1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitAnd, visitOr, and visitXor functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Intrinsics.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Support/PatternMatch.h"
19 using namespace PatternMatch
;
22 /// AddOne - Add one to a ConstantInt.
23 static Constant
*AddOne(Constant
*C
) {
24 return ConstantExpr::getAdd(C
, ConstantInt::get(C
->getType(), 1));
26 /// SubOne - Subtract one from a ConstantInt.
27 static Constant
*SubOne(ConstantInt
*C
) {
28 return ConstantInt::get(C
->getContext(), C
->getValue()-1);
31 /// isFreeToInvert - Return true if the specified value is free to invert (apply
32 /// ~ to). This happens in cases where the ~ can be eliminated.
33 static inline bool isFreeToInvert(Value
*V
) {
35 if (BinaryOperator::isNot(V
))
38 // Constants can be considered to be not'ed values.
39 if (isa
<ConstantInt
>(V
))
42 // Compares can be inverted if they have a single use.
43 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(V
))
44 return CI
->hasOneUse();
49 static inline Value
*dyn_castNotVal(Value
*V
) {
50 // If this is not(not(x)) don't return that this is a not: we want the two
51 // not's to be folded first.
52 if (BinaryOperator::isNot(V
)) {
53 Value
*Operand
= BinaryOperator::getNotArgument(V
);
54 if (!isFreeToInvert(Operand
))
58 // Constants can be considered to be not'ed values...
59 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
60 return ConstantInt::get(C
->getType(), ~C
->getValue());
65 /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
66 /// are carefully arranged to allow folding of expressions such as:
68 /// (A < B) | (A > B) --> (A != B)
70 /// Note that this is only valid if the first and second predicates have the
71 /// same sign. Is illegal to do: (A u< B) | (A s> B)
73 /// Three bits are used to represent the condition, as follows:
78 /// <=> Value Definition
79 /// 000 0 Always false
88 static unsigned getICmpCode(const ICmpInst
*ICI
) {
89 switch (ICI
->getPredicate()) {
91 case ICmpInst::ICMP_UGT
: return 1; // 001
92 case ICmpInst::ICMP_SGT
: return 1; // 001
93 case ICmpInst::ICMP_EQ
: return 2; // 010
94 case ICmpInst::ICMP_UGE
: return 3; // 011
95 case ICmpInst::ICMP_SGE
: return 3; // 011
96 case ICmpInst::ICMP_ULT
: return 4; // 100
97 case ICmpInst::ICMP_SLT
: return 4; // 100
98 case ICmpInst::ICMP_NE
: return 5; // 101
99 case ICmpInst::ICMP_ULE
: return 6; // 110
100 case ICmpInst::ICMP_SLE
: return 6; // 110
103 llvm_unreachable("Invalid ICmp predicate!");
108 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
109 /// predicate into a three bit mask. It also returns whether it is an ordered
110 /// predicate by reference.
111 static unsigned getFCmpCode(FCmpInst::Predicate CC
, bool &isOrdered
) {
114 case FCmpInst::FCMP_ORD
: isOrdered
= true; return 0; // 000
115 case FCmpInst::FCMP_UNO
: return 0; // 000
116 case FCmpInst::FCMP_OGT
: isOrdered
= true; return 1; // 001
117 case FCmpInst::FCMP_UGT
: return 1; // 001
118 case FCmpInst::FCMP_OEQ
: isOrdered
= true; return 2; // 010
119 case FCmpInst::FCMP_UEQ
: return 2; // 010
120 case FCmpInst::FCMP_OGE
: isOrdered
= true; return 3; // 011
121 case FCmpInst::FCMP_UGE
: return 3; // 011
122 case FCmpInst::FCMP_OLT
: isOrdered
= true; return 4; // 100
123 case FCmpInst::FCMP_ULT
: return 4; // 100
124 case FCmpInst::FCMP_ONE
: isOrdered
= true; return 5; // 101
125 case FCmpInst::FCMP_UNE
: return 5; // 101
126 case FCmpInst::FCMP_OLE
: isOrdered
= true; return 6; // 110
127 case FCmpInst::FCMP_ULE
: return 6; // 110
130 // Not expecting FCMP_FALSE and FCMP_TRUE;
131 llvm_unreachable("Unexpected FCmp predicate!");
136 /// getICmpValue - This is the complement of getICmpCode, which turns an
137 /// opcode and two operands into either a constant true or false, or a brand
138 /// new ICmp instruction. The sign is passed in to determine which kind
139 /// of predicate to use in the new icmp instruction.
140 static Value
*getICmpValue(bool Sign
, unsigned Code
, Value
*LHS
, Value
*RHS
,
141 InstCombiner::BuilderTy
*Builder
) {
142 CmpInst::Predicate Pred
;
144 default: assert(0 && "Illegal ICmp code!");
146 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
147 case 1: Pred
= Sign
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
; break;
148 case 2: Pred
= ICmpInst::ICMP_EQ
; break;
149 case 3: Pred
= Sign
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
; break;
150 case 4: Pred
= Sign
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
; break;
151 case 5: Pred
= ICmpInst::ICMP_NE
; break;
152 case 6: Pred
= Sign
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
; break;
154 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 1);
156 return Builder
->CreateICmp(Pred
, LHS
, RHS
);
159 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
160 /// opcode and two operands into either a FCmp instruction. isordered is passed
161 /// in to determine which kind of predicate to use in the new fcmp instruction.
162 static Value
*getFCmpValue(bool isordered
, unsigned code
,
163 Value
*LHS
, Value
*RHS
,
164 InstCombiner::BuilderTy
*Builder
) {
165 CmpInst::Predicate Pred
;
167 default: assert(0 && "Illegal FCmp code!");
168 case 0: Pred
= isordered
? FCmpInst::FCMP_ORD
: FCmpInst::FCMP_UNO
; break;
169 case 1: Pred
= isordered
? FCmpInst::FCMP_OGT
: FCmpInst::FCMP_UGT
; break;
170 case 2: Pred
= isordered
? FCmpInst::FCMP_OEQ
: FCmpInst::FCMP_UEQ
; break;
171 case 3: Pred
= isordered
? FCmpInst::FCMP_OGE
: FCmpInst::FCMP_UGE
; break;
172 case 4: Pred
= isordered
? FCmpInst::FCMP_OLT
: FCmpInst::FCMP_ULT
; break;
173 case 5: Pred
= isordered
? FCmpInst::FCMP_ONE
: FCmpInst::FCMP_UNE
; break;
174 case 6: Pred
= isordered
? FCmpInst::FCMP_OLE
: FCmpInst::FCMP_ULE
; break;
175 case 7: return ConstantInt::getTrue(LHS
->getContext());
177 return Builder
->CreateFCmp(Pred
, LHS
, RHS
);
180 /// PredicatesFoldable - Return true if both predicates match sign or if at
181 /// least one of them is an equality comparison (which is signless).
182 static bool PredicatesFoldable(ICmpInst::Predicate p1
, ICmpInst::Predicate p2
) {
183 return (CmpInst::isSigned(p1
) == CmpInst::isSigned(p2
)) ||
184 (CmpInst::isSigned(p1
) && ICmpInst::isEquality(p2
)) ||
185 (CmpInst::isSigned(p2
) && ICmpInst::isEquality(p1
));
188 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
189 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
190 // guaranteed to be a binary operator.
191 Instruction
*InstCombiner::OptAndOp(Instruction
*Op
,
194 BinaryOperator
&TheAnd
) {
195 Value
*X
= Op
->getOperand(0);
196 Constant
*Together
= 0;
198 Together
= ConstantExpr::getAnd(AndRHS
, OpRHS
);
200 switch (Op
->getOpcode()) {
201 case Instruction::Xor
:
202 if (Op
->hasOneUse()) {
203 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
204 Value
*And
= Builder
->CreateAnd(X
, AndRHS
);
206 return BinaryOperator::CreateXor(And
, Together
);
209 case Instruction::Or
:
210 if (Op
->hasOneUse()){
211 if (Together
!= OpRHS
) {
212 // (X | C1) & C2 --> (X | (C1&C2)) & C2
213 Value
*Or
= Builder
->CreateOr(X
, Together
);
215 return BinaryOperator::CreateAnd(Or
, AndRHS
);
218 ConstantInt
*TogetherCI
= dyn_cast
<ConstantInt
>(Together
);
219 if (TogetherCI
&& !TogetherCI
->isZero()){
220 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
221 // NOTE: This reduces the number of bits set in the & mask, which
222 // can expose opportunities for store narrowing.
223 Together
= ConstantExpr::getXor(AndRHS
, Together
);
224 Value
*And
= Builder
->CreateAnd(X
, Together
);
226 return BinaryOperator::CreateOr(And
, OpRHS
);
231 case Instruction::Add
:
232 if (Op
->hasOneUse()) {
233 // Adding a one to a single bit bit-field should be turned into an XOR
234 // of the bit. First thing to check is to see if this AND is with a
235 // single bit constant.
236 const APInt
&AndRHSV
= cast
<ConstantInt
>(AndRHS
)->getValue();
238 // If there is only one bit set.
239 if (AndRHSV
.isPowerOf2()) {
240 // Ok, at this point, we know that we are masking the result of the
241 // ADD down to exactly one bit. If the constant we are adding has
242 // no bits set below this bit, then we can eliminate the ADD.
243 const APInt
& AddRHS
= cast
<ConstantInt
>(OpRHS
)->getValue();
245 // Check to see if any bits below the one bit set in AndRHSV are set.
246 if ((AddRHS
& (AndRHSV
-1)) == 0) {
247 // If not, the only thing that can effect the output of the AND is
248 // the bit specified by AndRHSV. If that bit is set, the effect of
249 // the XOR is to toggle the bit. If it is clear, then the ADD has
251 if ((AddRHS
& AndRHSV
) == 0) { // Bit is not set, noop
252 TheAnd
.setOperand(0, X
);
255 // Pull the XOR out of the AND.
256 Value
*NewAnd
= Builder
->CreateAnd(X
, AndRHS
);
257 NewAnd
->takeName(Op
);
258 return BinaryOperator::CreateXor(NewAnd
, AndRHS
);
265 case Instruction::Shl
: {
266 // We know that the AND will not produce any of the bits shifted in, so if
267 // the anded constant includes them, clear them now!
269 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
270 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
271 APInt
ShlMask(APInt::getHighBitsSet(BitWidth
, BitWidth
-OpRHSVal
));
272 ConstantInt
*CI
= ConstantInt::get(AndRHS
->getContext(),
273 AndRHS
->getValue() & ShlMask
);
275 if (CI
->getValue() == ShlMask
) {
276 // Masking out bits that the shift already masks
277 return ReplaceInstUsesWith(TheAnd
, Op
); // No need for the and.
278 } else if (CI
!= AndRHS
) { // Reducing bits set in and.
279 TheAnd
.setOperand(1, CI
);
284 case Instruction::LShr
: {
285 // We know that the AND will not produce any of the bits shifted in, so if
286 // the anded constant includes them, clear them now! This only applies to
287 // unsigned shifts, because a signed shr may bring in set bits!
289 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
290 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
291 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
292 ConstantInt
*CI
= ConstantInt::get(Op
->getContext(),
293 AndRHS
->getValue() & ShrMask
);
295 if (CI
->getValue() == ShrMask
) {
296 // Masking out bits that the shift already masks.
297 return ReplaceInstUsesWith(TheAnd
, Op
);
298 } else if (CI
!= AndRHS
) {
299 TheAnd
.setOperand(1, CI
); // Reduce bits set in and cst.
304 case Instruction::AShr
:
306 // See if this is shifting in some sign extension, then masking it out
308 if (Op
->hasOneUse()) {
309 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
310 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
311 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
312 Constant
*C
= ConstantInt::get(Op
->getContext(),
313 AndRHS
->getValue() & ShrMask
);
314 if (C
== AndRHS
) { // Masking out bits shifted in.
315 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
316 // Make the argument unsigned.
317 Value
*ShVal
= Op
->getOperand(0);
318 ShVal
= Builder
->CreateLShr(ShVal
, OpRHS
, Op
->getName());
319 return BinaryOperator::CreateAnd(ShVal
, AndRHS
, TheAnd
.getName());
328 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
329 /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
330 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
331 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
332 /// insert new instructions.
333 Value
*InstCombiner::InsertRangeTest(Value
*V
, Constant
*Lo
, Constant
*Hi
,
334 bool isSigned
, bool Inside
) {
335 assert(cast
<ConstantInt
>(ConstantExpr::getICmp((isSigned
?
336 ICmpInst::ICMP_SLE
:ICmpInst::ICMP_ULE
), Lo
, Hi
))->getZExtValue() &&
337 "Lo is not <= Hi in range emission code!");
340 if (Lo
== Hi
) // Trivially false.
341 return ConstantInt::getFalse(V
->getContext());
343 // V >= Min && V < Hi --> V < Hi
344 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
345 ICmpInst::Predicate pred
= (isSigned
?
346 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
);
347 return Builder
->CreateICmp(pred
, V
, Hi
);
350 // Emit V-Lo <u Hi-Lo
351 Constant
*NegLo
= ConstantExpr::getNeg(Lo
);
352 Value
*Add
= Builder
->CreateAdd(V
, NegLo
, V
->getName()+".off");
353 Constant
*UpperBound
= ConstantExpr::getAdd(NegLo
, Hi
);
354 return Builder
->CreateICmpULT(Add
, UpperBound
);
357 if (Lo
== Hi
) // Trivially true.
358 return ConstantInt::getTrue(V
->getContext());
360 // V < Min || V >= Hi -> V > Hi-1
361 Hi
= SubOne(cast
<ConstantInt
>(Hi
));
362 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
363 ICmpInst::Predicate pred
= (isSigned
?
364 ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
);
365 return Builder
->CreateICmp(pred
, V
, Hi
);
368 // Emit V-Lo >u Hi-1-Lo
369 // Note that Hi has already had one subtracted from it, above.
370 ConstantInt
*NegLo
= cast
<ConstantInt
>(ConstantExpr::getNeg(Lo
));
371 Value
*Add
= Builder
->CreateAdd(V
, NegLo
, V
->getName()+".off");
372 Constant
*LowerBound
= ConstantExpr::getAdd(NegLo
, Hi
);
373 return Builder
->CreateICmpUGT(Add
, LowerBound
);
376 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
377 // any number of 0s on either side. The 1s are allowed to wrap from LSB to
378 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
379 // not, since all 1s are not contiguous.
380 static bool isRunOfOnes(ConstantInt
*Val
, uint32_t &MB
, uint32_t &ME
) {
381 const APInt
& V
= Val
->getValue();
382 uint32_t BitWidth
= Val
->getType()->getBitWidth();
383 if (!APIntOps::isShiftedMask(BitWidth
, V
)) return false;
385 // look for the first zero bit after the run of ones
386 MB
= BitWidth
- ((V
- 1) ^ V
).countLeadingZeros();
387 // look for the first non-zero bit
388 ME
= V
.getActiveBits();
392 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
393 /// where isSub determines whether the operator is a sub. If we can fold one of
394 /// the following xforms:
396 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
397 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
398 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
400 /// return (A +/- B).
402 Value
*InstCombiner::FoldLogicalPlusAnd(Value
*LHS
, Value
*RHS
,
403 ConstantInt
*Mask
, bool isSub
,
405 Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
);
406 if (!LHSI
|| LHSI
->getNumOperands() != 2 ||
407 !isa
<ConstantInt
>(LHSI
->getOperand(1))) return 0;
409 ConstantInt
*N
= cast
<ConstantInt
>(LHSI
->getOperand(1));
411 switch (LHSI
->getOpcode()) {
413 case Instruction::And
:
414 if (ConstantExpr::getAnd(N
, Mask
) == Mask
) {
415 // If the AndRHS is a power of two minus one (0+1+), this is simple.
416 if ((Mask
->getValue().countLeadingZeros() +
417 Mask
->getValue().countPopulation()) ==
418 Mask
->getValue().getBitWidth())
421 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
422 // part, we don't need any explicit masks to take them out of A. If that
423 // is all N is, ignore it.
424 uint32_t MB
= 0, ME
= 0;
425 if (isRunOfOnes(Mask
, MB
, ME
)) { // begin/end bit of run, inclusive
426 uint32_t BitWidth
= cast
<IntegerType
>(RHS
->getType())->getBitWidth();
427 APInt
Mask(APInt::getLowBitsSet(BitWidth
, MB
-1));
428 if (MaskedValueIsZero(RHS
, Mask
))
433 case Instruction::Or
:
434 case Instruction::Xor
:
435 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
436 if ((Mask
->getValue().countLeadingZeros() +
437 Mask
->getValue().countPopulation()) == Mask
->getValue().getBitWidth()
438 && ConstantExpr::getAnd(N
, Mask
)->isNullValue())
444 return Builder
->CreateSub(LHSI
->getOperand(0), RHS
, "fold");
445 return Builder
->CreateAdd(LHSI
->getOperand(0), RHS
, "fold");
448 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
449 /// One of A and B is considered the mask, the other the value. This is
450 /// described as the "AMask" or "BMask" part of the enum. If the enum
451 /// contains only "Mask", then both A and B can be considered masks.
452 /// If A is the mask, then it was proven, that (A & C) == C. This
453 /// is trivial if C == A, or C == 0. If both A and C are constants, this
454 /// proof is also easy.
455 /// For the following explanations we assume that A is the mask.
456 /// The part "AllOnes" declares, that the comparison is true only
457 /// if (A & B) == A, or all bits of A are set in B.
458 /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
459 /// The part "AllZeroes" declares, that the comparison is true only
460 /// if (A & B) == 0, or all bits of A are cleared in B.
461 /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
462 /// The part "Mixed" declares, that (A & B) == C and C might or might not
463 /// contain any number of one bits and zero bits.
464 /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
465 /// The Part "Not" means, that in above descriptions "==" should be replaced
467 /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
468 /// If the mask A contains a single bit, then the following is equivalent:
469 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
470 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
471 enum MaskedICmpType
{
472 FoldMskICmp_AMask_AllOnes
= 1,
473 FoldMskICmp_AMask_NotAllOnes
= 2,
474 FoldMskICmp_BMask_AllOnes
= 4,
475 FoldMskICmp_BMask_NotAllOnes
= 8,
476 FoldMskICmp_Mask_AllZeroes
= 16,
477 FoldMskICmp_Mask_NotAllZeroes
= 32,
478 FoldMskICmp_AMask_Mixed
= 64,
479 FoldMskICmp_AMask_NotMixed
= 128,
480 FoldMskICmp_BMask_Mixed
= 256,
481 FoldMskICmp_BMask_NotMixed
= 512
484 /// return the set of pattern classes (from MaskedICmpType)
485 /// that (icmp SCC (A & B), C) satisfies
486 static unsigned getTypeOfMaskedICmp(Value
* A
, Value
* B
, Value
* C
,
487 ICmpInst::Predicate SCC
)
489 ConstantInt
*ACst
= dyn_cast
<ConstantInt
>(A
);
490 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
491 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
492 bool icmp_eq
= (SCC
== ICmpInst::ICMP_EQ
);
493 bool icmp_abit
= (ACst
!= 0 && !ACst
->isZero() &&
494 ACst
->getValue().isPowerOf2());
495 bool icmp_bbit
= (BCst
!= 0 && !BCst
->isZero() &&
496 BCst
->getValue().isPowerOf2());
498 if (CCst
!= 0 && CCst
->isZero()) {
499 // if C is zero, then both A and B qualify as mask
500 result
|= (icmp_eq
? (FoldMskICmp_Mask_AllZeroes
|
501 FoldMskICmp_Mask_AllZeroes
|
502 FoldMskICmp_AMask_Mixed
|
503 FoldMskICmp_BMask_Mixed
)
504 : (FoldMskICmp_Mask_NotAllZeroes
|
505 FoldMskICmp_Mask_NotAllZeroes
|
506 FoldMskICmp_AMask_NotMixed
|
507 FoldMskICmp_BMask_NotMixed
));
509 result
|= (icmp_eq
? (FoldMskICmp_AMask_NotAllOnes
|
510 FoldMskICmp_AMask_NotMixed
)
511 : (FoldMskICmp_AMask_AllOnes
|
512 FoldMskICmp_AMask_Mixed
));
514 result
|= (icmp_eq
? (FoldMskICmp_BMask_NotAllOnes
|
515 FoldMskICmp_BMask_NotMixed
)
516 : (FoldMskICmp_BMask_AllOnes
|
517 FoldMskICmp_BMask_Mixed
));
521 result
|= (icmp_eq
? (FoldMskICmp_AMask_AllOnes
|
522 FoldMskICmp_AMask_Mixed
)
523 : (FoldMskICmp_AMask_NotAllOnes
|
524 FoldMskICmp_AMask_NotMixed
));
526 result
|= (icmp_eq
? (FoldMskICmp_Mask_NotAllZeroes
|
527 FoldMskICmp_AMask_NotMixed
)
528 : (FoldMskICmp_Mask_AllZeroes
|
529 FoldMskICmp_AMask_Mixed
));
531 else if (ACst
!= 0 && CCst
!= 0 &&
532 ConstantExpr::getAnd(ACst
, CCst
) == CCst
) {
533 result
|= (icmp_eq
? FoldMskICmp_AMask_Mixed
534 : FoldMskICmp_AMask_NotMixed
);
538 result
|= (icmp_eq
? (FoldMskICmp_BMask_AllOnes
|
539 FoldMskICmp_BMask_Mixed
)
540 : (FoldMskICmp_BMask_NotAllOnes
|
541 FoldMskICmp_BMask_NotMixed
));
543 result
|= (icmp_eq
? (FoldMskICmp_Mask_NotAllZeroes
|
544 FoldMskICmp_BMask_NotMixed
)
545 : (FoldMskICmp_Mask_AllZeroes
|
546 FoldMskICmp_BMask_Mixed
));
548 else if (BCst
!= 0 && CCst
!= 0 &&
549 ConstantExpr::getAnd(BCst
, CCst
) == CCst
) {
550 result
|= (icmp_eq
? FoldMskICmp_BMask_Mixed
551 : FoldMskICmp_BMask_NotMixed
);
556 /// foldLogOpOfMaskedICmpsHelper:
557 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
558 /// return the set of pattern classes (from MaskedICmpType)
559 /// that both LHS and RHS satisfy
560 static unsigned foldLogOpOfMaskedICmpsHelper(Value
*& A
,
561 Value
*& B
, Value
*& C
,
562 Value
*& D
, Value
*& E
,
563 ICmpInst
*LHS
, ICmpInst
*RHS
) {
564 ICmpInst::Predicate LHSCC
= LHS
->getPredicate(), RHSCC
= RHS
->getPredicate();
565 if (LHSCC
!= ICmpInst::ICMP_EQ
&& LHSCC
!= ICmpInst::ICMP_NE
) return 0;
566 if (RHSCC
!= ICmpInst::ICMP_EQ
&& RHSCC
!= ICmpInst::ICMP_NE
) return 0;
567 if (LHS
->getOperand(0)->getType() != RHS
->getOperand(0)->getType()) return 0;
568 // vectors are not (yet?) supported
569 if (LHS
->getOperand(0)->getType()->isVectorTy()) return 0;
571 // Here comes the tricky part:
572 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
573 // and L11 & L12 == L21 & L22. The same goes for RHS.
574 // Now we must find those components L** and R**, that are equal, so
575 // that we can extract the parameters A, B, C, D, and E for the canonical
577 Value
*L1
= LHS
->getOperand(0);
578 Value
*L2
= LHS
->getOperand(1);
579 Value
*L11
,*L12
,*L21
,*L22
;
580 if (match(L1
, m_And(m_Value(L11
), m_Value(L12
)))) {
581 if (!match(L2
, m_And(m_Value(L21
), m_Value(L22
))))
585 if (!match(L2
, m_And(m_Value(L11
), m_Value(L12
))))
591 Value
*R1
= RHS
->getOperand(0);
592 Value
*R2
= RHS
->getOperand(1);
595 if (match(R1
, m_And(m_Value(R11
), m_Value(R12
)))) {
596 if (R11
!= 0 && (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
)) {
597 A
= R11
; D
= R12
; E
= R2
; ok
= true;
600 if (R12
!= 0 && (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
)) {
601 A
= R12
; D
= R11
; E
= R2
; ok
= true;
604 if (!ok
&& match(R2
, m_And(m_Value(R11
), m_Value(R12
)))) {
605 if (R11
!= 0 && (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
)) {
606 A
= R11
; D
= R12
; E
= R1
; ok
= true;
609 if (R12
!= 0 && (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
)) {
610 A
= R12
; D
= R11
; E
= R1
; ok
= true;
631 unsigned left_type
= getTypeOfMaskedICmp(A
, B
, C
, LHSCC
);
632 unsigned right_type
= getTypeOfMaskedICmp(A
, D
, E
, RHSCC
);
633 return left_type
& right_type
;
635 /// foldLogOpOfMaskedICmps:
636 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
637 /// into a single (icmp(A & X) ==/!= Y)
638 static Value
* foldLogOpOfMaskedICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
639 ICmpInst::Predicate NEWCC
,
640 llvm::InstCombiner::BuilderTy
* Builder
) {
641 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0, *E
= 0;
642 unsigned mask
= foldLogOpOfMaskedICmpsHelper(A
, B
, C
, D
, E
, LHS
, RHS
);
643 if (mask
== 0) return 0;
645 if (NEWCC
== ICmpInst::ICMP_NE
)
646 mask
>>= 1; // treat "Not"-states as normal states
648 if (mask
& FoldMskICmp_Mask_AllZeroes
) {
649 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
650 // -> (icmp eq (A & (B|D)), 0)
651 Value
* newOr
= Builder
->CreateOr(B
, D
);
652 Value
* newAnd
= Builder
->CreateAnd(A
, newOr
);
653 // we can't use C as zero, because we might actually handle
654 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
655 // with B and D, having a single bit set
656 Value
* zero
= Constant::getNullValue(A
->getType());
657 return Builder
->CreateICmp(NEWCC
, newAnd
, zero
);
659 else if (mask
& FoldMskICmp_BMask_AllOnes
) {
660 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
661 // -> (icmp eq (A & (B|D)), (B|D))
662 Value
* newOr
= Builder
->CreateOr(B
, D
);
663 Value
* newAnd
= Builder
->CreateAnd(A
, newOr
);
664 return Builder
->CreateICmp(NEWCC
, newAnd
, newOr
);
666 else if (mask
& FoldMskICmp_AMask_AllOnes
) {
667 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
668 // -> (icmp eq (A & (B&D)), A)
669 Value
* newAnd1
= Builder
->CreateAnd(B
, D
);
670 Value
* newAnd
= Builder
->CreateAnd(A
, newAnd1
);
671 return Builder
->CreateICmp(NEWCC
, newAnd
, A
);
673 else if (mask
& FoldMskICmp_BMask_Mixed
) {
674 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
675 // We already know that B & C == C && D & E == E.
676 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
677 // C and E, which are shared by both the mask B and the mask D, don't
678 // contradict, then we can transform to
679 // -> (icmp eq (A & (B|D)), (C|E))
680 // Currently, we only handle the case of B, C, D, and E being constant.
681 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
682 if (BCst
== 0) return 0;
683 ConstantInt
*DCst
= dyn_cast
<ConstantInt
>(D
);
684 if (DCst
== 0) return 0;
685 // we can't simply use C and E, because we might actually handle
686 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
687 // with B and D, having a single bit set
689 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
690 if (CCst
== 0) return 0;
691 if (LHS
->getPredicate() != NEWCC
)
692 CCst
= dyn_cast
<ConstantInt
>( ConstantExpr::getXor(BCst
, CCst
) );
693 ConstantInt
*ECst
= dyn_cast
<ConstantInt
>(E
);
694 if (ECst
== 0) return 0;
695 if (RHS
->getPredicate() != NEWCC
)
696 ECst
= dyn_cast
<ConstantInt
>( ConstantExpr::getXor(DCst
, ECst
) );
697 ConstantInt
* MCst
= dyn_cast
<ConstantInt
>(
698 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst
, DCst
),
699 ConstantExpr::getXor(CCst
, ECst
)) );
700 // if there is a conflict we should actually return a false for the
704 Value
* newOr1
= Builder
->CreateOr(B
, D
);
705 Value
* newOr2
= ConstantExpr::getOr(CCst
, ECst
);
706 Value
* newAnd
= Builder
->CreateAnd(A
, newOr1
);
707 return Builder
->CreateICmp(NEWCC
, newAnd
, newOr2
);
712 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
713 Value
*InstCombiner::FoldAndOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
) {
714 ICmpInst::Predicate LHSCC
= LHS
->getPredicate(), RHSCC
= RHS
->getPredicate();
716 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
717 if (PredicatesFoldable(LHSCC
, RHSCC
)) {
718 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
719 LHS
->getOperand(1) == RHS
->getOperand(0))
721 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
722 LHS
->getOperand(1) == RHS
->getOperand(1)) {
723 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
724 unsigned Code
= getICmpCode(LHS
) & getICmpCode(RHS
);
725 bool isSigned
= LHS
->isSigned() || RHS
->isSigned();
726 return getICmpValue(isSigned
, Code
, Op0
, Op1
, Builder
);
732 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
733 Value
* fold
= foldLogOpOfMaskedICmps(LHS
, RHS
, ICmpInst::ICMP_EQ
, Builder
);
734 if (fold
) return fold
;
737 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
738 Value
*Val
= LHS
->getOperand(0), *Val2
= RHS
->getOperand(0);
739 ConstantInt
*LHSCst
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
740 ConstantInt
*RHSCst
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
741 if (LHSCst
== 0 || RHSCst
== 0) return 0;
743 if (LHSCst
== RHSCst
&& LHSCC
== RHSCC
) {
744 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
745 // where C is a power of 2
746 if (LHSCC
== ICmpInst::ICMP_ULT
&&
747 LHSCst
->getValue().isPowerOf2()) {
748 Value
*NewOr
= Builder
->CreateOr(Val
, Val2
);
749 return Builder
->CreateICmp(LHSCC
, NewOr
, LHSCst
);
752 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
753 if (LHSCC
== ICmpInst::ICMP_EQ
&& LHSCst
->isZero()) {
754 Value
*NewOr
= Builder
->CreateOr(Val
, Val2
);
755 return Builder
->CreateICmp(LHSCC
, NewOr
, LHSCst
);
759 // From here on, we only handle:
760 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
761 if (Val
!= Val2
) return 0;
763 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
764 if (LHSCC
== ICmpInst::ICMP_UGE
|| LHSCC
== ICmpInst::ICMP_ULE
||
765 RHSCC
== ICmpInst::ICMP_UGE
|| RHSCC
== ICmpInst::ICMP_ULE
||
766 LHSCC
== ICmpInst::ICMP_SGE
|| LHSCC
== ICmpInst::ICMP_SLE
||
767 RHSCC
== ICmpInst::ICMP_SGE
|| RHSCC
== ICmpInst::ICMP_SLE
)
770 // We can't fold (ugt x, C) & (sgt x, C2).
771 if (!PredicatesFoldable(LHSCC
, RHSCC
))
774 // Ensure that the larger constant is on the RHS.
776 if (CmpInst::isSigned(LHSCC
) ||
777 (ICmpInst::isEquality(LHSCC
) &&
778 CmpInst::isSigned(RHSCC
)))
779 ShouldSwap
= LHSCst
->getValue().sgt(RHSCst
->getValue());
781 ShouldSwap
= LHSCst
->getValue().ugt(RHSCst
->getValue());
785 std::swap(LHSCst
, RHSCst
);
786 std::swap(LHSCC
, RHSCC
);
789 // At this point, we know we have two icmp instructions
790 // comparing a value against two constants and and'ing the result
791 // together. Because of the above check, we know that we only have
792 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
793 // (from the icmp folding check above), that the two constants
794 // are not equal and that the larger constant is on the RHS
795 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
798 default: llvm_unreachable("Unknown integer condition code!");
799 case ICmpInst::ICMP_EQ
:
801 default: llvm_unreachable("Unknown integer condition code!");
802 case ICmpInst::ICMP_EQ
: // (X == 13 & X == 15) -> false
803 case ICmpInst::ICMP_UGT
: // (X == 13 & X > 15) -> false
804 case ICmpInst::ICMP_SGT
: // (X == 13 & X > 15) -> false
805 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
806 case ICmpInst::ICMP_NE
: // (X == 13 & X != 15) -> X == 13
807 case ICmpInst::ICMP_ULT
: // (X == 13 & X < 15) -> X == 13
808 case ICmpInst::ICMP_SLT
: // (X == 13 & X < 15) -> X == 13
811 case ICmpInst::ICMP_NE
:
813 default: llvm_unreachable("Unknown integer condition code!");
814 case ICmpInst::ICMP_ULT
:
815 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X u< 14) -> X < 13
816 return Builder
->CreateICmpULT(Val
, LHSCst
);
817 break; // (X != 13 & X u< 15) -> no change
818 case ICmpInst::ICMP_SLT
:
819 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X s< 14) -> X < 13
820 return Builder
->CreateICmpSLT(Val
, LHSCst
);
821 break; // (X != 13 & X s< 15) -> no change
822 case ICmpInst::ICMP_EQ
: // (X != 13 & X == 15) -> X == 15
823 case ICmpInst::ICMP_UGT
: // (X != 13 & X u> 15) -> X u> 15
824 case ICmpInst::ICMP_SGT
: // (X != 13 & X s> 15) -> X s> 15
826 case ICmpInst::ICMP_NE
:
827 if (LHSCst
== SubOne(RHSCst
)){// (X != 13 & X != 14) -> X-13 >u 1
828 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
829 Value
*Add
= Builder
->CreateAdd(Val
, AddCST
, Val
->getName()+".off");
830 return Builder
->CreateICmpUGT(Add
, ConstantInt::get(Add
->getType(), 1));
832 break; // (X != 13 & X != 15) -> no change
835 case ICmpInst::ICMP_ULT
:
837 default: llvm_unreachable("Unknown integer condition code!");
838 case ICmpInst::ICMP_EQ
: // (X u< 13 & X == 15) -> false
839 case ICmpInst::ICMP_UGT
: // (X u< 13 & X u> 15) -> false
840 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
841 case ICmpInst::ICMP_SGT
: // (X u< 13 & X s> 15) -> no change
843 case ICmpInst::ICMP_NE
: // (X u< 13 & X != 15) -> X u< 13
844 case ICmpInst::ICMP_ULT
: // (X u< 13 & X u< 15) -> X u< 13
846 case ICmpInst::ICMP_SLT
: // (X u< 13 & X s< 15) -> no change
850 case ICmpInst::ICMP_SLT
:
852 default: llvm_unreachable("Unknown integer condition code!");
853 case ICmpInst::ICMP_EQ
: // (X s< 13 & X == 15) -> false
854 case ICmpInst::ICMP_SGT
: // (X s< 13 & X s> 15) -> false
855 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
856 case ICmpInst::ICMP_UGT
: // (X s< 13 & X u> 15) -> no change
858 case ICmpInst::ICMP_NE
: // (X s< 13 & X != 15) -> X < 13
859 case ICmpInst::ICMP_SLT
: // (X s< 13 & X s< 15) -> X < 13
861 case ICmpInst::ICMP_ULT
: // (X s< 13 & X u< 15) -> no change
865 case ICmpInst::ICMP_UGT
:
867 default: llvm_unreachable("Unknown integer condition code!");
868 case ICmpInst::ICMP_EQ
: // (X u> 13 & X == 15) -> X == 15
869 case ICmpInst::ICMP_UGT
: // (X u> 13 & X u> 15) -> X u> 15
871 case ICmpInst::ICMP_SGT
: // (X u> 13 & X s> 15) -> no change
873 case ICmpInst::ICMP_NE
:
874 if (RHSCst
== AddOne(LHSCst
)) // (X u> 13 & X != 14) -> X u> 14
875 return Builder
->CreateICmp(LHSCC
, Val
, RHSCst
);
876 break; // (X u> 13 & X != 15) -> no change
877 case ICmpInst::ICMP_ULT
: // (X u> 13 & X u< 15) -> (X-14) <u 1
878 return InsertRangeTest(Val
, AddOne(LHSCst
), RHSCst
, false, true);
879 case ICmpInst::ICMP_SLT
: // (X u> 13 & X s< 15) -> no change
883 case ICmpInst::ICMP_SGT
:
885 default: llvm_unreachable("Unknown integer condition code!");
886 case ICmpInst::ICMP_EQ
: // (X s> 13 & X == 15) -> X == 15
887 case ICmpInst::ICMP_SGT
: // (X s> 13 & X s> 15) -> X s> 15
889 case ICmpInst::ICMP_UGT
: // (X s> 13 & X u> 15) -> no change
891 case ICmpInst::ICMP_NE
:
892 if (RHSCst
== AddOne(LHSCst
)) // (X s> 13 & X != 14) -> X s> 14
893 return Builder
->CreateICmp(LHSCC
, Val
, RHSCst
);
894 break; // (X s> 13 & X != 15) -> no change
895 case ICmpInst::ICMP_SLT
: // (X s> 13 & X s< 15) -> (X-14) s< 1
896 return InsertRangeTest(Val
, AddOne(LHSCst
), RHSCst
, true, true);
897 case ICmpInst::ICMP_ULT
: // (X s> 13 & X u< 15) -> no change
906 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
907 /// instcombine, this returns a Value which should already be inserted into the
909 Value
*InstCombiner::FoldAndOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
) {
910 if (LHS
->getPredicate() == FCmpInst::FCMP_ORD
&&
911 RHS
->getPredicate() == FCmpInst::FCMP_ORD
) {
912 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
913 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
914 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
915 // If either of the constants are nans, then the whole thing returns
917 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
918 return ConstantInt::getFalse(LHS
->getContext());
919 return Builder
->CreateFCmpORD(LHS
->getOperand(0), RHS
->getOperand(0));
922 // Handle vector zeros. This occurs because the canonical form of
923 // "fcmp ord x,x" is "fcmp ord x, 0".
924 if (isa
<ConstantAggregateZero
>(LHS
->getOperand(1)) &&
925 isa
<ConstantAggregateZero
>(RHS
->getOperand(1)))
926 return Builder
->CreateFCmpORD(LHS
->getOperand(0), RHS
->getOperand(0));
930 Value
*Op0LHS
= LHS
->getOperand(0), *Op0RHS
= LHS
->getOperand(1);
931 Value
*Op1LHS
= RHS
->getOperand(0), *Op1RHS
= RHS
->getOperand(1);
932 FCmpInst::Predicate Op0CC
= LHS
->getPredicate(), Op1CC
= RHS
->getPredicate();
935 if (Op0LHS
== Op1RHS
&& Op0RHS
== Op1LHS
) {
936 // Swap RHS operands to match LHS.
937 Op1CC
= FCmpInst::getSwappedPredicate(Op1CC
);
938 std::swap(Op1LHS
, Op1RHS
);
941 if (Op0LHS
== Op1LHS
&& Op0RHS
== Op1RHS
) {
942 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
944 return Builder
->CreateFCmp((FCmpInst::Predicate
)Op0CC
, Op0LHS
, Op0RHS
);
945 if (Op0CC
== FCmpInst::FCMP_FALSE
|| Op1CC
== FCmpInst::FCMP_FALSE
)
946 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
947 if (Op0CC
== FCmpInst::FCMP_TRUE
)
949 if (Op1CC
== FCmpInst::FCMP_TRUE
)
954 unsigned Op0Pred
= getFCmpCode(Op0CC
, Op0Ordered
);
955 unsigned Op1Pred
= getFCmpCode(Op1CC
, Op1Ordered
);
958 std::swap(Op0Pred
, Op1Pred
);
959 std::swap(Op0Ordered
, Op1Ordered
);
962 // uno && ueq -> uno && (uno || eq) -> ueq
963 // ord && olt -> ord && (ord && lt) -> olt
964 if (Op0Ordered
== Op1Ordered
)
967 // uno && oeq -> uno && (ord && eq) -> false
968 // uno && ord -> false
970 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
971 // ord && ueq -> ord && (uno || eq) -> oeq
972 return getFCmpValue(true, Op1Pred
, Op0LHS
, Op0RHS
, Builder
);
980 Instruction
*InstCombiner::visitAnd(BinaryOperator
&I
) {
981 bool Changed
= SimplifyCommutative(I
);
982 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
984 if (Value
*V
= SimplifyAndInst(Op0
, Op1
, TD
))
985 return ReplaceInstUsesWith(I
, V
);
987 // See if we can simplify any instructions used by the instruction whose sole
988 // purpose is to compute bits we don't care about.
989 if (SimplifyDemandedInstructionBits(I
))
992 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(Op1
)) {
993 const APInt
&AndRHSMask
= AndRHS
->getValue();
994 APInt
NotAndRHS(~AndRHSMask
);
996 // Optimize a variety of ((val OP C1) & C2) combinations...
997 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
998 Value
*Op0LHS
= Op0I
->getOperand(0);
999 Value
*Op0RHS
= Op0I
->getOperand(1);
1000 switch (Op0I
->getOpcode()) {
1002 case Instruction::Xor
:
1003 case Instruction::Or
:
1004 // If the mask is only needed on one incoming arm, push it up.
1005 if (!Op0I
->hasOneUse()) break;
1007 if (MaskedValueIsZero(Op0LHS
, NotAndRHS
)) {
1008 // Not masking anything out for the LHS, move to RHS.
1009 Value
*NewRHS
= Builder
->CreateAnd(Op0RHS
, AndRHS
,
1010 Op0RHS
->getName()+".masked");
1011 return BinaryOperator::Create(Op0I
->getOpcode(), Op0LHS
, NewRHS
);
1013 if (!isa
<Constant
>(Op0RHS
) &&
1014 MaskedValueIsZero(Op0RHS
, NotAndRHS
)) {
1015 // Not masking anything out for the RHS, move to LHS.
1016 Value
*NewLHS
= Builder
->CreateAnd(Op0LHS
, AndRHS
,
1017 Op0LHS
->getName()+".masked");
1018 return BinaryOperator::Create(Op0I
->getOpcode(), NewLHS
, Op0RHS
);
1022 case Instruction::Add
:
1023 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1024 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1025 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1026 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, false, I
))
1027 return BinaryOperator::CreateAnd(V
, AndRHS
);
1028 if (Value
*V
= FoldLogicalPlusAnd(Op0RHS
, Op0LHS
, AndRHS
, false, I
))
1029 return BinaryOperator::CreateAnd(V
, AndRHS
); // Add commutes
1032 case Instruction::Sub
:
1033 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1034 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1035 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1036 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, true, I
))
1037 return BinaryOperator::CreateAnd(V
, AndRHS
);
1039 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1040 // has 1's for all bits that the subtraction with A might affect.
1041 if (Op0I
->hasOneUse()) {
1042 uint32_t BitWidth
= AndRHSMask
.getBitWidth();
1043 uint32_t Zeros
= AndRHSMask
.countLeadingZeros();
1044 APInt Mask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Zeros
);
1046 ConstantInt
*A
= dyn_cast
<ConstantInt
>(Op0LHS
);
1047 if (!(A
&& A
->isZero()) && // avoid infinite recursion.
1048 MaskedValueIsZero(Op0LHS
, Mask
)) {
1049 Value
*NewNeg
= Builder
->CreateNeg(Op0RHS
);
1050 return BinaryOperator::CreateAnd(NewNeg
, AndRHS
);
1055 case Instruction::Shl
:
1056 case Instruction::LShr
:
1057 // (1 << x) & 1 --> zext(x == 0)
1058 // (1 >> x) & 1 --> zext(x == 0)
1059 if (AndRHSMask
== 1 && Op0LHS
== AndRHS
) {
1061 Builder
->CreateICmpEQ(Op0RHS
, Constant::getNullValue(I
.getType()));
1062 return new ZExtInst(NewICmp
, I
.getType());
1067 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
1068 if (Instruction
*Res
= OptAndOp(Op0I
, Op0CI
, AndRHS
, I
))
1070 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(Op0
)) {
1071 // If this is an integer truncation or change from signed-to-unsigned, and
1072 // if the source is an and/or with immediate, transform it. This
1073 // frequently occurs for bitfield accesses.
1074 if (Instruction
*CastOp
= dyn_cast
<Instruction
>(CI
->getOperand(0))) {
1075 if ((isa
<TruncInst
>(CI
) || isa
<BitCastInst
>(CI
)) &&
1076 CastOp
->getNumOperands() == 2)
1077 if (ConstantInt
*AndCI
=dyn_cast
<ConstantInt
>(CastOp
->getOperand(1))){
1078 if (CastOp
->getOpcode() == Instruction::And
) {
1079 // Change: and (cast (and X, C1) to T), C2
1080 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
1081 // This will fold the two constants together, which may allow
1082 // other simplifications.
1083 Value
*NewCast
= Builder
->CreateTruncOrBitCast(
1084 CastOp
->getOperand(0), I
.getType(),
1085 CastOp
->getName()+".shrunk");
1086 // trunc_or_bitcast(C1)&C2
1087 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
1088 C3
= ConstantExpr::getAnd(C3
, AndRHS
);
1089 return BinaryOperator::CreateAnd(NewCast
, C3
);
1090 } else if (CastOp
->getOpcode() == Instruction::Or
) {
1091 // Change: and (cast (or X, C1) to T), C2
1092 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
1093 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
1094 if (ConstantExpr::getAnd(C3
, AndRHS
) == AndRHS
)
1096 return ReplaceInstUsesWith(I
, AndRHS
);
1102 // Try to fold constant and into select arguments.
1103 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
1104 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1106 if (isa
<PHINode
>(Op0
))
1107 if (Instruction
*NV
= FoldOpIntoPhi(I
))
1112 // (~A & ~B) == (~(A | B)) - De Morgan's Law
1113 if (Value
*Op0NotVal
= dyn_castNotVal(Op0
))
1114 if (Value
*Op1NotVal
= dyn_castNotVal(Op1
))
1115 if (Op0
->hasOneUse() && Op1
->hasOneUse()) {
1116 Value
*Or
= Builder
->CreateOr(Op0NotVal
, Op1NotVal
,
1117 I
.getName()+".demorgan");
1118 return BinaryOperator::CreateNot(Or
);
1122 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0;
1123 // (A|B) & ~(A&B) -> A^B
1124 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
1125 match(Op1
, m_Not(m_And(m_Value(C
), m_Value(D
)))) &&
1126 ((A
== C
&& B
== D
) || (A
== D
&& B
== C
)))
1127 return BinaryOperator::CreateXor(A
, B
);
1129 // ~(A&B) & (A|B) -> A^B
1130 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
))) &&
1131 match(Op0
, m_Not(m_And(m_Value(C
), m_Value(D
)))) &&
1132 ((A
== C
&& B
== D
) || (A
== D
&& B
== C
)))
1133 return BinaryOperator::CreateXor(A
, B
);
1135 if (Op0
->hasOneUse() &&
1136 match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
1137 if (A
== Op1
) { // (A^B)&A -> A&(A^B)
1138 I
.swapOperands(); // Simplify below
1139 std::swap(Op0
, Op1
);
1140 } else if (B
== Op1
) { // (A^B)&B -> B&(B^A)
1141 cast
<BinaryOperator
>(Op0
)->swapOperands();
1142 I
.swapOperands(); // Simplify below
1143 std::swap(Op0
, Op1
);
1147 if (Op1
->hasOneUse() &&
1148 match(Op1
, m_Xor(m_Value(A
), m_Value(B
)))) {
1149 if (B
== Op0
) { // B&(A^B) -> B&(B^A)
1150 cast
<BinaryOperator
>(Op1
)->swapOperands();
1153 if (A
== Op0
) // A&(A^B) -> A & ~B
1154 return BinaryOperator::CreateAnd(A
, Builder
->CreateNot(B
, "tmp"));
1157 // (A&((~A)|B)) -> A&B
1158 if (match(Op0
, m_Or(m_Not(m_Specific(Op1
)), m_Value(A
))) ||
1159 match(Op0
, m_Or(m_Value(A
), m_Not(m_Specific(Op1
)))))
1160 return BinaryOperator::CreateAnd(A
, Op1
);
1161 if (match(Op1
, m_Or(m_Not(m_Specific(Op0
)), m_Value(A
))) ||
1162 match(Op1
, m_Or(m_Value(A
), m_Not(m_Specific(Op0
)))))
1163 return BinaryOperator::CreateAnd(A
, Op0
);
1166 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
))
1167 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
))
1168 if (Value
*Res
= FoldAndOfICmps(LHS
, RHS
))
1169 return ReplaceInstUsesWith(I
, Res
);
1171 // If and'ing two fcmp, try combine them into one.
1172 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
1173 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
1174 if (Value
*Res
= FoldAndOfFCmps(LHS
, RHS
))
1175 return ReplaceInstUsesWith(I
, Res
);
1178 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1179 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
))
1180 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
)) {
1181 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
1182 if (Op0C
->getOpcode() == Op1C
->getOpcode() && // same cast kind ?
1183 SrcTy
== Op1C
->getOperand(0)->getType() &&
1184 SrcTy
->isIntOrIntVectorTy()) {
1185 Value
*Op0COp
= Op0C
->getOperand(0), *Op1COp
= Op1C
->getOperand(0);
1187 // Only do this if the casts both really cause code to be generated.
1188 if (ShouldOptimizeCast(Op0C
->getOpcode(), Op0COp
, I
.getType()) &&
1189 ShouldOptimizeCast(Op1C
->getOpcode(), Op1COp
, I
.getType())) {
1190 Value
*NewOp
= Builder
->CreateAnd(Op0COp
, Op1COp
, I
.getName());
1191 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
1194 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1195 // cast is otherwise not optimizable. This happens for vector sexts.
1196 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1COp
))
1197 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0COp
))
1198 if (Value
*Res
= FoldAndOfICmps(LHS
, RHS
))
1199 return CastInst::Create(Op0C
->getOpcode(), Res
, I
.getType());
1201 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1202 // cast is otherwise not optimizable. This happens for vector sexts.
1203 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(Op1COp
))
1204 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(Op0COp
))
1205 if (Value
*Res
= FoldAndOfFCmps(LHS
, RHS
))
1206 return CastInst::Create(Op0C
->getOpcode(), Res
, I
.getType());
1210 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
1211 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
1212 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
1213 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
1214 SI0
->getOperand(1) == SI1
->getOperand(1) &&
1215 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
1217 Builder
->CreateAnd(SI0
->getOperand(0), SI1
->getOperand(0),
1219 return BinaryOperator::Create(SI1
->getOpcode(), NewOp
,
1220 SI1
->getOperand(1));
1224 return Changed
? &I
: 0;
1227 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
1228 /// capable of providing pieces of a bswap. The subexpression provides pieces
1229 /// of a bswap if it is proven that each of the non-zero bytes in the output of
1230 /// the expression came from the corresponding "byte swapped" byte in some other
1231 /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
1232 /// we know that the expression deposits the low byte of %X into the high byte
1233 /// of the bswap result and that all other bytes are zero. This expression is
1234 /// accepted, the high byte of ByteValues is set to X to indicate a correct
1237 /// This function returns true if the match was unsuccessful and false if so.
1238 /// On entry to the function the "OverallLeftShift" is a signed integer value
1239 /// indicating the number of bytes that the subexpression is later shifted. For
1240 /// example, if the expression is later right shifted by 16 bits, the
1241 /// OverallLeftShift value would be -2 on entry. This is used to specify which
1242 /// byte of ByteValues is actually being set.
1244 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1245 /// byte is masked to zero by a user. For example, in (X & 255), X will be
1246 /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
1247 /// this function to working on up to 32-byte (256 bit) values. ByteMask is
1248 /// always in the local (OverallLeftShift) coordinate space.
1250 static bool CollectBSwapParts(Value
*V
, int OverallLeftShift
, uint32_t ByteMask
,
1251 SmallVector
<Value
*, 8> &ByteValues
) {
1252 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
1253 // If this is an or instruction, it may be an inner node of the bswap.
1254 if (I
->getOpcode() == Instruction::Or
) {
1255 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
1257 CollectBSwapParts(I
->getOperand(1), OverallLeftShift
, ByteMask
,
1261 // If this is a logical shift by a constant multiple of 8, recurse with
1262 // OverallLeftShift and ByteMask adjusted.
1263 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
1265 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
1266 // Ensure the shift amount is defined and of a byte value.
1267 if ((ShAmt
& 7) || (ShAmt
> 8*ByteValues
.size()))
1270 unsigned ByteShift
= ShAmt
>> 3;
1271 if (I
->getOpcode() == Instruction::Shl
) {
1272 // X << 2 -> collect(X, +2)
1273 OverallLeftShift
+= ByteShift
;
1274 ByteMask
>>= ByteShift
;
1276 // X >>u 2 -> collect(X, -2)
1277 OverallLeftShift
-= ByteShift
;
1278 ByteMask
<<= ByteShift
;
1279 ByteMask
&= (~0U >> (32-ByteValues
.size()));
1282 if (OverallLeftShift
>= (int)ByteValues
.size()) return true;
1283 if (OverallLeftShift
<= -(int)ByteValues
.size()) return true;
1285 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
1289 // If this is a logical 'and' with a mask that clears bytes, clear the
1290 // corresponding bytes in ByteMask.
1291 if (I
->getOpcode() == Instruction::And
&&
1292 isa
<ConstantInt
>(I
->getOperand(1))) {
1293 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1294 unsigned NumBytes
= ByteValues
.size();
1295 APInt
Byte(I
->getType()->getPrimitiveSizeInBits(), 255);
1296 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
1298 for (unsigned i
= 0; i
!= NumBytes
; ++i
, Byte
<<= 8) {
1299 // If this byte is masked out by a later operation, we don't care what
1301 if ((ByteMask
& (1 << i
)) == 0)
1304 // If the AndMask is all zeros for this byte, clear the bit.
1305 APInt MaskB
= AndMask
& Byte
;
1307 ByteMask
&= ~(1U << i
);
1311 // If the AndMask is not all ones for this byte, it's not a bytezap.
1315 // Otherwise, this byte is kept.
1318 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
1323 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1324 // the input value to the bswap. Some observations: 1) if more than one byte
1325 // is demanded from this input, then it could not be successfully assembled
1326 // into a byteswap. At least one of the two bytes would not be aligned with
1327 // their ultimate destination.
1328 if (!isPowerOf2_32(ByteMask
)) return true;
1329 unsigned InputByteNo
= CountTrailingZeros_32(ByteMask
);
1331 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1332 // is demanded, it needs to go into byte 0 of the result. This means that the
1333 // byte needs to be shifted until it lands in the right byte bucket. The
1334 // shift amount depends on the position: if the byte is coming from the high
1335 // part of the value (e.g. byte 3) then it must be shifted right. If from the
1336 // low part, it must be shifted left.
1337 unsigned DestByteNo
= InputByteNo
+ OverallLeftShift
;
1338 if (InputByteNo
< ByteValues
.size()/2) {
1339 if (ByteValues
.size()-1-DestByteNo
!= InputByteNo
)
1342 if (ByteValues
.size()-1-DestByteNo
!= InputByteNo
)
1346 // If the destination byte value is already defined, the values are or'd
1347 // together, which isn't a bswap (unless it's an or of the same bits).
1348 if (ByteValues
[DestByteNo
] && ByteValues
[DestByteNo
] != V
)
1350 ByteValues
[DestByteNo
] = V
;
1354 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1355 /// If so, insert the new bswap intrinsic and return it.
1356 Instruction
*InstCombiner::MatchBSwap(BinaryOperator
&I
) {
1357 const IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
.getType());
1358 if (!ITy
|| ITy
->getBitWidth() % 16 ||
1359 // ByteMask only allows up to 32-byte values.
1360 ITy
->getBitWidth() > 32*8)
1361 return 0; // Can only bswap pairs of bytes. Can't do vectors.
1363 /// ByteValues - For each byte of the result, we keep track of which value
1364 /// defines each byte.
1365 SmallVector
<Value
*, 8> ByteValues
;
1366 ByteValues
.resize(ITy
->getBitWidth()/8);
1368 // Try to find all the pieces corresponding to the bswap.
1369 uint32_t ByteMask
= ~0U >> (32-ByteValues
.size());
1370 if (CollectBSwapParts(&I
, 0, ByteMask
, ByteValues
))
1373 // Check to see if all of the bytes come from the same value.
1374 Value
*V
= ByteValues
[0];
1375 if (V
== 0) return 0; // Didn't find a byte? Must be zero.
1377 // Check to make sure that all of the bytes come from the same value.
1378 for (unsigned i
= 1, e
= ByteValues
.size(); i
!= e
; ++i
)
1379 if (ByteValues
[i
] != V
)
1381 const Type
*Tys
[] = { ITy
};
1382 Module
*M
= I
.getParent()->getParent()->getParent();
1383 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
1384 return CallInst::Create(F
, V
);
1387 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
1388 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1389 /// we can simplify this expression to "cond ? C : D or B".
1390 static Instruction
*MatchSelectFromAndOr(Value
*A
, Value
*B
,
1391 Value
*C
, Value
*D
) {
1392 // If A is not a select of -1/0, this cannot match.
1394 if (!match(A
, m_SExt(m_Value(Cond
))) ||
1395 !Cond
->getType()->isIntegerTy(1))
1398 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1399 if (match(D
, m_Not(m_SExt(m_Specific(Cond
)))))
1400 return SelectInst::Create(Cond
, C
, B
);
1401 if (match(D
, m_SExt(m_Not(m_Specific(Cond
)))))
1402 return SelectInst::Create(Cond
, C
, B
);
1404 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1405 if (match(B
, m_Not(m_SExt(m_Specific(Cond
)))))
1406 return SelectInst::Create(Cond
, C
, D
);
1407 if (match(B
, m_SExt(m_Not(m_Specific(Cond
)))))
1408 return SelectInst::Create(Cond
, C
, D
);
1412 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1413 Value
*InstCombiner::FoldOrOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
) {
1414 ICmpInst::Predicate LHSCC
= LHS
->getPredicate(), RHSCC
= RHS
->getPredicate();
1416 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1417 if (PredicatesFoldable(LHSCC
, RHSCC
)) {
1418 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
1419 LHS
->getOperand(1) == RHS
->getOperand(0))
1420 LHS
->swapOperands();
1421 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
1422 LHS
->getOperand(1) == RHS
->getOperand(1)) {
1423 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
1424 unsigned Code
= getICmpCode(LHS
) | getICmpCode(RHS
);
1425 bool isSigned
= LHS
->isSigned() || RHS
->isSigned();
1426 return getICmpValue(isSigned
, Code
, Op0
, Op1
, Builder
);
1431 // handle (roughly):
1432 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1433 Value
* fold
= foldLogOpOfMaskedICmps(LHS
, RHS
, ICmpInst::ICMP_NE
, Builder
);
1434 if (fold
) return fold
;
1437 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1438 Value
*Val
= LHS
->getOperand(0), *Val2
= RHS
->getOperand(0);
1439 ConstantInt
*LHSCst
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
1440 ConstantInt
*RHSCst
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
1441 if (LHSCst
== 0 || RHSCst
== 0) return 0;
1443 if (LHSCst
== RHSCst
&& LHSCC
== RHSCC
) {
1444 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1445 if (LHSCC
== ICmpInst::ICMP_NE
&& LHSCst
->isZero()) {
1446 Value
*NewOr
= Builder
->CreateOr(Val
, Val2
);
1447 return Builder
->CreateICmp(LHSCC
, NewOr
, LHSCst
);
1451 // From here on, we only handle:
1452 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1453 if (Val
!= Val2
) return 0;
1455 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1456 if (LHSCC
== ICmpInst::ICMP_UGE
|| LHSCC
== ICmpInst::ICMP_ULE
||
1457 RHSCC
== ICmpInst::ICMP_UGE
|| RHSCC
== ICmpInst::ICMP_ULE
||
1458 LHSCC
== ICmpInst::ICMP_SGE
|| LHSCC
== ICmpInst::ICMP_SLE
||
1459 RHSCC
== ICmpInst::ICMP_SGE
|| RHSCC
== ICmpInst::ICMP_SLE
)
1462 // We can't fold (ugt x, C) | (sgt x, C2).
1463 if (!PredicatesFoldable(LHSCC
, RHSCC
))
1466 // Ensure that the larger constant is on the RHS.
1468 if (CmpInst::isSigned(LHSCC
) ||
1469 (ICmpInst::isEquality(LHSCC
) &&
1470 CmpInst::isSigned(RHSCC
)))
1471 ShouldSwap
= LHSCst
->getValue().sgt(RHSCst
->getValue());
1473 ShouldSwap
= LHSCst
->getValue().ugt(RHSCst
->getValue());
1476 std::swap(LHS
, RHS
);
1477 std::swap(LHSCst
, RHSCst
);
1478 std::swap(LHSCC
, RHSCC
);
1481 // At this point, we know we have two icmp instructions
1482 // comparing a value against two constants and or'ing the result
1483 // together. Because of the above check, we know that we only have
1484 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1485 // icmp folding check above), that the two constants are not
1487 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
1490 default: llvm_unreachable("Unknown integer condition code!");
1491 case ICmpInst::ICMP_EQ
:
1493 default: llvm_unreachable("Unknown integer condition code!");
1494 case ICmpInst::ICMP_EQ
:
1495 if (LHSCst
== SubOne(RHSCst
)) {
1496 // (X == 13 | X == 14) -> X-13 <u 2
1497 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
1498 Value
*Add
= Builder
->CreateAdd(Val
, AddCST
, Val
->getName()+".off");
1499 AddCST
= ConstantExpr::getSub(AddOne(RHSCst
), LHSCst
);
1500 return Builder
->CreateICmpULT(Add
, AddCST
);
1502 break; // (X == 13 | X == 15) -> no change
1503 case ICmpInst::ICMP_UGT
: // (X == 13 | X u> 14) -> no change
1504 case ICmpInst::ICMP_SGT
: // (X == 13 | X s> 14) -> no change
1506 case ICmpInst::ICMP_NE
: // (X == 13 | X != 15) -> X != 15
1507 case ICmpInst::ICMP_ULT
: // (X == 13 | X u< 15) -> X u< 15
1508 case ICmpInst::ICMP_SLT
: // (X == 13 | X s< 15) -> X s< 15
1512 case ICmpInst::ICMP_NE
:
1514 default: llvm_unreachable("Unknown integer condition code!");
1515 case ICmpInst::ICMP_EQ
: // (X != 13 | X == 15) -> X != 13
1516 case ICmpInst::ICMP_UGT
: // (X != 13 | X u> 15) -> X != 13
1517 case ICmpInst::ICMP_SGT
: // (X != 13 | X s> 15) -> X != 13
1519 case ICmpInst::ICMP_NE
: // (X != 13 | X != 15) -> true
1520 case ICmpInst::ICMP_ULT
: // (X != 13 | X u< 15) -> true
1521 case ICmpInst::ICMP_SLT
: // (X != 13 | X s< 15) -> true
1522 return ConstantInt::getTrue(LHS
->getContext());
1525 case ICmpInst::ICMP_ULT
:
1527 default: llvm_unreachable("Unknown integer condition code!");
1528 case ICmpInst::ICMP_EQ
: // (X u< 13 | X == 14) -> no change
1530 case ICmpInst::ICMP_UGT
: // (X u< 13 | X u> 15) -> (X-13) u> 2
1531 // If RHSCst is [us]MAXINT, it is always false. Not handling
1532 // this can cause overflow.
1533 if (RHSCst
->isMaxValue(false))
1535 return InsertRangeTest(Val
, LHSCst
, AddOne(RHSCst
), false, false);
1536 case ICmpInst::ICMP_SGT
: // (X u< 13 | X s> 15) -> no change
1538 case ICmpInst::ICMP_NE
: // (X u< 13 | X != 15) -> X != 15
1539 case ICmpInst::ICMP_ULT
: // (X u< 13 | X u< 15) -> X u< 15
1541 case ICmpInst::ICMP_SLT
: // (X u< 13 | X s< 15) -> no change
1545 case ICmpInst::ICMP_SLT
:
1547 default: llvm_unreachable("Unknown integer condition code!");
1548 case ICmpInst::ICMP_EQ
: // (X s< 13 | X == 14) -> no change
1550 case ICmpInst::ICMP_SGT
: // (X s< 13 | X s> 15) -> (X-13) s> 2
1551 // If RHSCst is [us]MAXINT, it is always false. Not handling
1552 // this can cause overflow.
1553 if (RHSCst
->isMaxValue(true))
1555 return InsertRangeTest(Val
, LHSCst
, AddOne(RHSCst
), true, false);
1556 case ICmpInst::ICMP_UGT
: // (X s< 13 | X u> 15) -> no change
1558 case ICmpInst::ICMP_NE
: // (X s< 13 | X != 15) -> X != 15
1559 case ICmpInst::ICMP_SLT
: // (X s< 13 | X s< 15) -> X s< 15
1561 case ICmpInst::ICMP_ULT
: // (X s< 13 | X u< 15) -> no change
1565 case ICmpInst::ICMP_UGT
:
1567 default: llvm_unreachable("Unknown integer condition code!");
1568 case ICmpInst::ICMP_EQ
: // (X u> 13 | X == 15) -> X u> 13
1569 case ICmpInst::ICMP_UGT
: // (X u> 13 | X u> 15) -> X u> 13
1571 case ICmpInst::ICMP_SGT
: // (X u> 13 | X s> 15) -> no change
1573 case ICmpInst::ICMP_NE
: // (X u> 13 | X != 15) -> true
1574 case ICmpInst::ICMP_ULT
: // (X u> 13 | X u< 15) -> true
1575 return ConstantInt::getTrue(LHS
->getContext());
1576 case ICmpInst::ICMP_SLT
: // (X u> 13 | X s< 15) -> no change
1580 case ICmpInst::ICMP_SGT
:
1582 default: llvm_unreachable("Unknown integer condition code!");
1583 case ICmpInst::ICMP_EQ
: // (X s> 13 | X == 15) -> X > 13
1584 case ICmpInst::ICMP_SGT
: // (X s> 13 | X s> 15) -> X > 13
1586 case ICmpInst::ICMP_UGT
: // (X s> 13 | X u> 15) -> no change
1588 case ICmpInst::ICMP_NE
: // (X s> 13 | X != 15) -> true
1589 case ICmpInst::ICMP_SLT
: // (X s> 13 | X s< 15) -> true
1590 return ConstantInt::getTrue(LHS
->getContext());
1591 case ICmpInst::ICMP_ULT
: // (X s> 13 | X u< 15) -> no change
1599 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
1600 /// instcombine, this returns a Value which should already be inserted into the
1602 Value
*InstCombiner::FoldOrOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
) {
1603 if (LHS
->getPredicate() == FCmpInst::FCMP_UNO
&&
1604 RHS
->getPredicate() == FCmpInst::FCMP_UNO
&&
1605 LHS
->getOperand(0)->getType() == RHS
->getOperand(0)->getType()) {
1606 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
1607 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
1608 // If either of the constants are nans, then the whole thing returns
1610 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
1611 return ConstantInt::getTrue(LHS
->getContext());
1613 // Otherwise, no need to compare the two constants, compare the
1615 return Builder
->CreateFCmpUNO(LHS
->getOperand(0), RHS
->getOperand(0));
1618 // Handle vector zeros. This occurs because the canonical form of
1619 // "fcmp uno x,x" is "fcmp uno x, 0".
1620 if (isa
<ConstantAggregateZero
>(LHS
->getOperand(1)) &&
1621 isa
<ConstantAggregateZero
>(RHS
->getOperand(1)))
1622 return Builder
->CreateFCmpUNO(LHS
->getOperand(0), RHS
->getOperand(0));
1627 Value
*Op0LHS
= LHS
->getOperand(0), *Op0RHS
= LHS
->getOperand(1);
1628 Value
*Op1LHS
= RHS
->getOperand(0), *Op1RHS
= RHS
->getOperand(1);
1629 FCmpInst::Predicate Op0CC
= LHS
->getPredicate(), Op1CC
= RHS
->getPredicate();
1631 if (Op0LHS
== Op1RHS
&& Op0RHS
== Op1LHS
) {
1632 // Swap RHS operands to match LHS.
1633 Op1CC
= FCmpInst::getSwappedPredicate(Op1CC
);
1634 std::swap(Op1LHS
, Op1RHS
);
1636 if (Op0LHS
== Op1LHS
&& Op0RHS
== Op1RHS
) {
1637 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1639 return Builder
->CreateFCmp((FCmpInst::Predicate
)Op0CC
, Op0LHS
, Op0RHS
);
1640 if (Op0CC
== FCmpInst::FCMP_TRUE
|| Op1CC
== FCmpInst::FCMP_TRUE
)
1641 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 1);
1642 if (Op0CC
== FCmpInst::FCMP_FALSE
)
1644 if (Op1CC
== FCmpInst::FCMP_FALSE
)
1648 unsigned Op0Pred
= getFCmpCode(Op0CC
, Op0Ordered
);
1649 unsigned Op1Pred
= getFCmpCode(Op1CC
, Op1Ordered
);
1650 if (Op0Ordered
== Op1Ordered
) {
1651 // If both are ordered or unordered, return a new fcmp with
1652 // or'ed predicates.
1653 return getFCmpValue(Op0Ordered
, Op0Pred
|Op1Pred
, Op0LHS
, Op0RHS
, Builder
);
1659 /// FoldOrWithConstants - This helper function folds:
1661 /// ((A | B) & C1) | (B & C2)
1667 /// when the XOR of the two constants is "all ones" (-1).
1668 Instruction
*InstCombiner::FoldOrWithConstants(BinaryOperator
&I
, Value
*Op
,
1669 Value
*A
, Value
*B
, Value
*C
) {
1670 ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C
);
1674 ConstantInt
*CI2
= 0;
1675 if (!match(Op
, m_And(m_Value(V1
), m_ConstantInt(CI2
)))) return 0;
1677 APInt Xor
= CI1
->getValue() ^ CI2
->getValue();
1678 if (!Xor
.isAllOnesValue()) return 0;
1680 if (V1
== A
|| V1
== B
) {
1681 Value
*NewOp
= Builder
->CreateAnd((V1
== A
) ? B
: A
, CI1
);
1682 return BinaryOperator::CreateOr(NewOp
, V1
);
1688 Instruction
*InstCombiner::visitOr(BinaryOperator
&I
) {
1689 bool Changed
= SimplifyCommutative(I
);
1690 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1692 if (Value
*V
= SimplifyOrInst(Op0
, Op1
, TD
))
1693 return ReplaceInstUsesWith(I
, V
);
1695 // See if we can simplify any instructions used by the instruction whose sole
1696 // purpose is to compute bits we don't care about.
1697 if (SimplifyDemandedInstructionBits(I
))
1700 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
1701 ConstantInt
*C1
= 0; Value
*X
= 0;
1702 // (X & C1) | C2 --> (X | C2) & (C1|C2)
1703 // iff (C1 & C2) == 0.
1704 if (match(Op0
, m_And(m_Value(X
), m_ConstantInt(C1
))) &&
1705 (RHS
->getValue() & C1
->getValue()) != 0 &&
1707 Value
*Or
= Builder
->CreateOr(X
, RHS
);
1709 return BinaryOperator::CreateAnd(Or
,
1710 ConstantInt::get(I
.getContext(),
1711 RHS
->getValue() | C1
->getValue()));
1714 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1715 if (match(Op0
, m_Xor(m_Value(X
), m_ConstantInt(C1
))) &&
1717 Value
*Or
= Builder
->CreateOr(X
, RHS
);
1719 return BinaryOperator::CreateXor(Or
,
1720 ConstantInt::get(I
.getContext(),
1721 C1
->getValue() & ~RHS
->getValue()));
1724 // Try to fold constant and into select arguments.
1725 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
1726 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1729 if (isa
<PHINode
>(Op0
))
1730 if (Instruction
*NV
= FoldOpIntoPhi(I
))
1734 Value
*A
= 0, *B
= 0;
1735 ConstantInt
*C1
= 0, *C2
= 0;
1737 // (A | B) | C and A | (B | C) -> bswap if possible.
1738 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1739 if (match(Op0
, m_Or(m_Value(), m_Value())) ||
1740 match(Op1
, m_Or(m_Value(), m_Value())) ||
1741 (match(Op0
, m_Shift(m_Value(), m_Value())) &&
1742 match(Op1
, m_Shift(m_Value(), m_Value())))) {
1743 if (Instruction
*BSwap
= MatchBSwap(I
))
1747 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1748 if (Op0
->hasOneUse() &&
1749 match(Op0
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
1750 MaskedValueIsZero(Op1
, C1
->getValue())) {
1751 Value
*NOr
= Builder
->CreateOr(A
, Op1
);
1753 return BinaryOperator::CreateXor(NOr
, C1
);
1756 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1757 if (Op1
->hasOneUse() &&
1758 match(Op1
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
1759 MaskedValueIsZero(Op0
, C1
->getValue())) {
1760 Value
*NOr
= Builder
->CreateOr(A
, Op0
);
1762 return BinaryOperator::CreateXor(NOr
, C1
);
1766 Value
*C
= 0, *D
= 0;
1767 if (match(Op0
, m_And(m_Value(A
), m_Value(C
))) &&
1768 match(Op1
, m_And(m_Value(B
), m_Value(D
)))) {
1769 Value
*V1
= 0, *V2
= 0, *V3
= 0;
1770 C1
= dyn_cast
<ConstantInt
>(C
);
1771 C2
= dyn_cast
<ConstantInt
>(D
);
1772 if (C1
&& C2
) { // (A & C1)|(B & C2)
1773 // If we have: ((V + N) & C1) | (V & C2)
1774 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1775 // replace with V+N.
1776 if (C1
->getValue() == ~C2
->getValue()) {
1777 if ((C2
->getValue() & (C2
->getValue()+1)) == 0 && // C2 == 0+1+
1778 match(A
, m_Add(m_Value(V1
), m_Value(V2
)))) {
1779 // Add commutes, try both ways.
1780 if (V1
== B
&& MaskedValueIsZero(V2
, C2
->getValue()))
1781 return ReplaceInstUsesWith(I
, A
);
1782 if (V2
== B
&& MaskedValueIsZero(V1
, C2
->getValue()))
1783 return ReplaceInstUsesWith(I
, A
);
1785 // Or commutes, try both ways.
1786 if ((C1
->getValue() & (C1
->getValue()+1)) == 0 &&
1787 match(B
, m_Add(m_Value(V1
), m_Value(V2
)))) {
1788 // Add commutes, try both ways.
1789 if (V1
== A
&& MaskedValueIsZero(V2
, C1
->getValue()))
1790 return ReplaceInstUsesWith(I
, B
);
1791 if (V2
== A
&& MaskedValueIsZero(V1
, C1
->getValue()))
1792 return ReplaceInstUsesWith(I
, B
);
1796 if ((C1
->getValue() & C2
->getValue()) == 0) {
1797 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1798 // iff (C1&C2) == 0 and (N&~C1) == 0
1799 if (match(A
, m_Or(m_Value(V1
), m_Value(V2
))) &&
1800 ((V1
== B
&& MaskedValueIsZero(V2
, ~C1
->getValue())) || // (V|N)
1801 (V2
== B
&& MaskedValueIsZero(V1
, ~C1
->getValue())))) // (N|V)
1802 return BinaryOperator::CreateAnd(A
,
1803 ConstantInt::get(A
->getContext(),
1804 C1
->getValue()|C2
->getValue()));
1805 // Or commutes, try both ways.
1806 if (match(B
, m_Or(m_Value(V1
), m_Value(V2
))) &&
1807 ((V1
== A
&& MaskedValueIsZero(V2
, ~C2
->getValue())) || // (V|N)
1808 (V2
== A
&& MaskedValueIsZero(V1
, ~C2
->getValue())))) // (N|V)
1809 return BinaryOperator::CreateAnd(B
,
1810 ConstantInt::get(B
->getContext(),
1811 C1
->getValue()|C2
->getValue()));
1813 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1814 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1815 ConstantInt
*C3
= 0, *C4
= 0;
1816 if (match(A
, m_Or(m_Value(V1
), m_ConstantInt(C3
))) &&
1817 (C3
->getValue() & ~C1
->getValue()) == 0 &&
1818 match(B
, m_Or(m_Specific(V1
), m_ConstantInt(C4
))) &&
1819 (C4
->getValue() & ~C2
->getValue()) == 0) {
1820 V2
= Builder
->CreateOr(V1
, ConstantExpr::getOr(C3
, C4
), "bitfield");
1821 return BinaryOperator::CreateAnd(V2
,
1822 ConstantInt::get(B
->getContext(),
1823 C1
->getValue()|C2
->getValue()));
1828 // Check to see if we have any common things being and'ed. If so, find the
1829 // terms for V1 & (V2|V3).
1830 if (Op0
->hasOneUse() || Op1
->hasOneUse()) {
1832 if (A
== B
) // (A & C)|(A & D) == A & (C|D)
1833 V1
= A
, V2
= C
, V3
= D
;
1834 else if (A
== D
) // (A & C)|(B & A) == A & (B|C)
1835 V1
= A
, V2
= B
, V3
= C
;
1836 else if (C
== B
) // (A & C)|(C & D) == C & (A|D)
1837 V1
= C
, V2
= A
, V3
= D
;
1838 else if (C
== D
) // (A & C)|(B & C) == C & (A|B)
1839 V1
= C
, V2
= A
, V3
= B
;
1842 Value
*Or
= Builder
->CreateOr(V2
, V3
, "tmp");
1843 return BinaryOperator::CreateAnd(V1
, Or
);
1847 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
1848 // Don't do this for vector select idioms, the code generator doesn't handle
1850 if (!I
.getType()->isVectorTy()) {
1851 if (Instruction
*Match
= MatchSelectFromAndOr(A
, B
, C
, D
))
1853 if (Instruction
*Match
= MatchSelectFromAndOr(B
, A
, D
, C
))
1855 if (Instruction
*Match
= MatchSelectFromAndOr(C
, B
, A
, D
))
1857 if (Instruction
*Match
= MatchSelectFromAndOr(D
, A
, B
, C
))
1861 // ((A&~B)|(~A&B)) -> A^B
1862 if ((match(C
, m_Not(m_Specific(D
))) &&
1863 match(B
, m_Not(m_Specific(A
)))))
1864 return BinaryOperator::CreateXor(A
, D
);
1865 // ((~B&A)|(~A&B)) -> A^B
1866 if ((match(A
, m_Not(m_Specific(D
))) &&
1867 match(B
, m_Not(m_Specific(C
)))))
1868 return BinaryOperator::CreateXor(C
, D
);
1869 // ((A&~B)|(B&~A)) -> A^B
1870 if ((match(C
, m_Not(m_Specific(B
))) &&
1871 match(D
, m_Not(m_Specific(A
)))))
1872 return BinaryOperator::CreateXor(A
, B
);
1873 // ((~B&A)|(B&~A)) -> A^B
1874 if ((match(A
, m_Not(m_Specific(B
))) &&
1875 match(D
, m_Not(m_Specific(C
)))))
1876 return BinaryOperator::CreateXor(C
, B
);
1878 // ((A|B)&1)|(B&-2) -> (A&1) | B
1879 if (match(A
, m_Or(m_Value(V1
), m_Specific(B
))) ||
1880 match(A
, m_Or(m_Specific(B
), m_Value(V1
)))) {
1881 Instruction
*Ret
= FoldOrWithConstants(I
, Op1
, V1
, B
, C
);
1882 if (Ret
) return Ret
;
1884 // (B&-2)|((A|B)&1) -> (A&1) | B
1885 if (match(B
, m_Or(m_Specific(A
), m_Value(V1
))) ||
1886 match(B
, m_Or(m_Value(V1
), m_Specific(A
)))) {
1887 Instruction
*Ret
= FoldOrWithConstants(I
, Op0
, A
, V1
, D
);
1888 if (Ret
) return Ret
;
1892 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
1893 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
1894 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
1895 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
1896 SI0
->getOperand(1) == SI1
->getOperand(1) &&
1897 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
1898 Value
*NewOp
= Builder
->CreateOr(SI0
->getOperand(0), SI1
->getOperand(0),
1900 return BinaryOperator::Create(SI1
->getOpcode(), NewOp
,
1901 SI1
->getOperand(1));
1905 // (~A | ~B) == (~(A & B)) - De Morgan's Law
1906 if (Value
*Op0NotVal
= dyn_castNotVal(Op0
))
1907 if (Value
*Op1NotVal
= dyn_castNotVal(Op1
))
1908 if (Op0
->hasOneUse() && Op1
->hasOneUse()) {
1909 Value
*And
= Builder
->CreateAnd(Op0NotVal
, Op1NotVal
,
1910 I
.getName()+".demorgan");
1911 return BinaryOperator::CreateNot(And
);
1914 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
1915 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(I
.getOperand(0)))
1916 if (Value
*Res
= FoldOrOfICmps(LHS
, RHS
))
1917 return ReplaceInstUsesWith(I
, Res
);
1919 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
1920 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
1921 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
1922 if (Value
*Res
= FoldOrOfFCmps(LHS
, RHS
))
1923 return ReplaceInstUsesWith(I
, Res
);
1925 // fold (or (cast A), (cast B)) -> (cast (or A, B))
1926 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
1927 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
1928 if (Op0C
->getOpcode() == Op1C
->getOpcode()) {// same cast kind ?
1929 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
1930 if (SrcTy
== Op1C
->getOperand(0)->getType() &&
1931 SrcTy
->isIntOrIntVectorTy()) {
1932 Value
*Op0COp
= Op0C
->getOperand(0), *Op1COp
= Op1C
->getOperand(0);
1934 if ((!isa
<ICmpInst
>(Op0COp
) || !isa
<ICmpInst
>(Op1COp
)) &&
1935 // Only do this if the casts both really cause code to be
1937 ShouldOptimizeCast(Op0C
->getOpcode(), Op0COp
, I
.getType()) &&
1938 ShouldOptimizeCast(Op1C
->getOpcode(), Op1COp
, I
.getType())) {
1939 Value
*NewOp
= Builder
->CreateOr(Op0COp
, Op1COp
, I
.getName());
1940 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
1943 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
1944 // cast is otherwise not optimizable. This happens for vector sexts.
1945 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1COp
))
1946 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0COp
))
1947 if (Value
*Res
= FoldOrOfICmps(LHS
, RHS
))
1948 return CastInst::Create(Op0C
->getOpcode(), Res
, I
.getType());
1950 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
1951 // cast is otherwise not optimizable. This happens for vector sexts.
1952 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(Op1COp
))
1953 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(Op0COp
))
1954 if (Value
*Res
= FoldOrOfFCmps(LHS
, RHS
))
1955 return CastInst::Create(Op0C
->getOpcode(), Res
, I
.getType());
1960 // Note: If we've gotten to the point of visiting the outer OR, then the
1961 // inner one couldn't be simplified. If it was a constant, then it won't
1962 // be simplified by a later pass either, so we try swapping the inner/outer
1963 // ORs in the hopes that we'll be able to simplify it this way.
1964 // (X|C) | V --> (X|V) | C
1965 if (Op0
->hasOneUse() && !isa
<ConstantInt
>(Op1
) &&
1966 match(Op0
, m_Or(m_Value(A
), m_ConstantInt(C1
)))) {
1967 Value
*Inner
= Builder
->CreateOr(A
, Op1
);
1968 Inner
->takeName(Op0
);
1969 return BinaryOperator::CreateOr(Inner
, C1
);
1972 return Changed
? &I
: 0;
1975 Instruction
*InstCombiner::visitXor(BinaryOperator
&I
) {
1976 bool Changed
= SimplifyCommutative(I
);
1977 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1979 if (isa
<UndefValue
>(Op1
)) {
1980 if (isa
<UndefValue
>(Op0
))
1981 // Handle undef ^ undef -> 0 special case. This is a common
1983 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
1984 return ReplaceInstUsesWith(I
, Op1
); // X ^ undef -> undef
1989 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
1991 // See if we can simplify any instructions used by the instruction whose sole
1992 // purpose is to compute bits we don't care about.
1993 if (SimplifyDemandedInstructionBits(I
))
1995 if (I
.getType()->isVectorTy())
1996 if (isa
<ConstantAggregateZero
>(Op1
))
1997 return ReplaceInstUsesWith(I
, Op0
); // X ^ <0,0> -> X
1999 // Is this a ~ operation?
2000 if (Value
*NotOp
= dyn_castNotVal(&I
)) {
2001 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(NotOp
)) {
2002 if (Op0I
->getOpcode() == Instruction::And
||
2003 Op0I
->getOpcode() == Instruction::Or
) {
2004 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2005 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2006 if (dyn_castNotVal(Op0I
->getOperand(1)))
2007 Op0I
->swapOperands();
2008 if (Value
*Op0NotVal
= dyn_castNotVal(Op0I
->getOperand(0))) {
2010 Builder
->CreateNot(Op0I
->getOperand(1),
2011 Op0I
->getOperand(1)->getName()+".not");
2012 if (Op0I
->getOpcode() == Instruction::And
)
2013 return BinaryOperator::CreateOr(Op0NotVal
, NotY
);
2014 return BinaryOperator::CreateAnd(Op0NotVal
, NotY
);
2017 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2018 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2019 if (isFreeToInvert(Op0I
->getOperand(0)) &&
2020 isFreeToInvert(Op0I
->getOperand(1))) {
2022 Builder
->CreateNot(Op0I
->getOperand(0), "notlhs");
2024 Builder
->CreateNot(Op0I
->getOperand(1), "notrhs");
2025 if (Op0I
->getOpcode() == Instruction::And
)
2026 return BinaryOperator::CreateOr(NotX
, NotY
);
2027 return BinaryOperator::CreateAnd(NotX
, NotY
);
2030 } else if (Op0I
->getOpcode() == Instruction::AShr
) {
2031 // ~(~X >>s Y) --> (X >>s Y)
2032 if (Value
*Op0NotVal
= dyn_castNotVal(Op0I
->getOperand(0)))
2033 return BinaryOperator::CreateAShr(Op0NotVal
, Op0I
->getOperand(1));
2039 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2040 if (RHS
->isOne() && Op0
->hasOneUse())
2041 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2042 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(Op0
))
2043 return CmpInst::Create(CI
->getOpcode(),
2044 CI
->getInversePredicate(),
2045 CI
->getOperand(0), CI
->getOperand(1));
2047 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2048 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
2049 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(Op0C
->getOperand(0))) {
2050 if (CI
->hasOneUse() && Op0C
->hasOneUse()) {
2051 Instruction::CastOps Opcode
= Op0C
->getOpcode();
2052 if ((Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) &&
2053 (RHS
== ConstantExpr::getCast(Opcode
,
2054 ConstantInt::getTrue(I
.getContext()),
2055 Op0C
->getDestTy()))) {
2056 CI
->setPredicate(CI
->getInversePredicate());
2057 return CastInst::Create(Opcode
, CI
, Op0C
->getType());
2063 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
2064 // ~(c-X) == X-c-1 == X+(-c-1)
2065 if (Op0I
->getOpcode() == Instruction::Sub
&& RHS
->isAllOnesValue())
2066 if (Constant
*Op0I0C
= dyn_cast
<Constant
>(Op0I
->getOperand(0))) {
2067 Constant
*NegOp0I0C
= ConstantExpr::getNeg(Op0I0C
);
2068 Constant
*ConstantRHS
= ConstantExpr::getSub(NegOp0I0C
,
2069 ConstantInt::get(I
.getType(), 1));
2070 return BinaryOperator::CreateAdd(Op0I
->getOperand(1), ConstantRHS
);
2073 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
2074 if (Op0I
->getOpcode() == Instruction::Add
) {
2075 // ~(X-c) --> (-c-1)-X
2076 if (RHS
->isAllOnesValue()) {
2077 Constant
*NegOp0CI
= ConstantExpr::getNeg(Op0CI
);
2078 return BinaryOperator::CreateSub(
2079 ConstantExpr::getSub(NegOp0CI
,
2080 ConstantInt::get(I
.getType(), 1)),
2081 Op0I
->getOperand(0));
2082 } else if (RHS
->getValue().isSignBit()) {
2083 // (X + C) ^ signbit -> (X + C + signbit)
2084 Constant
*C
= ConstantInt::get(I
.getContext(),
2085 RHS
->getValue() + Op0CI
->getValue());
2086 return BinaryOperator::CreateAdd(Op0I
->getOperand(0), C
);
2089 } else if (Op0I
->getOpcode() == Instruction::Or
) {
2090 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2091 if (MaskedValueIsZero(Op0I
->getOperand(0), Op0CI
->getValue())) {
2092 Constant
*NewRHS
= ConstantExpr::getOr(Op0CI
, RHS
);
2093 // Anything in both C1 and C2 is known to be zero, remove it from
2095 Constant
*CommonBits
= ConstantExpr::getAnd(Op0CI
, RHS
);
2096 NewRHS
= ConstantExpr::getAnd(NewRHS
,
2097 ConstantExpr::getNot(CommonBits
));
2099 I
.setOperand(0, Op0I
->getOperand(0));
2100 I
.setOperand(1, NewRHS
);
2107 // Try to fold constant and into select arguments.
2108 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
2109 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
2111 if (isa
<PHINode
>(Op0
))
2112 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2116 if (Value
*X
= dyn_castNotVal(Op0
)) // ~A ^ A == -1
2118 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
2120 if (Value
*X
= dyn_castNotVal(Op1
)) // A ^ ~A == -1
2122 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
2125 BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
);
2128 if (match(Op1I
, m_Or(m_Value(A
), m_Value(B
)))) {
2129 if (A
== Op0
) { // B^(B|A) == (A|B)^B
2130 Op1I
->swapOperands();
2132 std::swap(Op0
, Op1
);
2133 } else if (B
== Op0
) { // B^(A|B) == (A|B)^B
2134 I
.swapOperands(); // Simplified below.
2135 std::swap(Op0
, Op1
);
2137 } else if (match(Op1I
, m_Xor(m_Specific(Op0
), m_Value(B
)))) {
2138 return ReplaceInstUsesWith(I
, B
); // A^(A^B) == B
2139 } else if (match(Op1I
, m_Xor(m_Value(A
), m_Specific(Op0
)))) {
2140 return ReplaceInstUsesWith(I
, A
); // A^(B^A) == B
2141 } else if (match(Op1I
, m_And(m_Value(A
), m_Value(B
))) &&
2143 if (A
== Op0
) { // A^(A&B) -> A^(B&A)
2144 Op1I
->swapOperands();
2147 if (B
== Op0
) { // A^(B&A) -> (B&A)^A
2148 I
.swapOperands(); // Simplified below.
2149 std::swap(Op0
, Op1
);
2154 BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
);
2157 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) &&
2158 Op0I
->hasOneUse()) {
2159 if (A
== Op1
) // (B|A)^B == (A|B)^B
2161 if (B
== Op1
) // (A|B)^B == A & ~B
2162 return BinaryOperator::CreateAnd(A
, Builder
->CreateNot(Op1
, "tmp"));
2163 } else if (match(Op0I
, m_Xor(m_Specific(Op1
), m_Value(B
)))) {
2164 return ReplaceInstUsesWith(I
, B
); // (A^B)^A == B
2165 } else if (match(Op0I
, m_Xor(m_Value(A
), m_Specific(Op1
)))) {
2166 return ReplaceInstUsesWith(I
, A
); // (B^A)^A == B
2167 } else if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
2169 if (A
== Op1
) // (A&B)^A -> (B&A)^A
2171 if (B
== Op1
&& // (B&A)^A == ~B & A
2172 !isa
<ConstantInt
>(Op1
)) { // Canonical form is (B&C)^C
2173 return BinaryOperator::CreateAnd(Builder
->CreateNot(A
, "tmp"), Op1
);
2178 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
2179 if (Op0I
&& Op1I
&& Op0I
->isShift() &&
2180 Op0I
->getOpcode() == Op1I
->getOpcode() &&
2181 Op0I
->getOperand(1) == Op1I
->getOperand(1) &&
2182 (Op1I
->hasOneUse() || Op1I
->hasOneUse())) {
2184 Builder
->CreateXor(Op0I
->getOperand(0), Op1I
->getOperand(0),
2186 return BinaryOperator::Create(Op1I
->getOpcode(), NewOp
,
2187 Op1I
->getOperand(1));
2191 Value
*A
, *B
, *C
, *D
;
2192 // (A & B)^(A | B) -> A ^ B
2193 if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
2194 match(Op1I
, m_Or(m_Value(C
), m_Value(D
)))) {
2195 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
2196 return BinaryOperator::CreateXor(A
, B
);
2198 // (A | B)^(A & B) -> A ^ B
2199 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) &&
2200 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
2201 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
2202 return BinaryOperator::CreateXor(A
, B
);
2206 if ((Op0I
->hasOneUse() || Op1I
->hasOneUse()) &&
2207 match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
2208 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
2209 // (X & Y)^(X & Y) -> (Y^Z) & X
2210 Value
*X
= 0, *Y
= 0, *Z
= 0;
2212 X
= A
, Y
= B
, Z
= D
;
2214 X
= A
, Y
= B
, Z
= C
;
2216 X
= B
, Y
= A
, Z
= D
;
2218 X
= B
, Y
= A
, Z
= C
;
2221 Value
*NewOp
= Builder
->CreateXor(Y
, Z
, Op0
->getName());
2222 return BinaryOperator::CreateAnd(NewOp
, X
);
2227 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2228 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
2229 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(I
.getOperand(0)))
2230 if (PredicatesFoldable(LHS
->getPredicate(), RHS
->getPredicate())) {
2231 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
2232 LHS
->getOperand(1) == RHS
->getOperand(0))
2233 LHS
->swapOperands();
2234 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
2235 LHS
->getOperand(1) == RHS
->getOperand(1)) {
2236 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
2237 unsigned Code
= getICmpCode(LHS
) ^ getICmpCode(RHS
);
2238 bool isSigned
= LHS
->isSigned() || RHS
->isSigned();
2239 return ReplaceInstUsesWith(I
,
2240 getICmpValue(isSigned
, Code
, Op0
, Op1
, Builder
));
2244 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2245 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
2246 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
2247 if (Op0C
->getOpcode() == Op1C
->getOpcode()) { // same cast kind?
2248 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
2249 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isIntegerTy() &&
2250 // Only do this if the casts both really cause code to be generated.
2251 ShouldOptimizeCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
2253 ShouldOptimizeCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
2255 Value
*NewOp
= Builder
->CreateXor(Op0C
->getOperand(0),
2256 Op1C
->getOperand(0), I
.getName());
2257 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
2262 return Changed
? &I
: 0;