zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
blobaf072b94e359480758cc0764f3a8430034d3fc21
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
13 //===----------------------------------------------------------------------===//
15 #include "InstCombine.h"
16 using namespace llvm;
18 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
19 /// is to leave as a vector operation.
20 static bool CheapToScalarize(Value *V, bool isConstant) {
21 if (isa<ConstantAggregateZero>(V))
22 return true;
23 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
24 if (isConstant) return true;
25 // If all elts are the same, we can extract.
26 Constant *Op0 = C->getOperand(0);
27 for (unsigned i = 1; i < C->getNumOperands(); ++i)
28 if (C->getOperand(i) != Op0)
29 return false;
30 return true;
32 Instruction *I = dyn_cast<Instruction>(V);
33 if (!I) return false;
35 // Insert element gets simplified to the inserted element or is deleted if
36 // this is constant idx extract element and its a constant idx insertelt.
37 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
38 isa<ConstantInt>(I->getOperand(2)))
39 return true;
40 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
41 return true;
42 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
43 if (BO->hasOneUse() &&
44 (CheapToScalarize(BO->getOperand(0), isConstant) ||
45 CheapToScalarize(BO->getOperand(1), isConstant)))
46 return true;
47 if (CmpInst *CI = dyn_cast<CmpInst>(I))
48 if (CI->hasOneUse() &&
49 (CheapToScalarize(CI->getOperand(0), isConstant) ||
50 CheapToScalarize(CI->getOperand(1), isConstant)))
51 return true;
53 return false;
56 /// getShuffleMask - Read and decode a shufflevector mask.
57 /// Turn undef elements into negative values.
58 static std::vector<int> getShuffleMask(const ShuffleVectorInst *SVI) {
59 unsigned NElts = SVI->getType()->getNumElements();
60 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
61 return std::vector<int>(NElts, 0);
62 if (isa<UndefValue>(SVI->getOperand(2)))
63 return std::vector<int>(NElts, -1);
65 std::vector<int> Result;
66 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
67 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
68 if (isa<UndefValue>(*i))
69 Result.push_back(-1); // undef
70 else
71 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
72 return Result;
75 /// FindScalarElement - Given a vector and an element number, see if the scalar
76 /// value is already around as a register, for example if it were inserted then
77 /// extracted from the vector.
78 static Value *FindScalarElement(Value *V, unsigned EltNo) {
79 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
80 const VectorType *PTy = cast<VectorType>(V->getType());
81 unsigned Width = PTy->getNumElements();
82 if (EltNo >= Width) // Out of range access.
83 return UndefValue::get(PTy->getElementType());
85 if (isa<UndefValue>(V))
86 return UndefValue::get(PTy->getElementType());
87 if (isa<ConstantAggregateZero>(V))
88 return Constant::getNullValue(PTy->getElementType());
89 if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
90 return CP->getOperand(EltNo);
92 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
93 // If this is an insert to a variable element, we don't know what it is.
94 if (!isa<ConstantInt>(III->getOperand(2)))
95 return 0;
96 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
98 // If this is an insert to the element we are looking for, return the
99 // inserted value.
100 if (EltNo == IIElt)
101 return III->getOperand(1);
103 // Otherwise, the insertelement doesn't modify the value, recurse on its
104 // vector input.
105 return FindScalarElement(III->getOperand(0), EltNo);
108 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
109 unsigned LHSWidth =
110 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
111 int InEl = getShuffleMask(SVI)[EltNo];
112 if (InEl < 0)
113 return UndefValue::get(PTy->getElementType());
114 if (InEl < (int)LHSWidth)
115 return FindScalarElement(SVI->getOperand(0), InEl);
116 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
119 // Otherwise, we don't know.
120 return 0;
123 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
124 // If vector val is undef, replace extract with scalar undef.
125 if (isa<UndefValue>(EI.getOperand(0)))
126 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
128 // If vector val is constant 0, replace extract with scalar 0.
129 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
130 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
132 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
133 // If vector val is constant with all elements the same, replace EI with
134 // that element. When the elements are not identical, we cannot replace yet
135 // (we do that below, but only when the index is constant).
136 Constant *op0 = C->getOperand(0);
137 for (unsigned i = 1; i != C->getNumOperands(); ++i)
138 if (C->getOperand(i) != op0) {
139 op0 = 0;
140 break;
142 if (op0)
143 return ReplaceInstUsesWith(EI, op0);
146 // If extracting a specified index from the vector, see if we can recursively
147 // find a previously computed scalar that was inserted into the vector.
148 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
149 unsigned IndexVal = IdxC->getZExtValue();
150 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
152 // If this is extracting an invalid index, turn this into undef, to avoid
153 // crashing the code below.
154 if (IndexVal >= VectorWidth)
155 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
157 // This instruction only demands the single element from the input vector.
158 // If the input vector has a single use, simplify it based on this use
159 // property.
160 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
161 APInt UndefElts(VectorWidth, 0);
162 APInt DemandedMask(VectorWidth, 0);
163 DemandedMask.set(IndexVal);
164 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
165 DemandedMask, UndefElts)) {
166 EI.setOperand(0, V);
167 return &EI;
171 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
172 return ReplaceInstUsesWith(EI, Elt);
174 // If the this extractelement is directly using a bitcast from a vector of
175 // the same number of elements, see if we can find the source element from
176 // it. In this case, we will end up needing to bitcast the scalars.
177 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
178 if (const VectorType *VT =
179 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
180 if (VT->getNumElements() == VectorWidth)
181 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
182 return new BitCastInst(Elt, EI.getType());
186 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
187 // Push extractelement into predecessor operation if legal and
188 // profitable to do so
189 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
190 if (I->hasOneUse() &&
191 CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
192 Value *newEI0 =
193 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
194 EI.getName()+".lhs");
195 Value *newEI1 =
196 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
197 EI.getName()+".rhs");
198 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
200 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
201 // Extracting the inserted element?
202 if (IE->getOperand(2) == EI.getOperand(1))
203 return ReplaceInstUsesWith(EI, IE->getOperand(1));
204 // If the inserted and extracted elements are constants, they must not
205 // be the same value, extract from the pre-inserted value instead.
206 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
207 Worklist.AddValue(EI.getOperand(0));
208 EI.setOperand(0, IE->getOperand(0));
209 return &EI;
211 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
212 // If this is extracting an element from a shufflevector, figure out where
213 // it came from and extract from the appropriate input element instead.
214 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
215 int SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
216 Value *Src;
217 unsigned LHSWidth =
218 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
220 if (SrcIdx < 0)
221 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
222 if (SrcIdx < (int)LHSWidth)
223 Src = SVI->getOperand(0);
224 else {
225 SrcIdx -= LHSWidth;
226 Src = SVI->getOperand(1);
228 const Type *Int32Ty = Type::getInt32Ty(EI.getContext());
229 return ExtractElementInst::Create(Src,
230 ConstantInt::get(Int32Ty,
231 SrcIdx, false));
234 // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
236 return 0;
239 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
240 /// elements from either LHS or RHS, return the shuffle mask and true.
241 /// Otherwise, return false.
242 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
243 std::vector<Constant*> &Mask) {
244 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
245 "Invalid CollectSingleShuffleElements");
246 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
248 if (isa<UndefValue>(V)) {
249 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
250 return true;
253 if (V == LHS) {
254 for (unsigned i = 0; i != NumElts; ++i)
255 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
256 return true;
259 if (V == RHS) {
260 for (unsigned i = 0; i != NumElts; ++i)
261 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
262 i+NumElts));
263 return true;
266 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
267 // If this is an insert of an extract from some other vector, include it.
268 Value *VecOp = IEI->getOperand(0);
269 Value *ScalarOp = IEI->getOperand(1);
270 Value *IdxOp = IEI->getOperand(2);
272 if (!isa<ConstantInt>(IdxOp))
273 return false;
274 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
276 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
277 // Okay, we can handle this if the vector we are insertinting into is
278 // transitively ok.
279 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
280 // If so, update the mask to reflect the inserted undef.
281 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
282 return true;
284 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
285 if (isa<ConstantInt>(EI->getOperand(1)) &&
286 EI->getOperand(0)->getType() == V->getType()) {
287 unsigned ExtractedIdx =
288 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
290 // This must be extracting from either LHS or RHS.
291 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
292 // Okay, we can handle this if the vector we are insertinting into is
293 // transitively ok.
294 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
295 // If so, update the mask to reflect the inserted value.
296 if (EI->getOperand(0) == LHS) {
297 Mask[InsertedIdx % NumElts] =
298 ConstantInt::get(Type::getInt32Ty(V->getContext()),
299 ExtractedIdx);
300 } else {
301 assert(EI->getOperand(0) == RHS);
302 Mask[InsertedIdx % NumElts] =
303 ConstantInt::get(Type::getInt32Ty(V->getContext()),
304 ExtractedIdx+NumElts);
306 return true;
312 // TODO: Handle shufflevector here!
314 return false;
317 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
318 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
319 /// that computes V and the LHS value of the shuffle.
320 static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
321 Value *&RHS) {
322 assert(V->getType()->isVectorTy() &&
323 (RHS == 0 || V->getType() == RHS->getType()) &&
324 "Invalid shuffle!");
325 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
327 if (isa<UndefValue>(V)) {
328 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
329 return V;
330 } else if (isa<ConstantAggregateZero>(V)) {
331 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
332 return V;
333 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
334 // If this is an insert of an extract from some other vector, include it.
335 Value *VecOp = IEI->getOperand(0);
336 Value *ScalarOp = IEI->getOperand(1);
337 Value *IdxOp = IEI->getOperand(2);
339 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
340 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
341 EI->getOperand(0)->getType() == V->getType()) {
342 unsigned ExtractedIdx =
343 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
344 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
346 // Either the extracted from or inserted into vector must be RHSVec,
347 // otherwise we'd end up with a shuffle of three inputs.
348 if (EI->getOperand(0) == RHS || RHS == 0) {
349 RHS = EI->getOperand(0);
350 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
351 Mask[InsertedIdx % NumElts] =
352 ConstantInt::get(Type::getInt32Ty(V->getContext()),
353 NumElts+ExtractedIdx);
354 return V;
357 if (VecOp == RHS) {
358 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
359 // Everything but the extracted element is replaced with the RHS.
360 for (unsigned i = 0; i != NumElts; ++i) {
361 if (i != InsertedIdx)
362 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
363 NumElts+i);
365 return V;
368 // If this insertelement is a chain that comes from exactly these two
369 // vectors, return the vector and the effective shuffle.
370 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
371 return EI->getOperand(0);
375 // TODO: Handle shufflevector here!
377 // Otherwise, can't do anything fancy. Return an identity vector.
378 for (unsigned i = 0; i != NumElts; ++i)
379 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380 return V;
383 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
384 Value *VecOp = IE.getOperand(0);
385 Value *ScalarOp = IE.getOperand(1);
386 Value *IdxOp = IE.getOperand(2);
388 // Inserting an undef or into an undefined place, remove this.
389 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
390 ReplaceInstUsesWith(IE, VecOp);
392 // If the inserted element was extracted from some other vector, and if the
393 // indexes are constant, try to turn this into a shufflevector operation.
394 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
395 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
396 EI->getOperand(0)->getType() == IE.getType()) {
397 unsigned NumVectorElts = IE.getType()->getNumElements();
398 unsigned ExtractedIdx =
399 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
400 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
402 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
403 return ReplaceInstUsesWith(IE, VecOp);
405 if (InsertedIdx >= NumVectorElts) // Out of range insert.
406 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
408 // If we are extracting a value from a vector, then inserting it right
409 // back into the same place, just use the input vector.
410 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
411 return ReplaceInstUsesWith(IE, VecOp);
413 // If this insertelement isn't used by some other insertelement, turn it
414 // (and any insertelements it points to), into one big shuffle.
415 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
416 std::vector<Constant*> Mask;
417 Value *RHS = 0;
418 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
419 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
420 // We now have a shuffle of LHS, RHS, Mask.
421 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
426 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
427 APInt UndefElts(VWidth, 0);
428 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
429 if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
430 return &IE;
432 return 0;
436 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
437 Value *LHS = SVI.getOperand(0);
438 Value *RHS = SVI.getOperand(1);
439 std::vector<int> Mask = getShuffleMask(&SVI);
441 bool MadeChange = false;
443 // Undefined shuffle mask -> undefined value.
444 if (isa<UndefValue>(SVI.getOperand(2)))
445 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
447 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
449 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
450 return 0;
452 APInt UndefElts(VWidth, 0);
453 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
454 if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
455 LHS = SVI.getOperand(0);
456 RHS = SVI.getOperand(1);
457 MadeChange = true;
460 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
461 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
462 if (LHS == RHS || isa<UndefValue>(LHS)) {
463 if (isa<UndefValue>(LHS) && LHS == RHS) {
464 // shuffle(undef,undef,mask) -> undef.
465 return ReplaceInstUsesWith(SVI, LHS);
468 // Remap any references to RHS to use LHS.
469 std::vector<Constant*> Elts;
470 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
471 if (Mask[i] < 0)
472 Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
473 else {
474 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
475 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
476 Mask[i] = -1; // Turn into undef.
477 Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
478 } else {
479 Mask[i] = Mask[i] % e; // Force to LHS.
480 Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
481 Mask[i]));
485 SVI.setOperand(0, SVI.getOperand(1));
486 SVI.setOperand(1, UndefValue::get(RHS->getType()));
487 SVI.setOperand(2, ConstantVector::get(Elts));
488 LHS = SVI.getOperand(0);
489 RHS = SVI.getOperand(1);
490 MadeChange = true;
493 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
494 bool isLHSID = true, isRHSID = true;
496 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
497 if (Mask[i] < 0) continue; // Ignore undef values.
498 // Is this an identity shuffle of the LHS value?
499 isLHSID &= (Mask[i] == (int)i);
501 // Is this an identity shuffle of the RHS value?
502 isRHSID &= (Mask[i]-e == i);
505 // Eliminate identity shuffles.
506 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
507 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
509 // If the LHS is a shufflevector itself, see if we can combine it with this
510 // one without producing an unusual shuffle. Here we are really conservative:
511 // we are absolutely afraid of producing a shuffle mask not in the input
512 // program, because the code gen may not be smart enough to turn a merged
513 // shuffle into two specific shuffles: it may produce worse code. As such,
514 // we only merge two shuffles if the result is either a splat or one of the
515 // two input shuffle masks. In this case, merging the shuffles just removes
516 // one instruction, which we know is safe. This is good for things like
517 // turning: (splat(splat)) -> splat.
518 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
519 if (isa<UndefValue>(RHS)) {
520 std::vector<int> LHSMask = getShuffleMask(LHSSVI);
522 if (LHSMask.size() == Mask.size()) {
523 std::vector<int> NewMask;
524 bool isSplat = true;
525 int SplatElt = -1; // undef
526 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
527 int MaskElt;
528 if (Mask[i] < 0 || Mask[i] >= (int)e)
529 MaskElt = -1; // undef
530 else
531 MaskElt = LHSMask[Mask[i]];
532 // Check if this could still be a splat.
533 if (MaskElt >= 0) {
534 if (SplatElt >=0 && SplatElt != MaskElt)
535 isSplat = false;
536 SplatElt = MaskElt;
538 NewMask.push_back(MaskElt);
541 // If the result mask is equal to the src shuffle or this
542 // shuffle mask, do the replacement.
543 if (isSplat || NewMask == LHSMask || NewMask == Mask) {
544 std::vector<Constant*> Elts;
545 const Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
546 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
547 if (NewMask[i] < 0) {
548 Elts.push_back(UndefValue::get(Int32Ty));
549 } else {
550 Elts.push_back(ConstantInt::get(Int32Ty, NewMask[i]));
553 return new ShuffleVectorInst(LHSSVI->getOperand(0),
554 LHSSVI->getOperand(1),
555 ConstantVector::get(Elts));
561 return MadeChange ? &SVI : 0;