
2725 // If LHS is a foldable load, but RHS is not, flip the condition.
2726 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2727 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2728 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2729 std::swap(LHS
, RHS
);
2732 switch (SetCCOpcode
) {
2738 std::swap(LHS
, RHS
);
2742 // On a floating point condition, the flags are set as follows:
2744 // 0 | 0 | 0 | X > Y
2745 // 0 | 0 | 1 | X < Y
2746 // 1 | 0 | 0 | X == Y
2747 // 1 | 1 | 1 | unordered
2748 switch (SetCCOpcode
) {
2749 default: llvm_unreachable("Condcode should be pre-legalized away");
2751 case ISD::SETEQ
: return X86::COND_E
;
2752 case ISD::SETOLT
: // flipped
2754 case ISD::SETGT
: return X86::COND_A
;
2755 case ISD::SETOLE
: // flipped
2757 case ISD::SETGE
: return X86::COND_AE
;
2758 case ISD::SETUGT
: // flipped
2760 case ISD::SETLT
: return X86::COND_B
;
2761 case ISD::SETUGE
: // flipped
2763 case ISD::SETLE
: return X86::COND_BE
;
2765 case ISD::SETNE
: return X86::COND_NE
;
2766 case ISD::SETUO
: return X86::COND_P
;
2767 case ISD::SETO
: return X86::COND_NP
;
2769 case ISD::SETUNE
: return X86::COND_INVALID
;
2773 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2774 /// code. Current x86 isa includes the following FP cmov instructions:
2775 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2776 static bool hasFPCMov(unsigned X86CC
) {
2792 /// isFPImmLegal - Returns true if the target can instruction select the
2793 /// specified FP immediate natively. If false, the legalizer will
2794 /// materialize the FP immediate as a load from a constant pool.
2795 bool X86TargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
) const {
2796 for (unsigned i
= 0, e
= LegalFPImmediates
.size(); i
!= e
; ++i
) {
2797 if (Imm
.bitwiseIsEqual(LegalFPImmediates
[i
]))
2803 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2804 /// the specified range (L, H].
2805 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2806 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2809 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2810 /// specified value.
2811 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2812 if (Val
< 0 || Val
== CmpVal
)
2817 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2818 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2819 /// the second operand.
2820 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2821 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
)
2822 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2823 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2824 return (Mask
[0] < 2 && Mask
[1] < 2);
2828 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2829 SmallVector
<int, 8> M
;
2831 return ::isPSHUFDMask(M
, N
->getValueType(0));
2834 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2835 /// is suitable for input to PSHUFHW.
2836 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2837 if (VT
!= MVT::v8i16
)
2840 // Lower quadword copied in order or undef.
2841 for (int i
= 0; i
!= 4; ++i
)
2842 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2845 // Upper quadword shuffled.
2846 for (int i
= 4; i
!= 8; ++i
)
2847 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2853 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2854 SmallVector
<int, 8> M
;
2856 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2859 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2860 /// is suitable for input to PSHUFLW.
2861 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2862 if (VT
!= MVT::v8i16
)
2865 // Upper quadword copied in order.
2866 for (int i
= 4; i
!= 8; ++i
)
2867 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2870 // Lower quadword shuffled.
2871 for (int i
= 0; i
!= 4; ++i
)
2878 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2879 SmallVector
<int, 8> M
;
2881 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2884 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2885 /// is suitable for input to PALIGNR.
2886 static bool isPALIGNRMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
2888 int i
, e
= VT
.getVectorNumElements();
2890 // Do not handle v2i64 / v2f64 shuffles with palignr.
2891 if (e
< 4 || !hasSSSE3
)
2894 for (i
= 0; i
!= e
; ++i
)
2898 // All undef, not a palignr.
2902 // Determine if it's ok to perform a palignr with only the LHS, since we
2903 // don't have access to the actual shuffle elements to see if RHS is undef.
2904 bool Unary
= Mask
[i
] < (int)e
;
2905 bool NeedsUnary
= false;
2907 int s
= Mask
[i
] - i
;
2909 // Check the rest of the elements to see if they are consecutive.
2910 for (++i
; i
!= e
; ++i
) {
2915 Unary
= Unary
&& (m
< (int)e
);
2916 NeedsUnary
= NeedsUnary
|| (m
< s
);
2918 if (NeedsUnary
&& !Unary
)
2920 if (Unary
&& m
!= ((s
+i
) & (e
-1)))
2922 if (!Unary
&& m
!= (s
+i
))
2928 bool X86::isPALIGNRMask(ShuffleVectorSDNode
*N
) {
2929 SmallVector
<int, 8> M
;
2931 return ::isPALIGNRMask(M
, N
->getValueType(0), true);
2934 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2935 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2936 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2937 int NumElems
= VT
.getVectorNumElements();
2938 if (NumElems
!= 2 && NumElems
!= 4)
2941 int Half
= NumElems
/ 2;
2942 for (int i
= 0; i
< Half
; ++i
)
2943 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2945 for (int i
= Half
; i
< NumElems
; ++i
)
2946 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2952 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2953 SmallVector
<int, 8> M
;
2955 return ::isSHUFPMask(M
, N
->getValueType(0));
2958 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2959 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2960 /// half elements to come from vector 1 (which would equal the dest.) and
2961 /// the upper half to come from vector 2.
2962 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2963 int NumElems
= VT
.getVectorNumElements();
2965 if (NumElems
!= 2 && NumElems
!= 4)
2968 int Half
= NumElems
/ 2;
2969 for (int i
= 0; i
< Half
; ++i
)
2970 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2972 for (int i
= Half
; i
< NumElems
; ++i
)
2973 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2978 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2979 SmallVector
<int, 8> M
;
2981 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2984 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2985 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2986 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2987 if (N
->getValueType(0).getVectorNumElements() != 4)
2990 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2991 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2992 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2993 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2994 isUndefOrEqual(N
->getMaskElt(3), 3);
2997 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2998 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3000 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
3001 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
3006 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
3007 isUndefOrEqual(N
->getMaskElt(1), 3) &&
3008 isUndefOrEqual(N
->getMaskElt(2), 2) &&
3009 isUndefOrEqual(N
->getMaskElt(3), 3);
3012 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3013 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3014 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
3015 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
3017 if (NumElems
!= 2 && NumElems
!= 4)
3020 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
3021 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
3024 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
3025 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
3031 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3032 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3033 bool X86::isMOVLHPSMask(ShuffleVectorSDNode
*N
) {
3034 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
3036 if (NumElems
!= 2 && NumElems
!= 4)
3039 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
3040 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
3043 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
3044 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
3050 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3051 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3052 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
3053 bool V2IsSplat
= false) {
3054 int NumElts
= VT
.getVectorNumElements();
3055 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
3058 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
3060 int BitI1
= Mask
[i
+1];
3061 if (!isUndefOrEqual(BitI
, j
))
3064 if (!isUndefOrEqual(BitI1
, NumElts
))
3067 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
3074 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
3075 SmallVector
<int, 8> M
;
3077 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
3080 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3081 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3082 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
3083 bool V2IsSplat
= false) {
3084 int NumElts
= VT
.getVectorNumElements();
3085 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
3088 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
3090 int BitI1
= Mask
[i
+1];
3091 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
3094 if (isUndefOrEqual(BitI1
, NumElts
))
3097 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
3104 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
3105 SmallVector
<int, 8> M
;
3107 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
3110 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3111 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3113 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
3114 int NumElems
= VT
.getVectorNumElements();
3115 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
3118 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
3120 int BitI1
= Mask
[i
+1];
3121 if (!isUndefOrEqual(BitI
, j
))
3123 if (!isUndefOrEqual(BitI1
, j
))
3129 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
3130 SmallVector
<int, 8> M
;
3132 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
3135 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3136 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3138 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
3139 int NumElems
= VT
.getVectorNumElements();
3140 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
3143 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
3145 int BitI1
= Mask
[i
+1];
3146 if (!isUndefOrEqual(BitI
, j
))
3148 if (!isUndefOrEqual(BitI1
, j
))
3154 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
3155 SmallVector
<int, 8> M
;
3157 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
3160 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3161 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3162 /// MOVSD, and MOVD, i.e. setting the lowest element.
3163 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
3164 if (VT
.getVectorElementType().getSizeInBits() < 32)
3167 int NumElts
= VT
.getVectorNumElements();
3169 if (!isUndefOrEqual(Mask
[0], NumElts
))
3172 for (int i
= 1; i
< NumElts
; ++i
)
3173 if (!isUndefOrEqual(Mask
[i
], i
))
3179 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
3180 SmallVector
<int, 8> M
;
3182 return ::isMOVLMask(M
, N
->getValueType(0));
3185 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3186 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3187 /// element of vector 2 and the other elements to come from vector 1 in order.
3188 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
3189 bool V2IsSplat
= false, bool V2IsUndef
= false) {
3190 int NumOps
= VT
.getVectorNumElements();
3191 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
3194 if (!isUndefOrEqual(Mask
[0], 0))
3197 for (int i
= 1; i
< NumOps
; ++i
)
3198 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
3199 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
3200 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
3206 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
3207 bool V2IsUndef
= false) {
3208 SmallVector
<int, 8> M
;
3210 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
3213 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3214 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3215 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
3216 if (N
->getValueType(0).getVectorNumElements() != 4)
3219 // Expect 1, 1, 3, 3
3220 for (unsigned i
= 0; i
< 2; ++i
) {
3221 int Elt
= N
->getMaskElt(i
);
3222 if (Elt
>= 0 && Elt
!= 1)
3227 for (unsigned i
= 2; i
< 4; ++i
) {
3228 int Elt
= N
->getMaskElt(i
);
3229 if (Elt
>= 0 && Elt
!= 3)
3234 // Don't use movshdup if it can be done with a shufps.
3235 // FIXME: verify that matching u, u, 3, 3 is what we want.
3239 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3240 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3241 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
3242 if (N
->getValueType(0).getVectorNumElements() != 4)
3245 // Expect 0, 0, 2, 2
3246 for (unsigned i
= 0; i
< 2; ++i
)
3247 if (N
->getMaskElt(i
) > 0)
3251 for (unsigned i
= 2; i
< 4; ++i
) {
3252 int Elt
= N
->getMaskElt(i
);
3253 if (Elt
>= 0 && Elt
!= 2)
3258 // Don't use movsldup if it can be done with a shufps.
3262 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3263 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3264 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
3265 int e
= N
->getValueType(0).getVectorNumElements() / 2;
3267 for (int i
= 0; i
< e
; ++i
)
3268 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
3270 for (int i
= 0; i
< e
; ++i
)
3271 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
3276 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3277 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3278 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
3279 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
3280 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
3282 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
3284 for (int i
= 0; i
< NumOperands
; ++i
) {
3285 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
3286 if (Val
< 0) Val
= 0;
3287 if (Val
>= NumOperands
) Val
-= NumOperands
;
3289 if (i
!= NumOperands
- 1)
3295 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3296 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3297 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
3298 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
3300 // 8 nodes, but we only care about the last 4.
3301 for (unsigned i
= 7; i
>= 4; --i
) {
3302 int Val
= SVOp
->getMaskElt(i
);
3311 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3312 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3313 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
3314 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
3316 // 8 nodes, but we only care about the first 4.
3317 for (int i
= 3; i
>= 0; --i
) {
3318 int Val
= SVOp
->getMaskElt(i
);
3327 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3328 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3329 unsigned X86::getShufflePALIGNRImmediate(SDNode
*N
) {
3330 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
3331 EVT VVT
= N
->getValueType(0);
3332 unsigned EltSize
= VVT
.getVectorElementType().getSizeInBits() >> 3;
3336 for (i
= 0, e
= VVT
.getVectorNumElements(); i
!= e
; ++i
) {
3337 Val
= SVOp
->getMaskElt(i
);
3341 return (Val
- i
) * EltSize
;
3344 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
3346 bool X86::isZeroNode(SDValue Elt
) {
3347 return ((isa
<ConstantSDNode
>(Elt
) &&
3348 cast
<ConstantSDNode
>(Elt
)->isNullValue()) ||
3349 (isa
<ConstantFPSDNode
>(Elt
) &&
3350 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
3353 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3354 /// their permute mask.
3355 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
3356 SelectionDAG
&DAG
) {
3357 EVT VT
= SVOp
->getValueType(0);
3358 unsigned NumElems
= VT
.getVectorNumElements();
3359 SmallVector
<int, 8> MaskVec
;
3361 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3362 int idx
= SVOp
->getMaskElt(i
);
3364 MaskVec
.push_back(idx
);
3365 else if (idx
< (int)NumElems
)
3366 MaskVec
.push_back(idx
+ NumElems
);
3368 MaskVec
.push_back(idx
- NumElems
);
3370 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
3371 SVOp
->getOperand(0), &MaskVec
[0]);
3374 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3375 /// the two vector operands have swapped position.
3376 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, EVT VT
) {
3377 unsigned NumElems
= VT
.getVectorNumElements();
3378 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3382 else if (idx
< (int)NumElems
)
3383 Mask
[i
] = idx
+ NumElems
;
3385 Mask
[i
] = idx
- NumElems
;
3389 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3390 /// match movhlps. The lower half elements should come from upper half of
3391 /// V1 (and in order), and the upper half elements should come from the upper
3392 /// half of V2 (and in order).
3393 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
3394 if (Op
->getValueType(0).getVectorNumElements() != 4)
3396 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
3397 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
3399 for (unsigned i
= 2; i
!= 4; ++i
)
3400 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
3405 /// isScalarLoadToVector - Returns true if the node is a scalar load that
3406 /// is promoted to a vector. It also returns the LoadSDNode by reference if
3408 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
3409 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
3411 N
= N
->getOperand(0).getNode();
3412 if (!ISD::isNON_EXTLoad(N
))
3415 *LD
= cast
<LoadSDNode
>(N
);
3419 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3420 /// match movlp{s|d}. The lower half elements should come from lower half of
3421 /// V1 (and in order), and the upper half elements should come from the upper
3422 /// half of V2 (and in order). And since V1 will become the source of the
3423 /// MOVLP, it must be either a vector load or a scalar load to vector.
3424 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
3425 ShuffleVectorSDNode
*Op
) {
3426 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
3428 // Is V2 is a vector load, don't do this transformation. We will try to use
3429 // load folding shufps op.
3430 if (ISD::isNON_EXTLoad(V2
))
3433 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
3435 if (NumElems
!= 2 && NumElems
!= 4)
3437 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
3438 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
3440 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
3441 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
3446 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3448 static bool isSplatVector(SDNode
*N
) {
3449 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
3452 SDValue SplatValue
= N
->getOperand(0);
3453 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
3454 if (N
->getOperand(i
) != SplatValue
)
3459 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3460 /// to an zero vector.
3461 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3462 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
3463 SDValue V1
= N
->getOperand(0);
3464 SDValue V2
= N
->getOperand(1);
3465 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
3466 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3467 int Idx
= N
->getMaskElt(i
);
3468 if (Idx
>= (int)NumElems
) {
3469 unsigned Opc
= V2
.getOpcode();
3470 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
3472 if (Opc
!= ISD::BUILD_VECTOR
||
3473 !X86::isZeroNode(V2
.getOperand(Idx
-NumElems
)))
3475 } else if (Idx
>= 0) {
3476 unsigned Opc
= V1
.getOpcode();
3477 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
3479 if (Opc
!= ISD::BUILD_VECTOR
||
3480 !X86::isZeroNode(V1
.getOperand(Idx
)))
3487 /// getZeroVector - Returns a vector of specified type with all zero elements.
3489 static SDValue
getZeroVector(EVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
3491 assert(VT
.isVector() && "Expected a vector type");
3493 // Always build SSE zero vectors as <4 x i32> bitcasted
3494 // to their dest type. This ensures they get CSE'd.
3496 if (VT
.getSizeInBits() == 128) { // SSE
3497 if (HasSSE2
) { // SSE2
3498 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
3499 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
3501 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
3502 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
3504 } else if (VT
.getSizeInBits() == 256) { // AVX
3505 // 256-bit logic and arithmetic instructions in AVX are
3506 // all floating-point, no support for integer ops. Default
3507 // to emitting fp zeroed vectors then.
3508 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
3509 SDValue Ops
[] = { Cst
, Cst
, Cst
, Cst
, Cst
, Cst
, Cst
, Cst
};
3510 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v8f32
, Ops
, 8);
3512 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
3515 /// getOnesVector - Returns a vector of specified type with all bits set.
3517 static SDValue
getOnesVector(EVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
3518 assert(VT
.isVector() && "Expected a vector type");
3520 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3521 // type. This ensures they get CSE'd.
3522 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
3524 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
3525 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
3529 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3530 /// that point to V2 points to its first element.
3531 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3532 EVT VT
= SVOp
->getValueType(0);
3533 unsigned NumElems
= VT
.getVectorNumElements();
3535 bool Changed
= false;
3536 SmallVector
<int, 8> MaskVec
;
3537 SVOp
->getMask(MaskVec
);
3539 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3540 if (MaskVec
[i
] > (int)NumElems
) {
3541 MaskVec
[i
] = NumElems
;
3546 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
3547 SVOp
->getOperand(1), &MaskVec
[0]);
3548 return SDValue(SVOp
, 0);
3551 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3552 /// operation of specified width.
3553 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
3555 unsigned NumElems
= VT
.getVectorNumElements();
3556 SmallVector
<int, 8> Mask
;
3557 Mask
.push_back(NumElems
);
3558 for (unsigned i
= 1; i
!= NumElems
; ++i
)
3560 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3563 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3564 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
3566 unsigned NumElems
= VT
.getVectorNumElements();
3567 SmallVector
<int, 8> Mask
;
3568 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
3570 Mask
.push_back(i
+ NumElems
);
3572 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3575 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3576 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
3578 unsigned NumElems
= VT
.getVectorNumElements();
3579 unsigned Half
= NumElems
/2;
3580 SmallVector
<int, 8> Mask
;
3581 for (unsigned i
= 0; i
!= Half
; ++i
) {
3582 Mask
.push_back(i
+ Half
);
3583 Mask
.push_back(i
+ NumElems
+ Half
);
3585 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3588 /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3589 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
) {
3590 EVT PVT
= MVT::v4f32
;
3591 EVT VT
= SV
->getValueType(0);
3592 DebugLoc dl
= SV
->getDebugLoc();
3593 SDValue V1
= SV
->getOperand(0);
3594 int NumElems
= VT
.getVectorNumElements();
3595 int EltNo
= SV
->getSplatIndex();
3597 // unpack elements to the correct location
3598 while (NumElems
> 4) {
3599 if (EltNo
< NumElems
/2) {
3600 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
3602 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
3603 EltNo
-= NumElems
/2;
3608 // Perform the splat.
3609 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
3610 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
3611 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
3612 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
3615 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3616 /// vector of zero or undef vector. This produces a shuffle where the low
3617 /// element of V2 is swizzled into the zero/undef vector, landing at element
3618 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3619 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
3620 bool isZero
, bool HasSSE2
,
3621 SelectionDAG
&DAG
) {
3622 EVT VT
= V2
.getValueType();
3624 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
3625 unsigned NumElems
= VT
.getVectorNumElements();
3626 SmallVector
<int, 16> MaskVec
;
3627 for (unsigned i
= 0; i
!= NumElems
; ++i
)
3628 // If this is the insertion idx, put the low elt of V2 here.
3629 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
3630 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
3633 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
3634 /// element of the result of the vector shuffle.
3635 SDValue
getShuffleScalarElt(SDNode
*N
, int Index
, SelectionDAG
&DAG
,
3638 return SDValue(); // Limit search depth.
3640 SDValue V
= SDValue(N
, 0);
3641 EVT VT
= V
.getValueType();
3642 unsigned Opcode
= V
.getOpcode();
3644 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3645 if (const ShuffleVectorSDNode
*SV
= dyn_cast
<ShuffleVectorSDNode
>(N
)) {
3646 Index
= SV
->getMaskElt(Index
);
3649 return DAG
.getUNDEF(VT
.getVectorElementType());
3651 int NumElems
= VT
.getVectorNumElements();
3652 SDValue NewV
= (Index
< NumElems
) ? SV
->getOperand(0) : SV
->getOperand(1);
3653 return getShuffleScalarElt(NewV
.getNode(), Index
% NumElems
, DAG
, Depth
+1);
3656 // Recurse into target specific vector shuffles to find scalars.
3657 if (isTargetShuffle(Opcode
)) {
3658 int NumElems
= VT
.getVectorNumElements();
3659 SmallVector
<unsigned, 16> ShuffleMask
;
3663 case X86ISD::SHUFPS
:
3664 case X86ISD::SHUFPD
:
3665 ImmN
= N
->getOperand(N
->getNumOperands()-1);
3666 DecodeSHUFPSMask(NumElems
,
3667 cast
<ConstantSDNode
>(ImmN
)->getZExtValue(),
3670 case X86ISD::PUNPCKHBW
:
3671 case X86ISD::PUNPCKHWD
:
3672 case X86ISD::PUNPCKHDQ
:
3673 case X86ISD::PUNPCKHQDQ
:
3674 DecodePUNPCKHMask(NumElems
, ShuffleMask
);
3676 case X86ISD::UNPCKHPS
:
3677 case X86ISD::UNPCKHPD
:
3678 DecodeUNPCKHPMask(NumElems
, ShuffleMask
);
3680 case X86ISD::PUNPCKLBW
:
3681 case X86ISD::PUNPCKLWD
:
3682 case X86ISD::PUNPCKLDQ
:
3683 case X86ISD::PUNPCKLQDQ
:
3684 DecodePUNPCKLMask(NumElems
, ShuffleMask
);
3686 case X86ISD::UNPCKLPS
:
3687 case X86ISD::UNPCKLPD
:
3688 DecodeUNPCKLPMask(NumElems
, ShuffleMask
);
3690 case X86ISD::MOVHLPS
:
3691 DecodeMOVHLPSMask(NumElems
, ShuffleMask
);
3693 case X86ISD::MOVLHPS
:
3694 DecodeMOVLHPSMask(NumElems
, ShuffleMask
);
3696 case X86ISD::PSHUFD
:
3697 ImmN
= N
->getOperand(N
->getNumOperands()-1);
3698 DecodePSHUFMask(NumElems
,
3699 cast
<ConstantSDNode
>(ImmN
)->getZExtValue(),
3702 case X86ISD::PSHUFHW
:
3703 ImmN
= N
->getOperand(N
->getNumOperands()-1);
3704 DecodePSHUFHWMask(cast
<ConstantSDNode
>(ImmN
)->getZExtValue(),
3707 case X86ISD::PSHUFLW
:
3708 ImmN
= N
->getOperand(N
->getNumOperands()-1);
3709 DecodePSHUFLWMask(cast
<ConstantSDNode
>(ImmN
)->getZExtValue(),
3713 case X86ISD::MOVSD
: {
3714 // The index 0 always comes from the first element of the second source,
3715 // this is why MOVSS and MOVSD are used in the first place. The other
3716 // elements come from the other positions of the first source vector.
3717 unsigned OpNum
= (Index
== 0) ? 1 : 0;
3718 return getShuffleScalarElt(V
.getOperand(OpNum
).getNode(), Index
, DAG
,
3722 assert("not implemented for target shuffle node");
3726 Index
= ShuffleMask
[Index
];
3728 return DAG
.getUNDEF(VT
.getVectorElementType());
3730 SDValue NewV
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
3731 return getShuffleScalarElt(NewV
.getNode(), Index
% NumElems
, DAG
,
3735 // Actual nodes that may contain scalar elements
3736 if (Opcode
== ISD::BIT_CONVERT
) {
3737 V
= V
.getOperand(0);
3738 EVT SrcVT
= V
.getValueType();
3739 unsigned NumElems
= VT
.getVectorNumElements();
3741 if (!SrcVT
.isVector() || SrcVT
.getVectorNumElements() != NumElems
)
3745 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
3746 return (Index
== 0) ? V
.getOperand(0)
3747 : DAG
.getUNDEF(VT
.getVectorElementType());
3749 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
3750 return V
.getOperand(Index
);
3755 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
3756 /// shuffle operation which come from a consecutively from a zero. The
3757 /// search can start in two diferent directions, from left or right.
3759 unsigned getNumOfConsecutiveZeros(SDNode
*N
, int NumElems
,
3760 bool ZerosFromLeft
, SelectionDAG
&DAG
) {
3763 while (i
< NumElems
) {
3764 unsigned Index
= ZerosFromLeft
? i
: NumElems
-i
-1;
3765 SDValue Elt
= getShuffleScalarElt(N
, Index
, DAG
, 0);
3766 if (!(Elt
.getNode() &&
3767 (Elt
.getOpcode() == ISD::UNDEF
|| X86::isZeroNode(Elt
))))
3775 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3776 /// MaskE correspond consecutively to elements from one of the vector operands,
3777 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
3779 bool isShuffleMaskConsecutive(ShuffleVectorSDNode
*SVOp
, int MaskI
, int MaskE
,
3780 int OpIdx
, int NumElems
, unsigned &OpNum
) {
3781 bool SeenV1
= false;
3782 bool SeenV2
= false;
3784 for (int i
= MaskI
; i
<= MaskE
; ++i
, ++OpIdx
) {
3785 int Idx
= SVOp
->getMaskElt(i
);
3786 // Ignore undef indicies
3795 // Only accept consecutive elements from the same vector
3796 if ((Idx
% NumElems
!= OpIdx
) || (SeenV1
&& SeenV2
))
3800 OpNum
= SeenV1
? 0 : 1;
3804 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3805 /// logical left shift of a vector.
3806 static bool isVectorShiftRight(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3807 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3808 unsigned NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3809 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
,
3810 false /* check zeros from right */, DAG
);
3816 // Considering the elements in the mask that are not consecutive zeros,
3817 // check if they consecutively come from only one of the source vectors.
3819 // V1 = {X, A, B, C} 0
3821 // vector_shuffle V1, V2 <1, 2, 3, X>
3823 if (!isShuffleMaskConsecutive(SVOp
,
3824 0, // Mask Start Index
3825 NumElems
-NumZeros
-1, // Mask End Index
3826 NumZeros
, // Where to start looking in the src vector
3827 NumElems
, // Number of elements in vector
3828 OpSrc
)) // Which source operand ?
3833 ShVal
= SVOp
->getOperand(OpSrc
);
3837 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3838 /// logical left shift of a vector.
3839 static bool isVectorShiftLeft(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3840 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3841 unsigned NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3842 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
,
3843 true /* check zeros from left */, DAG
);
3849 // Considering the elements in the mask that are not consecutive zeros,
3850 // check if they consecutively come from only one of the source vectors.
3852 // 0 { A, B, X, X } = V2
3854 // vector_shuffle V1, V2 <X, X, 4, 5>
3856 if (!isShuffleMaskConsecutive(SVOp
,
3857 NumZeros
, // Mask Start Index
3858 NumElems
-1, // Mask End Index
3859 0, // Where to start looking in the src vector
3860 NumElems
, // Number of elements in vector
3861 OpSrc
)) // Which source operand ?
3866 ShVal
= SVOp
->getOperand(OpSrc
);
3870 /// isVectorShift - Returns true if the shuffle can be implemented as a
3871 /// logical left or right shift of a vector.
3872 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3873 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3874 if (isVectorShiftLeft(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
) ||
3875 isVectorShiftRight(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
))
3881 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3883 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
3884 unsigned NumNonZero
, unsigned NumZero
,
3886 const TargetLowering
&TLI
) {
3890 DebugLoc dl
= Op
.getDebugLoc();
3893 for (unsigned i
= 0; i
< 16; ++i
) {
3894 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
3895 if (ThisIsNonZero
&& First
) {
3897 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3899 V
= DAG
.getUNDEF(MVT::v8i16
);
3904 SDValue
ThisElt(0, 0), LastElt(0, 0);
3905 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
3906 if (LastIsNonZero
) {
3907 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3908 MVT::i16
, Op
.getOperand(i
-1));
3910 if (ThisIsNonZero
) {
3911 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
3912 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
3913 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3915 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3919 if (ThisElt
.getNode())
3920 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3921 DAG
.getIntPtrConstant(i
/2));
3925 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3928 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3930 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3931 unsigned NumNonZero
, unsigned NumZero
,
3933 const TargetLowering
&TLI
) {
3937 DebugLoc dl
= Op
.getDebugLoc();
3940 for (unsigned i
= 0; i
< 8; ++i
) {
3941 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3945 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3947 V
= DAG
.getUNDEF(MVT::v8i16
);
3950 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3951 MVT::v8i16
, V
, Op
.getOperand(i
),
3952 DAG
.getIntPtrConstant(i
));
3959 /// getVShift - Return a vector logical shift node.
3961 static SDValue
getVShift(bool isLeft
, EVT VT
, SDValue SrcOp
,
3962 unsigned NumBits
, SelectionDAG
&DAG
,
3963 const TargetLowering
&TLI
, DebugLoc dl
) {
3964 EVT ShVT
= MVT::v2i64
;
3965 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3966 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3967 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3968 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3969 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3973 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp
, EVT VT
, DebugLoc dl
,
3974 SelectionDAG
&DAG
) const {
3976 // Check if the scalar load can be widened into a vector load. And if
3977 // the address is "base + cst" see if the cst can be "absorbed" into
3978 // the shuffle mask.
3979 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(SrcOp
)) {
3980 SDValue Ptr
= LD
->getBasePtr();
3981 if (!ISD::isNormalLoad(LD
) || LD
->isVolatile())
3983 EVT PVT
= LD
->getValueType(0);
3984 if (PVT
!= MVT::i32
&& PVT
!= MVT::f32
)
3989 if (FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
3990 FI
= FINode
->getIndex();
3992 } else if (Ptr
.getOpcode() == ISD::ADD
&&
3993 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
3994 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
3995 FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
3996 Offset
= Ptr
.getConstantOperandVal(1);
3997 Ptr
= Ptr
.getOperand(0);
4002 SDValue Chain
= LD
->getChain();
4003 // Make sure the stack object alignment is at least 16.
4004 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
4005 if (DAG
.InferPtrAlignment(Ptr
) < 16) {
4006 if (MFI
->isFixedObjectIndex(FI
)) {
4007 // Can't change the alignment. FIXME: It's possible to compute
4008 // the exact stack offset and reference FI + adjust offset instead.
4009 // If someone *really* cares about this. That's the way to implement it.
4012 MFI
->setObjectAlignment(FI
, 16);
4016 // (Offset % 16) must be multiple of 4. Then address is then
4017 // Ptr + (Offset & ~15).
4020 if ((Offset
% 16) & 3)
4022 int64_t StartOffset
= Offset
& ~15;
4024 Ptr
= DAG
.getNode(ISD::ADD
, Ptr
.getDebugLoc(), Ptr
.getValueType(),
4025 Ptr
,DAG
.getConstant(StartOffset
, Ptr
.getValueType()));
4027 int EltNo
= (Offset
- StartOffset
) >> 2;
4028 int Mask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
4029 EVT VT
= (PVT
== MVT::i32
) ? MVT::v4i32
: MVT::v4f32
;
4030 SDValue V1
= DAG
.getLoad(VT
, dl
, Chain
, Ptr
,
4031 LD
->getPointerInfo().getWithOffset(StartOffset
),
4033 // Canonicalize it to a v4i32 shuffle.
4034 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
, V1
);
4035 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4036 DAG
.getVectorShuffle(MVT::v4i32
, dl
, V1
,
4037 DAG
.getUNDEF(MVT::v4i32
),&Mask
[0]));
4043 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4044 /// vector of type 'VT', see if the elements can be replaced by a single large
4045 /// load which has the same value as a build_vector whose operands are 'elts'.
4047 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4049 /// FIXME: we'd also like to handle the case where the last elements are zero
4050 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4051 /// There's even a handy isZeroNode for that purpose.
4052 static SDValue
EltsFromConsecutiveLoads(EVT VT
, SmallVectorImpl
<SDValue
> &Elts
,
4053 DebugLoc
&DL
, SelectionDAG
&DAG
) {
4054 EVT EltVT
= VT
.getVectorElementType();
4055 unsigned NumElems
= Elts
.size();
4057 LoadSDNode
*LDBase
= NULL
;
4058 unsigned LastLoadedElt
= -1U;
4060 // For each element in the initializer, see if we've found a load or an undef.
4061 // If we don't find an initial load element, or later load elements are
4062 // non-consecutive, bail out.
4063 for (unsigned i
= 0; i
< NumElems
; ++i
) {
4064 SDValue Elt
= Elts
[i
];
4066 if (!Elt
.getNode() ||
4067 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
4070 if (Elt
.getNode()->getOpcode() == ISD::UNDEF
)
4072 LDBase
= cast
<LoadSDNode
>(Elt
.getNode());
4076 if (Elt
.getOpcode() == ISD::UNDEF
)
4079 LoadSDNode
*LD
= cast
<LoadSDNode
>(Elt
);
4080 if (!DAG
.isConsecutiveLoad(LD
, LDBase
, EltVT
.getSizeInBits()/8, i
))
4085 // If we have found an entire vector of loads and undefs, then return a large
4086 // load of the entire vector width starting at the base pointer. If we found
4087 // consecutive loads for the low half, generate a vzext_load node.
4088 if (LastLoadedElt
== NumElems
- 1) {
4089 if (DAG
.InferPtrAlignment(LDBase
->getBasePtr()) >= 16)
4090 return DAG
.getLoad(VT
, DL
, LDBase
->getChain(), LDBase
->getBasePtr(),
4091 LDBase
->getPointerInfo(),
4092 LDBase
->isVolatile(), LDBase
->isNonTemporal(), 0);
4093 return DAG
.getLoad(VT
, DL
, LDBase
->getChain(), LDBase
->getBasePtr(),
4094 LDBase
->getPointerInfo(),
4095 LDBase
->isVolatile(), LDBase
->isNonTemporal(),
4096 LDBase
->getAlignment());
4097 } else if (NumElems
== 4 && LastLoadedElt
== 1) {
4098 SDVTList Tys
= DAG
.getVTList(MVT::v2i64
, MVT::Other
);
4099 SDValue Ops
[] = { LDBase
->getChain(), LDBase
->getBasePtr() };
4100 SDValue ResNode
= DAG
.getMemIntrinsicNode(X86ISD::VZEXT_LOAD
, DL
, Tys
,
4102 LDBase
->getMemOperand());
4103 return DAG
.getNode(ISD::BIT_CONVERT
, DL
, VT
, ResNode
);
4109 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const {
4110 DebugLoc dl
= Op
.getDebugLoc();
4111 // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4112 // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4113 // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4114 // is present, so AllOnes is ignored.
4115 if (ISD::isBuildVectorAllZeros(Op
.getNode()) ||
4116 (Op
.getValueType().getSizeInBits() != 256 &&
4117 ISD::isBuildVectorAllOnes(Op
.getNode()))) {
4118 // Canonicalize this to <4 x i32> (SSE) to
4119 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4120 // eliminated on x86-32 hosts.
4121 if (Op
.getValueType() == MVT::v4i32
)
4124 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
4125 return getOnesVector(Op
.getValueType(), DAG
, dl
);
4126 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
4129 EVT VT
= Op
.getValueType();
4130 EVT ExtVT
= VT
.getVectorElementType();
4131 unsigned EVTBits
= ExtVT
.getSizeInBits();
4133 unsigned NumElems
= Op
.getNumOperands();
4134 unsigned NumZero
= 0;
4135 unsigned NumNonZero
= 0;
4136 unsigned NonZeros
= 0;
4137 bool IsAllConstants
= true;
4138 SmallSet
<SDValue
, 8> Values
;
4139 for (unsigned i
= 0; i
< NumElems
; ++i
) {
4140 SDValue Elt
= Op
.getOperand(i
);
4141 if (Elt
.getOpcode() == ISD::UNDEF
)
4144 if (Elt
.getOpcode() != ISD::Constant
&&
4145 Elt
.getOpcode() != ISD::ConstantFP
)
4146 IsAllConstants
= false;
4147 if (X86::isZeroNode(Elt
))
4150 NonZeros
|= (1 << i
);
4155 // All undef vector. Return an UNDEF. All zero vectors were handled above.
4156 if (NumNonZero
== 0)
4157 return DAG
.getUNDEF(VT
);
4159 // Special case for single non-zero, non-undef, element.
4160 if (NumNonZero
== 1) {
4161 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
4162 SDValue Item
= Op
.getOperand(Idx
);
4164 // If this is an insertion of an i64 value on x86-32, and if the top bits of
4165 // the value are obviously zero, truncate the value to i32 and do the
4166 // insertion that way. Only do this if the value is non-constant or if the
4167 // value is a constant being inserted into element 0. It is cheaper to do
4168 // a constant pool load than it is to do a movd + shuffle.
4169 if (ExtVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
4170 (!IsAllConstants
|| Idx
== 0)) {
4171 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
4173 assert(VT
== MVT::v2i64
&& "Expected an SSE value type!");
4174 EVT VecVT
= MVT::v4i32
;
4175 unsigned VecElts
= 4;
4177 // Truncate the value (which may itself be a constant) to i32, and
4178 // convert it to a vector with movd (S2V+shuffle to zero extend).
4179 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
4180 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
4181 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
4182 Subtarget
->hasSSE2(), DAG
);
4184 // Now we have our 32-bit value zero extended in the low element of
4185 // a vector. If Idx != 0, swizzle it into place.
4187 SmallVector
<int, 4> Mask
;
4188 Mask
.push_back(Idx
);
4189 for (unsigned i
= 1; i
!= VecElts
; ++i
)
4191 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
4192 DAG
.getUNDEF(Item
.getValueType()),
4195 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
4199 // If we have a constant or non-constant insertion into the low element of
4200 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4201 // the rest of the elements. This will be matched as movd/movq/movss/movsd
4202 // depending on what the source datatype is.
4205 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
4206 } else if (ExtVT
== MVT::i32
|| ExtVT
== MVT::f32
|| ExtVT
== MVT::f64
||
4207 (ExtVT
== MVT::i64
&& Subtarget
->is64Bit())) {
4208 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
4209 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4210 return getShuffleVectorZeroOrUndef(Item
, 0, true, Subtarget
->hasSSE2(),
4212 } else if (ExtVT
== MVT::i16
|| ExtVT
== MVT::i8
) {
4213 Item
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Item
);
4214 assert(VT
.getSizeInBits() == 128 && "Expected an SSE value type!");
4215 EVT MiddleVT
= MVT::v4i32
;
4216 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MiddleVT
, Item
);
4217 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
4218 Subtarget
->hasSSE2(), DAG
);
4219 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Item
);
4223 // Is it a vector logical left shift?
4224 if (NumElems
== 2 && Idx
== 1 &&
4225 X86::isZeroNode(Op
.getOperand(0)) &&
4226 !X86::isZeroNode(Op
.getOperand(1))) {
4227 unsigned NumBits
= VT
.getSizeInBits();
4228 return getVShift(true, VT
,
4229 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4230 VT
, Op
.getOperand(1)),
4231 NumBits
/2, DAG
, *this, dl
);
4234 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
4237 // Otherwise, if this is a vector with i32 or f32 elements, and the element
4238 // is a non-constant being inserted into an element other than the low one,
4239 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
4240 // movd/movss) to move this into the low element, then shuffle it into
4242 if (EVTBits
== 32) {
4243 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
4245 // Turn it into a shuffle of zero and zero-extended scalar to vector.
4246 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
4247 Subtarget
->hasSSE2(), DAG
);
4248 SmallVector
<int, 8> MaskVec
;
4249 for (unsigned i
= 0; i
< NumElems
; i
++)
4250 MaskVec
.push_back(i
== Idx
? 0 : 1);
4251 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
4255 // Splat is obviously ok. Let legalizer expand it to a shuffle.
4256 if (Values
.size() == 1) {
4257 if (EVTBits
== 32) {
4258 // Instead of a shuffle like this:
4259 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4260 // Check if it's possible to issue this instead.
4261 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4262 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
4263 SDValue Item
= Op
.getOperand(Idx
);
4264 if (Op
.getNode()->isOnlyUserOf(Item
.getNode()))
4265 return LowerAsSplatVectorLoad(Item
, VT
, dl
, DAG
);
4270 // A vector full of immediates; various special cases are already
4271 // handled, so this is best done with a single constant-pool load.
4275 // Let legalizer expand 2-wide build_vectors.
4276 if (EVTBits
== 64) {
4277 if (NumNonZero
== 1) {
4278 // One half is zero or undef.
4279 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
4280 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
4281 Op
.getOperand(Idx
));
4282 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
4283 Subtarget
->hasSSE2(), DAG
);
4288 // If element VT is < 32 bits, convert it to inserts into a zero vector.
4289 if (EVTBits
== 8 && NumElems
== 16) {
4290 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
4292 if (V
.getNode()) return V
;
4295 if (EVTBits
== 16 && NumElems
== 8) {
4296 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
4298 if (V
.getNode()) return V
;
4301 // If element VT is == 32 bits, turn it into a number of shuffles.
4302 SmallVector
<SDValue
, 8> V
;
4304 if (NumElems
== 4 && NumZero
> 0) {
4305 for (unsigned i
= 0; i
< 4; ++i
) {
4306 bool isZero
= !(NonZeros
& (1 << i
));
4308 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
4310 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
4313 for (unsigned i
= 0; i
< 2; ++i
) {
4314 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
4317 V
[i
] = V
[i
*2]; // Must be a zero vector.
4320 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
4323 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
4326 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
4331 SmallVector
<int, 8> MaskVec
;
4332 bool Reverse
= (NonZeros
& 0x3) == 2;
4333 for (unsigned i
= 0; i
< 2; ++i
)
4334 MaskVec
.push_back(Reverse
? 1-i
: i
);
4335 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
4336 for (unsigned i
= 0; i
< 2; ++i
)
4337 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
4338 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
4341 if (Values
.size() > 1 && VT
.getSizeInBits() == 128) {
4342 // Check for a build vector of consecutive loads.
4343 for (unsigned i
= 0; i
< NumElems
; ++i
)
4344 V
[i
] = Op
.getOperand(i
);
4346 // Check for elements which are consecutive loads.
4347 SDValue LD
= EltsFromConsecutiveLoads(VT
, V
, dl
, DAG
);
4351 // For SSE 4.1, use insertps to put the high elements into the low element.
4352 if (getSubtarget()->hasSSE41()) {
4354 if (Op
.getOperand(0).getOpcode() != ISD::UNDEF
)
4355 Result
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(0));
4357 Result
= DAG
.getUNDEF(VT
);
4359 for (unsigned i
= 1; i
< NumElems
; ++i
) {
4360 if (Op
.getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
4361 Result
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Result
,
4362 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
4367 // Otherwise, expand into a number of unpckl*, start by extending each of
4368 // our (non-undef) elements to the full vector width with the element in the
4369 // bottom slot of the vector (which generates no code for SSE).
4370 for (unsigned i
= 0; i
< NumElems
; ++i
) {
4371 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
4372 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
4374 V
[i
] = DAG
.getUNDEF(VT
);
4377 // Next, we iteratively mix elements, e.g. for v4f32:
4378 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4379 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4380 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
4381 unsigned EltStride
= NumElems
>> 1;
4382 while (EltStride
!= 0) {
4383 for (unsigned i
= 0; i
< EltStride
; ++i
) {
4384 // If V[i+EltStride] is undef and this is the first round of mixing,
4385 // then it is safe to just drop this shuffle: V[i] is already in the
4386 // right place, the one element (since it's the first round) being
4387 // inserted as undef can be dropped. This isn't safe for successive
4388 // rounds because they will permute elements within both vectors.
4389 if (V
[i
+EltStride
].getOpcode() == ISD::UNDEF
&&
4390 EltStride
== NumElems
/2)
4393 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ EltStride
]);
4403 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
) const {
4404 // We support concatenate two MMX registers and place them in a MMX
4405 // register. This is better than doing a stack convert.
4406 DebugLoc dl
= Op
.getDebugLoc();
4407 EVT ResVT
= Op
.getValueType();
4408 assert(Op
.getNumOperands() == 2);
4409 assert(ResVT
== MVT::v2i64
|| ResVT
== MVT::v4i32
||
4410 ResVT
== MVT::v8i16
|| ResVT
== MVT::v16i8
);
4412 SDValue InVec
= DAG
.getNode(ISD::BIT_CONVERT
,dl
, MVT::v1i64
, Op
.getOperand(0));
4413 SDValue VecOp
= DAG
.getNode(X86ISD::MOVQ2DQ
, dl
, MVT::v2i64
, InVec
);
4414 InVec
= Op
.getOperand(1);
4415 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
4416 unsigned NumElts
= ResVT
.getVectorNumElements();
4417 VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResVT
, VecOp
);
4418 VecOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ResVT
, VecOp
,
4419 InVec
.getOperand(0), DAG
.getIntPtrConstant(NumElts
/2+1));
4421 InVec
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v1i64
, InVec
);
4422 SDValue VecOp2
= DAG
.getNode(X86ISD::MOVQ2DQ
, dl
, MVT::v2i64
, InVec
);
4423 Mask
[0] = 0; Mask
[1] = 2;
4424 VecOp
= DAG
.getVectorShuffle(MVT::v2i64
, dl
, VecOp
, VecOp2
, Mask
);
4426 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResVT
, VecOp
);
4429 // v8i16 shuffles - Prefer shuffles in the following order:
4430 // 1. [all] pshuflw, pshufhw, optional move
4431 // 2. [ssse3] 1 x pshufb
4432 // 3. [ssse3] 2 x pshufb + 1 x por
4433 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4435 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op
,
4436 SelectionDAG
&DAG
) const {
4437 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4438 SDValue V1
= SVOp
->getOperand(0);
4439 SDValue V2
= SVOp
->getOperand(1);
4440 DebugLoc dl
= SVOp
->getDebugLoc();
4441 SmallVector
<int, 8> MaskVals
;
4443 // Determine if more than 1 of the words in each of the low and high quadwords
4444 // of the result come from the same quadword of one of the two inputs. Undef
4445 // mask values count as coming from any quadword, for better codegen.
4446 SmallVector
<unsigned, 4> LoQuad(4);
4447 SmallVector
<unsigned, 4> HiQuad(4);
4448 BitVector
InputQuads(4);
4449 for (unsigned i
= 0; i
< 8; ++i
) {
4450 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
4451 int EltIdx
= SVOp
->getMaskElt(i
);
4452 MaskVals
.push_back(EltIdx
);
4461 InputQuads
.set(EltIdx
/ 4);
4464 int BestLoQuad
= -1;
4465 unsigned MaxQuad
= 1;
4466 for (unsigned i
= 0; i
< 4; ++i
) {
4467 if (LoQuad
[i
] > MaxQuad
) {
4469 MaxQuad
= LoQuad
[i
];
4473 int BestHiQuad
= -1;
4475 for (unsigned i
= 0; i
< 4; ++i
) {
4476 if (HiQuad
[i
] > MaxQuad
) {
4478 MaxQuad
= HiQuad
[i
];
4482 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4483 // of the two input vectors, shuffle them into one input vector so only a
4484 // single pshufb instruction is necessary. If There are more than 2 input
4485 // quads, disable the next transformation since it does not help SSSE3.
4486 bool V1Used
= InputQuads
[0] || InputQuads
[1];
4487 bool V2Used
= InputQuads
[2] || InputQuads
[3];
4488 if (Subtarget
->hasSSSE3()) {
4489 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
4490 BestLoQuad
= InputQuads
.find_first();
4491 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
4493 if (InputQuads
.count() > 2) {
4499 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4500 // the shuffle mask. If a quad is scored as -1, that means that it contains
4501 // words from all 4 input quadwords.
4503 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
4504 SmallVector
<int, 8> MaskV
;
4505 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
4506 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
4507 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
4508 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
4509 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
4510 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
4512 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4513 // source words for the shuffle, to aid later transformations.
4514 bool AllWordsInNewV
= true;
4515 bool InOrder
[2] = { true, true };
4516 for (unsigned i
= 0; i
!= 8; ++i
) {
4517 int idx
= MaskVals
[i
];
4519 InOrder
[i
/4] = false;
4520 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
4522 AllWordsInNewV
= false;
4526 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
4527 if (AllWordsInNewV
) {
4528 for (int i
= 0; i
!= 8; ++i
) {
4529 int idx
= MaskVals
[i
];
4532 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
4533 if ((idx
!= i
) && idx
< 4)
4535 if ((idx
!= i
) && idx
> 3)
4544 // If we've eliminated the use of V2, and the new mask is a pshuflw or
4545 // pshufhw, that's as cheap as it gets. Return the new shuffle.
4546 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
4547 unsigned Opc
= pshufhw
? X86ISD::PSHUFHW
: X86ISD::PSHUFLW
;
4548 unsigned TargetMask
= 0;
4549 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
4550 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
4551 TargetMask
= pshufhw
? X86::getShufflePSHUFHWImmediate(NewV
.getNode()):
4552 X86::getShufflePSHUFLWImmediate(NewV
.getNode());
4553 V1
= NewV
.getOperand(0);
4554 return getTargetShuffleNode(Opc
, dl
, MVT::v8i16
, V1
, TargetMask
, DAG
);
4558 // If we have SSSE3, and all words of the result are from 1 input vector,
4559 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
4560 // is present, fall back to case 4.
4561 if (Subtarget
->hasSSSE3()) {
4562 SmallVector
<SDValue
,16> pshufbMask
;
4564 // If we have elements from both input vectors, set the high bit of the
4565 // shuffle mask element to zero out elements that come from V2 in the V1
4566 // mask, and elements that come from V1 in the V2 mask, so that the two
4567 // results can be OR'd together.
4568 bool TwoInputs
= V1Used
&& V2Used
;
4569 for (unsigned i
= 0; i
!= 8; ++i
) {
4570 int EltIdx
= MaskVals
[i
] * 2;
4571 if (TwoInputs
&& (EltIdx
>= 16)) {
4572 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4573 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4576 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
4577 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
4579 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
4580 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
4581 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
4582 MVT::v16i8
, &pshufbMask
[0], 16));
4584 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
4586 // Calculate the shuffle mask for the second input, shuffle it, and
4587 // OR it with the first shuffled input.
4589 for (unsigned i
= 0; i
!= 8; ++i
) {
4590 int EltIdx
= MaskVals
[i
] * 2;
4592 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4593 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4596 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
4597 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
4599 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
4600 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
4601 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
4602 MVT::v16i8
, &pshufbMask
[0], 16));
4603 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
4604 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
4607 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4608 // and update MaskVals with new element order.
4609 BitVector
InOrder(8);
4610 if (BestLoQuad
>= 0) {
4611 SmallVector
<int, 8> MaskV
;
4612 for (int i
= 0; i
!= 4; ++i
) {
4613 int idx
= MaskVals
[i
];
4615 MaskV
.push_back(-1);
4617 } else if ((idx
/ 4) == BestLoQuad
) {
4618 MaskV
.push_back(idx
& 3);
4621 MaskV
.push_back(-1);
4624 for (unsigned i
= 4; i
!= 8; ++i
)
4626 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
4629 if (NewV
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Subtarget
->hasSSSE3())
4630 NewV
= getTargetShuffleNode(X86ISD::PSHUFLW
, dl
, MVT::v8i16
,
4632 X86::getShufflePSHUFLWImmediate(NewV
.getNode()),
4636 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4637 // and update MaskVals with the new element order.
4638 if (BestHiQuad
>= 0) {
4639 SmallVector
<int, 8> MaskV
;
4640 for (unsigned i
= 0; i
!= 4; ++i
)
4642 for (unsigned i
= 4; i
!= 8; ++i
) {
4643 int idx
= MaskVals
[i
];
4645 MaskV
.push_back(-1);
4647 } else if ((idx
/ 4) == BestHiQuad
) {
4648 MaskV
.push_back((idx
& 3) + 4);
4651 MaskV
.push_back(-1);
4654 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
4657 if (NewV
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Subtarget
->hasSSSE3())
4658 NewV
= getTargetShuffleNode(X86ISD::PSHUFHW
, dl
, MVT::v8i16
,
4660 X86::getShufflePSHUFHWImmediate(NewV
.getNode()),
4664 // In case BestHi & BestLo were both -1, which means each quadword has a word
4665 // from each of the four input quadwords, calculate the InOrder bitvector now
4666 // before falling through to the insert/extract cleanup.
4667 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
4669 for (int i
= 0; i
!= 8; ++i
)
4670 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
4674 // The other elements are put in the right place using pextrw and pinsrw.
4675 for (unsigned i
= 0; i
!= 8; ++i
) {
4678 int EltIdx
= MaskVals
[i
];
4681 SDValue ExtOp
= (EltIdx
< 8)
4682 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
4683 DAG
.getIntPtrConstant(EltIdx
))
4684 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
4685 DAG
.getIntPtrConstant(EltIdx
- 8));
4686 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
4687 DAG
.getIntPtrConstant(i
));
4692 // v16i8 shuffles - Prefer shuffles in the following order:
4693 // 1. [ssse3] 1 x pshufb
4694 // 2. [ssse3] 2 x pshufb + 1 x por
4695 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
4697 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
4699 const X86TargetLowering
&TLI
) {
4700 SDValue V1
= SVOp
->getOperand(0);
4701 SDValue V2
= SVOp
->getOperand(1);
4702 DebugLoc dl
= SVOp
->getDebugLoc();
4703 SmallVector
<int, 16> MaskVals
;
4704 SVOp
->getMask(MaskVals
);
4706 // If we have SSSE3, case 1 is generated when all result bytes come from
4707 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
4708 // present, fall back to case 3.
4709 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4712 for (unsigned i
= 0; i
< 16; ++i
) {
4713 int EltIdx
= MaskVals
[i
];
4722 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4723 if (TLI
.getSubtarget()->hasSSSE3()) {
4724 SmallVector
<SDValue
,16> pshufbMask
;
4726 // If all result elements are from one input vector, then only translate
4727 // undef mask values to 0x80 (zero out result) in the pshufb mask.
4729 // Otherwise, we have elements from both input vectors, and must zero out
4730 // elements that come from V2 in the first mask, and V1 in the second mask
4731 // so that we can OR them together.
4732 bool TwoInputs
= !(V1Only
|| V2Only
);
4733 for (unsigned i
= 0; i
!= 16; ++i
) {
4734 int EltIdx
= MaskVals
[i
];
4735 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
4736 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4739 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
4741 // If all the elements are from V2, assign it to V1 and return after
4742 // building the first pshufb.
4745 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
4746 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
4747 MVT::v16i8
, &pshufbMask
[0], 16));
4751 // Calculate the shuffle mask for the second input, shuffle it, and
4752 // OR it with the first shuffled input.
4754 for (unsigned i
= 0; i
!= 16; ++i
) {
4755 int EltIdx
= MaskVals
[i
];
4757 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
4760 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
4762 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
4763 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
4764 MVT::v16i8
, &pshufbMask
[0], 16));
4765 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
4768 // No SSSE3 - Calculate in place words and then fix all out of place words
4769 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
4770 // the 16 different words that comprise the two doublequadword input vectors.
4771 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
4772 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
4773 SDValue NewV
= V2Only
? V2
: V1
;
4774 for (int i
= 0; i
!= 8; ++i
) {
4775 int Elt0
= MaskVals
[i
*2];
4776 int Elt1
= MaskVals
[i
*2+1];
4778 // This word of the result is all undef, skip it.
4779 if (Elt0
< 0 && Elt1
< 0)
4782 // This word of the result is already in the correct place, skip it.
4783 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
4785 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
4788 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
4789 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
4792 // If Elt0 and Elt1 are defined, are consecutive, and can be load
4793 // using a single extract together, load it and store it.
4794 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
4795 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
4796 DAG
.getIntPtrConstant(Elt1
/ 2));
4797 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
4798 DAG
.getIntPtrConstant(i
));
4802 // If Elt1 is defined, extract it from the appropriate source. If the
4803 // source byte is not also odd, shift the extracted word left 8 bits
4804 // otherwise clear the bottom 8 bits if we need to do an or.
4806 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
4807 DAG
.getIntPtrConstant(Elt1
/ 2));
4808 if ((Elt1
& 1) == 0)
4809 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
4810 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
4812 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
4813 DAG
.getConstant(0xFF00, MVT::i16
));
4815 // If Elt0 is defined, extract it from the appropriate source. If the
4816 // source byte is not also even, shift the extracted word right 8 bits. If
4817 // Elt1 was also defined, OR the extracted values together before
4818 // inserting them in the result.
4820 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
4821 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
4822 if ((Elt0
& 1) != 0)
4823 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
4824 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
4826 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
4827 DAG
.getConstant(0x00FF, MVT::i16
));
4828 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
4831 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
4832 DAG
.getIntPtrConstant(i
));
4834 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
4837 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4838 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4839 /// done when every pair / quad of shuffle mask elements point to elements in
4840 /// the right sequence. e.g.
4841 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4843 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
4844 SelectionDAG
&DAG
, DebugLoc dl
) {
4845 EVT VT
= SVOp
->getValueType(0);
4846 SDValue V1
= SVOp
->getOperand(0);
4847 SDValue V2
= SVOp
->getOperand(1);
4848 unsigned NumElems
= VT
.getVectorNumElements();
4849 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
4851 switch (VT
.getSimpleVT().SimpleTy
) {
4852 default: assert(false && "Unexpected!");
4853 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
4854 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
4855 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
4856 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
4859 int Scale
= NumElems
/ NewWidth
;
4860 SmallVector
<int, 8> MaskVec
;
4861 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
4863 for (int j
= 0; j
< Scale
; ++j
) {
4864 int EltIdx
= SVOp
->getMaskElt(i
+j
);
4868 StartIdx
= EltIdx
- (EltIdx
% Scale
);
4869 if (EltIdx
!= StartIdx
+ j
)
4873 MaskVec
.push_back(-1);
4875 MaskVec
.push_back(StartIdx
/ Scale
);
4878 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
4879 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
4880 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
4883 /// getVZextMovL - Return a zero-extending vector move low node.
4885 static SDValue
getVZextMovL(EVT VT
, EVT OpVT
,
4886 SDValue SrcOp
, SelectionDAG
&DAG
,
4887 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
4888 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
4889 LoadSDNode
*LD
= NULL
;
4890 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
4891 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
4893 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4895 MVT ExtVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
4896 if ((ExtVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
4897 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
4898 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
4899 SrcOp
.getOperand(0).getOperand(0).getValueType() == ExtVT
) {
4901 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
4902 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4903 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
4904 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4912 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4913 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
4914 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4918 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4921 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
4922 SDValue V1
= SVOp
->getOperand(0);
4923 SDValue V2
= SVOp
->getOperand(1);
4924 DebugLoc dl
= SVOp
->getDebugLoc();
4925 EVT VT
= SVOp
->getValueType(0);
4927 SmallVector
<std::pair
<int, int>, 8> Locs
;
4929 SmallVector
<int, 8> Mask1(4U, -1);
4930 SmallVector
<int, 8> PermMask
;
4931 SVOp
->getMask(PermMask
);
4935 for (unsigned i
= 0; i
!= 4; ++i
) {
4936 int Idx
= PermMask
[i
];
4938 Locs
[i
] = std::make_pair(-1, -1);
4940 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
4942 Locs
[i
] = std::make_pair(0, NumLo
);
4946 Locs
[i
] = std::make_pair(1, NumHi
);
4948 Mask1
[2+NumHi
] = Idx
;
4954 if (NumLo
<= 2 && NumHi
<= 2) {
4955 // If no more than two elements come from either vector. This can be
4956 // implemented with two shuffles. First shuffle gather the elements.
4957 // The second shuffle, which takes the first shuffle as both of its
4958 // vector operands, put the elements into the right order.
4959 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
4961 SmallVector
<int, 8> Mask2(4U, -1);
4963 for (unsigned i
= 0; i
!= 4; ++i
) {
4964 if (Locs
[i
].first
== -1)
4967 unsigned Idx
= (i
< 2) ? 0 : 4;
4968 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
4973 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
4974 } else if (NumLo
== 3 || NumHi
== 3) {
4975 // Otherwise, we must have three elements from one vector, call it X, and
4976 // one element from the other, call it Y. First, use a shufps to build an
4977 // intermediate vector with the one element from Y and the element from X
4978 // that will be in the same half in the final destination (the indexes don't
4979 // matter). Then, use a shufps to build the final vector, taking the half
4980 // containing the element from Y from the intermediate, and the other half
4983 // Normalize it so the 3 elements come from V1.
4984 CommuteVectorShuffleMask(PermMask
, VT
);
4988 // Find the element from V2.
4990 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
4991 int Val
= PermMask
[HiIndex
];
4998 Mask1
[0] = PermMask
[HiIndex
];
5000 Mask1
[2] = PermMask
[HiIndex
^1];
5002 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
5005 Mask1
[0] = PermMask
[0];
5006 Mask1
[1] = PermMask
[1];
5007 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
5008 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
5009 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
5011 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
5012 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
5013 Mask1
[2] = PermMask
[2];
5014 Mask1
[3] = PermMask
[3];
5019 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
5023 // Break it into (shuffle shuffle_hi, shuffle_lo).
5025 SmallVector
<int,8> LoMask(4U, -1);
5026 SmallVector
<int,8> HiMask(4U, -1);
5028 SmallVector
<int,8> *MaskPtr
= &LoMask
;
5029 unsigned MaskIdx
= 0;
5032 for (unsigned i
= 0; i
!= 4; ++i
) {
5039 int Idx
= PermMask
[i
];
5041 Locs
[i
] = std::make_pair(-1, -1);
5042 } else if (Idx
< 4) {
5043 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
5044 (*MaskPtr
)[LoIdx
] = Idx
;
5047 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
5048 (*MaskPtr
)[HiIdx
] = Idx
;
5053 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
5054 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
5055 SmallVector
<int, 8> MaskOps
;
5056 for (unsigned i
= 0; i
!= 4; ++i
) {
5057 if (Locs
[i
].first
== -1) {
5058 MaskOps
.push_back(-1);
5060 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
5061 MaskOps
.push_back(Idx
);
5064 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
5067 static bool MayFoldVectorLoad(SDValue V
) {
5068 if (V
.hasOneUse() && V
.getOpcode() == ISD::BIT_CONVERT
)
5069 V
= V
.getOperand(0);
5070 if (V
.hasOneUse() && V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
5071 V
= V
.getOperand(0);
5077 // FIXME: the version above should always be used. Since there's
5078 // a bug where several vector shuffles can't be folded because the
5079 // DAG is not updated during lowering and a node claims to have two
5080 // uses while it only has one, use this version, and let isel match
5081 // another instruction if the load really happens to have more than
5082 // one use. Remove this version after this bug get fixed.
5083 // rdar://8434668, PR8156
5084 static bool RelaxedMayFoldVectorLoad(SDValue V
) {
5085 if (V
.hasOneUse() && V
.getOpcode() == ISD::BIT_CONVERT
)
5086 V
= V
.getOperand(0);
5087 if (V
.hasOneUse() && V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
5088 V
= V
.getOperand(0);
5089 if (ISD::isNormalLoad(V
.getNode()))
5094 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5095 /// a vector extract, and if both can be later optimized into a single load.
5096 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5097 /// here because otherwise a target specific shuffle node is going to be
5098 /// emitted for this shuffle, and the optimization not done.
5099 /// FIXME: This is probably not the best approach, but fix the problem
5100 /// until the right path is decided.
5102 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V
, SelectionDAG
&DAG
,
5103 const TargetLowering
&TLI
) {
5104 EVT VT
= V
.getValueType();
5105 ShuffleVectorSDNode
*SVOp
= dyn_cast
<ShuffleVectorSDNode
>(V
);
5107 // Be sure that the vector shuffle is present in a pattern like this:
5108 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5112 SDNode
*N
= *V
.getNode()->use_begin();
5113 if (N
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
5116 SDValue EltNo
= N
->getOperand(1);
5117 if (!isa
<ConstantSDNode
>(EltNo
))
5120 // If the bit convert changed the number of elements, it is unsafe
5121 // to examine the mask.
5122 bool HasShuffleIntoBitcast
= false;
5123 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
5124 EVT SrcVT
= V
.getOperand(0).getValueType();
5125 if (SrcVT
.getVectorNumElements() != VT
.getVectorNumElements())
5127 V
= V
.getOperand(0);
5128 HasShuffleIntoBitcast
= true;
5131 // Select the input vector, guarding against out of range extract vector.
5132 unsigned NumElems
= VT
.getVectorNumElements();
5133 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5134 int Idx
= (Elt
> NumElems
) ? -1 : SVOp
->getMaskElt(Elt
);
5135 V
= (Idx
< (int)NumElems
) ? V
.getOperand(0) : V
.getOperand(1);
5137 // Skip one more bit_convert if necessary
5138 if (V
.getOpcode() == ISD::BIT_CONVERT
)
5139 V
= V
.getOperand(0);
5141 if (ISD::isNormalLoad(V
.getNode())) {
5142 // Is the original load suitable?
5143 LoadSDNode
*LN0
= cast
<LoadSDNode
>(V
);
5145 // FIXME: avoid the multi-use bug that is preventing lots of
5146 // of foldings to be detected, this is still wrong of course, but
5147 // give the temporary desired behavior, and if it happens that
5148 // the load has real more uses, during isel it will not fold, and
5149 // will generate poor code.
5150 if (!LN0
|| LN0
->isVolatile()) // || !LN0->hasOneUse()
5153 if (!HasShuffleIntoBitcast
)
5156 // If there's a bitcast before the shuffle, check if the load type and
5157 // alignment is valid.
5158 unsigned Align
= LN0
->getAlignment();
5160 TLI
.getTargetData()->getABITypeAlignment(
5161 VT
.getTypeForEVT(*DAG
.getContext()));
5163 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VT
))
5171 SDValue
getMOVDDup(SDValue
&Op
, DebugLoc
&dl
, SDValue V1
, SelectionDAG
&DAG
) {
5172 EVT VT
= Op
.getValueType();
5174 // Canonizalize to v2f64.
5175 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, V1
);
5176 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
5177 getTargetShuffleNode(X86ISD::MOVDDUP
, dl
, MVT::v2f64
,
5182 SDValue
getMOVLowToHigh(SDValue
&Op
, DebugLoc
&dl
, SelectionDAG
&DAG
,
5184 SDValue V1
= Op
.getOperand(0);
5185 SDValue V2
= Op
.getOperand(1);
5186 EVT VT
= Op
.getValueType();
5188 assert(VT
!= MVT::v2i64
&& "unsupported shuffle type");
5190 if (HasSSE2
&& VT
== MVT::v2f64
)
5191 return getTargetShuffleNode(X86ISD::MOVLHPD
, dl
, VT
, V1
, V2
, DAG
);
5194 return getTargetShuffleNode(X86ISD::MOVLHPS
, dl
, VT
, V1
, V2
, DAG
);
5198 SDValue
getMOVHighToLow(SDValue
&Op
, DebugLoc
&dl
, SelectionDAG
&DAG
) {
5199 SDValue V1
= Op
.getOperand(0);
5200 SDValue V2
= Op
.getOperand(1);
5201 EVT VT
= Op
.getValueType();
5203 assert((VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
5204 "unsupported shuffle type");
5206 if (V2
.getOpcode() == ISD::UNDEF
)
5210 return getTargetShuffleNode(X86ISD::MOVHLPS
, dl
, VT
, V1
, V2
, DAG
);
5214 SDValue
getMOVLP(SDValue
&Op
, DebugLoc
&dl
, SelectionDAG
&DAG
, bool HasSSE2
) {
5215 SDValue V1
= Op
.getOperand(0);
5216 SDValue V2
= Op
.getOperand(1);
5217 EVT VT
= Op
.getValueType();
5218 unsigned NumElems
= VT
.getVectorNumElements();
5220 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5221 // operand of these instructions is only memory, so check if there's a
5222 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5224 bool CanFoldLoad
= false;
5226 // Trivial case, when V2 comes from a load.
5227 if (MayFoldVectorLoad(V2
))
5230 // When V1 is a load, it can be folded later into a store in isel, example:
5231 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5233 // (MOVLPSmr addr:$src1, VR128:$src2)
5234 // So, recognize this potential and also use MOVLPS or MOVLPD
5235 if (MayFoldVectorLoad(V1
) && MayFoldIntoStore(Op
))
5239 if (HasSSE2
&& NumElems
== 2)
5240 return getTargetShuffleNode(X86ISD::MOVLPD
, dl
, VT
, V1
, V2
, DAG
);
5243 return getTargetShuffleNode(X86ISD::MOVLPS
, dl
, VT
, V1
, V2
, DAG
);
5246 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
5247 // movl and movlp will both match v2i64, but v2i64 is never matched by
5248 // movl earlier because we make it strict to avoid messing with the movlp load
5249 // folding logic (see the code above getMOVLP call). Match it here then,
5250 // this is horrible, but will stay like this until we move all shuffle
5251 // matching to x86 specific nodes. Note that for the 1st condition all
5252 // types are matched with movsd.
5253 if ((HasSSE2
&& NumElems
== 2) || !X86::isMOVLMask(SVOp
))
5254 return getTargetShuffleNode(X86ISD::MOVSD
, dl
, VT
, V1
, V2
, DAG
);
5256 return getTargetShuffleNode(X86ISD::MOVSS
, dl
, VT
, V1
, V2
, DAG
);
5259 assert(VT
!= MVT::v4i32
&& "unsupported shuffle type");
5261 // Invert the operand order and use SHUFPS to match it.
5262 return getTargetShuffleNode(X86ISD::SHUFPS
, dl
, VT
, V2
, V1
,
5263 X86::getShuffleSHUFImmediate(SVOp
), DAG
);
5266 static inline unsigned getUNPCKLOpcode(EVT VT
) {
5267 switch(VT
.getSimpleVT().SimpleTy
) {
5268 case MVT::v4i32
: return X86ISD::PUNPCKLDQ
;
5269 case MVT::v2i64
: return X86ISD::PUNPCKLQDQ
;
5270 case MVT::v4f32
: return X86ISD::UNPCKLPS
;
5271 case MVT::v2f64
: return X86ISD::UNPCKLPD
;
5272 case MVT::v16i8
: return X86ISD::PUNPCKLBW
;
5273 case MVT::v8i16
: return X86ISD::PUNPCKLWD
;
5275 llvm_unreachable("Unknow type for unpckl");
5280 static inline unsigned getUNPCKHOpcode(EVT VT
) {
5281 switch(VT
.getSimpleVT().SimpleTy
) {
5282 case MVT::v4i32
: return X86ISD::PUNPCKHDQ
;
5283 case MVT::v2i64
: return X86ISD::PUNPCKHQDQ
;
5284 case MVT::v4f32
: return X86ISD::UNPCKHPS
;
5285 case MVT::v2f64
: return X86ISD::UNPCKHPD
;
5286 case MVT::v16i8
: return X86ISD::PUNPCKHBW
;
5287 case MVT::v8i16
: return X86ISD::PUNPCKHWD
;
5289 llvm_unreachable("Unknow type for unpckh");
5295 SDValue
NormalizeVectorShuffle(SDValue Op
, SelectionDAG
&DAG
,
5296 const TargetLowering
&TLI
,
5297 const X86Subtarget
*Subtarget
) {
5298 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
5299 EVT VT
= Op
.getValueType();
5300 DebugLoc dl
= Op
.getDebugLoc();
5301 SDValue V1
= Op
.getOperand(0);
5302 SDValue V2
= Op
.getOperand(1);
5304 if (isZeroShuffle(SVOp
))
5305 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
5307 // Handle splat operations
5308 if (SVOp
->isSplat()) {
5309 // Special case, this is the only place now where it's
5310 // allowed to return a vector_shuffle operation without
5311 // using a target specific node, because *hopefully* it
5312 // will be optimized away by the dag combiner.
5313 if (VT
.getVectorNumElements() <= 4 &&
5314 CanXFormVExtractWithShuffleIntoLoad(Op
, DAG
, TLI
))
5317 // Handle splats by matching through known masks
5318 if (VT
.getVectorNumElements() <= 4)
5321 // Canonicalize all of the remaining to v4f32.
5322 return PromoteSplat(SVOp
, DAG
);
5325 // If the shuffle can be profitably rewritten as a narrower shuffle, then
5327 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
5328 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, dl
);
5329 if (NewOp
.getNode())
5330 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, NewOp
);
5331 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
5332 // FIXME: Figure out a cleaner way to do this.
5333 // Try to make use of movq to zero out the top part.
5334 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
5335 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, dl
);
5336 if (NewOp
.getNode()) {
5337 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
5338 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
5339 DAG
, Subtarget
, dl
);
5341 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
5342 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, dl
);
5343 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
5344 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
5345 DAG
, Subtarget
, dl
);
5352 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const {
5353 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
5354 SDValue V1
= Op
.getOperand(0);
5355 SDValue V2
= Op
.getOperand(1);
5356 EVT VT
= Op
.getValueType();
5357 DebugLoc dl
= Op
.getDebugLoc();
5358 unsigned NumElems
= VT
.getVectorNumElements();
5359 bool isMMX
= VT
.getSizeInBits() == 64;
5360 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
5361 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
5362 bool V1IsSplat
= false;
5363 bool V2IsSplat
= false;
5364 bool HasSSE2
= Subtarget
->hasSSE2() || Subtarget
->hasAVX();
5365 bool HasSSE3
= Subtarget
->hasSSE3() || Subtarget
->hasAVX();
5366 bool HasSSSE3
= Subtarget
->hasSSSE3() || Subtarget
->hasAVX();
5367 MachineFunction
&MF
= DAG
.getMachineFunction();
5368 bool OptForSize
= MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
);
5370 // Shuffle operations on MMX not supported.
5374 // Vector shuffle lowering takes 3 steps:
5376 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5377 // narrowing and commutation of operands should be handled.
5378 // 2) Matching of shuffles with known shuffle masks to x86 target specific
5380 // 3) Rewriting of unmatched masks into new generic shuffle operations,
5381 // so the shuffle can be broken into other shuffles and the legalizer can
5382 // try the lowering again.
5384 // The general ideia is that no vector_shuffle operation should be left to
5385 // be matched during isel, all of them must be converted to a target specific
5388 // Normalize the input vectors. Here splats, zeroed vectors, profitable
5389 // narrowing and commutation of operands should be handled. The actual code
5390 // doesn't include all of those, work in progress...
5391 SDValue NewOp
= NormalizeVectorShuffle(Op
, DAG
, *this, Subtarget
);
5392 if (NewOp
.getNode())
5395 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5396 // unpckh_undef). Only use pshufd if speed is more important than size.
5397 if (OptForSize
&& X86::isUNPCKL_v_undef_Mask(SVOp
))
5398 if (VT
!= MVT::v2i64
&& VT
!= MVT::v2f64
)
5399 return getTargetShuffleNode(getUNPCKLOpcode(VT
), dl
, VT
, V1
, V1
, DAG
);
5400 if (OptForSize
&& X86::isUNPCKH_v_undef_Mask(SVOp
))
5401 if (VT
!= MVT::v2i64
&& VT
!= MVT::v2f64
)
5402 return getTargetShuffleNode(getUNPCKHOpcode(VT
), dl
, VT
, V1
, V1
, DAG
);
5404 if (X86::isMOVDDUPMask(SVOp
) && HasSSE3
&& V2IsUndef
&&
5405 RelaxedMayFoldVectorLoad(V1
))
5406 return getMOVDDup(Op
, dl
, V1
, DAG
);
5408 if (X86::isMOVHLPS_v_undef_Mask(SVOp
))
5409 return getMOVHighToLow(Op
, dl
, DAG
);
5411 // Use to match splats
5412 if (HasSSE2
&& X86::isUNPCKHMask(SVOp
) && V2IsUndef
&&
5413 (VT
== MVT::v2f64
|| VT
== MVT::v2i64
))
5414 return getTargetShuffleNode(getUNPCKHOpcode(VT
), dl
, VT
, V1
, V1
, DAG
);
5416 if (X86::isPSHUFDMask(SVOp
)) {
5417 // The actual implementation will match the mask in the if above and then
5418 // during isel it can match several different instructions, not only pshufd
5419 // as its name says, sad but true, emulate the behavior for now...
5420 if (X86::isMOVDDUPMask(SVOp
) && ((VT
== MVT::v4f32
|| VT
== MVT::v2i64
)))
5421 return getTargetShuffleNode(X86ISD::MOVLHPS
, dl
, VT
, V1
, V1
, DAG
);
5423 unsigned TargetMask
= X86::getShuffleSHUFImmediate(SVOp
);
5425 if (HasSSE2
&& (VT
== MVT::v4f32
|| VT
== MVT::v4i32
))
5426 return getTargetShuffleNode(X86ISD::PSHUFD
, dl
, VT
, V1
, TargetMask
, DAG
);
5428 if (HasSSE2
&& (VT
== MVT::v2i64
|| VT
== MVT::v2f64
))
5429 return getTargetShuffleNode(X86ISD::SHUFPD
, dl
, VT
, V1
, V1
,
5432 if (VT
== MVT::v4f32
)
5433 return getTargetShuffleNode(X86ISD::SHUFPS
, dl
, VT
, V1
, V1
,
5437 // Check if this can be converted into a logical shift.
5438 bool isLeft
= false;
5441 bool isShift
= getSubtarget()->hasSSE2() &&
5442 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
5443 if (isShift
&& ShVal
.hasOneUse()) {
5444 // If the shifted value has multiple uses, it may be cheaper to use
5445 // v_set0 + movlhps or movhlps, etc.
5446 EVT EltVT
= VT
.getVectorElementType();
5447 ShAmt
*= EltVT
.getSizeInBits();
5448 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
5451 if (X86::isMOVLMask(SVOp
)) {
5454 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
5455 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
5456 if (!X86::isMOVLPMask(SVOp
)) {
5457 if (HasSSE2
&& (VT
== MVT::v2i64
|| VT
== MVT::v2f64
))
5458 return getTargetShuffleNode(X86ISD::MOVSD
, dl
, VT
, V1
, V2
, DAG
);
5460 if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
5461 return getTargetShuffleNode(X86ISD::MOVSS
, dl
, VT
, V1
, V2
, DAG
);
5465 // FIXME: fold these into legal mask.
5466 if (X86::isMOVLHPSMask(SVOp
) && !X86::isUNPCKLMask(SVOp
))
5467 return getMOVLowToHigh(Op
, dl
, DAG
, HasSSE2
);
5469 if (X86::isMOVHLPSMask(SVOp
))
5470 return getMOVHighToLow(Op
, dl
, DAG
);
5472 if (X86::isMOVSHDUPMask(SVOp
) && HasSSE3
&& V2IsUndef
&& NumElems
== 4)
5473 return getTargetShuffleNode(X86ISD::MOVSHDUP
, dl
, VT
, V1
, DAG
);
5475 if (X86::isMOVSLDUPMask(SVOp
) && HasSSE3
&& V2IsUndef
&& NumElems
== 4)
5476 return getTargetShuffleNode(X86ISD::MOVSLDUP
, dl
, VT
, V1
, DAG
);
5478 if (X86::isMOVLPMask(SVOp
))
5479 return getMOVLP(Op
, dl
, DAG
, HasSSE2
);
5481 if (ShouldXformToMOVHLPS(SVOp
) ||
5482 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
5483 return CommuteVectorShuffle(SVOp
, DAG
);
5486 // No better options. Use a vshl / vsrl.
5487 EVT EltVT
= VT
.getVectorElementType();
5488 ShAmt
*= EltVT
.getSizeInBits();
5489 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
5492 bool Commuted
= false;
5493 // FIXME: This should also accept a bitcast of a splat? Be careful, not
5494 // 1,1,1,1 -> v8i16 though.
5495 V1IsSplat
= isSplatVector(V1
.getNode());
5496 V2IsSplat
= isSplatVector(V2
.getNode());
5498 // Canonicalize the splat or undef, if present, to be on the RHS.
5499 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
5500 Op
= CommuteVectorShuffle(SVOp
, DAG
);
5501 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
5502 V1
= SVOp
->getOperand(0);
5503 V2
= SVOp
->getOperand(1);
5504 std::swap(V1IsSplat
, V2IsSplat
);
5505 std::swap(V1IsUndef
, V2IsUndef
);
5509 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
5510 // Shuffling low element of v1 into undef, just return v1.
5513 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5514 // the instruction selector will not match, so get a canonical MOVL with
5515 // swapped operands to undo the commute.
5516 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
5519 if (X86::isUNPCKLMask(SVOp
))
5520 return getTargetShuffleNode(getUNPCKLOpcode(VT
), dl
, VT
, V1
, V2
, DAG
);
5522 if (X86::isUNPCKHMask(SVOp
))
5523 return getTargetShuffleNode(getUNPCKHOpcode(VT
), dl
, VT
, V1
, V2
, DAG
);
5526 // Normalize mask so all entries that point to V2 points to its first
5527 // element then try to match unpck{h|l} again. If match, return a
5528 // new vector_shuffle with the corrected mask.
5529 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
5530 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
5531 if (NSVOp
!= SVOp
) {
5532 if (X86::isUNPCKLMask(NSVOp
, true)) {
5534 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
5541 // Commute is back and try unpck* again.
5542 // FIXME: this seems wrong.
5543 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
5544 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
5546 if (X86::isUNPCKLMask(NewSVOp
))
5547 return getTargetShuffleNode(getUNPCKLOpcode(VT
), dl
, VT
, V2
, V1
, DAG
);
5549 if (X86::isUNPCKHMask(NewSVOp
))
5550 return getTargetShuffleNode(getUNPCKHOpcode(VT
), dl
, VT
, V2
, V1
, DAG
);
5553 // Normalize the node to match x86 shuffle ops if needed
5554 if (V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
5555 return CommuteVectorShuffle(SVOp
, DAG
);
5557 // The checks below are all present in isShuffleMaskLegal, but they are
5558 // inlined here right now to enable us to directly emit target specific
5559 // nodes, and remove one by one until they don't return Op anymore.
5560 SmallVector
<int, 16> M
;
5563 if (isPALIGNRMask(M
, VT
, HasSSSE3
))
5564 return getTargetShuffleNode(X86ISD::PALIGN
, dl
, VT
, V1
, V2
,
5565 X86::getShufflePALIGNRImmediate(SVOp
),
5568 if (ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) &&
5569 SVOp
->getSplatIndex() == 0 && V2IsUndef
) {
5570 if (VT
== MVT::v2f64
)
5571 return getTargetShuffleNode(X86ISD::UNPCKLPD
, dl
, VT
, V1
, V1
, DAG
);
5572 if (VT
== MVT::v2i64
)
5573 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ
, dl
, VT
, V1
, V1
, DAG
);
5576 if (isPSHUFHWMask(M
, VT
))
5577 return getTargetShuffleNode(X86ISD::PSHUFHW
, dl
, VT
, V1
,
5578 X86::getShufflePSHUFHWImmediate(SVOp
),
5581 if (isPSHUFLWMask(M
, VT
))
5582 return getTargetShuffleNode(X86ISD::PSHUFLW
, dl
, VT
, V1
,
5583 X86::getShufflePSHUFLWImmediate(SVOp
),
5586 if (isSHUFPMask(M
, VT
)) {
5587 unsigned TargetMask
= X86::getShuffleSHUFImmediate(SVOp
);
5588 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
)
5589 return getTargetShuffleNode(X86ISD::SHUFPS
, dl
, VT
, V1
, V2
,
5591 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
5592 return getTargetShuffleNode(X86ISD::SHUFPD
, dl
, VT
, V1
, V2
,
5596 if (X86::isUNPCKL_v_undef_Mask(SVOp
))
5597 if (VT
!= MVT::v2i64
&& VT
!= MVT::v2f64
)
5598 return getTargetShuffleNode(getUNPCKLOpcode(VT
), dl
, VT
, V1
, V1
, DAG
);
5599 if (X86::isUNPCKH_v_undef_Mask(SVOp
))
5600 if (VT
!= MVT::v2i64
&& VT
!= MVT::v2f64
)
5601 return getTargetShuffleNode(getUNPCKHOpcode(VT
), dl
, VT
, V1
, V1
, DAG
);
5603 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5604 if (VT
== MVT::v8i16
) {
5605 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(Op
, DAG
);
5606 if (NewOp
.getNode())
5610 if (VT
== MVT::v16i8
) {
5611 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
5612 if (NewOp
.getNode())
5616 // Handle all 4 wide cases with a number of shuffles.
5618 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
5624 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
5625 SelectionDAG
&DAG
) const {
5626 EVT VT
= Op
.getValueType();
5627 DebugLoc dl
= Op
.getDebugLoc();
5628 if (VT
.getSizeInBits() == 8) {
5629 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
5630 Op
.getOperand(0), Op
.getOperand(1));
5631 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
5632 DAG
.getValueType(VT
));
5633 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
5634 } else if (VT
.getSizeInBits() == 16) {
5635 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
5636 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5638 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
5639 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
5640 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
5644 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
5645 Op
.getOperand(0), Op
.getOperand(1));
5646 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
5647 DAG
.getValueType(VT
));
5648 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
5649 } else if (VT
== MVT::f32
) {
5650 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5651 // the result back to FR32 register. It's only worth matching if the
5652 // result has a single use which is a store or a bitcast to i32. And in
5653 // the case of a store, it's not worth it if the index is a constant 0,
5654 // because a MOVSSmr can be used instead, which is smaller and faster.
5655 if (!Op
.hasOneUse())
5657 SDNode
*User
= *Op
.getNode()->use_begin();
5658 if ((User
->getOpcode() != ISD::STORE
||
5659 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
5660 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
5661 (User
->getOpcode() != ISD::BIT_CONVERT
||
5662 User
->getValueType(0) != MVT::i32
))
5664 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
5665 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
5668 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
5669 } else if (VT
== MVT::i32
) {
5670 // ExtractPS works with constant index.
5671 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
5679 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
5680 SelectionDAG
&DAG
) const {
5681 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
5684 if (Subtarget
->hasSSE41()) {
5685 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
5690 EVT VT
= Op
.getValueType();
5691 DebugLoc dl
= Op
.getDebugLoc();
5692 // TODO: handle v16i8.
5693 if (VT
.getSizeInBits() == 16) {
5694 SDValue Vec
= Op
.getOperand(0);
5695 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
5697 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
5698 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
5699 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
5702 // Transform it so it match pextrw which produces a 32-bit result.
5703 EVT EltVT
= MVT::i32
;
5704 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EltVT
,
5705 Op
.getOperand(0), Op
.getOperand(1));
5706 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EltVT
, Extract
,
5707 DAG
.getValueType(VT
));
5708 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
5709 } else if (VT
.getSizeInBits() == 32) {
5710 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
5714 // SHUFPS the element to the lowest double word, then movss.
5715 int Mask
[4] = { Idx
, -1, -1, -1 };
5716 EVT VVT
= Op
.getOperand(0).getValueType();
5717 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
5718 DAG
.getUNDEF(VVT
), Mask
);
5719 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
5720 DAG
.getIntPtrConstant(0));
5721 } else if (VT
.getSizeInBits() == 64) {
5722 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5723 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5724 // to match extract_elt for f64.
5725 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
5729 // UNPCKHPD the element to the lowest double word, then movsd.
5730 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5731 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5732 int Mask
[2] = { 1, -1 };
5733 EVT VVT
= Op
.getOperand(0).getValueType();
5734 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
5735 DAG
.getUNDEF(VVT
), Mask
);
5736 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
5737 DAG
.getIntPtrConstant(0));
5744 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
,
5745 SelectionDAG
&DAG
) const {
5746 EVT VT
= Op
.getValueType();
5747 EVT EltVT
= VT
.getVectorElementType();
5748 DebugLoc dl
= Op
.getDebugLoc();
5750 SDValue N0
= Op
.getOperand(0);
5751 SDValue N1
= Op
.getOperand(1);
5752 SDValue N2
= Op
.getOperand(2);
5754 if ((EltVT
.getSizeInBits() == 8 || EltVT
.getSizeInBits() == 16) &&
5755 isa
<ConstantSDNode
>(N2
)) {
5757 if (VT
== MVT::v8i16
)
5758 Opc
= X86ISD::PINSRW
;
5759 else if (VT
== MVT::v16i8
)
5760 Opc
= X86ISD::PINSRB
;
5762 Opc
= X86ISD::PINSRB
;
5764 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5766 if (N1
.getValueType() != MVT::i32
)
5767 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
5768 if (N2
.getValueType() != MVT::i32
)
5769 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
5770 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
5771 } else if (EltVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
5772 // Bits [7:6] of the constant are the source select. This will always be
5773 // zero here. The DAG Combiner may combine an extract_elt index into these
5774 // bits. For example (insert (extract, 3), 2) could be matched by putting
5775 // the '3' into bits [7:6] of X86ISD::INSERTPS.
5776 // Bits [5:4] of the constant are the destination select. This is the
5777 // value of the incoming immediate.
5778 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
5779 // combine either bitwise AND or insert of float 0.0 to set these bits.
5780 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
5781 // Create this as a scalar to vector..
5782 N1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4f32
, N1
);
5783 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
5784 } else if (EltVT
== MVT::i32
&& isa
<ConstantSDNode
>(N2
)) {
5785 // PINSR* works with constant index.
5792 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const {
5793 EVT VT
= Op
.getValueType();
5794 EVT EltVT
= VT
.getVectorElementType();
5796 if (Subtarget
->hasSSE41())
5797 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
5799 if (EltVT
== MVT::i8
)
5802 DebugLoc dl
= Op
.getDebugLoc();
5803 SDValue N0
= Op
.getOperand(0);
5804 SDValue N1
= Op
.getOperand(1);
5805 SDValue N2
= Op
.getOperand(2);
5807 if (EltVT
.getSizeInBits() == 16 && isa
<ConstantSDNode
>(N2
)) {
5808 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5809 // as its second argument.
5810 if (N1
.getValueType() != MVT::i32
)
5811 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
5812 if (N2
.getValueType() != MVT::i32
)
5813 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
5814 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
5820 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const {
5821 DebugLoc dl
= Op
.getDebugLoc();
5823 if (Op
.getValueType() == MVT::v1i64
&&
5824 Op
.getOperand(0).getValueType() == MVT::i64
)
5825 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v1i64
, Op
.getOperand(0));
5827 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
5828 assert(Op
.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5829 "Expected an SSE type!");
5830 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
5831 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,AnyExt
));
5834 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5835 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5836 // one of the above mentioned nodes. It has to be wrapped because otherwise
5837 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5838 // be used to form addressing mode. These wrapped nodes will be selected
5841 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const {
5842 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
5844 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5846 unsigned char OpFlag
= 0;
5847 unsigned WrapperKind
= X86ISD::Wrapper
;
5848 CodeModel::Model M
= getTargetMachine().getCodeModel();
5850 if (Subtarget
->isPICStyleRIPRel() &&
5851 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
5852 WrapperKind
= X86ISD::WrapperRIP
;
5853 else if (Subtarget
->isPICStyleGOT())
5854 OpFlag
= X86II::MO_GOTOFF
;
5855 else if (Subtarget
->isPICStyleStubPIC())
5856 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
5858 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
5860 CP
->getOffset(), OpFlag
);
5861 DebugLoc DL
= CP
->getDebugLoc();
5862 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
5863 // With PIC, the address is actually $g + Offset.
5865 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
5866 DAG
.getNode(X86ISD::GlobalBaseReg
,
5867 DebugLoc(), getPointerTy()),
5874 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const {
5875 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
5877 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5879 unsigned char OpFlag
= 0;
5880 unsigned WrapperKind
= X86ISD::Wrapper
;
5881 CodeModel::Model M
= getTargetMachine().getCodeModel();
5883 if (Subtarget
->isPICStyleRIPRel() &&
5884 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
5885 WrapperKind
= X86ISD::WrapperRIP
;
5886 else if (Subtarget
->isPICStyleGOT())
5887 OpFlag
= X86II::MO_GOTOFF
;
5888 else if (Subtarget
->isPICStyleStubPIC())
5889 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
5891 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy(),
5893 DebugLoc DL
= JT
->getDebugLoc();
5894 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
5896 // With PIC, the address is actually $g + Offset.
5898 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
5899 DAG
.getNode(X86ISD::GlobalBaseReg
,
5900 DebugLoc(), getPointerTy()),
5908 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const {
5909 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
5911 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5913 unsigned char OpFlag
= 0;
5914 unsigned WrapperKind
= X86ISD::Wrapper
;
5915 CodeModel::Model M
= getTargetMachine().getCodeModel();
5917 if (Subtarget
->isPICStyleRIPRel() &&
5918 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
5919 WrapperKind
= X86ISD::WrapperRIP
;
5920 else if (Subtarget
->isPICStyleGOT())
5921 OpFlag
= X86II::MO_GOTOFF
;
5922 else if (Subtarget
->isPICStyleStubPIC())
5923 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
5925 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy(), OpFlag
);
5927 DebugLoc DL
= Op
.getDebugLoc();
5928 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
5931 // With PIC, the address is actually $g + Offset.
5932 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
5933 !Subtarget
->is64Bit()) {
5934 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
5935 DAG
.getNode(X86ISD::GlobalBaseReg
,
5936 DebugLoc(), getPointerTy()),
5944 X86TargetLowering::LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const {
5945 // Create the TargetBlockAddressAddress node.
5946 unsigned char OpFlags
=
5947 Subtarget
->ClassifyBlockAddressReference();
5948 CodeModel::Model M
= getTargetMachine().getCodeModel();
5949 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
5950 DebugLoc dl
= Op
.getDebugLoc();
5951 SDValue Result
= DAG
.getBlockAddress(BA
, getPointerTy(),
5952 /*isTarget=*/true, OpFlags
);
5954 if (Subtarget
->isPICStyleRIPRel() &&
5955 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
5956 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
5958 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
5960 // With PIC, the address is actually $g + Offset.
5961 if (isGlobalRelativeToPICBase(OpFlags
)) {
5962 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5963 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
5971 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
5973 SelectionDAG
&DAG
) const {
5974 // Create the TargetGlobalAddress node, folding in the constant
5975 // offset if it is legal.
5976 unsigned char OpFlags
=
5977 Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
5978 CodeModel::Model M
= getTargetMachine().getCodeModel();
5980 if (OpFlags
== X86II::MO_NO_FLAG
&&
5981 X86::isOffsetSuitableForCodeModel(Offset
, M
)) {
5982 // A direct static reference to a global.
5983 Result
= DAG
.getTargetGlobalAddress(GV
, dl
, getPointerTy(), Offset
);
5986 Result
= DAG
.getTargetGlobalAddress(GV
, dl
, getPointerTy(), 0, OpFlags
);
5989 if (Subtarget
->isPICStyleRIPRel() &&
5990 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
5991 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
5993 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
5995 // With PIC, the address is actually $g + Offset.
5996 if (isGlobalRelativeToPICBase(OpFlags
)) {
5997 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5998 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
6002 // For globals that require a load from a stub to get the address, emit the
6004 if (isGlobalStubReference(OpFlags
))
6005 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
6006 MachinePointerInfo::getGOT(), false, false, 0);
6008 // If there was a non-zero offset that we didn't fold, create an explicit
6011 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
6012 DAG
.getConstant(Offset
, getPointerTy()));
6018 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const {
6019 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
6020 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
6021 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
6025 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
6026 SDValue
*InFlag
, const EVT PtrVT
, unsigned ReturnReg
,
6027 unsigned char OperandFlags
) {
6028 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6029 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6030 DebugLoc dl
= GA
->getDebugLoc();
6031 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), dl
,
6032 GA
->getValueType(0),
6036 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
6037 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
6039 SDValue Ops
[] = { Chain
, TGA
};
6040 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
6043 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6044 MFI
->setAdjustsStack(true);
6046 SDValue Flag
= Chain
.getValue(1);
6047 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
6050 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6052 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
6055 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
6056 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
6057 DAG
.getNode(X86ISD::GlobalBaseReg
,
6058 DebugLoc(), PtrVT
), InFlag
);
6059 InFlag
= Chain
.getValue(1);
6061 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
, X86II::MO_TLSGD
);
6064 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6066 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
6068 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
,
6069 X86::RAX
, X86II::MO_TLSGD
);
6072 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6073 // "local exec" model.
6074 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
6075 const EVT PtrVT
, TLSModel::Model model
,
6077 DebugLoc dl
= GA
->getDebugLoc();
6079 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6080 Value
*Ptr
= Constant::getNullValue(Type::getInt8PtrTy(*DAG
.getContext(),
6081 is64Bit
? 257 : 256));
6083 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(),
6084 DAG
.getIntPtrConstant(0),
6085 MachinePointerInfo(Ptr
), false, false, 0);
6087 unsigned char OperandFlags
= 0;
6088 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
6090 unsigned WrapperKind
= X86ISD::Wrapper
;
6091 if (model
== TLSModel::LocalExec
) {
6092 OperandFlags
= is64Bit
? X86II::MO_TPOFF
: X86II::MO_NTPOFF
;
6093 } else if (is64Bit
) {
6094 assert(model
== TLSModel::InitialExec
);
6095 OperandFlags
= X86II::MO_GOTTPOFF
;
6096 WrapperKind
= X86ISD::WrapperRIP
;
6098 assert(model
== TLSModel::InitialExec
);
6099 OperandFlags
= X86II::MO_INDNTPOFF
;
6102 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6104 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), dl
,
6105 GA
->getValueType(0),
6106 GA
->getOffset(), OperandFlags
);
6107 SDValue Offset
= DAG
.getNode(WrapperKind
, dl
, PtrVT
, TGA
);
6109 if (model
== TLSModel::InitialExec
)
6110 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
6111 MachinePointerInfo::getGOT(), false, false, 0);
6113 // The address of the thread local variable is the add of the thread
6114 // pointer with the offset of the variable.
6115 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
6119 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
6121 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
6122 const GlobalValue
*GV
= GA
->getGlobal();
6124 if (Subtarget
->isTargetELF()) {
6125 // TODO: implement the "local dynamic" model
6126 // TODO: implement the "initial exec"model for pic executables
6128 // If GV is an alias then use the aliasee for determining
6129 // thread-localness.
6130 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
6131 GV
= GA
->resolveAliasedGlobal(false);
6133 TLSModel::Model model
6134 = getTLSModel(GV
, getTargetMachine().getRelocationModel());
6137 case TLSModel::GeneralDynamic
:
6138 case TLSModel::LocalDynamic
: // not implemented
6139 if (Subtarget
->is64Bit())
6140 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
6141 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
6143 case TLSModel::InitialExec
:
6144 case TLSModel::LocalExec
:
6145 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
,
6146 Subtarget
->is64Bit());
6148 } else if (Subtarget
->isTargetDarwin()) {
6149 // Darwin only has one model of TLS. Lower to that.
6150 unsigned char OpFlag
= 0;
6151 unsigned WrapperKind
= Subtarget
->isPICStyleRIPRel() ?
6152 X86ISD::WrapperRIP
: X86ISD::Wrapper
;
6154 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6156 bool PIC32
= (getTargetMachine().getRelocationModel() == Reloc::PIC_
) &&
6157 !Subtarget
->is64Bit();
6159 OpFlag
= X86II::MO_TLVP_PIC_BASE
;
6161 OpFlag
= X86II::MO_TLVP
;
6162 DebugLoc DL
= Op
.getDebugLoc();
6163 SDValue Result
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), DL
,
6165 GA
->getOffset(), OpFlag
);
6166 SDValue Offset
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
6168 // With PIC32, the address is actually $g + Offset.
6170 Offset
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
6171 DAG
.getNode(X86ISD::GlobalBaseReg
,
6172 DebugLoc(), getPointerTy()),
6175 // Lowering the machine isd will make sure everything is in the right
6177 SDValue Args
[] = { Offset
};
6178 SDValue Chain
= DAG
.getNode(X86ISD::TLSCALL
, DL
, MVT::Other
, Args
, 1);
6180 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6181 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6182 MFI
->setAdjustsStack(true);
6184 // And our return value (tls address) is in the standard call return value
6186 unsigned Reg
= Subtarget
->is64Bit() ? X86::RAX
: X86::EAX
;
6187 return DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy());
6191 "TLS not implemented for this target.");
6193 llvm_unreachable("Unreachable");
6198 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6199 /// take a 2 x i32 value to shift plus a shift amount.
6200 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) const {
6201 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
6202 EVT VT
= Op
.getValueType();
6203 unsigned VTBits
= VT
.getSizeInBits();
6204 DebugLoc dl
= Op
.getDebugLoc();
6205 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
6206 SDValue ShOpLo
= Op
.getOperand(0);
6207 SDValue ShOpHi
= Op
.getOperand(1);
6208 SDValue ShAmt
= Op
.getOperand(2);
6209 SDValue Tmp1
= isSRA
? DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
6210 DAG
.getConstant(VTBits
- 1, MVT::i8
))
6211 : DAG
.getConstant(0, VT
);
6214 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
6215 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
6216 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
6218 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
6219 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
6222 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
6223 DAG
.getConstant(VTBits
, MVT::i8
));
6224 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
,
6225 AndNode
, DAG
.getConstant(0, MVT::i8
));
6228 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
6229 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
6230 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
6232 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
6233 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
6234 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
6236 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
6237 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
6240 SDValue Ops
[2] = { Lo
, Hi
};
6241 return DAG
.getMergeValues(Ops
, 2, dl
);
6244 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
,
6245 SelectionDAG
&DAG
) const {
6246 EVT SrcVT
= Op
.getOperand(0).getValueType();
6248 if (SrcVT
.isVector())
6251 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
6252 "Unknown SINT_TO_FP to lower!");
6254 // These are really Legal; return the operand so the caller accepts it as
6256 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
6258 if (SrcVT
== MVT::i64
&& isScalarFPTypeInSSEReg(Op
.getValueType()) &&
6259 Subtarget
->is64Bit()) {
6263 DebugLoc dl
= Op
.getDebugLoc();
6264 unsigned Size
= SrcVT
.getSizeInBits()/8;
6265 MachineFunction
&MF
= DAG
.getMachineFunction();
6266 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
, false);
6267 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6268 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
6270 MachinePointerInfo::getFixedStack(SSFI
),
6272 return BuildFILD(Op
, SrcVT
, Chain
, StackSlot
, DAG
);
6275 SDValue
X86TargetLowering::BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
,
6277 SelectionDAG
&DAG
) const {
6279 DebugLoc DL
= Op
.getDebugLoc();
6281 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
6283 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
6285 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
6287 unsigned ByteSize
= SrcVT
.getSizeInBits()/8;
6289 int SSFI
= cast
<FrameIndexSDNode
>(StackSlot
)->getIndex();
6290 MachineMemOperand
*MMO
=
6291 DAG
.getMachineFunction()
6292 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
6293 MachineMemOperand::MOLoad
, ByteSize
, ByteSize
);
6295 SDValue Ops
[] = { Chain
, StackSlot
, DAG
.getValueType(SrcVT
) };
6296 SDValue Result
= DAG
.getMemIntrinsicNode(useSSE
? X86ISD::FILD_FLAG
:
6298 Tys
, Ops
, array_lengthof(Ops
),
6302 Chain
= Result
.getValue(1);
6303 SDValue InFlag
= Result
.getValue(2);
6305 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6306 // shouldn't be necessary except that RFP cannot be live across
6307 // multiple blocks. When stackifier is fixed, they can be uncoupled.
6308 MachineFunction
&MF
= DAG
.getMachineFunction();
6309 unsigned SSFISize
= Op
.getValueType().getSizeInBits()/8;
6310 int SSFI
= MF
.getFrameInfo()->CreateStackObject(SSFISize
, SSFISize
, false);
6311 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6312 Tys
= DAG
.getVTList(MVT::Other
);
6314 Chain
, Result
, StackSlot
, DAG
.getValueType(Op
.getValueType()), InFlag
6316 MachineMemOperand
*MMO
=
6317 DAG
.getMachineFunction()
6318 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
6319 MachineMemOperand::MOStore
, SSFISize
, SSFISize
);
6321 Chain
= DAG
.getMemIntrinsicNode(X86ISD::FST
, DL
, Tys
,
6322 Ops
, array_lengthof(Ops
),
6323 Op
.getValueType(), MMO
);
6324 Result
= DAG
.getLoad(Op
.getValueType(), DL
, Chain
, StackSlot
,
6325 MachinePointerInfo::getFixedStack(SSFI
),
6332 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6333 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
,
6334 SelectionDAG
&DAG
) const {
6335 // This algorithm is not obvious. Here it is in C code, more or less:
6337 double uint64_to_double( uint32_t hi, uint32_t lo ) {
6338 static const __m128i exp = { 0x4330000045300000ULL, 0 };
6339 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6341 // Copy ints to xmm registers.
6342 __m128i xh = _mm_cvtsi32_si128( hi );
6343 __m128i xl = _mm_cvtsi32_si128( lo );
6345 // Combine into low half of a single xmm register.
6346 __m128i x = _mm_unpacklo_epi32( xh, xl );
6350 // Merge in appropriate exponents to give the integer bits the right
6352 x = _mm_unpacklo_epi32( x, exp );
6354 // Subtract away the biases to deal with the IEEE-754 double precision
6356 d = _mm_sub_pd( (__m128d) x, bias );
6358 // All conversions up to here are exact. The correctly rounded result is
6359 // calculated using the current rounding mode using the following
6361 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6362 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
6363 // store doesn't really need to be here (except
6364 // maybe to zero the other double)
6369 DebugLoc dl
= Op
.getDebugLoc();
6370 LLVMContext
*Context
= DAG
.getContext();
6372 // Build some magic constants.
6373 std::vector
<Constant
*> CV0
;
6374 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x45300000)));
6375 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x43300000)));
6376 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
6377 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
6378 Constant
*C0
= ConstantVector::get(CV0
);
6379 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
6381 std::vector
<Constant
*> CV1
;
6383 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4530000000000000ULL
))));
6385 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4330000000000000ULL
))));
6386 Constant
*C1
= ConstantVector::get(CV1
);
6387 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
6389 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
6390 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6392 DAG
.getIntPtrConstant(1)));
6393 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
6394 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6396 DAG
.getIntPtrConstant(0)));
6397 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
6398 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
6399 MachinePointerInfo::getConstantPool(),
6401 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
6402 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
6403 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
6404 MachinePointerInfo::getConstantPool(),
6406 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
6408 // Add the halves; easiest way is to swap them into another reg first.
6409 int ShufMask
[2] = { 1, -1 };
6410 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
6411 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
6412 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
6413 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
6414 DAG
.getIntPtrConstant(0));
6417 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6418 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
,
6419 SelectionDAG
&DAG
) const {
6420 DebugLoc dl
= Op
.getDebugLoc();
6421 // FP constant to bias correct the final result.
6422 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
6425 // Load the 32-bit value into an XMM register.
6426 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
6427 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6429 DAG
.getIntPtrConstant(0)));
6431 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
6432 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
6433 DAG
.getIntPtrConstant(0));
6435 // Or the load with the bias.
6436 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
6437 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
6438 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
6440 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
6441 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
6442 MVT::v2f64
, Bias
)));
6443 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
6444 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
6445 DAG
.getIntPtrConstant(0));
6447 // Subtract the bias.
6448 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
6450 // Handle final rounding.
6451 EVT DestVT
= Op
.getValueType();
6453 if (DestVT
.bitsLT(MVT::f64
)) {
6454 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
6455 DAG
.getIntPtrConstant(0));
6456 } else if (DestVT
.bitsGT(MVT::f64
)) {
6457 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
6460 // Handle final rounding.
6464 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
,
6465 SelectionDAG
&DAG
) const {
6466 SDValue N0
= Op
.getOperand(0);
6467 DebugLoc dl
= Op
.getDebugLoc();
6469 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6470 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6471 // the optimization here.
6472 if (DAG
.SignBitIsZero(N0
))
6473 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
6475 EVT SrcVT
= N0
.getValueType();
6476 EVT DstVT
= Op
.getValueType();
6477 if (SrcVT
== MVT::i64
&& DstVT
== MVT::f64
&& X86ScalarSSEf64
)
6478 return LowerUINT_TO_FP_i64(Op
, DAG
);
6479 else if (SrcVT
== MVT::i32
&& X86ScalarSSEf64
)
6480 return LowerUINT_TO_FP_i32(Op
, DAG
);
6482 // Make a 64-bit buffer, and use it to build an FILD.
6483 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::i64
);
6484 if (SrcVT
== MVT::i32
) {
6485 SDValue WordOff
= DAG
.getConstant(4, getPointerTy());
6486 SDValue OffsetSlot
= DAG
.getNode(ISD::ADD
, dl
,
6487 getPointerTy(), StackSlot
, WordOff
);
6488 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
6489 StackSlot
, MachinePointerInfo(),
6491 SDValue Store2
= DAG
.getStore(Store1
, dl
, DAG
.getConstant(0, MVT::i32
),
6492 OffsetSlot
, MachinePointerInfo(),
6494 SDValue Fild
= BuildFILD(Op
, MVT::i64
, Store2
, StackSlot
, DAG
);
6498 assert(SrcVT
== MVT::i64
&& "Unexpected type in UINT_TO_FP");
6499 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
6500 StackSlot
, MachinePointerInfo(),
6502 // For i64 source, we need to add the appropriate power of 2 if the input
6503 // was negative. This is the same as the optimization in
6504 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6505 // we must be careful to do the computation in x87 extended precision, not
6506 // in SSE. (The generic code can't know it's OK to do this, or how to.)
6507 int SSFI
= cast
<FrameIndexSDNode
>(StackSlot
)->getIndex();
6508 MachineMemOperand
*MMO
=
6509 DAG
.getMachineFunction()
6510 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
6511 MachineMemOperand::MOLoad
, 8, 8);
6513 SDVTList Tys
= DAG
.getVTList(MVT::f80
, MVT::Other
);
6514 SDValue Ops
[] = { Store
, StackSlot
, DAG
.getValueType(MVT::i64
) };
6515 SDValue Fild
= DAG
.getMemIntrinsicNode(X86ISD::FILD
, dl
, Tys
, Ops
, 3,
6518 APInt
FF(32, 0x5F800000ULL
);
6520 // Check whether the sign bit is set.
6521 SDValue SignSet
= DAG
.getSetCC(dl
, getSetCCResultType(MVT::i64
),
6522 Op
.getOperand(0), DAG
.getConstant(0, MVT::i64
),
6525 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6526 SDValue FudgePtr
= DAG
.getConstantPool(
6527 ConstantInt::get(*DAG
.getContext(), FF
.zext(64)),
6530 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6531 SDValue Zero
= DAG
.getIntPtrConstant(0);
6532 SDValue Four
= DAG
.getIntPtrConstant(4);
6533 SDValue Offset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(), SignSet
,
6535 FudgePtr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FudgePtr
, Offset
);
6537 // Load the value out, extending it from f32 to f80.
6538 // FIXME: Avoid the extend by constructing the right constant pool?
6539 SDValue Fudge
= DAG
.getExtLoad(ISD::EXTLOAD
, MVT::f80
, dl
, DAG
.getEntryNode(),
6540 FudgePtr
, MachinePointerInfo::getConstantPool(),
6541 MVT::f32
, false, false, 4);
6542 // Extend everything to 80 bits to force it to be done on x87.
6543 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::f80
, Fild
, Fudge
);
6544 return DAG
.getNode(ISD::FP_ROUND
, dl
, DstVT
, Add
, DAG
.getIntPtrConstant(0));
6547 std::pair
<SDValue
,SDValue
> X86TargetLowering::
6548 FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool IsSigned
) const {
6549 DebugLoc DL
= Op
.getDebugLoc();
6551 EVT DstTy
= Op
.getValueType();
6554 assert(DstTy
== MVT::i32
&& "Unexpected FP_TO_UINT");
6558 assert(DstTy
.getSimpleVT() <= MVT::i64
&&
6559 DstTy
.getSimpleVT() >= MVT::i16
&&
6560 "Unknown FP_TO_SINT to lower!");
6562 // These are really Legal.
6563 if (DstTy
== MVT::i32
&&
6564 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
6565 return std::make_pair(SDValue(), SDValue());
6566 if (Subtarget
->is64Bit() &&
6567 DstTy
== MVT::i64
&&
6568 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
6569 return std::make_pair(SDValue(), SDValue());
6571 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6573 MachineFunction
&MF
= DAG
.getMachineFunction();
6574 unsigned MemSize
= DstTy
.getSizeInBits()/8;
6575 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
, false);
6576 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6581 switch (DstTy
.getSimpleVT().SimpleTy
) {
6582 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6583 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
6584 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
6585 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
6588 SDValue Chain
= DAG
.getEntryNode();
6589 SDValue Value
= Op
.getOperand(0);
6590 EVT TheVT
= Op
.getOperand(0).getValueType();
6591 if (isScalarFPTypeInSSEReg(TheVT
)) {
6592 assert(DstTy
== MVT::i64
&& "Invalid FP_TO_SINT to lower!");
6593 Chain
= DAG
.getStore(Chain
, DL
, Value
, StackSlot
,
6594 MachinePointerInfo::getFixedStack(SSFI
),
6596 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
6598 Chain
, StackSlot
, DAG
.getValueType(TheVT
)
6601 MachineMemOperand
*MMO
=
6602 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
6603 MachineMemOperand::MOLoad
, MemSize
, MemSize
);
6604 Value
= DAG
.getMemIntrinsicNode(X86ISD::FLD
, DL
, Tys
, Ops
, 3,
6606 Chain
= Value
.getValue(1);
6607 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
, false);
6608 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6611 MachineMemOperand
*MMO
=
6612 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
6613 MachineMemOperand::MOStore
, MemSize
, MemSize
);
6615 // Build the FP_TO_INT*_IN_MEM
6616 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
6617 SDValue FIST
= DAG
.getMemIntrinsicNode(Opc
, DL
, DAG
.getVTList(MVT::Other
),
6618 Ops
, 3, DstTy
, MMO
);
6620 return std::make_pair(FIST
, StackSlot
);
6623 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
,
6624 SelectionDAG
&DAG
) const {
6625 if (Op
.getValueType().isVector())
6628 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, true);
6629 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6630 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6631 if (FIST
.getNode() == 0) return Op
;
6634 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
6635 FIST
, StackSlot
, MachinePointerInfo(), false, false, 0);
6638 SDValue
X86TargetLowering::LowerFP_TO_UINT(SDValue Op
,
6639 SelectionDAG
&DAG
) const {
6640 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, false);
6641 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6642 assert(FIST
.getNode() && "Unexpected failure");
6645 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
6646 FIST
, StackSlot
, MachinePointerInfo(), false, false, 0);
6649 SDValue
X86TargetLowering::LowerFABS(SDValue Op
,
6650 SelectionDAG
&DAG
) const {
6651 LLVMContext
*Context
= DAG
.getContext();
6652 DebugLoc dl
= Op
.getDebugLoc();
6653 EVT VT
= Op
.getValueType();
6656 EltVT
= VT
.getVectorElementType();
6657 std::vector
<Constant
*> CV
;
6658 if (EltVT
== MVT::f64
) {
6659 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63))));
6663 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31))));
6669 Constant
*C
= ConstantVector::get(CV
);
6670 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
6671 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
6672 MachinePointerInfo::getConstantPool(),
6674 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
6677 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) const {
6678 LLVMContext
*Context
= DAG
.getContext();
6679 DebugLoc dl
= Op
.getDebugLoc();
6680 EVT VT
= Op
.getValueType();
6683 EltVT
= VT
.getVectorElementType();
6684 std::vector
<Constant
*> CV
;
6685 if (EltVT
== MVT::f64
) {
6686 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63)));
6690 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31)));
6696 Constant
*C
= ConstantVector::get(CV
);
6697 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
6698 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
6699 MachinePointerInfo::getConstantPool(),
6701 if (VT
.isVector()) {
6702 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6703 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
6704 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
6706 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
6708 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
6712 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
6713 LLVMContext
*Context
= DAG
.getContext();
6714 SDValue Op0
= Op
.getOperand(0);
6715 SDValue Op1
= Op
.getOperand(1);
6716 DebugLoc dl
= Op
.getDebugLoc();
6717 EVT VT
= Op
.getValueType();
6718 EVT SrcVT
= Op1
.getValueType();
6720 // If second operand is smaller, extend it first.
6721 if (SrcVT
.bitsLT(VT
)) {
6722 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
6725 // And if it is bigger, shrink it first.
6726 if (SrcVT
.bitsGT(VT
)) {
6727 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
6731 // At this point the operands and the result should have the same
6732 // type, and that won't be f80 since that is not custom lowered.
6734 // First get the sign bit of second operand.
6735 std::vector
<Constant
*> CV
;
6736 if (SrcVT
== MVT::f64
) {
6737 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63))));
6738 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
6740 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31))));
6741 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6742 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6743 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6745 Constant
*C
= ConstantVector::get(CV
);
6746 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
6747 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
6748 MachinePointerInfo::getConstantPool(),
6750 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
6752 // Shift sign bit right or left if the two operands have different types.
6753 if (SrcVT
.bitsGT(VT
)) {
6754 // Op0 is MVT::f32, Op1 is MVT::f64.
6755 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
6756 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
6757 DAG
.getConstant(32, MVT::i32
));
6758 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
6759 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
6760 DAG
.getIntPtrConstant(0));
6763 // Clear first operand sign bit.
6765 if (VT
== MVT::f64
) {
6766 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63)))));
6767 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
6769 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31)))));
6770 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6771 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6772 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
6774 C
= ConstantVector::get(CV
);
6775 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
6776 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
6777 MachinePointerInfo::getConstantPool(),
6779 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
6781 // Or the value with the sign bit.
6782 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
6785 /// Emit nodes that will be selected as "test Op0,Op0", or something
6787 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
6788 SelectionDAG
&DAG
) const {
6789 DebugLoc dl
= Op
.getDebugLoc();
6791 // CF and OF aren't always set the way we want. Determine which
6792 // of these we need.
6793 bool NeedCF
= false;
6794 bool NeedOF
= false;
6797 case X86::COND_A
: case X86::COND_AE
:
6798 case X86::COND_B
: case X86::COND_BE
:
6801 case X86::COND_G
: case X86::COND_GE
:
6802 case X86::COND_L
: case X86::COND_LE
:
6803 case X86::COND_O
: case X86::COND_NO
:
6808 // See if we can use the EFLAGS value from the operand instead of
6809 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6810 // we prove that the arithmetic won't overflow, we can't use OF or CF.
6811 if (Op
.getResNo() != 0 || NeedOF
|| NeedCF
)
6812 // Emit a CMP with 0, which is the TEST pattern.
6813 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
6814 DAG
.getConstant(0, Op
.getValueType()));
6816 unsigned Opcode
= 0;
6817 unsigned NumOperands
= 0;
6818 switch (Op
.getNode()->getOpcode()) {
6820 // Due to an isel shortcoming, be conservative if this add is likely to be
6821 // selected as part of a load-modify-store instruction. When the root node
6822 // in a match is a store, isel doesn't know how to remap non-chain non-flag
6823 // uses of other nodes in the match, such as the ADD in this case. This
6824 // leads to the ADD being left around and reselected, with the result being
6825 // two adds in the output. Alas, even if none our users are stores, that
6826 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
6827 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
6828 // climbing the DAG back to the root, and it doesn't seem to be worth the
6830 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
6831 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
6832 if (UI
->getOpcode() != ISD::CopyToReg
&& UI
->getOpcode() != ISD::SETCC
)
6835 if (ConstantSDNode
*C
=
6836 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
6837 // An add of one will be selected as an INC.
6838 if (C
->getAPIntValue() == 1) {
6839 Opcode
= X86ISD::INC
;
6844 // An add of negative one (subtract of one) will be selected as a DEC.
6845 if (C
->getAPIntValue().isAllOnesValue()) {
6846 Opcode
= X86ISD::DEC
;
6852 // Otherwise use a regular EFLAGS-setting add.
6853 Opcode
= X86ISD::ADD
;
6857 // If the primary and result isn't used, don't bother using X86ISD::AND,
6858 // because a TEST instruction will be better.
6859 bool NonFlagUse
= false;
6860 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
6861 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
) {
6863 unsigned UOpNo
= UI
.getOperandNo();
6864 if (User
->getOpcode() == ISD::TRUNCATE
&& User
->hasOneUse()) {
6865 // Look pass truncate.
6866 UOpNo
= User
->use_begin().getOperandNo();
6867 User
= *User
->use_begin();
6870 if (User
->getOpcode() != ISD::BRCOND
&&
6871 User
->getOpcode() != ISD::SETCC
&&
6872 (User
->getOpcode() != ISD::SELECT
|| UOpNo
!= 0)) {
6885 // Due to the ISEL shortcoming noted above, be conservative if this op is
6886 // likely to be selected as part of a load-modify-store instruction.
6887 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
6888 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
6889 if (UI
->getOpcode() == ISD::STORE
)
6892 // Otherwise use a regular EFLAGS-setting instruction.
6893 switch (Op
.getNode()->getOpcode()) {
6894 default: llvm_unreachable("unexpected operator!");
6895 case ISD::SUB
: Opcode
= X86ISD::SUB
; break;
6896 case ISD::OR
: Opcode
= X86ISD::OR
; break;
6897 case ISD::XOR
: Opcode
= X86ISD::XOR
; break;
6898 case ISD::AND
: Opcode
= X86ISD::AND
; break;
6910 return SDValue(Op
.getNode(), 1);
6917 // Emit a CMP with 0, which is the TEST pattern.
6918 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
6919 DAG
.getConstant(0, Op
.getValueType()));
6921 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
6922 SmallVector
<SDValue
, 4> Ops
;
6923 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
6924 Ops
.push_back(Op
.getOperand(i
));
6926 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
6927 DAG
.ReplaceAllUsesWith(Op
, New
);
6928 return SDValue(New
.getNode(), 1);
6931 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
6933 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
6934 SelectionDAG
&DAG
) const {
6935 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
6936 if (C
->getAPIntValue() == 0)
6937 return EmitTest(Op0
, X86CC
, DAG
);
6939 DebugLoc dl
= Op0
.getDebugLoc();
6940 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
6943 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6944 /// if it's possible.
6945 SDValue
X86TargetLowering::LowerToBT(SDValue And
, ISD::CondCode CC
,
6946 DebugLoc dl
, SelectionDAG
&DAG
) const {
6947 SDValue Op0
= And
.getOperand(0);
6948 SDValue Op1
= And
.getOperand(1);
6949 if (Op0
.getOpcode() == ISD::TRUNCATE
)
6950 Op0
= Op0
.getOperand(0);
6951 if (Op1
.getOpcode() == ISD::TRUNCATE
)
6952 Op1
= Op1
.getOperand(0);
6955 if (Op1
.getOpcode() == ISD::SHL
)
6956 std::swap(Op0
, Op1
);
6957 if (Op0
.getOpcode() == ISD::SHL
) {
6958 if (ConstantSDNode
*And00C
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0)))
6959 if (And00C
->getZExtValue() == 1) {
6960 // If we looked past a truncate, check that it's only truncating away
6962 unsigned BitWidth
= Op0
.getValueSizeInBits();
6963 unsigned AndBitWidth
= And
.getValueSizeInBits();
6964 if (BitWidth
> AndBitWidth
) {
6965 APInt Mask
= APInt::getAllOnesValue(BitWidth
), Zeros
, Ones
;
6966 DAG
.ComputeMaskedBits(Op0
, Mask
, Zeros
, Ones
);
6967 if (Zeros
.countLeadingOnes() < BitWidth
- AndBitWidth
)
6971 RHS
= Op0
.getOperand(1);
6973 } else if (Op1
.getOpcode() == ISD::Constant
) {
6974 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op1
);
6975 SDValue AndLHS
= Op0
;
6976 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
6977 LHS
= AndLHS
.getOperand(0);
6978 RHS
= AndLHS
.getOperand(1);
6982 if (LHS
.getNode()) {
6983 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
6984 // instruction. Since the shift amount is in-range-or-undefined, we know
6985 // that doing a bittest on the i32 value is ok. We extend to i32 because
6986 // the encoding for the i16 version is larger than the i32 version.
6987 // Also promote i16 to i32 for performance / code size reason.
6988 if (LHS
.getValueType() == MVT::i8
||
6989 LHS
.getValueType() == MVT::i16
)
6990 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
6992 // If the operand types disagree, extend the shift amount to match. Since
6993 // BT ignores high bits (like shifts) we can use anyextend.
6994 if (LHS
.getValueType() != RHS
.getValueType())
6995 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
6997 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
6998 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
6999 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
7000 DAG
.getConstant(Cond
, MVT::i8
), BT
);
7006 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
7007 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
7008 SDValue Op0
= Op
.getOperand(0);
7009 SDValue Op1
= Op
.getOperand(1);
7010 DebugLoc dl
= Op
.getDebugLoc();
7011 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
7013 // Optimize to BT if possible.
7014 // Lower (X & (1 << N)) == 0 to BT(X, N).
7015 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7016 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7017 if (Op0
.getOpcode() == ISD::AND
&&
7019 Op1
.getOpcode() == ISD::Constant
&&
7020 cast
<ConstantSDNode
>(Op1
)->isNullValue() &&
7021 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
7022 SDValue NewSetCC
= LowerToBT(Op0
, CC
, dl
, DAG
);
7023 if (NewSetCC
.getNode())
7027 // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7028 if (Op0
.getOpcode() == X86ISD::SETCC
&&
7029 Op1
.getOpcode() == ISD::Constant
&&
7030 (cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 1 ||
7031 cast
<ConstantSDNode
>(Op1
)->isNullValue()) &&
7032 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
7033 X86::CondCode CCode
= (X86::CondCode
)Op0
.getConstantOperandVal(0);
7034 bool Invert
= (CC
== ISD::SETNE
) ^
7035 cast
<ConstantSDNode
>(Op1
)->isNullValue();
7037 CCode
= X86::GetOppositeBranchCondition(CCode
);
7038 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
7039 DAG
.getConstant(CCode
, MVT::i8
), Op0
.getOperand(1));
7042 bool isFP
= Op1
.getValueType().isFloatingPoint();
7043 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
7044 if (X86CC
== X86::COND_INVALID
)
7047 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
7049 // Use sbb x, x to materialize carry bit into a GPR.
7050 if (X86CC
== X86::COND_B
)
7051 return DAG
.getNode(ISD::AND
, dl
, MVT::i8
,
7052 DAG
.getNode(X86ISD::SETCC_CARRY
, dl
, MVT::i8
,
7053 DAG
.getConstant(X86CC
, MVT::i8
), Cond
),
7054 DAG
.getConstant(1, MVT::i8
));
7056 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
7057 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
7060 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
7062 SDValue Op0
= Op
.getOperand(0);
7063 SDValue Op1
= Op
.getOperand(1);
7064 SDValue CC
= Op
.getOperand(2);
7065 EVT VT
= Op
.getValueType();
7066 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
7067 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
7068 DebugLoc dl
= Op
.getDebugLoc();
7072 EVT VT0
= Op0
.getValueType();
7073 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
7074 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
7077 switch (SetCCOpcode
) {
7080 case ISD::SETEQ
: SSECC
= 0; break;
7082 case ISD::SETGT
: Swap
= true; // Fallthrough
7084 case ISD::SETOLT
: SSECC
= 1; break;
7086 case ISD::SETGE
: Swap
= true; // Fallthrough
7088 case ISD::SETOLE
: SSECC
= 2; break;
7089 case ISD::SETUO
: SSECC
= 3; break;
7091 case ISD::SETNE
: SSECC
= 4; break;
7092 case ISD::SETULE
: Swap
= true;
7093 case ISD::SETUGE
: SSECC
= 5; break;
7094 case ISD::SETULT
: Swap
= true;
7095 case ISD::SETUGT
: SSECC
= 6; break;
7096 case ISD::SETO
: SSECC
= 7; break;
7099 std::swap(Op0
, Op1
);
7101 // In the two special cases we can't handle, emit two comparisons.
7103 if (SetCCOpcode
== ISD::SETUEQ
) {
7105 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
7106 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
7107 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
7109 else if (SetCCOpcode
== ISD::SETONE
) {
7111 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
7112 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
7113 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
7115 llvm_unreachable("Illegal FP comparison");
7117 // Handle all other FP comparisons here.
7118 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
7121 // We are handling one of the integer comparisons here. Since SSE only has
7122 // GT and EQ comparisons for integer, swapping operands and multiple
7123 // operations may be required for some comparisons.
7124 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
7125 bool Swap
= false, Invert
= false, FlipSigns
= false;
7127 switch (VT
.getSimpleVT().SimpleTy
) {
7129 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
7130 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
7131 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
7132 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
7135 switch (SetCCOpcode
) {
7137 case ISD::SETNE
: Invert
= true;
7138 case ISD::SETEQ
: Opc
= EQOpc
; break;
7139 case ISD::SETLT
: Swap
= true;
7140 case ISD::SETGT
: Opc
= GTOpc
; break;
7141 case ISD::SETGE
: Swap
= true;
7142 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
7143 case ISD::SETULT
: Swap
= true;
7144 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
7145 case ISD::SETUGE
: Swap
= true;
7146 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
7149 std::swap(Op0
, Op1
);
7151 // Since SSE has no unsigned integer comparisons, we need to flip the sign
7152 // bits of the inputs before performing those operations.
7154 EVT EltVT
= VT
.getVectorElementType();
7155 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
7157 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
7158 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
7160 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
7161 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
7164 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
7166 // If the logical-not of the result is required, perform that now.
7168 Result
= DAG
.getNOT(dl
, Result
, VT
);
7173 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7174 static bool isX86LogicalCmp(SDValue Op
) {
7175 unsigned Opc
= Op
.getNode()->getOpcode();
7176 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
7178 if (Op
.getResNo() == 1 &&
7179 (Opc
== X86ISD::ADD
||
7180 Opc
== X86ISD::SUB
||
7181 Opc
== X86ISD::SMUL
||
7182 Opc
== X86ISD::UMUL
||
7183 Opc
== X86ISD::INC
||
7184 Opc
== X86ISD::DEC
||
7185 Opc
== X86ISD::OR
||
7186 Opc
== X86ISD::XOR
||
7187 Opc
== X86ISD::AND
))
7193 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
7194 bool addTest
= true;
7195 SDValue Cond
= Op
.getOperand(0);
7196 DebugLoc dl
= Op
.getDebugLoc();
7199 if (Cond
.getOpcode() == ISD::SETCC
) {
7200 SDValue NewCond
= LowerSETCC(Cond
, DAG
);
7201 if (NewCond
.getNode())
7205 // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7206 SDValue Op1
= Op
.getOperand(1);
7207 SDValue Op2
= Op
.getOperand(2);
7208 if (Cond
.getOpcode() == X86ISD::SETCC
&&
7209 cast
<ConstantSDNode
>(Cond
.getOperand(0))->getZExtValue() == X86::COND_E
) {
7210 SDValue Cmp
= Cond
.getOperand(1);
7211 if (Cmp
.getOpcode() == X86ISD::CMP
) {
7212 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op1
);
7213 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(Op2
);
7214 ConstantSDNode
*RHSC
=
7215 dyn_cast
<ConstantSDNode
>(Cmp
.getOperand(1).getNode());
7216 if (N1C
&& N1C
->isAllOnesValue() &&
7217 N2C
&& N2C
->isNullValue() &&
7218 RHSC
&& RHSC
->isNullValue()) {
7219 SDValue CmpOp0
= Cmp
.getOperand(0);
7220 Cmp
= DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
,
7221 CmpOp0
, DAG
.getConstant(1, CmpOp0
.getValueType()));
7222 return DAG
.getNode(X86ISD::SETCC_CARRY
, dl
, Op
.getValueType(),
7223 DAG
.getConstant(X86::COND_B
, MVT::i8
), Cmp
);
7228 // Look pass (and (setcc_carry (cmp ...)), 1).
7229 if (Cond
.getOpcode() == ISD::AND
&&
7230 Cond
.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY
) {
7231 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
7232 if (C
&& C
->getAPIntValue() == 1)
7233 Cond
= Cond
.getOperand(0);
7236 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7237 // setting operand in place of the X86ISD::SETCC.
7238 if (Cond
.getOpcode() == X86ISD::SETCC
||
7239 Cond
.getOpcode() == X86ISD::SETCC_CARRY
) {
7240 CC
= Cond
.getOperand(0);
7242 SDValue Cmp
= Cond
.getOperand(1);
7243 unsigned Opc
= Cmp
.getOpcode();
7244 EVT VT
= Op
.getValueType();
7246 bool IllegalFPCMov
= false;
7247 if (VT
.isFloatingPoint() && !VT
.isVector() &&
7248 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
7249 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
7251 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
7252 Opc
== X86ISD::BT
) { // FIXME
7259 // Look pass the truncate.
7260 if (Cond
.getOpcode() == ISD::TRUNCATE
)
7261 Cond
= Cond
.getOperand(0);
7263 // We know the result of AND is compared against zero. Try to match
7265 if (Cond
.getOpcode() == ISD::AND
&& Cond
.hasOneUse()) {
7266 SDValue NewSetCC
= LowerToBT(Cond
, ISD::SETNE
, dl
, DAG
);
7267 if (NewSetCC
.getNode()) {
7268 CC
= NewSetCC
.getOperand(0);
7269 Cond
= NewSetCC
.getOperand(1);
7276 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
7277 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
7280 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7281 // condition is true.
7282 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
7283 SDValue Ops
[] = { Op2
, Op1
, CC
, Cond
};
7284 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, Ops
, array_lengthof(Ops
));
7287 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7288 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7289 // from the AND / OR.
7290 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
7291 Opc
= Op
.getOpcode();
7292 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
7294 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
7295 Op
.getOperand(0).hasOneUse() &&
7296 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
7297 Op
.getOperand(1).hasOneUse());
7300 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7301 // 1 and that the SETCC node has a single use.
7302 static bool isXor1OfSetCC(SDValue Op
) {
7303 if (Op
.getOpcode() != ISD::XOR
)
7305 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
7306 if (N1C
&& N1C
->getAPIntValue() == 1) {
7307 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
7308 Op
.getOperand(0).hasOneUse();
7313 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
7314 bool addTest
= true;
7315 SDValue Chain
= Op
.getOperand(0);
7316 SDValue Cond
= Op
.getOperand(1);
7317 SDValue Dest
= Op
.getOperand(2);
7318 DebugLoc dl
= Op
.getDebugLoc();
7321 if (Cond
.getOpcode() == ISD::SETCC
) {
7322 SDValue NewCond
= LowerSETCC(Cond
, DAG
);
7323 if (NewCond
.getNode())
7327 // FIXME: LowerXALUO doesn't handle these!!
7328 else if (Cond
.getOpcode() == X86ISD::ADD
||
7329 Cond
.getOpcode() == X86ISD::SUB
||
7330 Cond
.getOpcode() == X86ISD::SMUL
||
7331 Cond
.getOpcode() == X86ISD::UMUL
)
7332 Cond
= LowerXALUO(Cond
, DAG
);
7335 // Look pass (and (setcc_carry (cmp ...)), 1).
7336 if (Cond
.getOpcode() == ISD::AND
&&
7337 Cond
.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY
) {
7338 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
7339 if (C
&& C
->getAPIntValue() == 1)
7340 Cond
= Cond
.getOperand(0);
7343 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7344 // setting operand in place of the X86ISD::SETCC.
7345 if (Cond
.getOpcode() == X86ISD::SETCC
||
7346 Cond
.getOpcode() == X86ISD::SETCC_CARRY
) {
7347 CC
= Cond
.getOperand(0);
7349 SDValue Cmp
= Cond
.getOperand(1);
7350 unsigned Opc
= Cmp
.getOpcode();
7351 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7352 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
7356 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
7360 // These can only come from an arithmetic instruction with overflow,
7361 // e.g. SADDO, UADDO.
7362 Cond
= Cond
.getNode()->getOperand(1);
7369 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
7370 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
7371 if (CondOpc
== ISD::OR
) {
7372 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7373 // two branches instead of an explicit OR instruction with a
7375 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
7376 isX86LogicalCmp(Cmp
)) {
7377 CC
= Cond
.getOperand(0).getOperand(0);
7378 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
7379 Chain
, Dest
, CC
, Cmp
);
7380 CC
= Cond
.getOperand(1).getOperand(0);
7384 } else { // ISD::AND
7385 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7386 // two branches instead of an explicit AND instruction with a
7387 // separate test. However, we only do this if this block doesn't
7388 // have a fall-through edge, because this requires an explicit
7389 // jmp when the condition is false.
7390 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
7391 isX86LogicalCmp(Cmp
) &&
7392 Op
.getNode()->hasOneUse()) {
7393 X86::CondCode CCode
=
7394 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
7395 CCode
= X86::GetOppositeBranchCondition(CCode
);
7396 CC
= DAG
.getConstant(CCode
, MVT::i8
);
7397 SDNode
*User
= *Op
.getNode()->use_begin();
7398 // Look for an unconditional branch following this conditional branch.
7399 // We need this because we need to reverse the successors in order
7400 // to implement FCMP_OEQ.
7401 if (User
->getOpcode() == ISD::BR
) {
7402 SDValue FalseBB
= User
->getOperand(1);
7404 DAG
.UpdateNodeOperands(User
, User
->getOperand(0), Dest
);
7405 assert(NewBR
== User
);
7409 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
7410 Chain
, Dest
, CC
, Cmp
);
7411 X86::CondCode CCode
=
7412 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
7413 CCode
= X86::GetOppositeBranchCondition(CCode
);
7414 CC
= DAG
.getConstant(CCode
, MVT::i8
);
7420 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
7421 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7422 // It should be transformed during dag combiner except when the condition
7423 // is set by a arithmetics with overflow node.
7424 X86::CondCode CCode
=
7425 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
7426 CCode
= X86::GetOppositeBranchCondition(CCode
);
7427 CC
= DAG
.getConstant(CCode
, MVT::i8
);
7428 Cond
= Cond
.getOperand(0).getOperand(1);
7434 // Look pass the truncate.
7435 if (Cond
.getOpcode() == ISD::TRUNCATE
)
7436 Cond
= Cond
.getOperand(0);
7438 // We know the result of AND is compared against zero. Try to match
7440 if (Cond
.getOpcode() == ISD::AND
&& Cond
.hasOneUse()) {
7441 SDValue NewSetCC
= LowerToBT(Cond
, ISD::SETNE
, dl
, DAG
);
7442 if (NewSetCC
.getNode()) {
7443 CC
= NewSetCC
.getOperand(0);
7444 Cond
= NewSetCC
.getOperand(1);
7451 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
7452 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
7454 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
7455 Chain
, Dest
, CC
, Cond
);
7459 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7460 // Calls to _alloca is needed to probe the stack when allocating more than 4k
7461 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
7462 // that the guard pages used by the OS virtual memory manager are allocated in
7463 // correct sequence.
7465 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
7466 SelectionDAG
&DAG
) const {
7467 assert((Subtarget
->isTargetCygMing() || Subtarget
->isTargetWindows()) &&
7468 "This should be used only on Windows targets");
7469 DebugLoc dl
= Op
.getDebugLoc();
7472 SDValue Chain
= Op
.getOperand(0);
7473 SDValue Size
= Op
.getOperand(1);
7474 // FIXME: Ensure alignment here
7478 EVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
7480 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
7481 Flag
= Chain
.getValue(1);
7483 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
7485 Chain
= DAG
.getNode(X86ISD::WIN_ALLOCA
, dl
, NodeTys
, Chain
, Flag
);
7486 Flag
= Chain
.getValue(1);
7488 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
7490 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
7491 return DAG
.getMergeValues(Ops1
, 2, dl
);
7494 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
7495 MachineFunction
&MF
= DAG
.getMachineFunction();
7496 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
7498 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
7499 DebugLoc DL
= Op
.getDebugLoc();
7501 if (!Subtarget
->is64Bit() || Subtarget
->isTargetWin64()) {
7502 // vastart just stores the address of the VarArgsFrameIndex slot into the
7503 // memory location argument.
7504 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
7506 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
7507 MachinePointerInfo(SV
), false, false, 0);
7511 // gp_offset (0 - 6 * 8)
7512 // fp_offset (48 - 48 + 8 * 16)
7513 // overflow_arg_area (point to parameters coming in memory).
7515 SmallVector
<SDValue
, 8> MemOps
;
7516 SDValue FIN
= Op
.getOperand(1);
7518 SDValue Store
= DAG
.getStore(Op
.getOperand(0), DL
,
7519 DAG
.getConstant(FuncInfo
->getVarArgsGPOffset(),
7521 FIN
, MachinePointerInfo(SV
), false, false, 0);
7522 MemOps
.push_back(Store
);
7525 FIN
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
7526 FIN
, DAG
.getIntPtrConstant(4));
7527 Store
= DAG
.getStore(Op
.getOperand(0), DL
,
7528 DAG
.getConstant(FuncInfo
->getVarArgsFPOffset(),
7530 FIN
, MachinePointerInfo(SV
, 4), false, false, 0);
7531 MemOps
.push_back(Store
);
7533 // Store ptr to overflow_arg_area
7534 FIN
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
7535 FIN
, DAG
.getIntPtrConstant(4));
7536 SDValue OVFIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
7538 Store
= DAG
.getStore(Op
.getOperand(0), DL
, OVFIN
, FIN
,
7539 MachinePointerInfo(SV
, 8),
7541 MemOps
.push_back(Store
);
7543 // Store ptr to reg_save_area.
7544 FIN
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
7545 FIN
, DAG
.getIntPtrConstant(8));
7546 SDValue RSFIN
= DAG
.getFrameIndex(FuncInfo
->getRegSaveFrameIndex(),
7548 Store
= DAG
.getStore(Op
.getOperand(0), DL
, RSFIN
, FIN
,
7549 MachinePointerInfo(SV
, 16), false, false, 0);
7550 MemOps
.push_back(Store
);
7551 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
7552 &MemOps
[0], MemOps
.size());
7555 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
7556 assert(Subtarget
->is64Bit() &&
7557 "LowerVAARG only handles 64-bit va_arg!");
7558 assert((Subtarget
->isTargetLinux() ||
7559 Subtarget
->isTargetDarwin()) &&
7560 "Unhandled target in LowerVAARG");
7561 assert(Op
.getNode()->getNumOperands() == 4);
7562 SDValue Chain
= Op
.getOperand(0);
7563 SDValue SrcPtr
= Op
.getOperand(1);
7564 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
7565 unsigned Align
= Op
.getConstantOperandVal(3);
7566 DebugLoc dl
= Op
.getDebugLoc();
7568 EVT ArgVT
= Op
.getNode()->getValueType(0);
7569 const Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
7570 uint32_t ArgSize
= getTargetData()->getTypeAllocSize(ArgTy
);
7573 // Decide which area this value should be read from.
7574 // TODO: Implement the AMD64 ABI in its entirety. This simple
7575 // selection mechanism works only for the basic types.
7576 if (ArgVT
== MVT::f80
) {
7577 llvm_unreachable("va_arg for f80 not yet implemented");
7578 } else if (ArgVT
.isFloatingPoint() && ArgSize
<= 16 /*bytes*/) {
7579 ArgMode
= 2; // Argument passed in XMM register. Use fp_offset.
7580 } else if (ArgVT
.isInteger() && ArgSize
<= 32 /*bytes*/) {
7581 ArgMode
= 1; // Argument passed in GPR64 register(s). Use gp_offset.
7583 llvm_unreachable("Unhandled argument type in LowerVAARG");
7587 // Sanity Check: Make sure using fp_offset makes sense.
7588 assert(!UseSoftFloat
&&
7589 !(DAG
.getMachineFunction()
7590 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat
)) &&
7591 Subtarget
->hasSSE1());
7594 // Insert VAARG_64 node into the DAG
7595 // VAARG_64 returns two values: Variable Argument Address, Chain
7596 SmallVector
<SDValue
, 11> InstOps
;
7597 InstOps
.push_back(Chain
);
7598 InstOps
.push_back(SrcPtr
);
7599 InstOps
.push_back(DAG
.getConstant(ArgSize
, MVT::i32
));
7600 InstOps
.push_back(DAG
.getConstant(ArgMode
, MVT::i8
));
7601 InstOps
.push_back(DAG
.getConstant(Align
, MVT::i32
));
7602 SDVTList VTs
= DAG
.getVTList(getPointerTy(), MVT::Other
);
7603 SDValue VAARG
= DAG
.getMemIntrinsicNode(X86ISD::VAARG_64
, dl
,
7604 VTs
, &InstOps
[0], InstOps
.size(),
7606 MachinePointerInfo(SV
),
7611 Chain
= VAARG
.getValue(1);
7613 // Load the next argument and return it
7614 return DAG
.getLoad(ArgVT
, dl
,
7617 MachinePointerInfo(),
7621 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const {
7622 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7623 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
7624 SDValue Chain
= Op
.getOperand(0);
7625 SDValue DstPtr
= Op
.getOperand(1);
7626 SDValue SrcPtr
= Op
.getOperand(2);
7627 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
7628 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
7629 DebugLoc DL
= Op
.getDebugLoc();
7631 return DAG
.getMemcpy(Chain
, DL
, DstPtr
, SrcPtr
,
7632 DAG
.getIntPtrConstant(24), 8, /*isVolatile*/false,
7634 MachinePointerInfo(DstSV
), MachinePointerInfo(SrcSV
));
7638 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const {
7639 DebugLoc dl
= Op
.getDebugLoc();
7640 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
7642 default: return SDValue(); // Don't custom lower most intrinsics.
7643 // Comparison intrinsics.
7644 case Intrinsic::x86_sse_comieq_ss
:
7645 case Intrinsic::x86_sse_comilt_ss
:
7646 case Intrinsic::x86_sse_comile_ss
:
7647 case Intrinsic::x86_sse_comigt_ss
:
7648 case Intrinsic::x86_sse_comige_ss
:
7649 case Intrinsic::x86_sse_comineq_ss
:
7650 case Intrinsic::x86_sse_ucomieq_ss
:
7651 case Intrinsic::x86_sse_ucomilt_ss
:
7652 case Intrinsic::x86_sse_ucomile_ss
:
7653 case Intrinsic::x86_sse_ucomigt_ss
:
7654 case Intrinsic::x86_sse_ucomige_ss
:
7655 case Intrinsic::x86_sse_ucomineq_ss
:
7656 case Intrinsic::x86_sse2_comieq_sd
:
7657 case Intrinsic::x86_sse2_comilt_sd
:
7658 case Intrinsic::x86_sse2_comile_sd
:
7659 case Intrinsic::x86_sse2_comigt_sd
:
7660 case Intrinsic::x86_sse2_comige_sd
:
7661 case Intrinsic::x86_sse2_comineq_sd
:
7662 case Intrinsic::x86_sse2_ucomieq_sd
:
7663 case Intrinsic::x86_sse2_ucomilt_sd
:
7664 case Intrinsic::x86_sse2_ucomile_sd
:
7665 case Intrinsic::x86_sse2_ucomigt_sd
:
7666 case Intrinsic::x86_sse2_ucomige_sd
:
7667 case Intrinsic::x86_sse2_ucomineq_sd
: {
7669 ISD::CondCode CC
= ISD::SETCC_INVALID
;
7672 case Intrinsic::x86_sse_comieq_ss
:
7673 case Intrinsic::x86_sse2_comieq_sd
:
7677 case Intrinsic::x86_sse_comilt_ss
:
7678 case Intrinsic::x86_sse2_comilt_sd
:
7682 case Intrinsic::x86_sse_comile_ss
:
7683 case Intrinsic::x86_sse2_comile_sd
:
7687 case Intrinsic::x86_sse_comigt_ss
:
7688 case Intrinsic::x86_sse2_comigt_sd
:
7692 case Intrinsic::x86_sse_comige_ss
:
7693 case Intrinsic::x86_sse2_comige_sd
:
7697 case Intrinsic::x86_sse_comineq_ss
:
7698 case Intrinsic::x86_sse2_comineq_sd
:
7702 case Intrinsic::x86_sse_ucomieq_ss
:
7703 case Intrinsic::x86_sse2_ucomieq_sd
:
7704 Opc
= X86ISD::UCOMI
;
7707 case Intrinsic::x86_sse_ucomilt_ss
:
7708 case Intrinsic::x86_sse2_ucomilt_sd
:
7709 Opc
= X86ISD::UCOMI
;
7712 case Intrinsic::x86_sse_ucomile_ss
:
7713 case Intrinsic::x86_sse2_ucomile_sd
:
7714 Opc
= X86ISD::UCOMI
;
7717 case Intrinsic::x86_sse_ucomigt_ss
:
7718 case Intrinsic::x86_sse2_ucomigt_sd
:
7719 Opc
= X86ISD::UCOMI
;
7722 case Intrinsic::x86_sse_ucomige_ss
:
7723 case Intrinsic::x86_sse2_ucomige_sd
:
7724 Opc
= X86ISD::UCOMI
;
7727 case Intrinsic::x86_sse_ucomineq_ss
:
7728 case Intrinsic::x86_sse2_ucomineq_sd
:
7729 Opc
= X86ISD::UCOMI
;
7734 SDValue LHS
= Op
.getOperand(1);
7735 SDValue RHS
= Op
.getOperand(2);
7736 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
7737 assert(X86CC
!= X86::COND_INVALID
&& "Unexpected illegal condition!");
7738 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
7739 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
7740 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
7741 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
7743 // ptest and testp intrinsics. The intrinsic these come from are designed to
7744 // return an integer value, not just an instruction so lower it to the ptest
7745 // or testp pattern and a setcc for the result.
7746 case Intrinsic::x86_sse41_ptestz
:
7747 case Intrinsic::x86_sse41_ptestc
:
7748 case Intrinsic::x86_sse41_ptestnzc
:
7749 case Intrinsic::x86_avx_ptestz_256
:
7750 case Intrinsic::x86_avx_ptestc_256
:
7751 case Intrinsic::x86_avx_ptestnzc_256
:
7752 case Intrinsic::x86_avx_vtestz_ps
:
7753 case Intrinsic::x86_avx_vtestc_ps
:
7754 case Intrinsic::x86_avx_vtestnzc_ps
:
7755 case Intrinsic::x86_avx_vtestz_pd
:
7756 case Intrinsic::x86_avx_vtestc_pd
:
7757 case Intrinsic::x86_avx_vtestnzc_pd
:
7758 case Intrinsic::x86_avx_vtestz_ps_256
:
7759 case Intrinsic::x86_avx_vtestc_ps_256
:
7760 case Intrinsic::x86_avx_vtestnzc_ps_256
:
7761 case Intrinsic::x86_avx_vtestz_pd_256
:
7762 case Intrinsic::x86_avx_vtestc_pd_256
:
7763 case Intrinsic::x86_avx_vtestnzc_pd_256
: {
7764 bool IsTestPacked
= false;
7767 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7768 case Intrinsic::x86_avx_vtestz_ps
:
7769 case Intrinsic::x86_avx_vtestz_pd
:
7770 case Intrinsic::x86_avx_vtestz_ps_256
:
7771 case Intrinsic::x86_avx_vtestz_pd_256
:
7772 IsTestPacked
= true; // Fallthrough
7773 case Intrinsic::x86_sse41_ptestz
:
7774 case Intrinsic::x86_avx_ptestz_256
:
7776 X86CC
= X86::COND_E
;
7778 case Intrinsic::x86_avx_vtestc_ps
:
7779 case Intrinsic::x86_avx_vtestc_pd
:
7780 case Intrinsic::x86_avx_vtestc_ps_256
:
7781 case Intrinsic::x86_avx_vtestc_pd_256
:
7782 IsTestPacked
= true; // Fallthrough
7783 case Intrinsic::x86_sse41_ptestc
:
7784 case Intrinsic::x86_avx_ptestc_256
:
7786 X86CC
= X86::COND_B
;
7788 case Intrinsic::x86_avx_vtestnzc_ps
:
7789 case Intrinsic::x86_avx_vtestnzc_pd
:
7790 case Intrinsic::x86_avx_vtestnzc_ps_256
:
7791 case Intrinsic::x86_avx_vtestnzc_pd_256
:
7792 IsTestPacked
= true; // Fallthrough
7793 case Intrinsic::x86_sse41_ptestnzc
:
7794 case Intrinsic::x86_avx_ptestnzc_256
:
7796 X86CC
= X86::COND_A
;
7800 SDValue LHS
= Op
.getOperand(1);
7801 SDValue RHS
= Op
.getOperand(2);
7802 unsigned TestOpc
= IsTestPacked
? X86ISD::TESTP
: X86ISD::PTEST
;
7803 SDValue Test
= DAG
.getNode(TestOpc
, dl
, MVT::i32
, LHS
, RHS
);
7804 SDValue CC
= DAG
.getConstant(X86CC
, MVT::i8
);
7805 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
, CC
, Test
);
7806 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
7809 // Fix vector shift instructions where the last operand is a non-immediate
7811 case Intrinsic::x86_sse2_pslli_w
:
7812 case Intrinsic::x86_sse2_pslli_d
:
7813 case Intrinsic::x86_sse2_pslli_q
:
7814 case Intrinsic::x86_sse2_psrli_w
:
7815 case Intrinsic::x86_sse2_psrli_d
:
7816 case Intrinsic::x86_sse2_psrli_q
:
7817 case Intrinsic::x86_sse2_psrai_w
:
7818 case Intrinsic::x86_sse2_psrai_d
:
7819 case Intrinsic::x86_mmx_pslli_w
:
7820 case Intrinsic::x86_mmx_pslli_d
:
7821 case Intrinsic::x86_mmx_pslli_q
:
7822 case Intrinsic::x86_mmx_psrli_w
:
7823 case Intrinsic::x86_mmx_psrli_d
:
7824 case Intrinsic::x86_mmx_psrli_q
:
7825 case Intrinsic::x86_mmx_psrai_w
:
7826 case Intrinsic::x86_mmx_psrai_d
: {
7827 SDValue ShAmt
= Op
.getOperand(2);
7828 if (isa
<ConstantSDNode
>(ShAmt
))
7831 unsigned NewIntNo
= 0;
7832 EVT ShAmtVT
= MVT::v4i32
;
7834 case Intrinsic::x86_sse2_pslli_w
:
7835 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
7837 case Intrinsic::x86_sse2_pslli_d
:
7838 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
7840 case Intrinsic::x86_sse2_pslli_q
:
7841 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
7843 case Intrinsic::x86_sse2_psrli_w
:
7844 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
7846 case Intrinsic::x86_sse2_psrli_d
:
7847 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
7849 case Intrinsic::x86_sse2_psrli_q
:
7850 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
7852 case Intrinsic::x86_sse2_psrai_w
:
7853 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
7855 case Intrinsic::x86_sse2_psrai_d
:
7856 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
7859 ShAmtVT
= MVT::v2i32
;
7861 case Intrinsic::x86_mmx_pslli_w
:
7862 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
7864 case Intrinsic::x86_mmx_pslli_d
:
7865 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
7867 case Intrinsic::x86_mmx_pslli_q
:
7868 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
7870 case Intrinsic::x86_mmx_psrli_w
:
7871 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
7873 case Intrinsic::x86_mmx_psrli_d
:
7874 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
7876 case Intrinsic::x86_mmx_psrli_q
:
7877 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
7879 case Intrinsic::x86_mmx_psrai_w
:
7880 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
7882 case Intrinsic::x86_mmx_psrai_d
:
7883 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
7885 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7891 // The vector shift intrinsics with scalars uses 32b shift amounts but
7892 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7896 ShOps
[1] = DAG
.getConstant(0, MVT::i32
);
7897 if (ShAmtVT
== MVT::v4i32
) {
7898 ShOps
[2] = DAG
.getUNDEF(MVT::i32
);
7899 ShOps
[3] = DAG
.getUNDEF(MVT::i32
);
7900 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 4);
7902 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 2);
7903 // FIXME this must be lowered to get rid of the invalid type.
7906 EVT VT
= Op
.getValueType();
7907 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ShAmt
);
7908 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
7909 DAG
.getConstant(NewIntNo
, MVT::i32
),
7910 Op
.getOperand(1), ShAmt
);
7915 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
,
7916 SelectionDAG
&DAG
) const {
7917 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7918 MFI
->setReturnAddressIsTaken(true);
7920 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
7921 DebugLoc dl
= Op
.getDebugLoc();
7924 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
7926 DAG
.getConstant(TD
->getPointerSize(),
7927 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
7928 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
7929 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
7931 MachinePointerInfo(), false, false, 0);
7934 // Just load the return address.
7935 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
7936 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
7937 RetAddrFI
, MachinePointerInfo(), false, false, 0);
7940 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
7941 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7942 MFI
->setFrameAddressIsTaken(true);
7944 EVT VT
= Op
.getValueType();
7945 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
7946 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
7947 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
7948 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
7950 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
7951 MachinePointerInfo(),
7956 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
7957 SelectionDAG
&DAG
) const {
7958 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
7961 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const {
7962 MachineFunction
&MF
= DAG
.getMachineFunction();
7963 SDValue Chain
= Op
.getOperand(0);
7964 SDValue Offset
= Op
.getOperand(1);
7965 SDValue Handler
= Op
.getOperand(2);
7966 DebugLoc dl
= Op
.getDebugLoc();
7968 SDValue Frame
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
7969 Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
7971 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
7973 SDValue StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Frame
,
7974 DAG
.getIntPtrConstant(TD
->getPointerSize()));
7975 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
7976 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, MachinePointerInfo(),
7978 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
7979 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
7981 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
7983 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
7986 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
7987 SelectionDAG
&DAG
) const {
7988 SDValue Root
= Op
.getOperand(0);
7989 SDValue Trmp
= Op
.getOperand(1); // trampoline
7990 SDValue FPtr
= Op
.getOperand(2); // nested function
7991 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
7992 DebugLoc dl
= Op
.getDebugLoc();
7994 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
7996 if (Subtarget
->is64Bit()) {
7997 SDValue OutChains
[6];
7999 // Large code-model.
8000 const unsigned char JMP64r
= 0xFF; // 64-bit jmp through register opcode.
8001 const unsigned char MOV64ri
= 0xB8; // X86::MOV64ri opcode.
8003 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
8004 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
8006 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
8008 // Load the pointer to the nested function into R11.
8009 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
8010 SDValue Addr
= Trmp
;
8011 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
8012 Addr
, MachinePointerInfo(TrmpAddr
),
8015 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
8016 DAG
.getConstant(2, MVT::i64
));
8017 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
,
8018 MachinePointerInfo(TrmpAddr
, 2),
8021 // Load the 'nest' parameter value into R10.
8022 // R10 is specified in X86CallingConv.td
8023 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
8024 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
8025 DAG
.getConstant(10, MVT::i64
));
8026 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
8027 Addr
, MachinePointerInfo(TrmpAddr
, 10),
8030 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
8031 DAG
.getConstant(12, MVT::i64
));
8032 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
,
8033 MachinePointerInfo(TrmpAddr
, 12),
8036 // Jump to the nested function.
8037 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
8038 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
8039 DAG
.getConstant(20, MVT::i64
));
8040 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
8041 Addr
, MachinePointerInfo(TrmpAddr
, 20),
8044 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
8045 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
8046 DAG
.getConstant(22, MVT::i64
));
8047 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
8048 MachinePointerInfo(TrmpAddr
, 22),
8052 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
8053 return DAG
.getMergeValues(Ops
, 2, dl
);
8055 const Function
*Func
=
8056 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
8057 CallingConv::ID CC
= Func
->getCallingConv();
8062 llvm_unreachable("Unsupported calling convention");
8063 case CallingConv::C
:
8064 case CallingConv::X86_StdCall
: {
8065 // Pass 'nest' parameter in ECX.
8066 // Must be kept in sync with X86CallingConv.td
8069 // Check that ECX wasn't needed by an 'inreg' parameter.
8070 const FunctionType
*FTy
= Func
->getFunctionType();
8071 const AttrListPtr
&Attrs
= Func
->getAttributes();
8073 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
8074 unsigned InRegCount
= 0;
8077 for (FunctionType::param_iterator I
= FTy
->param_begin(),
8078 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
8079 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
8080 // FIXME: should only count parameters that are lowered to integers.
8081 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
8083 if (InRegCount
> 2) {
8084 report_fatal_error("Nest register in use - reduce number of inreg"
8090 case CallingConv::X86_FastCall
:
8091 case CallingConv::X86_ThisCall
:
8092 case CallingConv::Fast
:
8093 // Pass 'nest' parameter in EAX.
8094 // Must be kept in sync with X86CallingConv.td
8099 SDValue OutChains
[4];
8102 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
8103 DAG
.getConstant(10, MVT::i32
));
8104 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
8106 // This is storing the opcode for MOV32ri.
8107 const unsigned char MOV32ri
= 0xB8; // X86::MOV32ri's opcode byte.
8108 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
8109 OutChains
[0] = DAG
.getStore(Root
, dl
,
8110 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
8111 Trmp
, MachinePointerInfo(TrmpAddr
),
8114 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
8115 DAG
.getConstant(1, MVT::i32
));
8116 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
,
8117 MachinePointerInfo(TrmpAddr
, 1),
8120 const unsigned char JMP
= 0xE9; // jmp <32bit dst> opcode.
8121 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
8122 DAG
.getConstant(5, MVT::i32
));
8123 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
8124 MachinePointerInfo(TrmpAddr
, 5),
8127 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
8128 DAG
.getConstant(6, MVT::i32
));
8129 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
,
8130 MachinePointerInfo(TrmpAddr
, 6),
8134 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
8135 return DAG
.getMergeValues(Ops
, 2, dl
);
8139 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
8140 SelectionDAG
&DAG
) const {
8142 The rounding mode is in bits 11:10 of FPSR, and has the following
8149 FLT_ROUNDS, on the other hand, expects the following:
8156 To perform the conversion, we do:
8157 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8160 MachineFunction
&MF
= DAG
.getMachineFunction();
8161 const TargetMachine
&TM
= MF
.getTarget();
8162 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
8163 unsigned StackAlignment
= TFI
.getStackAlignment();
8164 EVT VT
= Op
.getValueType();
8165 DebugLoc DL
= Op
.getDebugLoc();
8167 // Save FP Control Word to stack slot
8168 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
, false);
8169 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
8172 MachineMemOperand
*MMO
=
8173 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI
),
8174 MachineMemOperand::MOStore
, 2, 2);
8176 SDValue Ops
[] = { DAG
.getEntryNode(), StackSlot
};
8177 SDValue Chain
= DAG
.getMemIntrinsicNode(X86ISD::FNSTCW16m
, DL
,
8178 DAG
.getVTList(MVT::Other
),
8179 Ops
, 2, MVT::i16
, MMO
);
8181 // Load FP Control Word from stack slot
8182 SDValue CWD
= DAG
.getLoad(MVT::i16
, DL
, Chain
, StackSlot
,
8183 MachinePointerInfo(), false, false, 0);
8185 // Transform as necessary
8187 DAG
.getNode(ISD::SRL
, DL
, MVT::i16
,
8188 DAG
.getNode(ISD::AND
, DL
, MVT::i16
,
8189 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
8190 DAG
.getConstant(11, MVT::i8
));
8192 DAG
.getNode(ISD::SRL
, DL
, MVT::i16
,
8193 DAG
.getNode(ISD::AND
, DL
, MVT::i16
,
8194 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
8195 DAG
.getConstant(9, MVT::i8
));
8198 DAG
.getNode(ISD::AND
, DL
, MVT::i16
,
8199 DAG
.getNode(ISD::ADD
, DL
, MVT::i16
,
8200 DAG
.getNode(ISD::OR
, DL
, MVT::i16
, CWD1
, CWD2
),
8201 DAG
.getConstant(1, MVT::i16
)),
8202 DAG
.getConstant(3, MVT::i16
));
8205 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
8206 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), DL
, VT
, RetVal
);
8209 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) const {
8210 EVT VT
= Op
.getValueType();
8212 unsigned NumBits
= VT
.getSizeInBits();
8213 DebugLoc dl
= Op
.getDebugLoc();
8215 Op
= Op
.getOperand(0);
8216 if (VT
== MVT::i8
) {
8217 // Zero extend to i32 since there is not an i8 bsr.
8219 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
8222 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8223 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
8224 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
8226 // If src is zero (i.e. bsr sets ZF), returns NumBits.
8229 DAG
.getConstant(NumBits
+NumBits
-1, OpVT
),
8230 DAG
.getConstant(X86::COND_E
, MVT::i8
),
8233 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, Ops
, array_lengthof(Ops
));
8235 // Finally xor with NumBits-1.
8236 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
8239 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
8243 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
8244 EVT VT
= Op
.getValueType();
8246 unsigned NumBits
= VT
.getSizeInBits();
8247 DebugLoc dl
= Op
.getDebugLoc();
8249 Op
= Op
.getOperand(0);
8250 if (VT
== MVT::i8
) {
8252 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
8255 // Issue a bsf (scan bits forward) which also sets EFLAGS.
8256 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
8257 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
8259 // If src is zero (i.e. bsf sets ZF), returns NumBits.
8262 DAG
.getConstant(NumBits
, OpVT
),
8263 DAG
.getConstant(X86::COND_E
, MVT::i8
),
8266 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, Ops
, array_lengthof(Ops
));
8269 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
8273 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) const {
8274 EVT VT
= Op
.getValueType();
8275 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
8276 DebugLoc dl
= Op
.getDebugLoc();
8278 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8279 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8280 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8281 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8282 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8284 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8285 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8286 // return AloBlo + AloBhi + AhiBlo;
8288 SDValue A
= Op
.getOperand(0);
8289 SDValue B
= Op
.getOperand(1);
8291 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8292 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8293 A
, DAG
.getConstant(32, MVT::i32
));
8294 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8295 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8296 B
, DAG
.getConstant(32, MVT::i32
));
8297 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8298 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
8300 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8301 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
8303 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8304 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
8306 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8307 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8308 AloBhi
, DAG
.getConstant(32, MVT::i32
));
8309 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8310 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8311 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
8312 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
8313 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
8317 SDValue
X86TargetLowering::LowerSHL(SDValue Op
, SelectionDAG
&DAG
) const {
8318 EVT VT
= Op
.getValueType();
8319 DebugLoc dl
= Op
.getDebugLoc();
8320 SDValue R
= Op
.getOperand(0);
8322 LLVMContext
*Context
= DAG
.getContext();
8324 assert(Subtarget
->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8326 if (VT
== MVT::v4i32
) {
8327 Op
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8328 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8329 Op
.getOperand(1), DAG
.getConstant(23, MVT::i32
));
8331 ConstantInt
*CI
= ConstantInt::get(*Context
, APInt(32, 0x3f800000U
));
8333 std::vector
<Constant
*> CV(4, CI
);
8334 Constant
*C
= ConstantVector::get(CV
);
8335 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
8336 SDValue Addend
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
8337 MachinePointerInfo::getConstantPool(),
8340 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Addend
);
8341 Op
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, Op
);
8342 Op
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
, Op
);
8343 return DAG
.getNode(ISD::MUL
, dl
, VT
, Op
, R
);
8345 if (VT
== MVT::v16i8
) {
8347 Op
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8348 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8349 Op
.getOperand(1), DAG
.getConstant(5, MVT::i32
));
8351 ConstantInt
*CM1
= ConstantInt::get(*Context
, APInt(8, 15));
8352 ConstantInt
*CM2
= ConstantInt::get(*Context
, APInt(8, 63));
8354 std::vector
<Constant
*> CVM1(16, CM1
);
8355 std::vector
<Constant
*> CVM2(16, CM2
);
8356 Constant
*C
= ConstantVector::get(CVM1
);
8357 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
8358 SDValue M
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
8359 MachinePointerInfo::getConstantPool(),
8362 // r = pblendv(r, psllw(r & (char16)15, 4), a);
8363 M
= DAG
.getNode(ISD::AND
, dl
, VT
, R
, M
);
8364 M
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8365 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
), M
,
8366 DAG
.getConstant(4, MVT::i32
));
8367 R
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8368 DAG
.getConstant(Intrinsic::x86_sse41_pblendvb
, MVT::i32
),
8371 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Op
);
8373 C
= ConstantVector::get(CVM2
);
8374 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
8375 M
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
8376 MachinePointerInfo::getConstantPool(),
8379 // r = pblendv(r, psllw(r & (char16)63, 2), a);
8380 M
= DAG
.getNode(ISD::AND
, dl
, VT
, R
, M
);
8381 M
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8382 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
), M
,
8383 DAG
.getConstant(2, MVT::i32
));
8384 R
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8385 DAG
.getConstant(Intrinsic::x86_sse41_pblendvb
, MVT::i32
),
8388 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Op
);
8390 // return pblendv(r, r+r, a);
8391 R
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
8392 DAG
.getConstant(Intrinsic::x86_sse41_pblendvb
, MVT::i32
),
8393 R
, DAG
.getNode(ISD::ADD
, dl
, VT
, R
, R
), Op
);
8399 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const {
8400 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8401 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8402 // looks for this combo and may remove the "setcc" instruction if the "setcc"
8403 // has only one use.
8404 SDNode
*N
= Op
.getNode();
8405 SDValue LHS
= N
->getOperand(0);
8406 SDValue RHS
= N
->getOperand(1);
8407 unsigned BaseOp
= 0;
8409 DebugLoc dl
= Op
.getDebugLoc();
8411 switch (Op
.getOpcode()) {
8412 default: llvm_unreachable("Unknown ovf instruction!");
8414 // A subtract of one will be selected as a INC. Note that INC doesn't
8415 // set CF, so we can't do this for UADDO.
8416 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
8417 if (C
->getAPIntValue() == 1) {
8418 BaseOp
= X86ISD::INC
;
8422 BaseOp
= X86ISD::ADD
;
8426 BaseOp
= X86ISD::ADD
;
8430 // A subtract of one will be selected as a DEC. Note that DEC doesn't
8431 // set CF, so we can't do this for USUBO.
8432 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
8433 if (C
->getAPIntValue() == 1) {
8434 BaseOp
= X86ISD::DEC
;
8438 BaseOp
= X86ISD::SUB
;
8442 BaseOp
= X86ISD::SUB
;
8446 BaseOp
= X86ISD::SMUL
;
8450 BaseOp
= X86ISD::UMUL
;
8455 // Also sets EFLAGS.
8456 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
8457 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
8460 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
8461 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
8463 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
8467 SDValue
X86TargetLowering::LowerMEMBARRIER(SDValue Op
, SelectionDAG
&DAG
) const{
8468 DebugLoc dl
= Op
.getDebugLoc();
8470 if (!Subtarget
->hasSSE2()) {
8471 SDValue Chain
= Op
.getOperand(0);
8472 SDValue Zero
= DAG
.getConstant(0,
8473 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
8475 DAG
.getRegister(X86::ESP
, MVT::i32
), // Base
8476 DAG
.getTargetConstant(1, MVT::i8
), // Scale
8477 DAG
.getRegister(0, MVT::i32
), // Index
8478 DAG
.getTargetConstant(0, MVT::i32
), // Disp
8479 DAG
.getRegister(0, MVT::i32
), // Segment.
8484 DAG
.getMachineNode(X86::OR32mrLocked
, dl
, MVT::Other
, Ops
,
8485 array_lengthof(Ops
));
8486 return SDValue(Res
, 0);
8489 unsigned isDev
= cast
<ConstantSDNode
>(Op
.getOperand(5))->getZExtValue();
8491 return DAG
.getNode(X86ISD::MEMBARRIER
, dl
, MVT::Other
, Op
.getOperand(0));
8493 unsigned Op1
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
8494 unsigned Op2
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
8495 unsigned Op3
= cast
<ConstantSDNode
>(Op
.getOperand(3))->getZExtValue();
8496 unsigned Op4
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
8498 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8499 if (!Op1
&& !Op2
&& !Op3
&& Op4
)
8500 return DAG
.getNode(X86ISD::SFENCE
, dl
, MVT::Other
, Op
.getOperand(0));
8502 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8503 if (Op1
&& !Op2
&& !Op3
&& !Op4
)
8504 return DAG
.getNode(X86ISD::LFENCE
, dl
, MVT::Other
, Op
.getOperand(0));
8506 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8508 return DAG
.getNode(X86ISD::MFENCE
, dl
, MVT::Other
, Op
.getOperand(0));
8511 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const {
8512 EVT T
= Op
.getValueType();
8513 DebugLoc DL
= Op
.getDebugLoc();
8516 switch(T
.getSimpleVT().SimpleTy
) {
8518 assert(false && "Invalid value type!");
8519 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
8520 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
8521 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
8523 assert(Subtarget
->is64Bit() && "Node not type legal!");
8524 Reg
= X86::RAX
; size
= 8;
8527 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), DL
, Reg
,
8528 Op
.getOperand(2), SDValue());
8529 SDValue Ops
[] = { cpIn
.getValue(0),
8532 DAG
.getTargetConstant(size
, MVT::i8
),
8534 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
8535 MachineMemOperand
*MMO
= cast
<AtomicSDNode
>(Op
)->getMemOperand();
8536 SDValue Result
= DAG
.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG
, DL
, Tys
,
8539 DAG
.getCopyFromReg(Result
.getValue(0), DL
, Reg
, T
, Result
.getValue(1));
8543 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
8544 SelectionDAG
&DAG
) const {
8545 assert(Subtarget
->is64Bit() && "Result not type legalized?");
8546 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
8547 SDValue TheChain
= Op
.getOperand(0);
8548 DebugLoc dl
= Op
.getDebugLoc();
8549 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
8550 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
8551 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
8553 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
8554 DAG
.getConstant(32, MVT::i8
));
8556 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
8559 return DAG
.getMergeValues(Ops
, 2, dl
);
8562 SDValue
X86TargetLowering::LowerBIT_CONVERT(SDValue Op
,
8563 SelectionDAG
&DAG
) const {
8564 EVT SrcVT
= Op
.getOperand(0).getValueType();
8565 EVT DstVT
= Op
.getValueType();
8566 assert((Subtarget
->is64Bit() && !Subtarget
->hasSSE2() &&
8567 Subtarget
->hasMMX() && !DisableMMX
) &&
8568 "Unexpected custom BIT_CONVERT");
8569 assert((DstVT
== MVT::i64
||
8570 (DstVT
.isVector() && DstVT
.getSizeInBits()==64)) &&
8571 "Unexpected custom BIT_CONVERT");
8572 // i64 <=> MMX conversions are Legal.
8573 if (SrcVT
==MVT::i64
&& DstVT
.isVector())
8575 if (DstVT
==MVT::i64
&& SrcVT
.isVector())
8577 // MMX <=> MMX conversions are Legal.
8578 if (SrcVT
.isVector() && DstVT
.isVector())
8580 // All other conversions need to be expanded.
8583 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const {
8584 SDNode
*Node
= Op
.getNode();
8585 DebugLoc dl
= Node
->getDebugLoc();
8586 EVT T
= Node
->getValueType(0);
8587 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
8588 DAG
.getConstant(0, T
), Node
->getOperand(2));
8589 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
8590 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
8591 Node
->getOperand(0),
8592 Node
->getOperand(1), negOp
,
8593 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
8594 cast
<AtomicSDNode
>(Node
)->getAlignment());
8597 /// LowerOperation - Provide custom lowering hooks for some operations.
8599 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8600 switch (Op
.getOpcode()) {
8601 default: llvm_unreachable("Should not custom lower this!");
8602 case ISD::MEMBARRIER
: return LowerMEMBARRIER(Op
,DAG
);
8603 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
8604 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
8605 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
8606 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
8607 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
8608 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
8609 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8610 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
8611 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8612 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8613 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8614 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
8615 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8616 case ISD::SHL_PARTS
:
8617 case ISD::SRA_PARTS
:
8618 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
8619 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
8620 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
8621 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
8622 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
8623 case ISD::FABS
: return LowerFABS(Op
, DAG
);
8624 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
8625 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8626 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
8627 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
8628 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8629 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8630 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
8631 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8632 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
8633 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
8634 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
8635 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8636 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8637 case ISD::FRAME_TO_ARGS_OFFSET
:
8638 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
8639 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8640 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
8641 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
8642 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8643 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
8644 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
8645 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
8646 case ISD::SHL
: return LowerSHL(Op
, DAG
);
8652 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
8653 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
8654 case ISD::BIT_CONVERT
: return LowerBIT_CONVERT(Op
, DAG
);
8658 void X86TargetLowering::
8659 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
8660 SelectionDAG
&DAG
, unsigned NewOp
) const {
8661 EVT T
= Node
->getValueType(0);
8662 DebugLoc dl
= Node
->getDebugLoc();
8663 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
8665 SDValue Chain
= Node
->getOperand(0);
8666 SDValue In1
= Node
->getOperand(1);
8667 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8668 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
8669 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8670 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
8671 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
};
8672 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
8674 DAG
.getMemIntrinsicNode(NewOp
, dl
, Tys
, Ops
, 4, MVT::i64
,
8675 cast
<MemSDNode
>(Node
)->getMemOperand());
8676 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
8677 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
8678 Results
.push_back(Result
.getValue(2));
8681 /// ReplaceNodeResults - Replace a node with an illegal result type
8682 /// with a new node built out of custom code.
8683 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
8684 SmallVectorImpl
<SDValue
>&Results
,
8685 SelectionDAG
&DAG
) const {
8686 DebugLoc dl
= N
->getDebugLoc();
8687 switch (N
->getOpcode()) {
8689 assert(false && "Do not know how to custom type legalize this operation!");
8691 case ISD::FP_TO_SINT
: {
8692 std::pair
<SDValue
,SDValue
> Vals
=
8693 FP_TO_INTHelper(SDValue(N
, 0), DAG
, true);
8694 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
8695 if (FIST
.getNode() != 0) {
8696 EVT VT
= N
->getValueType(0);
8697 // Return a load from the stack slot.
8698 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
,
8699 MachinePointerInfo(), false, false, 0));
8703 case ISD::READCYCLECOUNTER
: {
8704 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
8705 SDValue TheChain
= N
->getOperand(0);
8706 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
8707 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
8709 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
8711 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8712 SDValue Ops
[] = { eax
, edx
};
8713 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
8714 Results
.push_back(edx
.getValue(1));
8717 case ISD::ATOMIC_CMP_SWAP
: {
8718 EVT T
= N
->getValueType(0);
8719 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
8720 SDValue cpInL
, cpInH
;
8721 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
8722 DAG
.getConstant(0, MVT::i32
));
8723 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
8724 DAG
.getConstant(1, MVT::i32
));
8725 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
8726 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
8728 SDValue swapInL
, swapInH
;
8729 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
8730 DAG
.getConstant(0, MVT::i32
));
8731 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
8732 DAG
.getConstant(1, MVT::i32
));
8733 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
8735 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
8736 swapInL
.getValue(1));
8737 SDValue Ops
[] = { swapInH
.getValue(0),
8739 swapInH
.getValue(1) };
8740 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
8741 MachineMemOperand
*MMO
= cast
<AtomicSDNode
>(N
)->getMemOperand();
8742 SDValue Result
= DAG
.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
,
8744 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
8745 MVT::i32
, Result
.getValue(1));
8746 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
8747 MVT::i32
, cpOutL
.getValue(2));
8748 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
8749 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
8750 Results
.push_back(cpOutH
.getValue(1));
8753 case ISD::ATOMIC_LOAD_ADD
:
8754 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
8756 case ISD::ATOMIC_LOAD_AND
:
8757 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
8759 case ISD::ATOMIC_LOAD_NAND
:
8760 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
8762 case ISD::ATOMIC_LOAD_OR
:
8763 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
8765 case ISD::ATOMIC_LOAD_SUB
:
8766 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
8768 case ISD::ATOMIC_LOAD_XOR
:
8769 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
8771 case ISD::ATOMIC_SWAP
:
8772 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
8777 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
8779 default: return NULL
;
8780 case X86ISD::BSF
: return "X86ISD::BSF";
8781 case X86ISD::BSR
: return "X86ISD::BSR";
8782 case X86ISD::SHLD
: return "X86ISD::SHLD";
8783 case X86ISD::SHRD
: return "X86ISD::SHRD";
8784 case X86ISD::FAND
: return "X86ISD::FAND";
8785 case X86ISD::FOR
: return "X86ISD::FOR";
8786 case X86ISD::FXOR
: return "X86ISD::FXOR";
8787 case X86ISD::FSRL
: return "X86ISD::FSRL";
8788 case X86ISD::FILD
: return "X86ISD::FILD";
8789 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
8790 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
8791 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
8792 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
8793 case X86ISD::FLD
: return "X86ISD::FLD";
8794 case X86ISD::FST
: return "X86ISD::FST";
8795 case X86ISD::CALL
: return "X86ISD::CALL";
8796 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
8797 case X86ISD::BT
: return "X86ISD::BT";
8798 case X86ISD::CMP
: return "X86ISD::CMP";
8799 case X86ISD::COMI
: return "X86ISD::COMI";
8800 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
8801 case X86ISD::SETCC
: return "X86ISD::SETCC";
8802 case X86ISD::SETCC_CARRY
: return "X86ISD::SETCC_CARRY";
8803 case X86ISD::CMOV
: return "X86ISD::CMOV";
8804 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
8805 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
8806 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
8807 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
8808 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
8809 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
8810 case X86ISD::WrapperRIP
: return "X86ISD::WrapperRIP";
8811 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
8812 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
8813 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
8814 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
8815 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
8816 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
8817 case X86ISD::FMAX
: return "X86ISD::FMAX";
8818 case X86ISD::FMIN
: return "X86ISD::FMIN";
8819 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
8820 case X86ISD::FRCP
: return "X86ISD::FRCP";
8821 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
8822 case X86ISD::TLSCALL
: return "X86ISD::TLSCALL";
8823 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
8824 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
8825 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
8826 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
8827 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
8828 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
8829 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
8830 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
8831 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
8832 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
8833 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
8834 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
8835 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
8836 case X86ISD::VSHL
: return "X86ISD::VSHL";
8837 case X86ISD::VSRL
: return "X86ISD::VSRL";
8838 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
8839 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
8840 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
8841 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
8842 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
8843 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
8844 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
8845 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
8846 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
8847 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
8848 case X86ISD::ADD
: return "X86ISD::ADD";
8849 case X86ISD::SUB
: return "X86ISD::SUB";
8850 case X86ISD::SMUL
: return "X86ISD::SMUL";
8851 case X86ISD::UMUL
: return "X86ISD::UMUL";
8852 case X86ISD::INC
: return "X86ISD::INC";
8853 case X86ISD::DEC
: return "X86ISD::DEC";
8854 case X86ISD::OR
: return "X86ISD::OR";
8855 case X86ISD::XOR
: return "X86ISD::XOR";
8856 case X86ISD::AND
: return "X86ISD::AND";
8857 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
8858 case X86ISD::PTEST
: return "X86ISD::PTEST";
8859 case X86ISD::TESTP
: return "X86ISD::TESTP";
8860 case X86ISD::PALIGN
: return "X86ISD::PALIGN";
8861 case X86ISD::PSHUFD
: return "X86ISD::PSHUFD";
8862 case X86ISD::PSHUFHW
: return "X86ISD::PSHUFHW";
8863 case X86ISD::PSHUFHW_LD
: return "X86ISD::PSHUFHW_LD";
8864 case X86ISD::PSHUFLW
: return "X86ISD::PSHUFLW";
8865 case X86ISD::PSHUFLW_LD
: return "X86ISD::PSHUFLW_LD";
8866 case X86ISD::SHUFPS
: return "X86ISD::SHUFPS";
8867 case X86ISD::SHUFPD
: return "X86ISD::SHUFPD";
8868 case X86ISD::MOVLHPS
: return "X86ISD::MOVLHPS";
8869 case X86ISD::MOVLHPD
: return "X86ISD::MOVLHPD";
8870 case X86ISD::MOVHLPS
: return "X86ISD::MOVHLPS";
8871 case X86ISD::MOVHLPD
: return "X86ISD::MOVHLPD";
8872 case X86ISD::MOVLPS
: return "X86ISD::MOVLPS";
8873 case X86ISD::MOVLPD
: return "X86ISD::MOVLPD";
8874 case X86ISD::MOVDDUP
: return "X86ISD::MOVDDUP";
8875 case X86ISD::MOVSHDUP
: return "X86ISD::MOVSHDUP";
8876 case X86ISD::MOVSLDUP
: return "X86ISD::MOVSLDUP";
8877 case X86ISD::MOVSHDUP_LD
: return "X86ISD::MOVSHDUP_LD";
8878 case X86ISD::MOVSLDUP_LD
: return "X86ISD::MOVSLDUP_LD";
8879 case X86ISD::MOVSD
: return "X86ISD::MOVSD";
8880 case X86ISD::MOVSS
: return "X86ISD::MOVSS";
8881 case X86ISD::UNPCKLPS
: return "X86ISD::UNPCKLPS";
8882 case X86ISD::UNPCKLPD
: return "X86ISD::UNPCKLPD";
8883 case X86ISD::UNPCKHPS
: return "X86ISD::UNPCKHPS";
8884 case X86ISD::UNPCKHPD
: return "X86ISD::UNPCKHPD";
8885 case X86ISD::PUNPCKLBW
: return "X86ISD::PUNPCKLBW";
8886 case X86ISD::PUNPCKLWD
: return "X86ISD::PUNPCKLWD";
8887 case X86ISD::PUNPCKLDQ
: return "X86ISD::PUNPCKLDQ";
8888 case X86ISD::PUNPCKLQDQ
: return "X86ISD::PUNPCKLQDQ";
8889 case X86ISD::PUNPCKHBW
: return "X86ISD::PUNPCKHBW";
8890 case X86ISD::PUNPCKHWD
: return "X86ISD::PUNPCKHWD";
8891 case X86ISD::PUNPCKHDQ
: return "X86ISD::PUNPCKHDQ";
8892 case X86ISD::PUNPCKHQDQ
: return "X86ISD::PUNPCKHQDQ";
8893 case X86ISD::VASTART_SAVE_XMM_REGS
: return "X86ISD::VASTART_SAVE_XMM_REGS";
8894 case X86ISD::VAARG_64
: return "X86ISD::VAARG_64";
8895 case X86ISD::WIN_ALLOCA
: return "X86ISD::WIN_ALLOCA";
8899 // isLegalAddressingMode - Return true if the addressing mode represented
8900 // by AM is legal for this target, for a load/store of the specified type.
8901 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
8902 const Type
*Ty
) const {
8903 // X86 supports extremely general addressing modes.
8904 CodeModel::Model M
= getTargetMachine().getCodeModel();
8905 Reloc::Model R
= getTargetMachine().getRelocationModel();
8907 // X86 allows a sign-extended 32-bit immediate field as a displacement.
8908 if (!X86::isOffsetSuitableForCodeModel(AM
.BaseOffs
, M
, AM
.BaseGV
!= NULL
))
8913 Subtarget
->ClassifyGlobalReference(AM
.BaseGV
, getTargetMachine());
8915 // If a reference to this global requires an extra load, we can't fold it.
8916 if (isGlobalStubReference(GVFlags
))
8919 // If BaseGV requires a register for the PIC base, we cannot also have a
8920 // BaseReg specified.
8921 if (AM
.HasBaseReg
&& isGlobalRelativeToPICBase(GVFlags
))
8924 // If lower 4G is not available, then we must use rip-relative addressing.
8925 if ((M
!= CodeModel::Small
|| R
!= Reloc::Static
) &&
8926 Subtarget
->is64Bit() && (AM
.BaseOffs
|| AM
.Scale
> 1))
8936 // These scales always work.
8941 // These scales are formed with basereg+scalereg. Only accept if there is
8946 default: // Other stuff never works.
8954 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
8955 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8957 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8958 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8959 if (NumBits1
<= NumBits2
)
8964 bool X86TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
8965 if (!VT1
.isInteger() || !VT2
.isInteger())
8967 unsigned NumBits1
= VT1
.getSizeInBits();
8968 unsigned NumBits2
= VT2
.getSizeInBits();
8969 if (NumBits1
<= NumBits2
)
8974 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
8975 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8976 return Ty1
->isIntegerTy(32) && Ty2
->isIntegerTy(64) && Subtarget
->is64Bit();
8979 bool X86TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
8980 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8981 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
8984 bool X86TargetLowering::isNarrowingProfitable(EVT VT1
, EVT VT2
) const {
8985 // i16 instructions are longer (0x66 prefix) and potentially slower.
8986 return !(VT1
== MVT::i32
&& VT2
== MVT::i16
);
8989 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8990 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8991 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8992 /// are assumed to be legal.
8994 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
8996 // Very little shuffling can be done for 64-bit vectors right now.
8997 if (VT
.getSizeInBits() == 64)
8998 return isPALIGNRMask(M
, VT
, Subtarget
->hasSSSE3());
9000 // FIXME: pshufb, blends, shifts.
9001 return (VT
.getVectorNumElements() == 2 ||
9002 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
9003 isMOVLMask(M
, VT
) ||
9004 isSHUFPMask(M
, VT
) ||
9005 isPSHUFDMask(M
, VT
) ||
9006 isPSHUFHWMask(M
, VT
) ||
9007 isPSHUFLWMask(M
, VT
) ||
9008 isPALIGNRMask(M
, VT
, Subtarget
->hasSSSE3()) ||
9009 isUNPCKLMask(M
, VT
) ||
9010 isUNPCKHMask(M
, VT
) ||
9011 isUNPCKL_v_undef_Mask(M
, VT
) ||
9012 isUNPCKH_v_undef_Mask(M
, VT
));
9016 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
9018 unsigned NumElts
= VT
.getVectorNumElements();
9019 // FIXME: This collection of masks seems suspect.
9022 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
9023 return (isMOVLMask(Mask
, VT
) ||
9024 isCommutedMOVLMask(Mask
, VT
, true) ||
9025 isSHUFPMask(Mask
, VT
) ||
9026 isCommutedSHUFPMask(Mask
, VT
));
9031 //===----------------------------------------------------------------------===//
9032 // X86 Scheduler Hooks
9033 //===----------------------------------------------------------------------===//
9035 // private utility function
9037 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
9038 MachineBasicBlock
*MBB
,
9045 TargetRegisterClass
*RC
,
9046 bool invSrc
) const {
9047 // For the atomic bitwise operator, we generate
9050 // ld t1 = [bitinstr.addr]
9051 // op t2 = t1, [bitinstr.val]
9053 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9055 // fallthrough -->nextMBB
9056 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9057 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
9058 MachineFunction::iterator MBBIter
= MBB
;
9061 /// First build the CFG
9062 MachineFunction
*F
= MBB
->getParent();
9063 MachineBasicBlock
*thisMBB
= MBB
;
9064 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9065 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9066 F
->insert(MBBIter
, newMBB
);
9067 F
->insert(MBBIter
, nextMBB
);
9069 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9070 nextMBB
->splice(nextMBB
->begin(), thisMBB
,
9071 llvm::next(MachineBasicBlock::iterator(bInstr
)),
9073 nextMBB
->transferSuccessorsAndUpdatePHIs(thisMBB
);
9075 // Update thisMBB to fall through to newMBB
9076 thisMBB
->addSuccessor(newMBB
);
9078 // newMBB jumps to itself and fall through to nextMBB
9079 newMBB
->addSuccessor(nextMBB
);
9080 newMBB
->addSuccessor(newMBB
);
9082 // Insert instructions into newMBB based on incoming instruction
9083 assert(bInstr
->getNumOperands() < X86::AddrNumOperands
+ 4 &&
9084 "unexpected number of operands");
9085 DebugLoc dl
= bInstr
->getDebugLoc();
9086 MachineOperand
& destOper
= bInstr
->getOperand(0);
9087 MachineOperand
* argOpers
[2 + X86::AddrNumOperands
];
9088 int numArgs
= bInstr
->getNumOperands() - 1;
9089 for (int i
=0; i
< numArgs
; ++i
)
9090 argOpers
[i
] = &bInstr
->getOperand(i
+1);
9092 // x86 address has 4 operands: base, index, scale, and displacement
9093 int lastAddrIndx
= X86::AddrNumOperands
- 1; // [0,3]
9094 int valArgIndx
= lastAddrIndx
+ 1;
9096 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
9097 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
9098 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9099 (*MIB
).addOperand(*argOpers
[i
]);
9101 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
9103 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
9108 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
9109 assert((argOpers
[valArgIndx
]->isReg() ||
9110 argOpers
[valArgIndx
]->isImm()) &&
9112 if (argOpers
[valArgIndx
]->isReg())
9113 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
9115 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
9117 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
9119 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), EAXreg
);
9122 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
9123 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9124 (*MIB
).addOperand(*argOpers
[i
]);
9126 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
9127 (*MIB
).setMemRefs(bInstr
->memoperands_begin(),
9128 bInstr
->memoperands_end());
9130 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), destOper
.getReg());
9134 BuildMI(newMBB
, dl
, TII
->get(X86::JNE_4
)).addMBB(newMBB
);
9136 bInstr
->eraseFromParent(); // The pseudo instruction is gone now.
9140 // private utility function: 64 bit atomics on 32 bit host.
9142 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
9143 MachineBasicBlock
*MBB
,
9148 bool invSrc
) const {
9149 // For the atomic bitwise operator, we generate
9150 // thisMBB (instructions are in pairs, except cmpxchg8b)
9151 // ld t1,t2 = [bitinstr.addr]
9153 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9154 // op t5, t6 <- out1, out2, [bitinstr.val]
9155 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
9156 // mov ECX, EBX <- t5, t6
9157 // mov EAX, EDX <- t1, t2
9158 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
9159 // mov t3, t4 <- EAX, EDX
9161 // result in out1, out2
9162 // fallthrough -->nextMBB
9164 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
9165 const unsigned LoadOpc
= X86::MOV32rm
;
9166 const unsigned NotOpc
= X86::NOT32r
;
9167 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9168 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
9169 MachineFunction::iterator MBBIter
= MBB
;
9172 /// First build the CFG
9173 MachineFunction
*F
= MBB
->getParent();
9174 MachineBasicBlock
*thisMBB
= MBB
;
9175 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9176 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9177 F
->insert(MBBIter
, newMBB
);
9178 F
->insert(MBBIter
, nextMBB
);
9180 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9181 nextMBB
->splice(nextMBB
->begin(), thisMBB
,
9182 llvm::next(MachineBasicBlock::iterator(bInstr
)),
9184 nextMBB
->transferSuccessorsAndUpdatePHIs(thisMBB
);
9186 // Update thisMBB to fall through to newMBB
9187 thisMBB
->addSuccessor(newMBB
);
9189 // newMBB jumps to itself and fall through to nextMBB
9190 newMBB
->addSuccessor(nextMBB
);
9191 newMBB
->addSuccessor(newMBB
);
9193 DebugLoc dl
= bInstr
->getDebugLoc();
9194 // Insert instructions into newMBB based on incoming instruction
9195 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9196 assert(bInstr
->getNumOperands() < X86::AddrNumOperands
+ 14 &&
9197 "unexpected number of operands");
9198 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
9199 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
9200 MachineOperand
* argOpers
[2 + X86::AddrNumOperands
];
9201 for (int i
=0; i
< 2 + X86::AddrNumOperands
; ++i
) {
9202 argOpers
[i
] = &bInstr
->getOperand(i
+2);
9204 // We use some of the operands multiple times, so conservatively just
9205 // clear any kill flags that might be present.
9206 if (argOpers
[i
]->isReg() && argOpers
[i
]->isUse())
9207 argOpers
[i
]->setIsKill(false);
9210 // x86 address has 5 operands: base, index, scale, displacement, and segment.
9211 int lastAddrIndx
= X86::AddrNumOperands
- 1; // [0,3]
9213 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
9214 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
9215 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9216 (*MIB
).addOperand(*argOpers
[i
]);
9217 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
9218 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
9219 // add 4 to displacement.
9220 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
9221 (*MIB
).addOperand(*argOpers
[i
]);
9222 MachineOperand newOp3
= *(argOpers
[3]);
9224 newOp3
.setImm(newOp3
.getImm()+4);
9226 newOp3
.setOffset(newOp3
.getOffset()+4);
9227 (*MIB
).addOperand(newOp3
);
9228 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
9230 // t3/4 are defined later, at the bottom of the loop
9231 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
9232 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
9233 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
9234 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
9235 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
9236 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
9238 // The subsequent operations should be using the destination registers of
9239 //the PHI instructions.
9241 t1
= F
->getRegInfo().createVirtualRegister(RC
);
9242 t2
= F
->getRegInfo().createVirtualRegister(RC
);
9243 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), t1
).addReg(dest1Oper
.getReg());
9244 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), t2
).addReg(dest2Oper
.getReg());
9246 t1
= dest1Oper
.getReg();
9247 t2
= dest2Oper
.getReg();
9250 int valArgIndx
= lastAddrIndx
+ 1;
9251 assert((argOpers
[valArgIndx
]->isReg() ||
9252 argOpers
[valArgIndx
]->isImm()) &&
9254 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
9255 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
9256 if (argOpers
[valArgIndx
]->isReg())
9257 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
9259 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
9260 if (regOpcL
!= X86::MOV32rr
)
9262 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
9263 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
9264 argOpers
[valArgIndx
]->isReg());
9265 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
9266 argOpers
[valArgIndx
]->isImm());
9267 if (argOpers
[valArgIndx
+ 1]->isReg())
9268 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
9270 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
9271 if (regOpcH
!= X86::MOV32rr
)
9273 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
9275 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), X86::EAX
);
9277 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), X86::EDX
);
9280 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), X86::EBX
);
9282 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), X86::ECX
);
9285 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
9286 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9287 (*MIB
).addOperand(*argOpers
[i
]);
9289 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
9290 (*MIB
).setMemRefs(bInstr
->memoperands_begin(),
9291 bInstr
->memoperands_end());
9293 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), t3
);
9294 MIB
.addReg(X86::EAX
);
9295 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), t4
);
9296 MIB
.addReg(X86::EDX
);
9299 BuildMI(newMBB
, dl
, TII
->get(X86::JNE_4
)).addMBB(newMBB
);
9301 bInstr
->eraseFromParent(); // The pseudo instruction is gone now.
9305 // private utility function
9307 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
9308 MachineBasicBlock
*MBB
,
9309 unsigned cmovOpc
) const {
9310 // For the atomic min/max operator, we generate
9313 // ld t1 = [min/max.addr]
9314 // mov t2 = [min/max.val]
9316 // cmov[cond] t2 = t1
9318 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9320 // fallthrough -->nextMBB
9322 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9323 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
9324 MachineFunction::iterator MBBIter
= MBB
;
9327 /// First build the CFG
9328 MachineFunction
*F
= MBB
->getParent();
9329 MachineBasicBlock
*thisMBB
= MBB
;
9330 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9331 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9332 F
->insert(MBBIter
, newMBB
);
9333 F
->insert(MBBIter
, nextMBB
);
9335 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9336 nextMBB
->splice(nextMBB
->begin(), thisMBB
,
9337 llvm::next(MachineBasicBlock::iterator(mInstr
)),
9339 nextMBB
->transferSuccessorsAndUpdatePHIs(thisMBB
);
9341 // Update thisMBB to fall through to newMBB
9342 thisMBB
->addSuccessor(newMBB
);
9344 // newMBB jumps to newMBB and fall through to nextMBB
9345 newMBB
->addSuccessor(nextMBB
);
9346 newMBB
->addSuccessor(newMBB
);
9348 DebugLoc dl
= mInstr
->getDebugLoc();
9349 // Insert instructions into newMBB based on incoming instruction
9350 assert(mInstr
->getNumOperands() < X86::AddrNumOperands
+ 4 &&
9351 "unexpected number of operands");
9352 MachineOperand
& destOper
= mInstr
->getOperand(0);
9353 MachineOperand
* argOpers
[2 + X86::AddrNumOperands
];
9354 int numArgs
= mInstr
->getNumOperands() - 1;
9355 for (int i
=0; i
< numArgs
; ++i
)
9356 argOpers
[i
] = &mInstr
->getOperand(i
+1);
9358 // x86 address has 4 operands: base, index, scale, and displacement
9359 int lastAddrIndx
= X86::AddrNumOperands
- 1; // [0,3]
9360 int valArgIndx
= lastAddrIndx
+ 1;
9362 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
9363 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
9364 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9365 (*MIB
).addOperand(*argOpers
[i
]);
9367 // We only support register and immediate values
9368 assert((argOpers
[valArgIndx
]->isReg() ||
9369 argOpers
[valArgIndx
]->isImm()) &&
9372 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
9373 if (argOpers
[valArgIndx
]->isReg())
9374 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), t2
);
9376 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
9377 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
9379 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), X86::EAX
);
9382 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
9387 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
9388 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
9392 // Cmp and exchange if none has modified the memory location
9393 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
9394 for (int i
=0; i
<= lastAddrIndx
; ++i
)
9395 (*MIB
).addOperand(*argOpers
[i
]);
9397 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
9398 (*MIB
).setMemRefs(mInstr
->memoperands_begin(),
9399 mInstr
->memoperands_end());
9401 MIB
= BuildMI(newMBB
, dl
, TII
->get(TargetOpcode::COPY
), destOper
.getReg());
9402 MIB
.addReg(X86::EAX
);
9405 BuildMI(newMBB
, dl
, TII
->get(X86::JNE_4
)).addMBB(newMBB
);
9407 mInstr
->eraseFromParent(); // The pseudo instruction is gone now.
9411 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9412 // or XMM0_V32I8 in AVX all of this code can be replaced with that
9415 X86TargetLowering::EmitPCMP(MachineInstr
*MI
, MachineBasicBlock
*BB
,
9416 unsigned numArgs
, bool memArg
) const {
9418 assert((Subtarget
->hasSSE42() || Subtarget
->hasAVX()) &&
9419 "Target must have SSE4.2 or AVX features enabled");
9421 DebugLoc dl
= MI
->getDebugLoc();
9422 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9426 if (!Subtarget
->hasAVX()) {
9428 Opc
= numArgs
== 3 ? X86::PCMPISTRM128rm
: X86::PCMPESTRM128rm
;
9430 Opc
= numArgs
== 3 ? X86::PCMPISTRM128rr
: X86::PCMPESTRM128rr
;
9433 Opc
= numArgs
== 3 ? X86::VPCMPISTRM128rm
: X86::VPCMPESTRM128rm
;
9435 Opc
= numArgs
== 3 ? X86::VPCMPISTRM128rr
: X86::VPCMPESTRM128rr
;
9438 MachineInstrBuilder MIB
= BuildMI(BB
, dl
, TII
->get(Opc
));
9440 for (unsigned i
= 0; i
< numArgs
; ++i
) {
9441 MachineOperand
&Op
= MI
->getOperand(i
+1);
9443 if (!(Op
.isReg() && Op
.isImplicit()))
9447 BuildMI(BB
, dl
, TII
->get(X86::MOVAPSrr
), MI
->getOperand(0).getReg())
9450 MI
->eraseFromParent();
9456 X86TargetLowering::EmitVAARG64WithCustomInserter(
9458 MachineBasicBlock
*MBB
) const {
9459 // Emit va_arg instruction on X86-64.
9461 // Operands to this pseudo-instruction:
9462 // 0 ) Output : destination address (reg)
9463 // 1-5) Input : va_list address (addr, i64mem)
9464 // 6 ) ArgSize : Size (in bytes) of vararg type
9465 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9466 // 8 ) Align : Alignment of type
9467 // 9 ) EFLAGS (implicit-def)
9469 assert(MI
->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9470 assert(X86::AddrNumOperands
== 5 && "VAARG_64 assumes 5 address operands");
9472 unsigned DestReg
= MI
->getOperand(0).getReg();
9473 MachineOperand
&Base
= MI
->getOperand(1);
9474 MachineOperand
&Scale
= MI
->getOperand(2);
9475 MachineOperand
&Index
= MI
->getOperand(3);
9476 MachineOperand
&Disp
= MI
->getOperand(4);
9477 MachineOperand
&Segment
= MI
->getOperand(5);
9478 unsigned ArgSize
= MI
->getOperand(6).getImm();
9479 unsigned ArgMode
= MI
->getOperand(7).getImm();
9480 unsigned Align
= MI
->getOperand(8).getImm();
9483 assert(MI
->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9484 MachineInstr::mmo_iterator MMOBegin
= MI
->memoperands_begin();
9485 MachineInstr::mmo_iterator MMOEnd
= MI
->memoperands_end();
9487 // Machine Information
9488 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9489 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9490 const TargetRegisterClass
*AddrRegClass
= getRegClassFor(MVT::i64
);
9491 const TargetRegisterClass
*OffsetRegClass
= getRegClassFor(MVT::i32
);
9492 DebugLoc DL
= MI
->getDebugLoc();
9497 // i64 overflow_area (address)
9498 // i64 reg_save_area (address)
9500 // sizeof(va_list) = 24
9501 // alignment(va_list) = 8
9503 unsigned TotalNumIntRegs
= 6;
9504 unsigned TotalNumXMMRegs
= 8;
9505 bool UseGPOffset
= (ArgMode
== 1);
9506 bool UseFPOffset
= (ArgMode
== 2);
9507 unsigned MaxOffset
= TotalNumIntRegs
* 8 +
9508 (UseFPOffset
? TotalNumXMMRegs
* 16 : 0);
9510 /* Align ArgSize to a multiple of 8 */
9511 unsigned ArgSizeA8
= (ArgSize
+ 7) & ~7;
9512 bool NeedsAlign
= (Align
> 8);
9514 MachineBasicBlock
*thisMBB
= MBB
;
9515 MachineBasicBlock
*overflowMBB
;
9516 MachineBasicBlock
*offsetMBB
;
9517 MachineBasicBlock
*endMBB
;
9519 unsigned OffsetDestReg
= 0; // Argument address computed by offsetMBB
9520 unsigned OverflowDestReg
= 0; // Argument address computed by overflowMBB
9521 unsigned OffsetReg
= 0;
9523 if (!UseGPOffset
&& !UseFPOffset
) {
9524 // If we only pull from the overflow region, we don't create a branch.
9525 // We don't need to alter control flow.
9526 OffsetDestReg
= 0; // unused
9527 OverflowDestReg
= DestReg
;
9530 overflowMBB
= thisMBB
;
9533 // First emit code to check if gp_offset (or fp_offset) is below the bound.
9534 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9535 // If not, pull from overflow_area. (branch to overflowMBB)
9540 // offsetMBB overflowMBB
9545 // Registers for the PHI in endMBB
9546 OffsetDestReg
= MRI
.createVirtualRegister(AddrRegClass
);
9547 OverflowDestReg
= MRI
.createVirtualRegister(AddrRegClass
);
9549 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
9550 MachineFunction
*MF
= MBB
->getParent();
9551 overflowMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9552 offsetMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9553 endMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9555 MachineFunction::iterator MBBIter
= MBB
;
9558 // Insert the new basic blocks
9559 MF
->insert(MBBIter
, offsetMBB
);
9560 MF
->insert(MBBIter
, overflowMBB
);
9561 MF
->insert(MBBIter
, endMBB
);
9563 // Transfer the remainder of MBB and its successor edges to endMBB.
9564 endMBB
->splice(endMBB
->begin(), thisMBB
,
9565 llvm::next(MachineBasicBlock::iterator(MI
)),
9567 endMBB
->transferSuccessorsAndUpdatePHIs(thisMBB
);
9569 // Make offsetMBB and overflowMBB successors of thisMBB
9570 thisMBB
->addSuccessor(offsetMBB
);
9571 thisMBB
->addSuccessor(overflowMBB
);
9573 // endMBB is a successor of both offsetMBB and overflowMBB
9574 offsetMBB
->addSuccessor(endMBB
);
9575 overflowMBB
->addSuccessor(endMBB
);
9577 // Load the offset value into a register
9578 OffsetReg
= MRI
.createVirtualRegister(OffsetRegClass
);
9579 BuildMI(thisMBB
, DL
, TII
->get(X86::MOV32rm
), OffsetReg
)
9583 .addDisp(Disp
, UseFPOffset
? 4 : 0)
9584 .addOperand(Segment
)
9585 .setMemRefs(MMOBegin
, MMOEnd
);
9587 // Check if there is enough room left to pull this argument.
9588 BuildMI(thisMBB
, DL
, TII
->get(X86::CMP32ri
))
9590 .addImm(MaxOffset
+ 8 - ArgSizeA8
);
9592 // Branch to "overflowMBB" if offset >= max
9593 // Fall through to "offsetMBB" otherwise
9594 BuildMI(thisMBB
, DL
, TII
->get(X86::GetCondBranchFromCond(X86::COND_AE
)))
9595 .addMBB(overflowMBB
);
9598 // In offsetMBB, emit code to use the reg_save_area.
9600 assert(OffsetReg
!= 0);
9602 // Read the reg_save_area address.
9603 unsigned RegSaveReg
= MRI
.createVirtualRegister(AddrRegClass
);
9604 BuildMI(offsetMBB
, DL
, TII
->get(X86::MOV64rm
), RegSaveReg
)
9609 .addOperand(Segment
)
9610 .setMemRefs(MMOBegin
, MMOEnd
);
9612 // Zero-extend the offset
9613 unsigned OffsetReg64
= MRI
.createVirtualRegister(AddrRegClass
);
9614 BuildMI(offsetMBB
, DL
, TII
->get(X86::SUBREG_TO_REG
), OffsetReg64
)
9617 .addImm(X86::sub_32bit
);
9619 // Add the offset to the reg_save_area to get the final address.
9620 BuildMI(offsetMBB
, DL
, TII
->get(X86::ADD64rr
), OffsetDestReg
)
9621 .addReg(OffsetReg64
)
9622 .addReg(RegSaveReg
);
9624 // Compute the offset for the next argument
9625 unsigned NextOffsetReg
= MRI
.createVirtualRegister(OffsetRegClass
);
9626 BuildMI(offsetMBB
, DL
, TII
->get(X86::ADD32ri
), NextOffsetReg
)
9628 .addImm(UseFPOffset
? 16 : 8);
9630 // Store it back into the va_list.
9631 BuildMI(offsetMBB
, DL
, TII
->get(X86::MOV32mr
))
9635 .addDisp(Disp
, UseFPOffset
? 4 : 0)
9636 .addOperand(Segment
)
9637 .addReg(NextOffsetReg
)
9638 .setMemRefs(MMOBegin
, MMOEnd
);
9641 BuildMI(offsetMBB
, DL
, TII
->get(X86::JMP_4
))
9646 // Emit code to use overflow area
9649 // Load the overflow_area address into a register.
9650 unsigned OverflowAddrReg
= MRI
.createVirtualRegister(AddrRegClass
);
9651 BuildMI(overflowMBB
, DL
, TII
->get(X86::MOV64rm
), OverflowAddrReg
)
9656 .addOperand(Segment
)
9657 .setMemRefs(MMOBegin
, MMOEnd
);
9659 // If we need to align it, do so. Otherwise, just copy the address
9660 // to OverflowDestReg.
9662 // Align the overflow address
9663 assert((Align
& (Align
-1)) == 0 && "Alignment must be a power of 2");
9664 unsigned TmpReg
= MRI
.createVirtualRegister(AddrRegClass
);
9666 // aligned_addr = (addr + (align-1)) & ~(align-1)
9667 BuildMI(overflowMBB
, DL
, TII
->get(X86::ADD64ri32
), TmpReg
)
9668 .addReg(OverflowAddrReg
)
9671 BuildMI(overflowMBB
, DL
, TII
->get(X86::AND64ri32
), OverflowDestReg
)
9673 .addImm(~(uint64_t)(Align
-1));
9675 BuildMI(overflowMBB
, DL
, TII
->get(TargetOpcode::COPY
), OverflowDestReg
)
9676 .addReg(OverflowAddrReg
);
9679 // Compute the next overflow address after this argument.
9680 // (the overflow address should be kept 8-byte aligned)
9681 unsigned NextAddrReg
= MRI
.createVirtualRegister(AddrRegClass
);
9682 BuildMI(overflowMBB
, DL
, TII
->get(X86::ADD64ri32
), NextAddrReg
)
9683 .addReg(OverflowDestReg
)
9686 // Store the new overflow address.
9687 BuildMI(overflowMBB
, DL
, TII
->get(X86::MOV64mr
))
9692 .addOperand(Segment
)
9693 .addReg(NextAddrReg
)
9694 .setMemRefs(MMOBegin
, MMOEnd
);
9696 // If we branched, emit the PHI to the front of endMBB.
9698 BuildMI(*endMBB
, endMBB
->begin(), DL
,
9699 TII
->get(X86::PHI
), DestReg
)
9700 .addReg(OffsetDestReg
).addMBB(offsetMBB
)
9701 .addReg(OverflowDestReg
).addMBB(overflowMBB
);
9704 // Erase the pseudo instruction
9705 MI
->eraseFromParent();
9711 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9713 MachineBasicBlock
*MBB
) const {
9714 // Emit code to save XMM registers to the stack. The ABI says that the
9715 // number of registers to save is given in %al, so it's theoretically
9716 // possible to do an indirect jump trick to avoid saving all of them,
9717 // however this code takes a simpler approach and just executes all
9718 // of the stores if %al is non-zero. It's less code, and it's probably
9719 // easier on the hardware branch predictor, and stores aren't all that
9720 // expensive anyway.
9722 // Create the new basic blocks. One block contains all the XMM stores,
9723 // and one block is the final destination regardless of whether any
9724 // stores were performed.
9725 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
9726 MachineFunction
*F
= MBB
->getParent();
9727 MachineFunction::iterator MBBIter
= MBB
;
9729 MachineBasicBlock
*XMMSaveMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9730 MachineBasicBlock
*EndMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9731 F
->insert(MBBIter
, XMMSaveMBB
);
9732 F
->insert(MBBIter
, EndMBB
);
9734 // Transfer the remainder of MBB and its successor edges to EndMBB.
9735 EndMBB
->splice(EndMBB
->begin(), MBB
,
9736 llvm::next(MachineBasicBlock::iterator(MI
)),
9738 EndMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9740 // The original block will now fall through to the XMM save block.
9741 MBB
->addSuccessor(XMMSaveMBB
);
9742 // The XMMSaveMBB will fall through to the end block.
9743 XMMSaveMBB
->addSuccessor(EndMBB
);
9745 // Now add the instructions.
9746 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9747 DebugLoc DL
= MI
->getDebugLoc();
9749 unsigned CountReg
= MI
->getOperand(0).getReg();
9750 int64_t RegSaveFrameIndex
= MI
->getOperand(1).getImm();
9751 int64_t VarArgsFPOffset
= MI
->getOperand(2).getImm();
9753 if (!Subtarget
->isTargetWin64()) {
9754 // If %al is 0, branch around the XMM save block.
9755 BuildMI(MBB
, DL
, TII
->get(X86::TEST8rr
)).addReg(CountReg
).addReg(CountReg
);
9756 BuildMI(MBB
, DL
, TII
->get(X86::JE_4
)).addMBB(EndMBB
);
9757 MBB
->addSuccessor(EndMBB
);
9760 // In the XMM save block, save all the XMM argument registers.
9761 for (int i
= 3, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
9762 int64_t Offset
= (i
- 3) * 16 + VarArgsFPOffset
;
9763 MachineMemOperand
*MMO
=
9764 F
->getMachineMemOperand(
9765 MachinePointerInfo::getFixedStack(RegSaveFrameIndex
, Offset
),
9766 MachineMemOperand::MOStore
,
9767 /*Size=*/16, /*Align=*/16);
9768 BuildMI(XMMSaveMBB
, DL
, TII
->get(X86::MOVAPSmr
))
9769 .addFrameIndex(RegSaveFrameIndex
)
9770 .addImm(/*Scale=*/1)
9771 .addReg(/*IndexReg=*/0)
9772 .addImm(/*Disp=*/Offset
)
9773 .addReg(/*Segment=*/0)
9774 .addReg(MI
->getOperand(i
).getReg())
9775 .addMemOperand(MMO
);
9778 MI
->eraseFromParent(); // The pseudo instruction is gone now.
9784 X86TargetLowering::EmitLoweredSelect(MachineInstr
*MI
,
9785 MachineBasicBlock
*BB
) const {
9786 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9787 DebugLoc DL
= MI
->getDebugLoc();
9789 // To "insert" a SELECT_CC instruction, we actually have to insert the
9790 // diamond control-flow pattern. The incoming instruction knows the
9791 // destination vreg to set, the condition code register to branch on, the
9792 // true/false values to select between, and a branch opcode to use.
9793 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9794 MachineFunction::iterator It
= BB
;
9800 // cmpTY ccX, r1, r2
9802 // fallthrough --> copy0MBB
9803 MachineBasicBlock
*thisMBB
= BB
;
9804 MachineFunction
*F
= BB
->getParent();
9805 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9806 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9807 F
->insert(It
, copy0MBB
);
9808 F
->insert(It
, sinkMBB
);
9810 // If the EFLAGS register isn't dead in the terminator, then claim that it's
9811 // live into the sink and copy blocks.
9812 const MachineFunction
*MF
= BB
->getParent();
9813 const TargetRegisterInfo
*TRI
= MF
->getTarget().getRegisterInfo();
9814 BitVector ReservedRegs
= TRI
->getReservedRegs(*MF
);
9816 for (unsigned I
= 0, E
= MI
->getNumOperands(); I
!= E
; ++I
) {
9817 const MachineOperand
&MO
= MI
->getOperand(I
);
9818 if (!MO
.isReg() || !MO
.isUse() || MO
.isKill()) continue;
9819 unsigned Reg
= MO
.getReg();
9820 if (Reg
!= X86::EFLAGS
) continue;
9821 copy0MBB
->addLiveIn(Reg
);
9822 sinkMBB
->addLiveIn(Reg
);
9825 // Transfer the remainder of BB and its successor edges to sinkMBB.
9826 sinkMBB
->splice(sinkMBB
->begin(), BB
,
9827 llvm::next(MachineBasicBlock::iterator(MI
)),
9829 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9831 // Add the true and fallthrough blocks as its successors.
9832 BB
->addSuccessor(copy0MBB
);
9833 BB
->addSuccessor(sinkMBB
);
9835 // Create the conditional branch instruction.
9837 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
9838 BuildMI(BB
, DL
, TII
->get(Opc
)).addMBB(sinkMBB
);
9841 // %FalseValue = ...
9842 // # fallthrough to sinkMBB
9843 copy0MBB
->addSuccessor(sinkMBB
);
9846 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9848 BuildMI(*sinkMBB
, sinkMBB
->begin(), DL
,
9849 TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
9850 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
9851 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
9853 MI
->eraseFromParent(); // The pseudo instruction is gone now.
9858 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr
*MI
,
9859 MachineBasicBlock
*BB
) const {
9860 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9861 DebugLoc DL
= MI
->getDebugLoc();
9863 // The lowering is pretty easy: we're just emitting the call to _alloca. The
9864 // non-trivial part is impdef of ESP.
9865 // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9868 const char *StackProbeSymbol
=
9869 Subtarget
->isTargetWindows() ? "_chkstk" : "_alloca";
9871 BuildMI(*BB
, MI
, DL
, TII
->get(X86::CALLpcrel32
))
9872 .addExternalSymbol(StackProbeSymbol
)
9873 .addReg(X86::EAX
, RegState::Implicit
)
9874 .addReg(X86::ESP
, RegState::Implicit
)
9875 .addReg(X86::EAX
, RegState::Define
| RegState::Implicit
)
9876 .addReg(X86::ESP
, RegState::Define
| RegState::Implicit
)
9877 .addReg(X86::EFLAGS
, RegState::Define
| RegState::Implicit
);
9879 MI
->eraseFromParent(); // The pseudo instruction is gone now.
9884 X86TargetLowering::EmitLoweredTLSCall(MachineInstr
*MI
,
9885 MachineBasicBlock
*BB
) const {
9886 // This is pretty easy. We're taking the value that we received from
9887 // our load from the relocation, sticking it in either RDI (x86-64)
9888 // or EAX and doing an indirect call. The return value will then
9889 // be in the normal return register.
9890 const X86InstrInfo
*TII
9891 = static_cast<const X86InstrInfo
*>(getTargetMachine().getInstrInfo());
9892 DebugLoc DL
= MI
->getDebugLoc();
9893 MachineFunction
*F
= BB
->getParent();
9895 assert(Subtarget
->isTargetDarwin() && "Darwin only instr emitted?");
9896 assert(MI
->getOperand(3).isGlobal() && "This should be a global");
9898 if (Subtarget
->is64Bit()) {
9899 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, DL
,
9900 TII
->get(X86::MOV64rm
), X86::RDI
)
9902 .addImm(0).addReg(0)
9903 .addGlobalAddress(MI
->getOperand(3).getGlobal(), 0,
9904 MI
->getOperand(3).getTargetFlags())
9906 MIB
= BuildMI(*BB
, MI
, DL
, TII
->get(X86::CALL64m
));
9907 addDirectMem(MIB
, X86::RDI
);
9908 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_
) {
9909 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, DL
,
9910 TII
->get(X86::MOV32rm
), X86::EAX
)
9912 .addImm(0).addReg(0)
9913 .addGlobalAddress(MI
->getOperand(3).getGlobal(), 0,
9914 MI
->getOperand(3).getTargetFlags())
9916 MIB
= BuildMI(*BB
, MI
, DL
, TII
->get(X86::CALL32m
));
9917 addDirectMem(MIB
, X86::EAX
);
9919 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, DL
,
9920 TII
->get(X86::MOV32rm
), X86::EAX
)
9921 .addReg(TII
->getGlobalBaseReg(F
))
9922 .addImm(0).addReg(0)
9923 .addGlobalAddress(MI
->getOperand(3).getGlobal(), 0,
9924 MI
->getOperand(3).getTargetFlags())
9926 MIB
= BuildMI(*BB
, MI
, DL
, TII
->get(X86::CALL32m
));
9927 addDirectMem(MIB
, X86::EAX
);
9930 MI
->eraseFromParent(); // The pseudo instruction is gone now.
9935 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
9936 MachineBasicBlock
*BB
) const {
9937 switch (MI
->getOpcode()) {
9938 default: assert(false && "Unexpected instr type to insert");
9939 case X86::WIN_ALLOCA
:
9940 return EmitLoweredWinAlloca(MI
, BB
);
9941 case X86::TLSCall_32
:
9942 case X86::TLSCall_64
:
9943 return EmitLoweredTLSCall(MI
, BB
);
9945 case X86::CMOV_FR32
:
9946 case X86::CMOV_FR64
:
9947 case X86::CMOV_V4F32
:
9948 case X86::CMOV_V2F64
:
9949 case X86::CMOV_V2I64
:
9950 case X86::CMOV_GR16
:
9951 case X86::CMOV_GR32
:
9952 case X86::CMOV_RFP32
:
9953 case X86::CMOV_RFP64
:
9954 case X86::CMOV_RFP80
:
9955 return EmitLoweredSelect(MI
, BB
);
9957 case X86::FP32_TO_INT16_IN_MEM
:
9958 case X86::FP32_TO_INT32_IN_MEM
:
9959 case X86::FP32_TO_INT64_IN_MEM
:
9960 case X86::FP64_TO_INT16_IN_MEM
:
9961 case X86::FP64_TO_INT32_IN_MEM
:
9962 case X86::FP64_TO_INT64_IN_MEM
:
9963 case X86::FP80_TO_INT16_IN_MEM
:
9964 case X86::FP80_TO_INT32_IN_MEM
:
9965 case X86::FP80_TO_INT64_IN_MEM
: {
9966 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
9967 DebugLoc DL
= MI
->getDebugLoc();
9969 // Change the floating point control register to use "round towards zero"
9970 // mode when truncating to an integer value.
9971 MachineFunction
*F
= BB
->getParent();
9972 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2, false);
9973 addFrameReference(BuildMI(*BB
, MI
, DL
,
9974 TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
9976 // Load the old value of the high byte of the control word...
9978 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
9979 addFrameReference(BuildMI(*BB
, MI
, DL
, TII
->get(X86::MOV16rm
), OldCW
),
9982 // Set the high part to be round to zero...
9983 addFrameReference(BuildMI(*BB
, MI
, DL
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
9986 // Reload the modified control word now...
9987 addFrameReference(BuildMI(*BB
, MI
, DL
,
9988 TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
9990 // Restore the memory image of control word to original value
9991 addFrameReference(BuildMI(*BB
, MI
, DL
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
9994 // Get the X86 opcode to use.
9996 switch (MI
->getOpcode()) {
9997 default: llvm_unreachable("illegal opcode!");
9998 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
9999 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
10000 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
10001 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
10002 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
10003 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
10004 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
10005 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
10006 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
10010 MachineOperand
&Op
= MI
->getOperand(0);
10012 AM
.BaseType
= X86AddressMode::RegBase
;
10013 AM
.Base
.Reg
= Op
.getReg();
10015 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
10016 AM
.Base
.FrameIndex
= Op
.getIndex();
10018 Op
= MI
->getOperand(1);
10020 AM
.Scale
= Op
.getImm();
10021 Op
= MI
->getOperand(2);
10023 AM
.IndexReg
= Op
.getImm();
10024 Op
= MI
->getOperand(3);
10025 if (Op
.isGlobal()) {
10026 AM
.GV
= Op
.getGlobal();
10028 AM
.Disp
= Op
.getImm();
10030 addFullAddress(BuildMI(*BB
, MI
, DL
, TII
->get(Opc
)), AM
)
10031 .addReg(MI
->getOperand(X86::AddrNumOperands
).getReg());
10033 // Reload the original control word now.
10034 addFrameReference(BuildMI(*BB
, MI
, DL
,
10035 TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
10037 MI
->eraseFromParent(); // The pseudo instruction is gone now.
10040 // String/text processing lowering.
10041 case X86::PCMPISTRM128REG
:
10042 case X86::VPCMPISTRM128REG
:
10043 return EmitPCMP(MI
, BB
, 3, false /* in-mem */);
10044 case X86::PCMPISTRM128MEM
:
10045 case X86::VPCMPISTRM128MEM
:
10046 return EmitPCMP(MI
, BB
, 3, true /* in-mem */);
10047 case X86::PCMPESTRM128REG
:
10048 case X86::VPCMPESTRM128REG
:
10049 return EmitPCMP(MI
, BB
, 5, false /* in mem */);
10050 case X86::PCMPESTRM128MEM
:
10051 case X86::VPCMPESTRM128MEM
:
10052 return EmitPCMP(MI
, BB
, 5, true /* in mem */);
10054 // Atomic Lowering.
10055 case X86::ATOMAND32
:
10056 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
10057 X86::AND32ri
, X86::MOV32rm
,
10059 X86::NOT32r
, X86::EAX
,
10060 X86::GR32RegisterClass
);
10061 case X86::ATOMOR32
:
10062 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
10063 X86::OR32ri
, X86::MOV32rm
,
10065 X86::NOT32r
, X86::EAX
,
10066 X86::GR32RegisterClass
);
10067 case X86::ATOMXOR32
:
10068 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
10069 X86::XOR32ri
, X86::MOV32rm
,
10071 X86::NOT32r
, X86::EAX
,
10072 X86::GR32RegisterClass
);
10073 case X86::ATOMNAND32
:
10074 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
10075 X86::AND32ri
, X86::MOV32rm
,
10077 X86::NOT32r
, X86::EAX
,
10078 X86::GR32RegisterClass
, true);
10079 case X86::ATOMMIN32
:
10080 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
10081 case X86::ATOMMAX32
:
10082 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
10083 case X86::ATOMUMIN32
:
10084 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
10085 case X86::ATOMUMAX32
:
10086 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
10088 case X86::ATOMAND16
:
10089 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
10090 X86::AND16ri
, X86::MOV16rm
,
10092 X86::NOT16r
, X86::AX
,
10093 X86::GR16RegisterClass
);
10094 case X86::ATOMOR16
:
10095 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
10096 X86::OR16ri
, X86::MOV16rm
,
10098 X86::NOT16r
, X86::AX
,
10099 X86::GR16RegisterClass
);
10100 case X86::ATOMXOR16
:
10101 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
10102 X86::XOR16ri
, X86::MOV16rm
,
10104 X86::NOT16r
, X86::AX
,
10105 X86::GR16RegisterClass
);
10106 case X86::ATOMNAND16
:
10107 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
10108 X86::AND16ri
, X86::MOV16rm
,
10110 X86::NOT16r
, X86::AX
,
10111 X86::GR16RegisterClass
, true);
10112 case X86::ATOMMIN16
:
10113 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
10114 case X86::ATOMMAX16
:
10115 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
10116 case X86::ATOMUMIN16
:
10117 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
10118 case X86::ATOMUMAX16
:
10119 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
10121 case X86::ATOMAND8
:
10122 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
10123 X86::AND8ri
, X86::MOV8rm
,
10125 X86::NOT8r
, X86::AL
,
10126 X86::GR8RegisterClass
);
10128 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
10129 X86::OR8ri
, X86::MOV8rm
,
10131 X86::NOT8r
, X86::AL
,
10132 X86::GR8RegisterClass
);
10133 case X86::ATOMXOR8
:
10134 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
10135 X86::XOR8ri
, X86::MOV8rm
,
10137 X86::NOT8r
, X86::AL
,
10138 X86::GR8RegisterClass
);
10139 case X86::ATOMNAND8
:
10140 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
10141 X86::AND8ri
, X86::MOV8rm
,
10143 X86::NOT8r
, X86::AL
,
10144 X86::GR8RegisterClass
, true);
10145 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10146 // This group is for 64-bit host.
10147 case X86::ATOMAND64
:
10148 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
10149 X86::AND64ri32
, X86::MOV64rm
,
10151 X86::NOT64r
, X86::RAX
,
10152 X86::GR64RegisterClass
);
10153 case X86::ATOMOR64
:
10154 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
10155 X86::OR64ri32
, X86::MOV64rm
,
10157 X86::NOT64r
, X86::RAX
,
10158 X86::GR64RegisterClass
);
10159 case X86::ATOMXOR64
:
10160 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
10161 X86::XOR64ri32
, X86::MOV64rm
,
10163 X86::NOT64r
, X86::RAX
,
10164 X86::GR64RegisterClass
);
10165 case X86::ATOMNAND64
:
10166 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
10167 X86::AND64ri32
, X86::MOV64rm
,
10169 X86::NOT64r
, X86::RAX
,
10170 X86::GR64RegisterClass
, true);
10171 case X86::ATOMMIN64
:
10172 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
10173 case X86::ATOMMAX64
:
10174 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
10175 case X86::ATOMUMIN64
:
10176 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
10177 case X86::ATOMUMAX64
:
10178 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
10180 // This group does 64-bit operations on a 32-bit host.
10181 case X86::ATOMAND6432
:
10182 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10183 X86::AND32rr
, X86::AND32rr
,
10184 X86::AND32ri
, X86::AND32ri
,
10186 case X86::ATOMOR6432
:
10187 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10188 X86::OR32rr
, X86::OR32rr
,
10189 X86::OR32ri
, X86::OR32ri
,
10191 case X86::ATOMXOR6432
:
10192 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10193 X86::XOR32rr
, X86::XOR32rr
,
10194 X86::XOR32ri
, X86::XOR32ri
,
10196 case X86::ATOMNAND6432
:
10197 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10198 X86::AND32rr
, X86::AND32rr
,
10199 X86::AND32ri
, X86::AND32ri
,
10201 case X86::ATOMADD6432
:
10202 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10203 X86::ADD32rr
, X86::ADC32rr
,
10204 X86::ADD32ri
, X86::ADC32ri
,
10206 case X86::ATOMSUB6432
:
10207 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10208 X86::SUB32rr
, X86::SBB32rr
,
10209 X86::SUB32ri
, X86::SBB32ri
,
10211 case X86::ATOMSWAP6432
:
10212 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
10213 X86::MOV32rr
, X86::MOV32rr
,
10214 X86::MOV32ri
, X86::MOV32ri
,
10216 case X86::VASTART_SAVE_XMM_REGS
:
10217 return EmitVAStartSaveXMMRegsWithCustomInserter(MI
, BB
);
10219 case X86::VAARG_64
:
10220 return EmitVAARG64WithCustomInserter(MI
, BB
);
10224 //===----------------------------------------------------------------------===//
10225 // X86 Optimization Hooks
10226 //===----------------------------------------------------------------------===//
10228 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
10232 const SelectionDAG
&DAG
,
10233 unsigned Depth
) const {
10234 unsigned Opc
= Op
.getOpcode();
10235 assert((Opc
>= ISD::BUILTIN_OP_END
||
10236 Opc
== ISD::INTRINSIC_WO_CHAIN
||
10237 Opc
== ISD::INTRINSIC_W_CHAIN
||
10238 Opc
== ISD::INTRINSIC_VOID
) &&
10239 "Should use MaskedValueIsZero if you don't know whether Op"
10240 " is a target node!");
10242 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
10254 // These nodes' second result is a boolean.
10255 if (Op
.getResNo() == 0)
10258 case X86ISD::SETCC
:
10259 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
10260 Mask
.getBitWidth() - 1);
10265 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
10266 unsigned Depth
) const {
10267 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10268 if (Op
.getOpcode() == X86ISD::SETCC_CARRY
)
10269 return Op
.getValueType().getScalarType().getSizeInBits();
10275 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10276 /// node is a GlobalAddress + offset.
10277 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
10278 const GlobalValue
* &GA
,
10279 int64_t &Offset
) const {
10280 if (N
->getOpcode() == X86ISD::Wrapper
) {
10281 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
10282 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
10283 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
10287 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
10290 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10291 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10292 /// if the load addresses are consecutive, non-overlapping, and in the right
10294 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
10295 const TargetLowering
&TLI
) {
10296 DebugLoc dl
= N
->getDebugLoc();
10297 EVT VT
= N
->getValueType(0);
10299 if (VT
.getSizeInBits() != 128)
10302 SmallVector
<SDValue
, 16> Elts
;
10303 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
10304 Elts
.push_back(getShuffleScalarElt(N
, i
, DAG
, 0));
10306 return EltsFromConsecutiveLoads(VT
, Elts
, dl
, DAG
);
10309 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10310 /// generation and convert it from being a bunch of shuffles and extracts
10311 /// to a simple store and scalar loads to extract the elements.
10312 static SDValue
PerformEXTRACT_VECTOR_ELTCombine(SDNode
*N
, SelectionDAG
&DAG
,
10313 const TargetLowering
&TLI
) {
10314 SDValue InputVector
= N
->getOperand(0);
10316 // Only operate on vectors of 4 elements, where the alternative shuffling
10317 // gets to be more expensive.
10318 if (InputVector
.getValueType() != MVT::v4i32
)
10321 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10322 // single use which is a sign-extend or zero-extend, and all elements are
10324 SmallVector
<SDNode
*, 4> Uses
;
10325 unsigned ExtractedElements
= 0;
10326 for (SDNode::use_iterator UI
= InputVector
.getNode()->use_begin(),
10327 UE
= InputVector
.getNode()->use_end(); UI
!= UE
; ++UI
) {
10328 if (UI
.getUse().getResNo() != InputVector
.getResNo())
10331 SDNode
*Extract
= *UI
;
10332 if (Extract
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10335 if (Extract
->getValueType(0) != MVT::i32
)
10337 if (!Extract
->hasOneUse())
10339 if (Extract
->use_begin()->getOpcode() != ISD::SIGN_EXTEND
&&
10340 Extract
->use_begin()->getOpcode() != ISD::ZERO_EXTEND
)
10342 if (!isa
<ConstantSDNode
>(Extract
->getOperand(1)))
10345 // Record which element was extracted.
10346 ExtractedElements
|=
10347 1 << cast
<ConstantSDNode
>(Extract
->getOperand(1))->getZExtValue();
10349 Uses
.push_back(Extract
);
10352 // If not all the elements were used, this may not be worthwhile.
10353 if (ExtractedElements
!= 15)
10356 // Ok, we've now decided to do the transformation.
10357 DebugLoc dl
= InputVector
.getDebugLoc();
10359 // Store the value to a temporary stack slot.
10360 SDValue StackPtr
= DAG
.CreateStackTemporary(InputVector
.getValueType());
10361 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, InputVector
, StackPtr
,
10362 MachinePointerInfo(), false, false, 0);
10364 // Replace each use (extract) with a load of the appropriate element.
10365 for (SmallVectorImpl
<SDNode
*>::iterator UI
= Uses
.begin(),
10366 UE
= Uses
.end(); UI
!= UE
; ++UI
) {
10367 SDNode
*Extract
= *UI
;
10369 // Compute the element's address.
10370 SDValue Idx
= Extract
->getOperand(1);
10372 InputVector
.getValueType().getVectorElementType().getSizeInBits()/8;
10373 uint64_t Offset
= EltSize
* cast
<ConstantSDNode
>(Idx
)->getZExtValue();
10374 SDValue OffsetVal
= DAG
.getConstant(Offset
, TLI
.getPointerTy());
10376 SDValue ScalarAddr
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(),
10377 StackPtr
, OffsetVal
);
10379 // Load the scalar.
10380 SDValue LoadScalar
= DAG
.getLoad(Extract
->getValueType(0), dl
, Ch
,
10381 ScalarAddr
, MachinePointerInfo(),
10384 // Replace the exact with the load.
10385 DAG
.ReplaceAllUsesOfValueWith(SDValue(Extract
, 0), LoadScalar
);
10388 // The replacement was made in place; don't return anything.
10392 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10393 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
10394 const X86Subtarget
*Subtarget
) {
10395 DebugLoc DL
= N
->getDebugLoc();
10396 SDValue Cond
= N
->getOperand(0);
10397 // Get the LHS/RHS of the select.
10398 SDValue LHS
= N
->getOperand(1);
10399 SDValue RHS
= N
->getOperand(2);
10401 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10402 // instructions match the semantics of the common C idiom x<y?x:y but not
10403 // x<=y?x:y, because of how they handle negative zero (which can be
10404 // ignored in unsafe-math mode).
10405 if (Subtarget
->hasSSE2() &&
10406 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
10407 Cond
.getOpcode() == ISD::SETCC
) {
10408 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
10410 unsigned Opcode
= 0;
10411 // Check for x CC y ? x : y.
10412 if (DAG
.isEqualTo(LHS
, Cond
.getOperand(0)) &&
10413 DAG
.isEqualTo(RHS
, Cond
.getOperand(1))) {
10417 // Converting this to a min would handle NaNs incorrectly, and swapping
10418 // the operands would cause it to handle comparisons between positive
10419 // and negative zero incorrectly.
10420 if (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
)) {
10421 if (!UnsafeFPMath
&&
10422 !(DAG
.isKnownNeverZero(LHS
) || DAG
.isKnownNeverZero(RHS
)))
10424 std::swap(LHS
, RHS
);
10426 Opcode
= X86ISD::FMIN
;
10429 // Converting this to a min would handle comparisons between positive
10430 // and negative zero incorrectly.
10431 if (!UnsafeFPMath
&&
10432 !DAG
.isKnownNeverZero(LHS
) && !DAG
.isKnownNeverZero(RHS
))
10434 Opcode
= X86ISD::FMIN
;
10437 // Converting this to a min would handle both negative zeros and NaNs
10438 // incorrectly, but we can swap the operands to fix both.
10439 std::swap(LHS
, RHS
);
10443 Opcode
= X86ISD::FMIN
;
10447 // Converting this to a max would handle comparisons between positive
10448 // and negative zero incorrectly.
10449 if (!UnsafeFPMath
&&
10450 !DAG
.isKnownNeverZero(LHS
) && !DAG
.isKnownNeverZero(LHS
))
10452 Opcode
= X86ISD::FMAX
;
10455 // Converting this to a max would handle NaNs incorrectly, and swapping
10456 // the operands would cause it to handle comparisons between positive
10457 // and negative zero incorrectly.
10458 if (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
)) {
10459 if (!UnsafeFPMath
&&
10460 !(DAG
.isKnownNeverZero(LHS
) || DAG
.isKnownNeverZero(RHS
)))
10462 std::swap(LHS
, RHS
);
10464 Opcode
= X86ISD::FMAX
;
10467 // Converting this to a max would handle both negative zeros and NaNs
10468 // incorrectly, but we can swap the operands to fix both.
10469 std::swap(LHS
, RHS
);
10473 Opcode
= X86ISD::FMAX
;
10476 // Check for x CC y ? y : x -- a min/max with reversed arms.
10477 } else if (DAG
.isEqualTo(LHS
, Cond
.getOperand(1)) &&
10478 DAG
.isEqualTo(RHS
, Cond
.getOperand(0))) {
10482 // Converting this to a min would handle comparisons between positive
10483 // and negative zero incorrectly, and swapping the operands would
10484 // cause it to handle NaNs incorrectly.
10485 if (!UnsafeFPMath
&&
10486 !(DAG
.isKnownNeverZero(LHS
) || DAG
.isKnownNeverZero(RHS
))) {
10487 if (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
))
10489 std::swap(LHS
, RHS
);
10491 Opcode
= X86ISD::FMIN
;
10494 // Converting this to a min would handle NaNs incorrectly.
10495 if (!UnsafeFPMath
&&
10496 (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
)))
10498 Opcode
= X86ISD::FMIN
;
10501 // Converting this to a min would handle both negative zeros and NaNs
10502 // incorrectly, but we can swap the operands to fix both.
10503 std::swap(LHS
, RHS
);
10507 Opcode
= X86ISD::FMIN
;
10511 // Converting this to a max would handle NaNs incorrectly.
10512 if (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
))
10514 Opcode
= X86ISD::FMAX
;
10517 // Converting this to a max would handle comparisons between positive
10518 // and negative zero incorrectly, and swapping the operands would
10519 // cause it to handle NaNs incorrectly.
10520 if (!UnsafeFPMath
&&
10521 !DAG
.isKnownNeverZero(LHS
) && !DAG
.isKnownNeverZero(RHS
)) {
10522 if (!DAG
.isKnownNeverNaN(LHS
) || !DAG
.isKnownNeverNaN(RHS
))
10524 std::swap(LHS
, RHS
);
10526 Opcode
= X86ISD::FMAX
;
10529 // Converting this to a max would handle both negative zeros and NaNs
10530 // incorrectly, but we can swap the operands to fix both.
10531 std::swap(LHS
, RHS
);
10535 Opcode
= X86ISD::FMAX
;
10541 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
10544 // If this is a select between two integer constants, try to do some
10546 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
10547 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
10548 // Don't do this for crazy integer types.
10549 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
10550 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10551 // so that TrueC (the true value) is larger than FalseC.
10552 bool NeedsCondInvert
= false;
10554 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
10555 // Efficiently invertible.
10556 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
10557 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
10558 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
10559 NeedsCondInvert
= true;
10560 std::swap(TrueC
, FalseC
);
10563 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
10564 if (FalseC
->getAPIntValue() == 0 &&
10565 TrueC
->getAPIntValue().isPowerOf2()) {
10566 if (NeedsCondInvert
) // Invert the condition if needed.
10567 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
10568 DAG
.getConstant(1, Cond
.getValueType()));
10570 // Zero extend the condition if needed.
10571 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
10573 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
10574 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
10575 DAG
.getConstant(ShAmt
, MVT::i8
));
10578 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10579 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
10580 if (NeedsCondInvert
) // Invert the condition if needed.
10581 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
10582 DAG
.getConstant(1, Cond
.getValueType()));
10584 // Zero extend the condition if needed.
10585 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
10586 FalseC
->getValueType(0), Cond
);
10587 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
10588 SDValue(FalseC
, 0));
10591 // Optimize cases that will turn into an LEA instruction. This requires
10592 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10593 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
10594 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
10595 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
10597 bool isFastMultiplier
= false;
10599 switch ((unsigned char)Diff
) {
10601 case 1: // result = add base, cond
10602 case 2: // result = lea base( , cond*2)
10603 case 3: // result = lea base(cond, cond*2)
10604 case 4: // result = lea base( , cond*4)
10605 case 5: // result = lea base(cond, cond*4)
10606 case 8: // result = lea base( , cond*8)
10607 case 9: // result = lea base(cond, cond*8)
10608 isFastMultiplier
= true;
10613 if (isFastMultiplier
) {
10614 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
10615 if (NeedsCondInvert
) // Invert the condition if needed.
10616 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
10617 DAG
.getConstant(1, Cond
.getValueType()));
10619 // Zero extend the condition if needed.
10620 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
10622 // Scale the condition by the difference.
10624 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
10625 DAG
.getConstant(Diff
, Cond
.getValueType()));
10627 // Add the base if non-zero.
10628 if (FalseC
->getAPIntValue() != 0)
10629 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
10630 SDValue(FalseC
, 0));
10640 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10641 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
10642 TargetLowering::DAGCombinerInfo
&DCI
) {
10643 DebugLoc DL
= N
->getDebugLoc();
10645 // If the flag operand isn't dead, don't touch this CMOV.
10646 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
10649 // If this is a select between two integer constants, try to do some
10650 // optimizations. Note that the operands are ordered the opposite of SELECT
10652 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
10653 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
10654 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10655 // larger than FalseC (the false value).
10656 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
10658 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
10659 CC
= X86::GetOppositeBranchCondition(CC
);
10660 std::swap(TrueC
, FalseC
);
10663 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
10664 // This is efficient for any integer data type (including i8/i16) and
10666 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
10667 SDValue Cond
= N
->getOperand(3);
10668 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
10669 DAG
.getConstant(CC
, MVT::i8
), Cond
);
10671 // Zero extend the condition if needed.
10672 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
10674 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
10675 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
10676 DAG
.getConstant(ShAmt
, MVT::i8
));
10677 if (N
->getNumValues() == 2) // Dead flag value?
10678 return DCI
.CombineTo(N
, Cond
, SDValue());
10682 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
10683 // for any integer data type, including i8/i16.
10684 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
10685 SDValue Cond
= N
->getOperand(3);
10686 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
10687 DAG
.getConstant(CC
, MVT::i8
), Cond
);
10689 // Zero extend the condition if needed.
10690 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
10691 FalseC
->getValueType(0), Cond
);
10692 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
10693 SDValue(FalseC
, 0));
10695 if (N
->getNumValues() == 2) // Dead flag value?
10696 return DCI
.CombineTo(N
, Cond
, SDValue());
10700 // Optimize cases that will turn into an LEA instruction. This requires
10701 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10702 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
10703 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
10704 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
10706 bool isFastMultiplier
= false;
10708 switch ((unsigned char)Diff
) {
10710 case 1: // result = add base, cond
10711 case 2: // result = lea base( , cond*2)
10712 case 3: // result = lea base(cond, cond*2)
10713 case 4: // result = lea base( , cond*4)
10714 case 5: // result = lea base(cond, cond*4)
10715 case 8: // result = lea base( , cond*8)
10716 case 9: // result = lea base(cond, cond*8)
10717 isFastMultiplier
= true;
10722 if (isFastMultiplier
) {
10723 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
10724 SDValue Cond
= N
->getOperand(3);
10725 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
10726 DAG
.getConstant(CC
, MVT::i8
), Cond
);
10727 // Zero extend the condition if needed.
10728 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
10730 // Scale the condition by the difference.
10732 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
10733 DAG
.getConstant(Diff
, Cond
.getValueType()));
10735 // Add the base if non-zero.
10736 if (FalseC
->getAPIntValue() != 0)
10737 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
10738 SDValue(FalseC
, 0));
10739 if (N
->getNumValues() == 2) // Dead flag value?
10740 return DCI
.CombineTo(N
, Cond
, SDValue());
10750 /// PerformMulCombine - Optimize a single multiply with constant into two
10751 /// in order to implement it with two cheaper instructions, e.g.
10752 /// LEA + SHL, LEA + LEA.
10753 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
10754 TargetLowering::DAGCombinerInfo
&DCI
) {
10755 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
10758 EVT VT
= N
->getValueType(0);
10759 if (VT
!= MVT::i64
)
10762 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
10765 uint64_t MulAmt
= C
->getZExtValue();
10766 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
10769 uint64_t MulAmt1
= 0;
10770 uint64_t MulAmt2
= 0;
10771 if ((MulAmt
% 9) == 0) {
10773 MulAmt2
= MulAmt
/ 9;
10774 } else if ((MulAmt
% 5) == 0) {
10776 MulAmt2
= MulAmt
/ 5;
10777 } else if ((MulAmt
% 3) == 0) {
10779 MulAmt2
= MulAmt
/ 3;
10782 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
10783 DebugLoc DL
= N
->getDebugLoc();
10785 if (isPowerOf2_64(MulAmt2
) &&
10786 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
10787 // If second multiplifer is pow2, issue it first. We want the multiply by
10788 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10790 std::swap(MulAmt1
, MulAmt2
);
10793 if (isPowerOf2_64(MulAmt1
))
10794 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
10795 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
10797 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
10798 DAG
.getConstant(MulAmt1
, VT
));
10800 if (isPowerOf2_64(MulAmt2
))
10801 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
10802 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
10804 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
10805 DAG
.getConstant(MulAmt2
, VT
));
10807 // Do not add new nodes to DAG combiner worklist.
10808 DCI
.CombineTo(N
, NewMul
, false);
10813 static SDValue
PerformSHLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
10814 SDValue N0
= N
->getOperand(0);
10815 SDValue N1
= N
->getOperand(1);
10816 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
10817 EVT VT
= N0
.getValueType();
10819 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10820 // since the result of setcc_c is all zero's or all ones.
10821 if (N1C
&& N0
.getOpcode() == ISD::AND
&&
10822 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
10823 SDValue N00
= N0
.getOperand(0);
10824 if (N00
.getOpcode() == X86ISD::SETCC_CARRY
||
10825 ((N00
.getOpcode() == ISD::ANY_EXTEND
||
10826 N00
.getOpcode() == ISD::ZERO_EXTEND
) &&
10827 N00
.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY
)) {
10828 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
10829 APInt ShAmt
= N1C
->getAPIntValue();
10830 Mask
= Mask
.shl(ShAmt
);
10832 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
10833 N00
, DAG
.getConstant(Mask
, VT
));
10840 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10842 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
10843 const X86Subtarget
*Subtarget
) {
10844 EVT VT
= N
->getValueType(0);
10845 if (!VT
.isVector() && VT
.isInteger() &&
10846 N
->getOpcode() == ISD::SHL
)
10847 return PerformSHLCombine(N
, DAG
);
10849 // On X86 with SSE2 support, we can transform this to a vector shift if
10850 // all elements are shifted by the same amount. We can't do this in legalize
10851 // because the a constant vector is typically transformed to a constant pool
10852 // so we have no knowledge of the shift amount.
10853 if (!Subtarget
->hasSSE2())
10856 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
10859 SDValue ShAmtOp
= N
->getOperand(1);
10860 EVT EltVT
= VT
.getVectorElementType();
10861 DebugLoc DL
= N
->getDebugLoc();
10862 SDValue BaseShAmt
= SDValue();
10863 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
10864 unsigned NumElts
= VT
.getVectorNumElements();
10866 for (; i
!= NumElts
; ++i
) {
10867 SDValue Arg
= ShAmtOp
.getOperand(i
);
10868 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
10872 for (; i
!= NumElts
; ++i
) {
10873 SDValue Arg
= ShAmtOp
.getOperand(i
);
10874 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
10875 if (Arg
!= BaseShAmt
) {
10879 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
10880 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
10881 SDValue InVec
= ShAmtOp
.getOperand(0);
10882 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
) {
10883 unsigned NumElts
= InVec
.getValueType().getVectorNumElements();
10885 for (; i
!= NumElts
; ++i
) {
10886 SDValue Arg
= InVec
.getOperand(i
);
10887 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
10891 } else if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
10892 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(InVec
.getOperand(2))) {
10893 unsigned SplatIdx
= cast
<ShuffleVectorSDNode
>(ShAmtOp
)->getSplatIndex();
10894 if (C
->getZExtValue() == SplatIdx
)
10895 BaseShAmt
= InVec
.getOperand(1);
10898 if (BaseShAmt
.getNode() == 0)
10899 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
10900 DAG
.getIntPtrConstant(0));
10904 // The shift amount is an i32.
10905 if (EltVT
.bitsGT(MVT::i32
))
10906 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
10907 else if (EltVT
.bitsLT(MVT::i32
))
10908 BaseShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
10910 // The shift amount is identical so we can do a vector shift.
10911 SDValue ValOp
= N
->getOperand(0);
10912 switch (N
->getOpcode()) {
10914 llvm_unreachable("Unknown shift opcode!");
10917 if (VT
== MVT::v2i64
)
10918 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10919 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
10921 if (VT
== MVT::v4i32
)
10922 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10923 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
10925 if (VT
== MVT::v8i16
)
10926 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10927 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
10931 if (VT
== MVT::v4i32
)
10932 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10933 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
10935 if (VT
== MVT::v8i16
)
10936 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10937 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
10941 if (VT
== MVT::v2i64
)
10942 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10943 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
10945 if (VT
== MVT::v4i32
)
10946 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10947 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
10949 if (VT
== MVT::v8i16
)
10950 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10951 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
10958 static SDValue
PerformOrCombine(SDNode
*N
, SelectionDAG
&DAG
,
10959 TargetLowering::DAGCombinerInfo
&DCI
,
10960 const X86Subtarget
*Subtarget
) {
10961 if (DCI
.isBeforeLegalizeOps())
10964 EVT VT
= N
->getValueType(0);
10965 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
10968 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10969 SDValue N0
= N
->getOperand(0);
10970 SDValue N1
= N
->getOperand(1);
10971 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
10973 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
10975 if (!N0
.hasOneUse() || !N1
.hasOneUse())
10978 SDValue ShAmt0
= N0
.getOperand(1);
10979 if (ShAmt0
.getValueType() != MVT::i8
)
10981 SDValue ShAmt1
= N1
.getOperand(1);
10982 if (ShAmt1
.getValueType() != MVT::i8
)
10984 if (ShAmt0
.getOpcode() == ISD::TRUNCATE
)
10985 ShAmt0
= ShAmt0
.getOperand(0);
10986 if (ShAmt1
.getOpcode() == ISD::TRUNCATE
)
10987 ShAmt1
= ShAmt1
.getOperand(0);
10989 DebugLoc DL
= N
->getDebugLoc();
10990 unsigned Opc
= X86ISD::SHLD
;
10991 SDValue Op0
= N0
.getOperand(0);
10992 SDValue Op1
= N1
.getOperand(0);
10993 if (ShAmt0
.getOpcode() == ISD::SUB
) {
10994 Opc
= X86ISD::SHRD
;
10995 std::swap(Op0
, Op1
);
10996 std::swap(ShAmt0
, ShAmt1
);
10999 unsigned Bits
= VT
.getSizeInBits();
11000 if (ShAmt1
.getOpcode() == ISD::SUB
) {
11001 SDValue Sum
= ShAmt1
.getOperand(0);
11002 if (ConstantSDNode
*SumC
= dyn_cast
<ConstantSDNode
>(Sum
)) {
11003 SDValue ShAmt1Op1
= ShAmt1
.getOperand(1);
11004 if (ShAmt1Op1
.getNode()->getOpcode() == ISD::TRUNCATE
)
11005 ShAmt1Op1
= ShAmt1Op1
.getOperand(0);
11006 if (SumC
->getSExtValue() == Bits
&& ShAmt1Op1
== ShAmt0
)
11007 return DAG
.getNode(Opc
, DL
, VT
,
11009 DAG
.getNode(ISD::TRUNCATE
, DL
,
11012 } else if (ConstantSDNode
*ShAmt1C
= dyn_cast
<ConstantSDNode
>(ShAmt1
)) {
11013 ConstantSDNode
*ShAmt0C
= dyn_cast
<ConstantSDNode
>(ShAmt0
);
11015 ShAmt0C
->getSExtValue() + ShAmt1C
->getSExtValue() == Bits
)
11016 return DAG
.getNode(Opc
, DL
, VT
,
11017 N0
.getOperand(0), N1
.getOperand(0),
11018 DAG
.getNode(ISD::TRUNCATE
, DL
,
11025 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11026 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
11027 const X86Subtarget
*Subtarget
) {
11028 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
11029 // the FP state in cases where an emms may be missing.
11030 // A preferable solution to the general problem is to figure out the right
11031 // places to insert EMMS. This qualifies as a quick hack.
11033 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11034 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
11035 EVT VT
= St
->getValue().getValueType();
11036 if (VT
.getSizeInBits() != 64)
11039 const Function
*F
= DAG
.getMachineFunction().getFunction();
11040 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
11041 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloatOps
11042 && Subtarget
->hasSSE2();
11043 if ((VT
.isVector() ||
11044 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
11045 isa
<LoadSDNode
>(St
->getValue()) &&
11046 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
11047 St
->getChain().hasOneUse() && !St
->isVolatile()) {
11048 SDNode
* LdVal
= St
->getValue().getNode();
11049 LoadSDNode
*Ld
= 0;
11050 int TokenFactorIndex
= -1;
11051 SmallVector
<SDValue
, 8> Ops
;
11052 SDNode
* ChainVal
= St
->getChain().getNode();
11053 // Must be a store of a load. We currently handle two cases: the load
11054 // is a direct child, and it's under an intervening TokenFactor. It is
11055 // possible to dig deeper under nested TokenFactors.
11056 if (ChainVal
== LdVal
)
11057 Ld
= cast
<LoadSDNode
>(St
->getChain());
11058 else if (St
->getValue().hasOneUse() &&
11059 ChainVal
->getOpcode() == ISD::TokenFactor
) {
11060 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
11061 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
11062 TokenFactorIndex
= i
;
11063 Ld
= cast
<LoadSDNode
>(St
->getValue());
11065 Ops
.push_back(ChainVal
->getOperand(i
));
11069 if (!Ld
|| !ISD::isNormalLoad(Ld
))
11072 // If this is not the MMX case, i.e. we are just turning i64 load/store
11073 // into f64 load/store, avoid the transformation if there are multiple
11074 // uses of the loaded value.
11075 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
11078 DebugLoc LdDL
= Ld
->getDebugLoc();
11079 DebugLoc StDL
= N
->getDebugLoc();
11080 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11081 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11083 if (Subtarget
->is64Bit() || F64IsLegal
) {
11084 EVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
11085 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(), Ld
->getBasePtr(),
11086 Ld
->getPointerInfo(), Ld
->isVolatile(),
11087 Ld
->isNonTemporal(), Ld
->getAlignment());
11088 SDValue NewChain
= NewLd
.getValue(1);
11089 if (TokenFactorIndex
!= -1) {
11090 Ops
.push_back(NewChain
);
11091 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
11094 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
11095 St
->getPointerInfo(),
11096 St
->isVolatile(), St
->isNonTemporal(),
11097 St
->getAlignment());
11100 // Otherwise, lower to two pairs of 32-bit loads / stores.
11101 SDValue LoAddr
= Ld
->getBasePtr();
11102 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
11103 DAG
.getConstant(4, MVT::i32
));
11105 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
11106 Ld
->getPointerInfo(),
11107 Ld
->isVolatile(), Ld
->isNonTemporal(),
11108 Ld
->getAlignment());
11109 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
11110 Ld
->getPointerInfo().getWithOffset(4),
11111 Ld
->isVolatile(), Ld
->isNonTemporal(),
11112 MinAlign(Ld
->getAlignment(), 4));
11114 SDValue NewChain
= LoLd
.getValue(1);
11115 if (TokenFactorIndex
!= -1) {
11116 Ops
.push_back(LoLd
);
11117 Ops
.push_back(HiLd
);
11118 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
11122 LoAddr
= St
->getBasePtr();
11123 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
11124 DAG
.getConstant(4, MVT::i32
));
11126 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
11127 St
->getPointerInfo(),
11128 St
->isVolatile(), St
->isNonTemporal(),
11129 St
->getAlignment());
11130 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
11131 St
->getPointerInfo().getWithOffset(4),
11133 St
->isNonTemporal(),
11134 MinAlign(St
->getAlignment(), 4));
11135 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
11140 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11141 /// X86ISD::FXOR nodes.
11142 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11143 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
11144 // F[X]OR(0.0, x) -> x
11145 // F[X]OR(x, 0.0) -> x
11146 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
11147 if (C
->getValueAPF().isPosZero())
11148 return N
->getOperand(1);
11149 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
11150 if (C
->getValueAPF().isPosZero())
11151 return N
->getOperand(0);
11155 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11156 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11157 // FAND(0.0, x) -> 0.0
11158 // FAND(x, 0.0) -> 0.0
11159 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
11160 if (C
->getValueAPF().isPosZero())
11161 return N
->getOperand(0);
11162 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
11163 if (C
->getValueAPF().isPosZero())
11164 return N
->getOperand(1);
11168 static SDValue
PerformBTCombine(SDNode
*N
,
11170 TargetLowering::DAGCombinerInfo
&DCI
) {
11171 // BT ignores high bits in the bit index operand.
11172 SDValue Op1
= N
->getOperand(1);
11173 if (Op1
.hasOneUse()) {
11174 unsigned BitWidth
= Op1
.getValueSizeInBits();
11175 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
11176 APInt KnownZero
, KnownOne
;
11177 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
11178 !DCI
.isBeforeLegalizeOps());
11179 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11180 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
11181 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
11182 DCI
.CommitTargetLoweringOpt(TLO
);
11187 static SDValue
PerformVZEXT_MOVLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11188 SDValue Op
= N
->getOperand(0);
11189 if (Op
.getOpcode() == ISD::BIT_CONVERT
)
11190 Op
= Op
.getOperand(0);
11191 EVT VT
= N
->getValueType(0), OpVT
= Op
.getValueType();
11192 if (Op
.getOpcode() == X86ISD::VZEXT_LOAD
&&
11193 VT
.getVectorElementType().getSizeInBits() ==
11194 OpVT
.getVectorElementType().getSizeInBits()) {
11195 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, Op
);
11200 static SDValue
PerformZExtCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11201 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
11202 // (and (i32 x86isd::setcc_carry), 1)
11203 // This eliminates the zext. This transformation is necessary because
11204 // ISD::SETCC is always legalized to i8.
11205 DebugLoc dl
= N
->getDebugLoc();
11206 SDValue N0
= N
->getOperand(0);
11207 EVT VT
= N
->getValueType(0);
11208 if (N0
.getOpcode() == ISD::AND
&&
11210 N0
.getOperand(0).hasOneUse()) {
11211 SDValue N00
= N0
.getOperand(0);
11212 if (N00
.getOpcode() != X86ISD::SETCC_CARRY
)
11214 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
11215 if (!C
|| C
->getZExtValue() != 1)
11217 return DAG
.getNode(ISD::AND
, dl
, VT
,
11218 DAG
.getNode(X86ISD::SETCC_CARRY
, dl
, VT
,
11219 N00
.getOperand(0), N00
.getOperand(1)),
11220 DAG
.getConstant(1, VT
));
11226 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
11227 DAGCombinerInfo
&DCI
) const {
11228 SelectionDAG
&DAG
= DCI
.DAG
;
11229 switch (N
->getOpcode()) {
11231 case ISD::EXTRACT_VECTOR_ELT
:
11232 return PerformEXTRACT_VECTOR_ELTCombine(N
, DAG
, *this);
11233 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
11234 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
11235 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
11238 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
11239 case ISD::OR
: return PerformOrCombine(N
, DAG
, DCI
, Subtarget
);
11240 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
11242 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
11243 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
11244 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
11245 case X86ISD::VZEXT_MOVL
: return PerformVZEXT_MOVLCombine(N
, DAG
);
11246 case ISD::ZERO_EXTEND
: return PerformZExtCombine(N
, DAG
);
11247 case X86ISD::SHUFPS
: // Handle all target specific shuffles
11248 case X86ISD::SHUFPD
:
11249 case X86ISD::PALIGN
:
11250 case X86ISD::PUNPCKHBW
:
11251 case X86ISD::PUNPCKHWD
:
11252 case X86ISD::PUNPCKHDQ
:
11253 case X86ISD::PUNPCKHQDQ
:
11254 case X86ISD::UNPCKHPS
:
11255 case X86ISD::UNPCKHPD
:
11256 case X86ISD::PUNPCKLBW
:
11257 case X86ISD::PUNPCKLWD
:
11258 case X86ISD::PUNPCKLDQ
:
11259 case X86ISD::PUNPCKLQDQ
:
11260 case X86ISD::UNPCKLPS
:
11261 case X86ISD::UNPCKLPD
:
11262 case X86ISD::MOVHLPS
:
11263 case X86ISD::MOVLHPS
:
11264 case X86ISD::PSHUFD
:
11265 case X86ISD::PSHUFHW
:
11266 case X86ISD::PSHUFLW
:
11267 case X86ISD::MOVSS
:
11268 case X86ISD::MOVSD
:
11269 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
11275 /// isTypeDesirableForOp - Return true if the target has native support for
11276 /// the specified value type and it is 'desirable' to use the type for the
11277 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11278 /// instruction encodings are longer and some i16 instructions are slow.
11279 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc
, EVT VT
) const {
11280 if (!isTypeLegal(VT
))
11282 if (VT
!= MVT::i16
)
11289 case ISD::SIGN_EXTEND
:
11290 case ISD::ZERO_EXTEND
:
11291 case ISD::ANY_EXTEND
:
11304 /// IsDesirableToPromoteOp - This method query the target whether it is
11305 /// beneficial for dag combiner to promote the specified node. If true, it
11306 /// should return the desired promotion type by reference.
11307 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const {
11308 EVT VT
= Op
.getValueType();
11309 if (VT
!= MVT::i16
)
11312 bool Promote
= false;
11313 bool Commute
= false;
11314 switch (Op
.getOpcode()) {
11317 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
11318 // If the non-extending load has a single use and it's not live out, then it
11319 // might be folded.
11320 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
/*&&
11321 Op.hasOneUse()*/) {
11322 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
11323 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
) {
11324 // The only case where we'd want to promote LOAD (rather then it being
11325 // promoted as an operand is when it's only use is liveout.
11326 if (UI
->getOpcode() != ISD::CopyToReg
)
11333 case ISD::SIGN_EXTEND
:
11334 case ISD::ZERO_EXTEND
:
11335 case ISD::ANY_EXTEND
:
11340 SDValue N0
= Op
.getOperand(0);
11341 // Look out for (store (shl (load), x)).
11342 if (MayFoldLoad(N0
) && MayFoldIntoStore(Op
))
11355 SDValue N0
= Op
.getOperand(0);
11356 SDValue N1
= Op
.getOperand(1);
11357 if (!Commute
&& MayFoldLoad(N1
))
11359 // Avoid disabling potential load folding opportunities.
11360 if (MayFoldLoad(N0
) && (!isa
<ConstantSDNode
>(N1
) || MayFoldIntoStore(Op
)))
11362 if (MayFoldLoad(N1
) && (!isa
<ConstantSDNode
>(N0
) || MayFoldIntoStore(Op
)))
11372 //===----------------------------------------------------------------------===//
11373 // X86 Inline Assembly Support
11374 //===----------------------------------------------------------------------===//
11376 static bool LowerToBSwap(CallInst
*CI
) {
11377 // FIXME: this should verify that we are targetting a 486 or better. If not,
11378 // we will turn this bswap into something that will be lowered to logical ops
11379 // instead of emitting the bswap asm. For now, we don't support 486 or lower
11380 // so don't worry about this.
11382 // Verify this is a simple bswap.
11383 if (CI
->getNumArgOperands() != 1 ||
11384 CI
->getType() != CI
->getArgOperand(0)->getType() ||
11385 !CI
->getType()->isIntegerTy())
11388 const IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
11389 if (!Ty
|| Ty
->getBitWidth() % 16 != 0)
11392 // Okay, we can do this xform, do so now.
11393 const Type
*Tys
[] = { Ty
};
11394 Module
*M
= CI
->getParent()->getParent()->getParent();
11395 Constant
*Int
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
11397 Value
*Op
= CI
->getArgOperand(0);
11398 Op
= CallInst::Create(Int
, Op
, CI
->getName(), CI
);
11400 CI
->replaceAllUsesWith(Op
);
11401 CI
->eraseFromParent();
11405 bool X86TargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
11406 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
11407 InlineAsm::ConstraintInfoVector Constraints
= IA
->ParseConstraints();
11409 std::string AsmStr
= IA
->getAsmString();
11411 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11412 SmallVector
<StringRef
, 4> AsmPieces
;
11413 SplitString(AsmStr
, AsmPieces
, "\n"); // ; as separator?
11415 switch (AsmPieces
.size()) {
11416 default: return false;
11418 AsmStr
= AsmPieces
[0];
11420 SplitString(AsmStr
, AsmPieces
, " \t"); // Split with whitespace.
11423 if (AsmPieces
.size() == 2 &&
11424 (AsmPieces
[0] == "bswap" ||
11425 AsmPieces
[0] == "bswapq" ||
11426 AsmPieces
[0] == "bswapl") &&
11427 (AsmPieces
[1] == "$0" ||
11428 AsmPieces
[1] == "${0:q}")) {
11429 // No need to check constraints, nothing other than the equivalent of
11430 // "=r,0" would be valid here.
11431 return LowerToBSwap(CI
);
11433 // rorw $$8, ${0:w} --> llvm.bswap.i16
11434 if (CI
->getType()->isIntegerTy(16) &&
11435 AsmPieces
.size() == 3 &&
11436 (AsmPieces
[0] == "rorw" || AsmPieces
[0] == "rolw") &&
11437 AsmPieces
[1] == "$$8," &&
11438 AsmPieces
[2] == "${0:w}" &&
11439 IA
->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11441 const std::string
&Constraints
= IA
->getConstraintString();
11442 SplitString(StringRef(Constraints
).substr(5), AsmPieces
, ",");
11443 std::sort(AsmPieces
.begin(), AsmPieces
.end());
11444 if (AsmPieces
.size() == 4 &&
11445 AsmPieces
[0] == "~{cc}" &&
11446 AsmPieces
[1] == "~{dirflag}" &&
11447 AsmPieces
[2] == "~{flags}" &&
11448 AsmPieces
[3] == "~{fpsr}") {
11449 return LowerToBSwap(CI
);
11454 if (CI
->getType()->isIntegerTy(64) &&
11455 Constraints
.size() >= 2 &&
11456 Constraints
[0].Codes
.size() == 1 && Constraints
[0].Codes
[0] == "A" &&
11457 Constraints
[1].Codes
.size() == 1 && Constraints
[1].Codes
[0] == "0") {
11458 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
11459 SmallVector
<StringRef
, 4> Words
;
11460 SplitString(AsmPieces
[0], Words
, " \t");
11461 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%eax") {
11463 SplitString(AsmPieces
[1], Words
, " \t");
11464 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%edx") {
11466 SplitString(AsmPieces
[2], Words
, " \t,");
11467 if (Words
.size() == 3 && Words
[0] == "xchgl" && Words
[1] == "%eax" &&
11468 Words
[2] == "%edx") {
11469 return LowerToBSwap(CI
);
11481 /// getConstraintType - Given a constraint letter, return the type of
11482 /// constraint it is for this target.
11483 X86TargetLowering::ConstraintType
11484 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
11485 if (Constraint
.size() == 1) {
11486 switch (Constraint
[0]) {
11496 return C_RegisterClass
;
11520 return TargetLowering::getConstraintType(Constraint
);
11523 /// Examine constraint type and operand type and determine a weight value.
11524 /// This object must already have been set up with the operand type
11525 /// and the current alternative constraint selected.
11526 TargetLowering::ConstraintWeight
11527 X86TargetLowering::getSingleConstraintMatchWeight(
11528 AsmOperandInfo
&info
, const char *constraint
) const {
11529 ConstraintWeight weight
= CW_Invalid
;
11530 Value
*CallOperandVal
= info
.CallOperandVal
;
11531 // If we don't have a value, we can't do a match,
11532 // but allow it at the lowest weight.
11533 if (CallOperandVal
== NULL
)
11535 const Type
*type
= CallOperandVal
->getType();
11536 // Look at the constraint type.
11537 switch (*constraint
) {
11539 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
11550 if (CallOperandVal
->getType()->isIntegerTy())
11551 weight
= CW_SpecificReg
;
11556 if (type
->isFloatingPointTy())
11557 weight
= CW_SpecificReg
;
11560 if (type
->isX86_MMXTy() && !DisableMMX
&& Subtarget
->hasMMX())
11561 weight
= CW_SpecificReg
;
11565 if ((type
->getPrimitiveSizeInBits() == 128) && Subtarget
->hasSSE1())
11566 weight
= CW_Register
;
11569 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(info
.CallOperandVal
)) {
11570 if (C
->getZExtValue() <= 31)
11571 weight
= CW_Constant
;
11575 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11576 if (C
->getZExtValue() <= 63)
11577 weight
= CW_Constant
;
11581 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11582 if ((C
->getSExtValue() >= -0x80) && (C
->getSExtValue() <= 0x7f))
11583 weight
= CW_Constant
;
11587 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11588 if ((C
->getZExtValue() == 0xff) || (C
->getZExtValue() == 0xffff))
11589 weight
= CW_Constant
;
11593 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11594 if (C
->getZExtValue() <= 3)
11595 weight
= CW_Constant
;
11599 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11600 if (C
->getZExtValue() <= 0xff)
11601 weight
= CW_Constant
;
11606 if (dyn_cast
<ConstantFP
>(CallOperandVal
)) {
11607 weight
= CW_Constant
;
11611 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11612 if ((C
->getSExtValue() >= -0x80000000LL
) &&
11613 (C
->getSExtValue() <= 0x7fffffffLL
))
11614 weight
= CW_Constant
;
11618 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CallOperandVal
)) {
11619 if (C
->getZExtValue() <= 0xffffffff)
11620 weight
= CW_Constant
;
11627 /// LowerXConstraint - try to replace an X constraint, which matches anything,
11628 /// with another that has more specific requirements based on the type of the
11629 /// corresponding operand.
11630 const char *X86TargetLowering::
11631 LowerXConstraint(EVT ConstraintVT
) const {
11632 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11633 // 'f' like normal targets.
11634 if (ConstraintVT
.isFloatingPoint()) {
11635 if (Subtarget
->hasSSE2())
11637 if (Subtarget
->hasSSE1())
11641 return TargetLowering::LowerXConstraint(ConstraintVT
);
11644 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11645 /// vector. If it is invalid, don't add anything to Ops.
11646 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
11648 std::vector
<SDValue
>&Ops
,
11649 SelectionDAG
&DAG
) const {
11650 SDValue
Result(0, 0);
11652 switch (Constraint
) {
11655 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11656 if (C
->getZExtValue() <= 31) {
11657 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
11663 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11664 if (C
->getZExtValue() <= 63) {
11665 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
11671 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11672 if ((int8_t)C
->getSExtValue() == C
->getSExtValue()) {
11673 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
11679 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11680 if (C
->getZExtValue() <= 255) {
11681 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
11687 // 32-bit signed value
11688 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11689 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG
.getContext()),
11690 C
->getSExtValue())) {
11691 // Widen to 64 bits here to get it sign extended.
11692 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
11695 // FIXME gcc accepts some relocatable values here too, but only in certain
11696 // memory models; it's complicated.
11701 // 32-bit unsigned value
11702 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
11703 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG
.getContext()),
11704 C
->getZExtValue())) {
11705 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
11709 // FIXME gcc accepts some relocatable values here too, but only in certain
11710 // memory models; it's complicated.
11714 // Literal immediates are always ok.
11715 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
11716 // Widen to 64 bits here to get it sign extended.
11717 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
11721 // In any sort of PIC mode addresses need to be computed at runtime by
11722 // adding in a register or some sort of table lookup. These can't
11723 // be used as immediates.
11724 if (Subtarget
->isPICStyleGOT() || Subtarget
->isPICStyleStubPIC())
11727 // If we are in non-pic codegen mode, we allow the address of a global (with
11728 // an optional displacement) to be used with 'i'.
11729 GlobalAddressSDNode
*GA
= 0;
11730 int64_t Offset
= 0;
11732 // Match either (GA), (GA+C), (GA+C1+C2), etc.
11734 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
11735 Offset
+= GA
->getOffset();
11737 } else if (Op
.getOpcode() == ISD::ADD
) {
11738 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
11739 Offset
+= C
->getZExtValue();
11740 Op
= Op
.getOperand(0);
11743 } else if (Op
.getOpcode() == ISD::SUB
) {
11744 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
11745 Offset
+= -C
->getZExtValue();
11746 Op
= Op
.getOperand(0);
11751 // Otherwise, this isn't something we can handle, reject it.
11755 const GlobalValue
*GV
= GA
->getGlobal();
11756 // If we require an extra load to get this address, as in PIC mode, we
11757 // can't accept it.
11758 if (isGlobalStubReference(Subtarget
->ClassifyGlobalReference(GV
,
11759 getTargetMachine())))
11762 Result
= DAG
.getTargetGlobalAddress(GV
, Op
.getDebugLoc(),
11763 GA
->getValueType(0), Offset
);
11768 if (Result
.getNode()) {
11769 Ops
.push_back(Result
);
11772 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
11775 std::vector
<unsigned> X86TargetLowering::
11776 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
11778 if (Constraint
.size() == 1) {
11779 // FIXME: not handling fp-stack yet!
11780 switch (Constraint
[0]) { // GCC X86 Constraint Letters
11781 default: break; // Unknown constraint letter
11782 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11783 if (Subtarget
->is64Bit()) {
11784 if (VT
== MVT::i32
)
11785 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
,
11786 X86::ESI
, X86::EDI
, X86::R8D
, X86::R9D
,
11787 X86::R10D
,X86::R11D
,X86::R12D
,
11788 X86::R13D
,X86::R14D
,X86::R15D
,
11789 X86::EBP
, X86::ESP
, 0);
11790 else if (VT
== MVT::i16
)
11791 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
,
11792 X86::SI
, X86::DI
, X86::R8W
,X86::R9W
,
11793 X86::R10W
,X86::R11W
,X86::R12W
,
11794 X86::R13W
,X86::R14W
,X86::R15W
,
11795 X86::BP
, X86::SP
, 0);
11796 else if (VT
== MVT::i8
)
11797 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
,
11798 X86::SIL
, X86::DIL
, X86::R8B
,X86::R9B
,
11799 X86::R10B
,X86::R11B
,X86::R12B
,
11800 X86::R13B
,X86::R14B
,X86::R15B
,
11801 X86::BPL
, X86::SPL
, 0);
11803 else if (VT
== MVT::i64
)
11804 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
,
11805 X86::RSI
, X86::RDI
, X86::R8
, X86::R9
,
11806 X86::R10
, X86::R11
, X86::R12
,
11807 X86::R13
, X86::R14
, X86::R15
,
11808 X86::RBP
, X86::RSP
, 0);
11812 // 32-bit fallthrough
11813 case 'Q': // Q_REGS
11814 if (VT
== MVT::i32
)
11815 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
11816 else if (VT
== MVT::i16
)
11817 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
11818 else if (VT
== MVT::i8
)
11819 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
11820 else if (VT
== MVT::i64
)
11821 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
11826 return std::vector
<unsigned>();
11829 std::pair
<unsigned, const TargetRegisterClass
*>
11830 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
11832 // First, see if this is a constraint that directly corresponds to an LLVM
11834 if (Constraint
.size() == 1) {
11835 // GCC Constraint Letters
11836 switch (Constraint
[0]) {
11838 case 'r': // GENERAL_REGS
11839 case 'l': // INDEX_REGS
11841 return std::make_pair(0U, X86::GR8RegisterClass
);
11842 if (VT
== MVT::i16
)
11843 return std::make_pair(0U, X86::GR16RegisterClass
);
11844 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
11845 return std::make_pair(0U, X86::GR32RegisterClass
);
11846 return std::make_pair(0U, X86::GR64RegisterClass
);
11847 case 'R': // LEGACY_REGS
11849 return std::make_pair(0U, X86::GR8_NOREXRegisterClass
);
11850 if (VT
== MVT::i16
)
11851 return std::make_pair(0U, X86::GR16_NOREXRegisterClass
);
11852 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
11853 return std::make_pair(0U, X86::GR32_NOREXRegisterClass
);
11854 return std::make_pair(0U, X86::GR64_NOREXRegisterClass
);
11855 case 'f': // FP Stack registers.
11856 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11857 // value to the correct fpstack register class.
11858 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
11859 return std::make_pair(0U, X86::RFP32RegisterClass
);
11860 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
11861 return std::make_pair(0U, X86::RFP64RegisterClass
);
11862 return std::make_pair(0U, X86::RFP80RegisterClass
);
11863 case 'y': // MMX_REGS if MMX allowed.
11864 if (!Subtarget
->hasMMX()) break;
11865 return std::make_pair(0U, X86::VR64RegisterClass
);
11866 case 'Y': // SSE_REGS if SSE2 allowed
11867 if (!Subtarget
->hasSSE2()) break;
11869 case 'x': // SSE_REGS if SSE1 allowed
11870 if (!Subtarget
->hasSSE1()) break;
11872 switch (VT
.getSimpleVT().SimpleTy
) {
11874 // Scalar SSE types.
11877 return std::make_pair(0U, X86::FR32RegisterClass
);
11880 return std::make_pair(0U, X86::FR64RegisterClass
);
11888 return std::make_pair(0U, X86::VR128RegisterClass
);
11894 // Use the default implementation in TargetLowering to convert the register
11895 // constraint into a member of a register class.
11896 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
11897 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
11899 // Not found as a standard register?
11900 if (Res
.second
== 0) {
11901 // Map st(0) -> st(7) -> ST0
11902 if (Constraint
.size() == 7 && Constraint
[0] == '{' &&
11903 tolower(Constraint
[1]) == 's' &&
11904 tolower(Constraint
[2]) == 't' &&
11905 Constraint
[3] == '(' &&
11906 (Constraint
[4] >= '0' && Constraint
[4] <= '7') &&
11907 Constraint
[5] == ')' &&
11908 Constraint
[6] == '}') {
11910 Res
.first
= X86::ST0
+Constraint
[4]-'0';
11911 Res
.second
= X86::RFP80RegisterClass
;
11915 // GCC allows "st(0)" to be called just plain "st".
11916 if (StringRef("{st}").equals_lower(Constraint
)) {
11917 Res
.first
= X86::ST0
;
11918 Res
.second
= X86::RFP80RegisterClass
;
11923 if (StringRef("{flags}").equals_lower(Constraint
)) {
11924 Res
.first
= X86::EFLAGS
;
11925 Res
.second
= X86::CCRRegisterClass
;
11929 // 'A' means EAX + EDX.
11930 if (Constraint
== "A") {
11931 Res
.first
= X86::EAX
;
11932 Res
.second
= X86::GR32_ADRegisterClass
;
11938 // Otherwise, check to see if this is a register class of the wrong value
11939 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11940 // turn into {ax},{dx}.
11941 if (Res
.second
->hasType(VT
))
11942 return Res
; // Correct type already, nothing to do.
11944 // All of the single-register GCC register classes map their values onto
11945 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
11946 // really want an 8-bit or 32-bit register, map to the appropriate register
11947 // class and return the appropriate register.
11948 if (Res
.second
== X86::GR16RegisterClass
) {
11949 if (VT
== MVT::i8
) {
11950 unsigned DestReg
= 0;
11951 switch (Res
.first
) {
11953 case X86::AX
: DestReg
= X86::AL
; break;
11954 case X86::DX
: DestReg
= X86::DL
; break;
11955 case X86::CX
: DestReg
= X86::CL
; break;
11956 case X86::BX
: DestReg
= X86::BL
; break;
11959 Res
.first
= DestReg
;
11960 Res
.second
= X86::GR8RegisterClass
;
11962 } else if (VT
== MVT::i32
) {
11963 unsigned DestReg
= 0;
11964 switch (Res
.first
) {
11966 case X86::AX
: DestReg
= X86::EAX
; break;
11967 case X86::DX
: DestReg
= X86::EDX
; break;
11968 case X86::CX
: DestReg
= X86::ECX
; break;
11969 case X86::BX
: DestReg
= X86::EBX
; break;
11970 case X86::SI
: DestReg
= X86::ESI
; break;
11971 case X86::DI
: DestReg
= X86::EDI
; break;
11972 case X86::BP
: DestReg
= X86::EBP
; break;
11973 case X86::SP
: DestReg
= X86::ESP
; break;
11976 Res
.first
= DestReg
;
11977 Res
.second
= X86::GR32RegisterClass
;
11979 } else if (VT
== MVT::i64
) {
11980 unsigned DestReg
= 0;
11981 switch (Res
.first
) {
11983 case X86::AX
: DestReg
= X86::RAX
; break;
11984 case X86::DX
: DestReg
= X86::RDX
; break;
11985 case X86::CX
: DestReg
= X86::RCX
; break;
11986 case X86::BX
: DestReg
= X86::RBX
; break;
11987 case X86::SI
: DestReg
= X86::RSI
; break;
11988 case X86::DI
: DestReg
= X86::RDI
; break;
11989 case X86::BP
: DestReg
= X86::RBP
; break;
11990 case X86::SP
: DestReg
= X86::RSP
; break;
11993 Res
.first
= DestReg
;
11994 Res
.second
= X86::GR64RegisterClass
;
11997 } else if (Res
.second
== X86::FR32RegisterClass
||
11998 Res
.second
== X86::FR64RegisterClass
||
11999 Res
.second
== X86::VR128RegisterClass
) {
12000 // Handle references to XMM physical registers that got mapped into the
12001 // wrong class. This can happen with constraints like {xmm0} where the
12002 // target independent register mapper will just pick the first match it can
12003 // find, ignoring the required type.
12004 if (VT
== MVT::f32
)
12005 Res
.second
= X86::FR32RegisterClass
;
12006 else if (VT
== MVT::f64
)
12007 Res
.second
= X86::FR64RegisterClass
;
12008 else if (X86::VR128RegisterClass
->hasType(VT
))
12009 Res
.second
= X86::VR128RegisterClass
;