zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / InstCombine / InstCombineShifts.cpp
blob012d238729a4e77af6a7647b50b4ad6e824c0a69
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Support/PatternMatch.h"
17 using namespace llvm;
18 using namespace PatternMatch;
20 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
21 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
22 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
24 // shl X, 0 == X and shr X, 0 == X
25 // shl 0, X == 0 and shr 0, X == 0
26 if (Op1 == Constant::getNullValue(Op1->getType()) ||
27 Op0 == Constant::getNullValue(Op0->getType()))
28 return ReplaceInstUsesWith(I, Op0);
30 if (isa<UndefValue>(Op0)) {
31 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
32 return ReplaceInstUsesWith(I, Op0);
33 else // undef << X -> 0, undef >>u X -> 0
34 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
36 if (isa<UndefValue>(Op1)) {
37 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
38 return ReplaceInstUsesWith(I, Op0);
39 else // X << undef, X >>u undef -> 0
40 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
43 // See if we can fold away this shift.
44 if (SimplifyDemandedInstructionBits(I))
45 return &I;
47 // Try to fold constant and into select arguments.
48 if (isa<Constant>(Op0))
49 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
50 if (Instruction *R = FoldOpIntoSelect(I, SI))
51 return R;
53 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
54 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
55 return Res;
56 return 0;
59 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
60 /// logically to the left or right by some number of bits. This should return
61 /// true if the expression can be computed for the same cost as the current
62 /// expression tree. This is used to eliminate extraneous shifting from things
63 /// like:
64 /// %C = shl i128 %A, 64
65 /// %D = shl i128 %B, 96
66 /// %E = or i128 %C, %D
67 /// %F = lshr i128 %E, 64
68 /// where the client will ask if E can be computed shifted right by 64-bits. If
69 /// this succeeds, the GetShiftedValue function will be called to produce the
70 /// value.
71 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
72 InstCombiner &IC) {
73 // We can always evaluate constants shifted.
74 if (isa<Constant>(V))
75 return true;
77 Instruction *I = dyn_cast<Instruction>(V);
78 if (!I) return false;
80 // If this is the opposite shift, we can directly reuse the input of the shift
81 // if the needed bits are already zero in the input. This allows us to reuse
82 // the value which means that we don't care if the shift has multiple uses.
83 // TODO: Handle opposite shift by exact value.
84 ConstantInt *CI;
85 if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
86 (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
87 if (CI->getZExtValue() == NumBits) {
88 // TODO: Check that the input bits are already zero with MaskedValueIsZero
89 #if 0
90 // If this is a truncate of a logical shr, we can truncate it to a smaller
91 // lshr iff we know that the bits we would otherwise be shifting in are
92 // already zeros.
93 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
94 uint32_t BitWidth = Ty->getScalarSizeInBits();
95 if (MaskedValueIsZero(I->getOperand(0),
96 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
97 CI->getLimitedValue(BitWidth) < BitWidth) {
98 return CanEvaluateTruncated(I->getOperand(0), Ty);
100 #endif
105 // We can't mutate something that has multiple uses: doing so would
106 // require duplicating the instruction in general, which isn't profitable.
107 if (!I->hasOneUse()) return false;
109 switch (I->getOpcode()) {
110 default: return false;
111 case Instruction::And:
112 case Instruction::Or:
113 case Instruction::Xor:
114 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
115 return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
116 CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
118 case Instruction::Shl: {
119 // We can often fold the shift into shifts-by-a-constant.
120 CI = dyn_cast<ConstantInt>(I->getOperand(1));
121 if (CI == 0) return false;
123 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
124 if (isLeftShift) return true;
126 // We can always turn shl(c)+shr(c) -> and(c2).
127 if (CI->getValue() == NumBits) return true;
129 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
131 // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
132 // profitable unless we know the and'd out bits are already zero.
133 if (CI->getZExtValue() > NumBits) {
134 unsigned HighBits = CI->getZExtValue() - NumBits;
135 if (MaskedValueIsZero(I->getOperand(0),
136 APInt::getHighBitsSet(TypeWidth, HighBits)))
137 return true;
140 return false;
142 case Instruction::LShr: {
143 // We can often fold the shift into shifts-by-a-constant.
144 CI = dyn_cast<ConstantInt>(I->getOperand(1));
145 if (CI == 0) return false;
147 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
148 if (!isLeftShift) return true;
150 // We can always turn lshr(c)+shl(c) -> and(c2).
151 if (CI->getValue() == NumBits) return true;
153 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
155 // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
156 // profitable unless we know the and'd out bits are already zero.
157 if (CI->getZExtValue() > NumBits) {
158 unsigned LowBits = CI->getZExtValue() - NumBits;
159 if (MaskedValueIsZero(I->getOperand(0),
160 APInt::getLowBitsSet(TypeWidth, LowBits) << NumBits))
161 return true;
164 return false;
166 case Instruction::Select: {
167 SelectInst *SI = cast<SelectInst>(I);
168 return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
169 CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
171 case Instruction::PHI: {
172 // We can change a phi if we can change all operands. Note that we never
173 // get into trouble with cyclic PHIs here because we only consider
174 // instructions with a single use.
175 PHINode *PN = cast<PHINode>(I);
176 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
177 if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
178 return false;
179 return true;
184 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
185 /// this value inserts the new computation that produces the shifted value.
186 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
187 InstCombiner &IC) {
188 // We can always evaluate constants shifted.
189 if (Constant *C = dyn_cast<Constant>(V)) {
190 if (isLeftShift)
191 V = IC.Builder->CreateShl(C, NumBits);
192 else
193 V = IC.Builder->CreateLShr(C, NumBits);
194 // If we got a constantexpr back, try to simplify it with TD info.
195 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
196 V = ConstantFoldConstantExpression(CE, IC.getTargetData());
197 return V;
200 Instruction *I = cast<Instruction>(V);
201 IC.Worklist.Add(I);
203 switch (I->getOpcode()) {
204 default: assert(0 && "Inconsistency with CanEvaluateShifted");
205 case Instruction::And:
206 case Instruction::Or:
207 case Instruction::Xor:
208 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
209 I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
210 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
211 return I;
213 case Instruction::Shl: {
214 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
216 // We only accept shifts-by-a-constant in CanEvaluateShifted.
217 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
219 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
220 if (isLeftShift) {
221 // If this is oversized composite shift, then unsigned shifts get 0.
222 unsigned NewShAmt = NumBits+CI->getZExtValue();
223 if (NewShAmt >= TypeWidth)
224 return Constant::getNullValue(I->getType());
226 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
227 return I;
230 // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
231 // zeros.
232 if (CI->getValue() == NumBits) {
233 APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
234 V = IC.Builder->CreateAnd(I->getOperand(0),
235 ConstantInt::get(I->getContext(), Mask));
236 if (Instruction *VI = dyn_cast<Instruction>(V)) {
237 VI->moveBefore(I);
238 VI->takeName(I);
240 return V;
243 // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
244 // the and won't be needed.
245 assert(CI->getZExtValue() > NumBits);
246 I->setOperand(1, ConstantInt::get(I->getType(),
247 CI->getZExtValue() - NumBits));
248 return I;
250 case Instruction::LShr: {
251 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
252 // We only accept shifts-by-a-constant in CanEvaluateShifted.
253 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
255 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
256 if (!isLeftShift) {
257 // If this is oversized composite shift, then unsigned shifts get 0.
258 unsigned NewShAmt = NumBits+CI->getZExtValue();
259 if (NewShAmt >= TypeWidth)
260 return Constant::getNullValue(I->getType());
262 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
263 return I;
266 // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
267 // zeros.
268 if (CI->getValue() == NumBits) {
269 APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
270 V = IC.Builder->CreateAnd(I->getOperand(0),
271 ConstantInt::get(I->getContext(), Mask));
272 if (Instruction *VI = dyn_cast<Instruction>(V)) {
273 VI->moveBefore(I);
274 VI->takeName(I);
276 return V;
279 // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
280 // the and won't be needed.
281 assert(CI->getZExtValue() > NumBits);
282 I->setOperand(1, ConstantInt::get(I->getType(),
283 CI->getZExtValue() - NumBits));
284 return I;
287 case Instruction::Select:
288 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
289 I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
290 return I;
291 case Instruction::PHI: {
292 // We can change a phi if we can change all operands. Note that we never
293 // get into trouble with cyclic PHIs here because we only consider
294 // instructions with a single use.
295 PHINode *PN = cast<PHINode>(I);
296 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
297 PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
298 NumBits, isLeftShift, IC));
299 return PN;
306 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
307 BinaryOperator &I) {
308 bool isLeftShift = I.getOpcode() == Instruction::Shl;
311 // See if we can propagate this shift into the input, this covers the trivial
312 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
313 if (I.getOpcode() != Instruction::AShr &&
314 CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
315 DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
316 " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
318 return ReplaceInstUsesWith(I,
319 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
323 // See if we can simplify any instructions used by the instruction whose sole
324 // purpose is to compute bits we don't care about.
325 uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
327 // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
328 // a signed shift.
330 if (Op1->uge(TypeBits)) {
331 if (I.getOpcode() != Instruction::AShr)
332 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
333 // ashr i32 X, 32 --> ashr i32 X, 31
334 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
335 return &I;
338 // ((X*C1) << C2) == (X * (C1 << C2))
339 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
340 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
341 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
342 return BinaryOperator::CreateMul(BO->getOperand(0),
343 ConstantExpr::getShl(BOOp, Op1));
345 // Try to fold constant and into select arguments.
346 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
347 if (Instruction *R = FoldOpIntoSelect(I, SI))
348 return R;
349 if (isa<PHINode>(Op0))
350 if (Instruction *NV = FoldOpIntoPhi(I))
351 return NV;
353 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
354 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
355 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
356 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
357 // place. Don't try to do this transformation in this case. Also, we
358 // require that the input operand is a shift-by-constant so that we have
359 // confidence that the shifts will get folded together. We could do this
360 // xform in more cases, but it is unlikely to be profitable.
361 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
362 isa<ConstantInt>(TrOp->getOperand(1))) {
363 // Okay, we'll do this xform. Make the shift of shift.
364 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
365 // (shift2 (shift1 & 0x00FF), c2)
366 Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
368 // For logical shifts, the truncation has the effect of making the high
369 // part of the register be zeros. Emulate this by inserting an AND to
370 // clear the top bits as needed. This 'and' will usually be zapped by
371 // other xforms later if dead.
372 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
373 unsigned DstSize = TI->getType()->getScalarSizeInBits();
374 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
376 // The mask we constructed says what the trunc would do if occurring
377 // between the shifts. We want to know the effect *after* the second
378 // shift. We know that it is a logical shift by a constant, so adjust the
379 // mask as appropriate.
380 if (I.getOpcode() == Instruction::Shl)
381 MaskV <<= Op1->getZExtValue();
382 else {
383 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
384 MaskV = MaskV.lshr(Op1->getZExtValue());
387 // shift1 & 0x00FF
388 Value *And = Builder->CreateAnd(NSh,
389 ConstantInt::get(I.getContext(), MaskV),
390 TI->getName());
392 // Return the value truncated to the interesting size.
393 return new TruncInst(And, I.getType());
397 if (Op0->hasOneUse()) {
398 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
399 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
400 Value *V1, *V2;
401 ConstantInt *CC;
402 switch (Op0BO->getOpcode()) {
403 default: break;
404 case Instruction::Add:
405 case Instruction::And:
406 case Instruction::Or:
407 case Instruction::Xor: {
408 // These operators commute.
409 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
410 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
411 match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
412 m_Specific(Op1)))) {
413 Value *YS = // (Y << C)
414 Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
415 // (X + (Y << C))
416 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
417 Op0BO->getOperand(1)->getName());
418 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
419 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
420 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
423 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
424 Value *Op0BOOp1 = Op0BO->getOperand(1);
425 if (isLeftShift && Op0BOOp1->hasOneUse() &&
426 match(Op0BOOp1,
427 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
428 m_ConstantInt(CC))) &&
429 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
430 Value *YS = // (Y << C)
431 Builder->CreateShl(Op0BO->getOperand(0), Op1,
432 Op0BO->getName());
433 // X & (CC << C)
434 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
435 V1->getName()+".mask");
436 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
440 // FALL THROUGH.
441 case Instruction::Sub: {
442 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
443 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
444 match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
445 m_Specific(Op1)))) {
446 Value *YS = // (Y << C)
447 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
448 // (X + (Y << C))
449 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
450 Op0BO->getOperand(0)->getName());
451 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
452 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
453 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
456 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
457 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
458 match(Op0BO->getOperand(0),
459 m_And(m_Shr(m_Value(V1), m_Value(V2)),
460 m_ConstantInt(CC))) && V2 == Op1 &&
461 cast<BinaryOperator>(Op0BO->getOperand(0))
462 ->getOperand(0)->hasOneUse()) {
463 Value *YS = // (Y << C)
464 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
465 // X & (CC << C)
466 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
467 V1->getName()+".mask");
469 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
472 break;
477 // If the operand is an bitwise operator with a constant RHS, and the
478 // shift is the only use, we can pull it out of the shift.
479 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
480 bool isValid = true; // Valid only for And, Or, Xor
481 bool highBitSet = false; // Transform if high bit of constant set?
483 switch (Op0BO->getOpcode()) {
484 default: isValid = false; break; // Do not perform transform!
485 case Instruction::Add:
486 isValid = isLeftShift;
487 break;
488 case Instruction::Or:
489 case Instruction::Xor:
490 highBitSet = false;
491 break;
492 case Instruction::And:
493 highBitSet = true;
494 break;
497 // If this is a signed shift right, and the high bit is modified
498 // by the logical operation, do not perform the transformation.
499 // The highBitSet boolean indicates the value of the high bit of
500 // the constant which would cause it to be modified for this
501 // operation.
503 if (isValid && I.getOpcode() == Instruction::AShr)
504 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
506 if (isValid) {
507 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
509 Value *NewShift =
510 Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
511 NewShift->takeName(Op0BO);
513 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
514 NewRHS);
520 // Find out if this is a shift of a shift by a constant.
521 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
522 if (ShiftOp && !ShiftOp->isShift())
523 ShiftOp = 0;
525 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
526 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
527 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
528 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
529 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
530 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
531 Value *X = ShiftOp->getOperand(0);
533 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
535 const IntegerType *Ty = cast<IntegerType>(I.getType());
537 // Check for (X << c1) << c2 and (X >> c1) >> c2
538 if (I.getOpcode() == ShiftOp->getOpcode()) {
539 // If this is oversized composite shift, then unsigned shifts get 0, ashr
540 // saturates.
541 if (AmtSum >= TypeBits) {
542 if (I.getOpcode() != Instruction::AShr)
543 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
544 AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
547 return BinaryOperator::Create(I.getOpcode(), X,
548 ConstantInt::get(Ty, AmtSum));
551 if (ShiftAmt1 == ShiftAmt2) {
552 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
553 if (I.getOpcode() == Instruction::Shl &&
554 ShiftOp->getOpcode() != Instruction::Shl) {
555 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
556 return BinaryOperator::CreateAnd(X,
557 ConstantInt::get(I.getContext(),Mask));
559 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
560 if (I.getOpcode() == Instruction::LShr &&
561 ShiftOp->getOpcode() == Instruction::Shl) {
562 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
563 return BinaryOperator::CreateAnd(X,
564 ConstantInt::get(I.getContext(), Mask));
566 } else if (ShiftAmt1 < ShiftAmt2) {
567 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
569 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
570 if (I.getOpcode() == Instruction::Shl &&
571 ShiftOp->getOpcode() != Instruction::Shl) {
572 assert(ShiftOp->getOpcode() == Instruction::LShr ||
573 ShiftOp->getOpcode() == Instruction::AShr);
574 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
576 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
577 return BinaryOperator::CreateAnd(Shift,
578 ConstantInt::get(I.getContext(),Mask));
581 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
582 if (I.getOpcode() == Instruction::LShr &&
583 ShiftOp->getOpcode() == Instruction::Shl) {
584 assert(ShiftOp->getOpcode() == Instruction::Shl);
585 Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
587 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
588 return BinaryOperator::CreateAnd(Shift,
589 ConstantInt::get(I.getContext(),Mask));
592 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
593 } else {
594 assert(ShiftAmt2 < ShiftAmt1);
595 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
597 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
598 if (I.getOpcode() == Instruction::Shl &&
599 ShiftOp->getOpcode() != Instruction::Shl) {
600 Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
601 ConstantInt::get(Ty, ShiftDiff));
603 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
604 return BinaryOperator::CreateAnd(Shift,
605 ConstantInt::get(I.getContext(),Mask));
608 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
609 if (I.getOpcode() == Instruction::LShr &&
610 ShiftOp->getOpcode() == Instruction::Shl) {
611 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
613 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
614 return BinaryOperator::CreateAnd(Shift,
615 ConstantInt::get(I.getContext(),Mask));
618 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
621 return 0;
624 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
625 return commonShiftTransforms(I);
628 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
629 if (Instruction *R = commonShiftTransforms(I))
630 return R;
632 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
634 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1))
635 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
636 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
637 // ctlz.i32(x)>>5 --> zext(x == 0)
638 // cttz.i32(x)>>5 --> zext(x == 0)
639 // ctpop.i32(x)>>5 --> zext(x == -1)
640 if ((II->getIntrinsicID() == Intrinsic::ctlz ||
641 II->getIntrinsicID() == Intrinsic::cttz ||
642 II->getIntrinsicID() == Intrinsic::ctpop) &&
643 isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){
644 bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
645 Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
646 Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
647 return new ZExtInst(Cmp, II->getType());
651 return 0;
654 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
655 if (Instruction *R = commonShiftTransforms(I))
656 return R;
658 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
660 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) {
661 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
662 if (CSI->isAllOnesValue())
663 return ReplaceInstUsesWith(I, CSI);
666 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
667 // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
668 // have a sign-extend idiom.
669 Value *X;
670 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
671 // If the input value is known to already be sign extended enough, delete
672 // the extension.
673 if (ComputeNumSignBits(X) > Op1C->getZExtValue())
674 return ReplaceInstUsesWith(I, X);
676 // If the input is an extension from the shifted amount value, e.g.
677 // %x = zext i8 %A to i32
678 // %y = shl i32 %x, 24
679 // %z = ashr %y, 24
680 // then turn this into "z = sext i8 A to i32".
681 if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
682 uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
683 uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
684 if (Op1C->getZExtValue() == DestBits-SrcBits)
685 return new SExtInst(ZI->getOperand(0), ZI->getType());
690 // See if we can turn a signed shr into an unsigned shr.
691 if (MaskedValueIsZero(Op0,
692 APInt::getSignBit(I.getType()->getScalarSizeInBits())))
693 return BinaryOperator::CreateLShr(Op0, Op1);
695 // Arithmetic shifting an all-sign-bit value is a no-op.
696 unsigned NumSignBits = ComputeNumSignBits(Op0);
697 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
698 return ReplaceInstUsesWith(I, Op0);
700 return 0;