zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / InstCombine / InstCombine.h
blob3b8cbe2a1e47245912f8604d2a093a2e5f41e18e
1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
13 #include "InstCombineWorklist.h"
14 #include "llvm/Pass.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Support/IRBuilder.h"
17 #include "llvm/Support/InstVisitor.h"
18 #include "llvm/Support/TargetFolder.h"
20 namespace llvm {
21 class CallSite;
22 class TargetData;
23 class DbgDeclareInst;
24 class MemIntrinsic;
25 class MemSetInst;
27 /// SelectPatternFlavor - We can match a variety of different patterns for
28 /// select operations.
29 enum SelectPatternFlavor {
30 SPF_UNKNOWN = 0,
31 SPF_SMIN, SPF_UMIN,
32 SPF_SMAX, SPF_UMAX
33 //SPF_ABS - TODO.
36 /// getComplexity: Assign a complexity or rank value to LLVM Values...
37 /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
38 static inline unsigned getComplexity(Value *V) {
39 if (isa<Instruction>(V)) {
40 if (BinaryOperator::isNeg(V) ||
41 BinaryOperator::isFNeg(V) ||
42 BinaryOperator::isNot(V))
43 return 3;
44 return 4;
46 if (isa<Argument>(V)) return 3;
47 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
51 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
52 /// just like the normal insertion helper, but also adds any new instructions
53 /// to the instcombine worklist.
54 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
55 : public IRBuilderDefaultInserter<true> {
56 InstCombineWorklist &Worklist;
57 public:
58 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
60 void InsertHelper(Instruction *I, const Twine &Name,
61 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
62 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
63 Worklist.Add(I);
67 /// InstCombiner - The -instcombine pass.
68 class LLVM_LIBRARY_VISIBILITY InstCombiner
69 : public FunctionPass,
70 public InstVisitor<InstCombiner, Instruction*> {
71 TargetData *TD;
72 bool MustPreserveLCSSA;
73 bool MadeIRChange;
74 public:
75 /// Worklist - All of the instructions that need to be simplified.
76 InstCombineWorklist Worklist;
78 /// Builder - This is an IRBuilder that automatically inserts new
79 /// instructions into the worklist when they are created.
80 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
81 BuilderTy *Builder;
83 static char ID; // Pass identification, replacement for typeid
84 InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
85 initializeInstCombinerPass(*PassRegistry::getPassRegistry());
88 public:
89 virtual bool runOnFunction(Function &F);
91 bool DoOneIteration(Function &F, unsigned ItNum);
93 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
95 TargetData *getTargetData() const { return TD; }
97 // Visitation implementation - Implement instruction combining for different
98 // instruction types. The semantics are as follows:
99 // Return Value:
100 // null - No change was made
101 // I - Change was made, I is still valid, I may be dead though
102 // otherwise - Change was made, replace I with returned instruction
104 Instruction *visitAdd(BinaryOperator &I);
105 Instruction *visitFAdd(BinaryOperator &I);
106 Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
107 Instruction *visitSub(BinaryOperator &I);
108 Instruction *visitFSub(BinaryOperator &I);
109 Instruction *visitMul(BinaryOperator &I);
110 Instruction *visitFMul(BinaryOperator &I);
111 Instruction *visitURem(BinaryOperator &I);
112 Instruction *visitSRem(BinaryOperator &I);
113 Instruction *visitFRem(BinaryOperator &I);
114 bool SimplifyDivRemOfSelect(BinaryOperator &I);
115 Instruction *commonRemTransforms(BinaryOperator &I);
116 Instruction *commonIRemTransforms(BinaryOperator &I);
117 Instruction *commonDivTransforms(BinaryOperator &I);
118 Instruction *commonIDivTransforms(BinaryOperator &I);
119 Instruction *visitUDiv(BinaryOperator &I);
120 Instruction *visitSDiv(BinaryOperator &I);
121 Instruction *visitFDiv(BinaryOperator &I);
122 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
123 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
124 Instruction *visitAnd(BinaryOperator &I);
125 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
126 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
127 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
128 Value *A, Value *B, Value *C);
129 Instruction *visitOr (BinaryOperator &I);
130 Instruction *visitXor(BinaryOperator &I);
131 Instruction *visitShl(BinaryOperator &I);
132 Instruction *visitAShr(BinaryOperator &I);
133 Instruction *visitLShr(BinaryOperator &I);
134 Instruction *commonShiftTransforms(BinaryOperator &I);
135 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
136 Constant *RHSC);
137 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
138 GlobalVariable *GV, CmpInst &ICI,
139 ConstantInt *AndCst = 0);
140 Instruction *visitFCmpInst(FCmpInst &I);
141 Instruction *visitICmpInst(ICmpInst &I);
142 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
143 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
144 Instruction *LHS,
145 ConstantInt *RHS);
146 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
147 ConstantInt *DivRHS);
148 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
149 ICmpInst::Predicate Pred, Value *TheAdd);
150 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
151 ICmpInst::Predicate Cond, Instruction &I);
152 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
153 BinaryOperator &I);
154 Instruction *commonCastTransforms(CastInst &CI);
155 Instruction *commonPointerCastTransforms(CastInst &CI);
156 Instruction *visitTrunc(TruncInst &CI);
157 Instruction *visitZExt(ZExtInst &CI);
158 Instruction *visitSExt(SExtInst &CI);
159 Instruction *visitFPTrunc(FPTruncInst &CI);
160 Instruction *visitFPExt(CastInst &CI);
161 Instruction *visitFPToUI(FPToUIInst &FI);
162 Instruction *visitFPToSI(FPToSIInst &FI);
163 Instruction *visitUIToFP(CastInst &CI);
164 Instruction *visitSIToFP(CastInst &CI);
165 Instruction *visitPtrToInt(PtrToIntInst &CI);
166 Instruction *visitIntToPtr(IntToPtrInst &CI);
167 Instruction *visitBitCast(BitCastInst &CI);
168 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
169 Instruction *FI);
170 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
171 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
172 Value *A, Value *B, Instruction &Outer,
173 SelectPatternFlavor SPF2, Value *C);
174 Instruction *visitSelectInst(SelectInst &SI);
175 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
176 Instruction *visitCallInst(CallInst &CI);
177 Instruction *visitInvokeInst(InvokeInst &II);
179 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
180 Instruction *visitPHINode(PHINode &PN);
181 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
182 Instruction *visitAllocaInst(AllocaInst &AI);
183 Instruction *visitMalloc(Instruction &FI);
184 Instruction *visitFree(CallInst &FI);
185 Instruction *visitLoadInst(LoadInst &LI);
186 Instruction *visitStoreInst(StoreInst &SI);
187 Instruction *visitBranchInst(BranchInst &BI);
188 Instruction *visitSwitchInst(SwitchInst &SI);
189 Instruction *visitInsertElementInst(InsertElementInst &IE);
190 Instruction *visitExtractElementInst(ExtractElementInst &EI);
191 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
192 Instruction *visitExtractValueInst(ExtractValueInst &EV);
194 // visitInstruction - Specify what to return for unhandled instructions...
195 Instruction *visitInstruction(Instruction &I) { return 0; }
197 private:
198 bool ShouldChangeType(const Type *From, const Type *To) const;
199 Value *dyn_castNegVal(Value *V) const;
200 Value *dyn_castFNegVal(Value *V) const;
201 const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
202 SmallVectorImpl<Value*> &NewIndices);
203 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
205 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
206 /// results in any code being generated and is interesting to optimize out. If
207 /// the cast can be eliminated by some other simple transformation, we prefer
208 /// to do the simplification first.
209 bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
210 const Type *Ty);
212 Instruction *visitCallSite(CallSite CS);
213 Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
214 bool transformConstExprCastCall(CallSite CS);
215 Instruction *transformCallThroughTrampoline(CallSite CS);
216 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
217 bool DoXform = true);
218 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
219 DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
220 Value *EmitGEPOffset(User *GEP);
222 public:
223 // InsertNewInstBefore - insert an instruction New before instruction Old
224 // in the program. Add the new instruction to the worklist.
226 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
227 assert(New && New->getParent() == 0 &&
228 "New instruction already inserted into a basic block!");
229 BasicBlock *BB = Old.getParent();
230 BB->getInstList().insert(&Old, New); // Insert inst
231 Worklist.Add(New);
232 return New;
235 // ReplaceInstUsesWith - This method is to be used when an instruction is
236 // found to be dead, replacable with another preexisting expression. Here
237 // we add all uses of I to the worklist, replace all uses of I with the new
238 // value, then return I, so that the inst combiner will know that I was
239 // modified.
241 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
242 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
244 // If we are replacing the instruction with itself, this must be in a
245 // segment of unreachable code, so just clobber the instruction.
246 if (&I == V)
247 V = UndefValue::get(I.getType());
249 I.replaceAllUsesWith(V);
250 return &I;
253 // EraseInstFromFunction - When dealing with an instruction that has side
254 // effects or produces a void value, we can't rely on DCE to delete the
255 // instruction. Instead, visit methods should return the value returned by
256 // this function.
257 Instruction *EraseInstFromFunction(Instruction &I) {
258 DEBUG(errs() << "IC: ERASE " << I << '\n');
260 assert(I.use_empty() && "Cannot erase instruction that is used!");
261 // Make sure that we reprocess all operands now that we reduced their
262 // use counts.
263 if (I.getNumOperands() < 8) {
264 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
265 if (Instruction *Op = dyn_cast<Instruction>(*i))
266 Worklist.Add(Op);
268 Worklist.Remove(&I);
269 I.eraseFromParent();
270 MadeIRChange = true;
271 return 0; // Don't do anything with FI
274 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
275 APInt &KnownOne, unsigned Depth = 0) const {
276 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
279 bool MaskedValueIsZero(Value *V, const APInt &Mask,
280 unsigned Depth = 0) const {
281 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
283 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
284 return llvm::ComputeNumSignBits(Op, TD, Depth);
287 private:
289 /// SimplifyCommutative - This performs a few simplifications for
290 /// commutative operators.
291 bool SimplifyCommutative(BinaryOperator &I);
293 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
294 /// based on the demanded bits.
295 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
296 APInt& KnownZero, APInt& KnownOne,
297 unsigned Depth);
298 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
299 APInt& KnownZero, APInt& KnownOne,
300 unsigned Depth=0);
302 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
303 /// SimplifyDemandedBits knows about. See if the instruction has any
304 /// properties that allow us to simplify its operands.
305 bool SimplifyDemandedInstructionBits(Instruction &Inst);
307 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
308 APInt& UndefElts, unsigned Depth = 0);
310 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
311 // which has a PHI node as operand #0, see if we can fold the instruction
312 // into the PHI (which is only possible if all operands to the PHI are
313 // constants).
315 // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
316 // that would normally be unprofitable because they strongly encourage jump
317 // threading.
318 Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
320 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
321 // operator and they all are only used by the PHI, PHI together their
322 // inputs, and do the operation once, to the result of the PHI.
323 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
324 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
325 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
326 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
329 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
330 ConstantInt *AndRHS, BinaryOperator &TheAnd);
332 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
333 bool isSub, Instruction &I);
334 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
335 bool isSigned, bool Inside);
336 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
337 Instruction *MatchBSwap(BinaryOperator &I);
338 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
339 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
340 Instruction *SimplifyMemSet(MemSetInst *MI);
343 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
345 unsigned GetOrEnforceKnownAlignment(Value *V,
346 unsigned PrefAlign = 0);
352 } // end namespace llvm.
354 #endif