1 //===- InstCombineShifts.cpp ----------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Support/PatternMatch.h"
18 using namespace PatternMatch
;
20 Instruction
*InstCombiner::commonShiftTransforms(BinaryOperator
&I
) {
21 assert(I
.getOperand(1)->getType() == I
.getOperand(0)->getType());
22 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
24 // shl X, 0 == X and shr X, 0 == X
25 // shl 0, X == 0 and shr 0, X == 0
26 if (Op1
== Constant::getNullValue(Op1
->getType()) ||
27 Op0
== Constant::getNullValue(Op0
->getType()))
28 return ReplaceInstUsesWith(I
, Op0
);
30 if (isa
<UndefValue
>(Op0
)) {
31 if (I
.getOpcode() == Instruction::AShr
) // undef >>s X -> undef
32 return ReplaceInstUsesWith(I
, Op0
);
33 else // undef << X -> 0, undef >>u X -> 0
34 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
36 if (isa
<UndefValue
>(Op1
)) {
37 if (I
.getOpcode() == Instruction::AShr
) // X >>s undef -> X
38 return ReplaceInstUsesWith(I
, Op0
);
39 else // X << undef, X >>u undef -> 0
40 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
43 // See if we can fold away this shift.
44 if (SimplifyDemandedInstructionBits(I
))
47 // Try to fold constant and into select arguments.
48 if (isa
<Constant
>(Op0
))
49 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
50 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
53 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(Op1
))
54 if (Instruction
*Res
= FoldShiftByConstant(Op0
, CUI
, I
))
59 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
60 /// logically to the left or right by some number of bits. This should return
61 /// true if the expression can be computed for the same cost as the current
62 /// expression tree. This is used to eliminate extraneous shifting from things
64 /// %C = shl i128 %A, 64
65 /// %D = shl i128 %B, 96
66 /// %E = or i128 %C, %D
67 /// %F = lshr i128 %E, 64
68 /// where the client will ask if E can be computed shifted right by 64-bits. If
69 /// this succeeds, the GetShiftedValue function will be called to produce the
71 static bool CanEvaluateShifted(Value
*V
, unsigned NumBits
, bool isLeftShift
,
73 // We can always evaluate constants shifted.
77 Instruction
*I
= dyn_cast
<Instruction
>(V
);
80 // If this is the opposite shift, we can directly reuse the input of the shift
81 // if the needed bits are already zero in the input. This allows us to reuse
82 // the value which means that we don't care if the shift has multiple uses.
83 // TODO: Handle opposite shift by exact value.
85 if ((isLeftShift
&& match(I
, m_LShr(m_Value(), m_ConstantInt(CI
)))) ||
86 (!isLeftShift
&& match(I
, m_Shl(m_Value(), m_ConstantInt(CI
))))) {
87 if (CI
->getZExtValue() == NumBits
) {
88 // TODO: Check that the input bits are already zero with MaskedValueIsZero
90 // If this is a truncate of a logical shr, we can truncate it to a smaller
91 // lshr iff we know that the bits we would otherwise be shifting in are
93 uint32_t OrigBitWidth
= OrigTy
->getScalarSizeInBits();
94 uint32_t BitWidth
= Ty
->getScalarSizeInBits();
95 if (MaskedValueIsZero(I
->getOperand(0),
96 APInt::getHighBitsSet(OrigBitWidth
, OrigBitWidth
-BitWidth
)) &&
97 CI
->getLimitedValue(BitWidth
) < BitWidth
) {
98 return CanEvaluateTruncated(I
->getOperand(0), Ty
);
105 // We can't mutate something that has multiple uses: doing so would
106 // require duplicating the instruction in general, which isn't profitable.
107 if (!I
->hasOneUse()) return false;
109 switch (I
->getOpcode()) {
110 default: return false;
111 case Instruction::And
:
112 case Instruction::Or
:
113 case Instruction::Xor
:
114 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
115 return CanEvaluateShifted(I
->getOperand(0), NumBits
, isLeftShift
, IC
) &&
116 CanEvaluateShifted(I
->getOperand(1), NumBits
, isLeftShift
, IC
);
118 case Instruction::Shl
: {
119 // We can often fold the shift into shifts-by-a-constant.
120 CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
121 if (CI
== 0) return false;
123 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
124 if (isLeftShift
) return true;
126 // We can always turn shl(c)+shr(c) -> and(c2).
127 if (CI
->getValue() == NumBits
) return true;
129 unsigned TypeWidth
= I
->getType()->getScalarSizeInBits();
131 // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
132 // profitable unless we know the and'd out bits are already zero.
133 if (CI
->getZExtValue() > NumBits
) {
134 unsigned HighBits
= CI
->getZExtValue() - NumBits
;
135 if (MaskedValueIsZero(I
->getOperand(0),
136 APInt::getHighBitsSet(TypeWidth
, HighBits
)))
142 case Instruction::LShr
: {
143 // We can often fold the shift into shifts-by-a-constant.
144 CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
145 if (CI
== 0) return false;
147 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
148 if (!isLeftShift
) return true;
150 // We can always turn lshr(c)+shl(c) -> and(c2).
151 if (CI
->getValue() == NumBits
) return true;
153 unsigned TypeWidth
= I
->getType()->getScalarSizeInBits();
155 // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
156 // profitable unless we know the and'd out bits are already zero.
157 if (CI
->getZExtValue() > NumBits
) {
158 unsigned LowBits
= CI
->getZExtValue() - NumBits
;
159 if (MaskedValueIsZero(I
->getOperand(0),
160 APInt::getLowBitsSet(TypeWidth
, LowBits
) << NumBits
))
166 case Instruction::Select
: {
167 SelectInst
*SI
= cast
<SelectInst
>(I
);
168 return CanEvaluateShifted(SI
->getTrueValue(), NumBits
, isLeftShift
, IC
) &&
169 CanEvaluateShifted(SI
->getFalseValue(), NumBits
, isLeftShift
, IC
);
171 case Instruction::PHI
: {
172 // We can change a phi if we can change all operands. Note that we never
173 // get into trouble with cyclic PHIs here because we only consider
174 // instructions with a single use.
175 PHINode
*PN
= cast
<PHINode
>(I
);
176 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
177 if (!CanEvaluateShifted(PN
->getIncomingValue(i
), NumBits
, isLeftShift
,IC
))
184 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
185 /// this value inserts the new computation that produces the shifted value.
186 static Value
*GetShiftedValue(Value
*V
, unsigned NumBits
, bool isLeftShift
,
188 // We can always evaluate constants shifted.
189 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
191 V
= IC
.Builder
->CreateShl(C
, NumBits
);
193 V
= IC
.Builder
->CreateLShr(C
, NumBits
);
194 // If we got a constantexpr back, try to simplify it with TD info.
195 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
196 V
= ConstantFoldConstantExpression(CE
, IC
.getTargetData());
200 Instruction
*I
= cast
<Instruction
>(V
);
203 switch (I
->getOpcode()) {
204 default: assert(0 && "Inconsistency with CanEvaluateShifted");
205 case Instruction::And
:
206 case Instruction::Or
:
207 case Instruction::Xor
:
208 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
209 I
->setOperand(0, GetShiftedValue(I
->getOperand(0), NumBits
,isLeftShift
,IC
));
210 I
->setOperand(1, GetShiftedValue(I
->getOperand(1), NumBits
,isLeftShift
,IC
));
213 case Instruction::Shl
: {
214 unsigned TypeWidth
= I
->getType()->getScalarSizeInBits();
216 // We only accept shifts-by-a-constant in CanEvaluateShifted.
217 ConstantInt
*CI
= cast
<ConstantInt
>(I
->getOperand(1));
219 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
221 // If this is oversized composite shift, then unsigned shifts get 0.
222 unsigned NewShAmt
= NumBits
+CI
->getZExtValue();
223 if (NewShAmt
>= TypeWidth
)
224 return Constant::getNullValue(I
->getType());
226 I
->setOperand(1, ConstantInt::get(I
->getType(), NewShAmt
));
230 // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
232 if (CI
->getValue() == NumBits
) {
233 APInt
Mask(APInt::getLowBitsSet(TypeWidth
, TypeWidth
- NumBits
));
234 V
= IC
.Builder
->CreateAnd(I
->getOperand(0),
235 ConstantInt::get(I
->getContext(), Mask
));
236 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
243 // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
244 // the and won't be needed.
245 assert(CI
->getZExtValue() > NumBits
);
246 I
->setOperand(1, ConstantInt::get(I
->getType(),
247 CI
->getZExtValue() - NumBits
));
250 case Instruction::LShr
: {
251 unsigned TypeWidth
= I
->getType()->getScalarSizeInBits();
252 // We only accept shifts-by-a-constant in CanEvaluateShifted.
253 ConstantInt
*CI
= cast
<ConstantInt
>(I
->getOperand(1));
255 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
257 // If this is oversized composite shift, then unsigned shifts get 0.
258 unsigned NewShAmt
= NumBits
+CI
->getZExtValue();
259 if (NewShAmt
>= TypeWidth
)
260 return Constant::getNullValue(I
->getType());
262 I
->setOperand(1, ConstantInt::get(I
->getType(), NewShAmt
));
266 // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
268 if (CI
->getValue() == NumBits
) {
269 APInt
Mask(APInt::getHighBitsSet(TypeWidth
, TypeWidth
- NumBits
));
270 V
= IC
.Builder
->CreateAnd(I
->getOperand(0),
271 ConstantInt::get(I
->getContext(), Mask
));
272 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
279 // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
280 // the and won't be needed.
281 assert(CI
->getZExtValue() > NumBits
);
282 I
->setOperand(1, ConstantInt::get(I
->getType(),
283 CI
->getZExtValue() - NumBits
));
287 case Instruction::Select
:
288 I
->setOperand(1, GetShiftedValue(I
->getOperand(1), NumBits
,isLeftShift
,IC
));
289 I
->setOperand(2, GetShiftedValue(I
->getOperand(2), NumBits
,isLeftShift
,IC
));
291 case Instruction::PHI
: {
292 // We can change a phi if we can change all operands. Note that we never
293 // get into trouble with cyclic PHIs here because we only consider
294 // instructions with a single use.
295 PHINode
*PN
= cast
<PHINode
>(I
);
296 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
297 PN
->setIncomingValue(i
, GetShiftedValue(PN
->getIncomingValue(i
),
298 NumBits
, isLeftShift
, IC
));
306 Instruction
*InstCombiner::FoldShiftByConstant(Value
*Op0
, ConstantInt
*Op1
,
308 bool isLeftShift
= I
.getOpcode() == Instruction::Shl
;
311 // See if we can propagate this shift into the input, this covers the trivial
312 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
313 if (I
.getOpcode() != Instruction::AShr
&&
314 CanEvaluateShifted(Op0
, Op1
->getZExtValue(), isLeftShift
, *this)) {
315 DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
316 " to eliminate shift:\n IN: " << *Op0
<< "\n SH: " << I
<<"\n");
318 return ReplaceInstUsesWith(I
,
319 GetShiftedValue(Op0
, Op1
->getZExtValue(), isLeftShift
, *this));
323 // See if we can simplify any instructions used by the instruction whose sole
324 // purpose is to compute bits we don't care about.
325 uint32_t TypeBits
= Op0
->getType()->getScalarSizeInBits();
327 // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
330 if (Op1
->uge(TypeBits
)) {
331 if (I
.getOpcode() != Instruction::AShr
)
332 return ReplaceInstUsesWith(I
, Constant::getNullValue(Op0
->getType()));
333 // ashr i32 X, 32 --> ashr i32 X, 31
334 I
.setOperand(1, ConstantInt::get(I
.getType(), TypeBits
-1));
338 // ((X*C1) << C2) == (X * (C1 << C2))
339 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op0
))
340 if (BO
->getOpcode() == Instruction::Mul
&& isLeftShift
)
341 if (Constant
*BOOp
= dyn_cast
<Constant
>(BO
->getOperand(1)))
342 return BinaryOperator::CreateMul(BO
->getOperand(0),
343 ConstantExpr::getShl(BOOp
, Op1
));
345 // Try to fold constant and into select arguments.
346 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
347 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
349 if (isa
<PHINode
>(Op0
))
350 if (Instruction
*NV
= FoldOpIntoPhi(I
))
353 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
354 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(Op0
)) {
355 Instruction
*TrOp
= dyn_cast
<Instruction
>(TI
->getOperand(0));
356 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
357 // place. Don't try to do this transformation in this case. Also, we
358 // require that the input operand is a shift-by-constant so that we have
359 // confidence that the shifts will get folded together. We could do this
360 // xform in more cases, but it is unlikely to be profitable.
361 if (TrOp
&& I
.isLogicalShift() && TrOp
->isShift() &&
362 isa
<ConstantInt
>(TrOp
->getOperand(1))) {
363 // Okay, we'll do this xform. Make the shift of shift.
364 Constant
*ShAmt
= ConstantExpr::getZExt(Op1
, TrOp
->getType());
365 // (shift2 (shift1 & 0x00FF), c2)
366 Value
*NSh
= Builder
->CreateBinOp(I
.getOpcode(), TrOp
, ShAmt
,I
.getName());
368 // For logical shifts, the truncation has the effect of making the high
369 // part of the register be zeros. Emulate this by inserting an AND to
370 // clear the top bits as needed. This 'and' will usually be zapped by
371 // other xforms later if dead.
372 unsigned SrcSize
= TrOp
->getType()->getScalarSizeInBits();
373 unsigned DstSize
= TI
->getType()->getScalarSizeInBits();
374 APInt
MaskV(APInt::getLowBitsSet(SrcSize
, DstSize
));
376 // The mask we constructed says what the trunc would do if occurring
377 // between the shifts. We want to know the effect *after* the second
378 // shift. We know that it is a logical shift by a constant, so adjust the
379 // mask as appropriate.
380 if (I
.getOpcode() == Instruction::Shl
)
381 MaskV
<<= Op1
->getZExtValue();
383 assert(I
.getOpcode() == Instruction::LShr
&& "Unknown logical shift");
384 MaskV
= MaskV
.lshr(Op1
->getZExtValue());
388 Value
*And
= Builder
->CreateAnd(NSh
,
389 ConstantInt::get(I
.getContext(), MaskV
),
392 // Return the value truncated to the interesting size.
393 return new TruncInst(And
, I
.getType());
397 if (Op0
->hasOneUse()) {
398 if (BinaryOperator
*Op0BO
= dyn_cast
<BinaryOperator
>(Op0
)) {
399 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
402 switch (Op0BO
->getOpcode()) {
404 case Instruction::Add
:
405 case Instruction::And
:
406 case Instruction::Or
:
407 case Instruction::Xor
: {
408 // These operators commute.
409 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
410 if (isLeftShift
&& Op0BO
->getOperand(1)->hasOneUse() &&
411 match(Op0BO
->getOperand(1), m_Shr(m_Value(V1
),
413 Value
*YS
= // (Y << C)
414 Builder
->CreateShl(Op0BO
->getOperand(0), Op1
, Op0BO
->getName());
416 Value
*X
= Builder
->CreateBinOp(Op0BO
->getOpcode(), YS
, V1
,
417 Op0BO
->getOperand(1)->getName());
418 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
419 return BinaryOperator::CreateAnd(X
, ConstantInt::get(I
.getContext(),
420 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
423 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
424 Value
*Op0BOOp1
= Op0BO
->getOperand(1);
425 if (isLeftShift
&& Op0BOOp1
->hasOneUse() &&
427 m_And(m_Shr(m_Value(V1
), m_Specific(Op1
)),
428 m_ConstantInt(CC
))) &&
429 cast
<BinaryOperator
>(Op0BOOp1
)->getOperand(0)->hasOneUse()) {
430 Value
*YS
= // (Y << C)
431 Builder
->CreateShl(Op0BO
->getOperand(0), Op1
,
434 Value
*XM
= Builder
->CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
435 V1
->getName()+".mask");
436 return BinaryOperator::Create(Op0BO
->getOpcode(), YS
, XM
);
441 case Instruction::Sub
: {
442 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
443 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
444 match(Op0BO
->getOperand(0), m_Shr(m_Value(V1
),
446 Value
*YS
= // (Y << C)
447 Builder
->CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
449 Value
*X
= Builder
->CreateBinOp(Op0BO
->getOpcode(), V1
, YS
,
450 Op0BO
->getOperand(0)->getName());
451 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
452 return BinaryOperator::CreateAnd(X
, ConstantInt::get(I
.getContext(),
453 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
456 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
457 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
458 match(Op0BO
->getOperand(0),
459 m_And(m_Shr(m_Value(V1
), m_Value(V2
)),
460 m_ConstantInt(CC
))) && V2
== Op1
&&
461 cast
<BinaryOperator
>(Op0BO
->getOperand(0))
462 ->getOperand(0)->hasOneUse()) {
463 Value
*YS
= // (Y << C)
464 Builder
->CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
466 Value
*XM
= Builder
->CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
467 V1
->getName()+".mask");
469 return BinaryOperator::Create(Op0BO
->getOpcode(), XM
, YS
);
477 // If the operand is an bitwise operator with a constant RHS, and the
478 // shift is the only use, we can pull it out of the shift.
479 if (ConstantInt
*Op0C
= dyn_cast
<ConstantInt
>(Op0BO
->getOperand(1))) {
480 bool isValid
= true; // Valid only for And, Or, Xor
481 bool highBitSet
= false; // Transform if high bit of constant set?
483 switch (Op0BO
->getOpcode()) {
484 default: isValid
= false; break; // Do not perform transform!
485 case Instruction::Add
:
486 isValid
= isLeftShift
;
488 case Instruction::Or
:
489 case Instruction::Xor
:
492 case Instruction::And
:
497 // If this is a signed shift right, and the high bit is modified
498 // by the logical operation, do not perform the transformation.
499 // The highBitSet boolean indicates the value of the high bit of
500 // the constant which would cause it to be modified for this
503 if (isValid
&& I
.getOpcode() == Instruction::AShr
)
504 isValid
= Op0C
->getValue()[TypeBits
-1] == highBitSet
;
507 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(), Op0C
, Op1
);
510 Builder
->CreateBinOp(I
.getOpcode(), Op0BO
->getOperand(0), Op1
);
511 NewShift
->takeName(Op0BO
);
513 return BinaryOperator::Create(Op0BO
->getOpcode(), NewShift
,
520 // Find out if this is a shift of a shift by a constant.
521 BinaryOperator
*ShiftOp
= dyn_cast
<BinaryOperator
>(Op0
);
522 if (ShiftOp
&& !ShiftOp
->isShift())
525 if (ShiftOp
&& isa
<ConstantInt
>(ShiftOp
->getOperand(1))) {
526 ConstantInt
*ShiftAmt1C
= cast
<ConstantInt
>(ShiftOp
->getOperand(1));
527 uint32_t ShiftAmt1
= ShiftAmt1C
->getLimitedValue(TypeBits
);
528 uint32_t ShiftAmt2
= Op1
->getLimitedValue(TypeBits
);
529 assert(ShiftAmt2
!= 0 && "Should have been simplified earlier");
530 if (ShiftAmt1
== 0) return 0; // Will be simplified in the future.
531 Value
*X
= ShiftOp
->getOperand(0);
533 uint32_t AmtSum
= ShiftAmt1
+ShiftAmt2
; // Fold into one big shift.
535 const IntegerType
*Ty
= cast
<IntegerType
>(I
.getType());
537 // Check for (X << c1) << c2 and (X >> c1) >> c2
538 if (I
.getOpcode() == ShiftOp
->getOpcode()) {
539 // If this is oversized composite shift, then unsigned shifts get 0, ashr
541 if (AmtSum
>= TypeBits
) {
542 if (I
.getOpcode() != Instruction::AShr
)
543 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
544 AmtSum
= TypeBits
-1; // Saturate to 31 for i32 ashr.
547 return BinaryOperator::Create(I
.getOpcode(), X
,
548 ConstantInt::get(Ty
, AmtSum
));
551 if (ShiftAmt1
== ShiftAmt2
) {
552 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
553 if (I
.getOpcode() == Instruction::Shl
&&
554 ShiftOp
->getOpcode() != Instruction::Shl
) {
555 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
556 return BinaryOperator::CreateAnd(X
,
557 ConstantInt::get(I
.getContext(),Mask
));
559 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
560 if (I
.getOpcode() == Instruction::LShr
&&
561 ShiftOp
->getOpcode() == Instruction::Shl
) {
562 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
563 return BinaryOperator::CreateAnd(X
,
564 ConstantInt::get(I
.getContext(), Mask
));
566 } else if (ShiftAmt1
< ShiftAmt2
) {
567 uint32_t ShiftDiff
= ShiftAmt2
-ShiftAmt1
;
569 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
570 if (I
.getOpcode() == Instruction::Shl
&&
571 ShiftOp
->getOpcode() != Instruction::Shl
) {
572 assert(ShiftOp
->getOpcode() == Instruction::LShr
||
573 ShiftOp
->getOpcode() == Instruction::AShr
);
574 Value
*Shift
= Builder
->CreateShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
576 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
577 return BinaryOperator::CreateAnd(Shift
,
578 ConstantInt::get(I
.getContext(),Mask
));
581 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
582 if (I
.getOpcode() == Instruction::LShr
&&
583 ShiftOp
->getOpcode() == Instruction::Shl
) {
584 assert(ShiftOp
->getOpcode() == Instruction::Shl
);
585 Value
*Shift
= Builder
->CreateLShr(X
, ConstantInt::get(Ty
, ShiftDiff
));
587 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
588 return BinaryOperator::CreateAnd(Shift
,
589 ConstantInt::get(I
.getContext(),Mask
));
592 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
594 assert(ShiftAmt2
< ShiftAmt1
);
595 uint32_t ShiftDiff
= ShiftAmt1
-ShiftAmt2
;
597 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
598 if (I
.getOpcode() == Instruction::Shl
&&
599 ShiftOp
->getOpcode() != Instruction::Shl
) {
600 Value
*Shift
= Builder
->CreateBinOp(ShiftOp
->getOpcode(), X
,
601 ConstantInt::get(Ty
, ShiftDiff
));
603 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
604 return BinaryOperator::CreateAnd(Shift
,
605 ConstantInt::get(I
.getContext(),Mask
));
608 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
609 if (I
.getOpcode() == Instruction::LShr
&&
610 ShiftOp
->getOpcode() == Instruction::Shl
) {
611 Value
*Shift
= Builder
->CreateShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
613 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
614 return BinaryOperator::CreateAnd(Shift
,
615 ConstantInt::get(I
.getContext(),Mask
));
618 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
624 Instruction
*InstCombiner::visitShl(BinaryOperator
&I
) {
625 return commonShiftTransforms(I
);
628 Instruction
*InstCombiner::visitLShr(BinaryOperator
&I
) {
629 if (Instruction
*R
= commonShiftTransforms(I
))
632 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
634 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(Op1
))
635 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Op0
)) {
636 unsigned BitWidth
= Op0
->getType()->getScalarSizeInBits();
637 // ctlz.i32(x)>>5 --> zext(x == 0)
638 // cttz.i32(x)>>5 --> zext(x == 0)
639 // ctpop.i32(x)>>5 --> zext(x == -1)
640 if ((II
->getIntrinsicID() == Intrinsic::ctlz
||
641 II
->getIntrinsicID() == Intrinsic::cttz
||
642 II
->getIntrinsicID() == Intrinsic::ctpop
) &&
643 isPowerOf2_32(BitWidth
) && Log2_32(BitWidth
) == Op1C
->getZExtValue()){
644 bool isCtPop
= II
->getIntrinsicID() == Intrinsic::ctpop
;
645 Constant
*RHS
= ConstantInt::getSigned(Op0
->getType(), isCtPop
? -1:0);
646 Value
*Cmp
= Builder
->CreateICmpEQ(II
->getArgOperand(0), RHS
);
647 return new ZExtInst(Cmp
, II
->getType());
654 Instruction
*InstCombiner::visitAShr(BinaryOperator
&I
) {
655 if (Instruction
*R
= commonShiftTransforms(I
))
658 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
660 if (ConstantInt
*CSI
= dyn_cast
<ConstantInt
>(Op0
)) {
661 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
662 if (CSI
->isAllOnesValue())
663 return ReplaceInstUsesWith(I
, CSI
);
666 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(Op1
)) {
667 // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
668 // have a sign-extend idiom.
670 if (match(Op0
, m_Shl(m_Value(X
), m_Specific(Op1
)))) {
671 // If the input value is known to already be sign extended enough, delete
673 if (ComputeNumSignBits(X
) > Op1C
->getZExtValue())
674 return ReplaceInstUsesWith(I
, X
);
676 // If the input is an extension from the shifted amount value, e.g.
677 // %x = zext i8 %A to i32
678 // %y = shl i32 %x, 24
680 // then turn this into "z = sext i8 A to i32".
681 if (ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(X
)) {
682 uint32_t SrcBits
= ZI
->getOperand(0)->getType()->getScalarSizeInBits();
683 uint32_t DestBits
= ZI
->getType()->getScalarSizeInBits();
684 if (Op1C
->getZExtValue() == DestBits
-SrcBits
)
685 return new SExtInst(ZI
->getOperand(0), ZI
->getType());
690 // See if we can turn a signed shr into an unsigned shr.
691 if (MaskedValueIsZero(Op0
,
692 APInt::getSignBit(I
.getType()->getScalarSizeInBits())))
693 return BinaryOperator::CreateLShr(Op0
, Op1
);
695 // Arithmetic shifting an all-sign-bit value is a no-op.
696 unsigned NumSignBits
= ComputeNumSignBits(Op0
);
697 if (NumSignBits
== Op0
->getType()->getScalarSizeInBits())
698 return ReplaceInstUsesWith(I
, Op0
);