1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/ProfileInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Utils/BuildLibCalls.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Assembly/Writer.h"
36 #include "llvm/Support/CallSite.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/GetElementPtrTypeIterator.h"
40 #include "llvm/Support/PatternMatch.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Support/IRBuilder.h"
44 using namespace llvm::PatternMatch
;
46 STATISTIC(NumElim
, "Number of blocks eliminated");
49 CriticalEdgeSplit("cgp-critical-edge-splitting",
50 cl::desc("Split critical edges during codegen prepare"),
51 cl::init(false), cl::Hidden
);
54 class CodeGenPrepare
: public FunctionPass
{
55 /// TLI - Keep a pointer of a TargetLowering to consult for determining
56 /// transformation profitability.
57 const TargetLowering
*TLI
;
60 /// BackEdges - Keep a set of all the loop back edges.
62 SmallSet
<std::pair
<const BasicBlock
*, const BasicBlock
*>, 8> BackEdges
;
64 static char ID
; // Pass identification, replacement for typeid
65 explicit CodeGenPrepare(const TargetLowering
*tli
= 0)
66 : FunctionPass(ID
), TLI(tli
) {
67 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
69 bool runOnFunction(Function
&F
);
71 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
72 AU
.addPreserved
<ProfileInfo
>();
75 virtual void releaseMemory() {
80 bool EliminateMostlyEmptyBlocks(Function
&F
);
81 bool CanMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
82 void EliminateMostlyEmptyBlock(BasicBlock
*BB
);
83 bool OptimizeBlock(BasicBlock
&BB
);
84 bool OptimizeMemoryInst(Instruction
*I
, Value
*Addr
, const Type
*AccessTy
,
85 DenseMap
<Value
*,Value
*> &SunkAddrs
);
86 bool OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
87 DenseMap
<Value
*,Value
*> &SunkAddrs
);
88 bool OptimizeCallInst(CallInst
*CI
);
89 bool MoveExtToFormExtLoad(Instruction
*I
);
90 bool OptimizeExtUses(Instruction
*I
);
91 void findLoopBackEdges(const Function
&F
);
95 char CodeGenPrepare::ID
= 0;
96 INITIALIZE_PASS(CodeGenPrepare
, "codegenprepare",
97 "Optimize for code generation", false, false)
99 FunctionPass
*llvm::createCodeGenPreparePass(const TargetLowering
*TLI
) {
100 return new CodeGenPrepare(TLI
);
103 /// findLoopBackEdges - Do a DFS walk to find loop back edges.
105 void CodeGenPrepare::findLoopBackEdges(const Function
&F
) {
106 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
107 FindFunctionBackedges(F
, Edges
);
109 BackEdges
.insert(Edges
.begin(), Edges
.end());
113 bool CodeGenPrepare::runOnFunction(Function
&F
) {
114 bool EverMadeChange
= false;
116 PFI
= getAnalysisIfAvailable
<ProfileInfo
>();
117 // First pass, eliminate blocks that contain only PHI nodes and an
118 // unconditional branch.
119 EverMadeChange
|= EliminateMostlyEmptyBlocks(F
);
121 // Now find loop back edges.
122 findLoopBackEdges(F
);
124 bool MadeChange
= true;
127 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
128 MadeChange
|= OptimizeBlock(*BB
);
129 EverMadeChange
|= MadeChange
;
131 return EverMadeChange
;
134 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
135 /// debug info directives, and an unconditional branch. Passes before isel
136 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
137 /// isel. Start by eliminating these blocks so we can split them the way we
139 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function
&F
) {
140 bool MadeChange
= false;
141 // Note that this intentionally skips the entry block.
142 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ) {
143 BasicBlock
*BB
= I
++;
145 // If this block doesn't end with an uncond branch, ignore it.
146 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
147 if (!BI
|| !BI
->isUnconditional())
150 // If the instruction before the branch (skipping debug info) isn't a phi
151 // node, then other stuff is happening here.
152 BasicBlock::iterator BBI
= BI
;
153 if (BBI
!= BB
->begin()) {
155 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
156 if (BBI
== BB
->begin())
160 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
164 // Do not break infinite loops.
165 BasicBlock
*DestBB
= BI
->getSuccessor(0);
169 if (!CanMergeBlocks(BB
, DestBB
))
172 EliminateMostlyEmptyBlock(BB
);
178 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
179 /// single uncond branch between them, and BB contains no other non-phi
181 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock
*BB
,
182 const BasicBlock
*DestBB
) const {
183 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
184 // the successor. If there are more complex condition (e.g. preheaders),
185 // don't mess around with them.
186 BasicBlock::const_iterator BBI
= BB
->begin();
187 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
188 for (Value::const_use_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
190 const Instruction
*User
= cast
<Instruction
>(*UI
);
191 if (User
->getParent() != DestBB
|| !isa
<PHINode
>(User
))
193 // If User is inside DestBB block and it is a PHINode then check
194 // incoming value. If incoming value is not from BB then this is
195 // a complex condition (e.g. preheaders) we want to avoid here.
196 if (User
->getParent() == DestBB
) {
197 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(User
))
198 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
199 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
200 if (Insn
&& Insn
->getParent() == BB
&&
201 Insn
->getParent() != UPN
->getIncomingBlock(I
))
208 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
209 // and DestBB may have conflicting incoming values for the block. If so, we
210 // can't merge the block.
211 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
212 if (!DestBBPN
) return true; // no conflict.
214 // Collect the preds of BB.
215 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
216 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
217 // It is faster to get preds from a PHI than with pred_iterator.
218 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
219 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
221 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
224 // Walk the preds of DestBB.
225 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
226 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
227 if (BBPreds
.count(Pred
)) { // Common predecessor?
228 BBI
= DestBB
->begin();
229 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
230 const Value
*V1
= PN
->getIncomingValueForBlock(Pred
);
231 const Value
*V2
= PN
->getIncomingValueForBlock(BB
);
233 // If V2 is a phi node in BB, look up what the mapped value will be.
234 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
235 if (V2PN
->getParent() == BB
)
236 V2
= V2PN
->getIncomingValueForBlock(Pred
);
238 // If there is a conflict, bail out.
239 if (V1
!= V2
) return false;
248 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
249 /// an unconditional branch in it.
250 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock
*BB
) {
251 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
252 BasicBlock
*DestBB
= BI
->getSuccessor(0);
254 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB
<< *DestBB
);
256 // If the destination block has a single pred, then this is a trivial edge,
258 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
259 if (SinglePred
!= DestBB
) {
260 // Remember if SinglePred was the entry block of the function. If so, we
261 // will need to move BB back to the entry position.
262 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
263 MergeBasicBlockIntoOnlyPred(DestBB
, this);
265 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
266 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
268 DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
273 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
274 // to handle the new incoming edges it is about to have.
276 for (BasicBlock::iterator BBI
= DestBB
->begin();
277 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
278 // Remove the incoming value for BB, and remember it.
279 Value
*InVal
= PN
->removeIncomingValue(BB
, false);
281 // Two options: either the InVal is a phi node defined in BB or it is some
282 // value that dominates BB.
283 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
284 if (InValPhi
&& InValPhi
->getParent() == BB
) {
285 // Add all of the input values of the input PHI as inputs of this phi.
286 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
287 PN
->addIncoming(InValPhi
->getIncomingValue(i
),
288 InValPhi
->getIncomingBlock(i
));
290 // Otherwise, add one instance of the dominating value for each edge that
291 // we will be adding.
292 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
293 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
294 PN
->addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
296 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
297 PN
->addIncoming(InVal
, *PI
);
302 // The PHIs are now updated, change everything that refers to BB to use
303 // DestBB and remove BB.
304 BB
->replaceAllUsesWith(DestBB
);
306 PFI
->replaceAllUses(BB
, DestBB
);
307 PFI
->removeEdge(ProfileInfo::getEdge(BB
, DestBB
));
309 BB
->eraseFromParent();
312 DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
315 /// FindReusablePredBB - Check all of the predecessors of the block DestPHI
316 /// lives in to see if there is a block that we can reuse as a critical edge
318 static BasicBlock
*FindReusablePredBB(PHINode
*DestPHI
, BasicBlock
*TIBB
) {
319 BasicBlock
*Dest
= DestPHI
->getParent();
321 /// TIPHIValues - This array is lazily computed to determine the values of
322 /// PHIs in Dest that TI would provide.
323 SmallVector
<Value
*, 32> TIPHIValues
;
325 /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
326 unsigned TIBBEntryNo
= 0;
328 // Check to see if Dest has any blocks that can be used as a split edge for
330 for (unsigned pi
= 0, e
= DestPHI
->getNumIncomingValues(); pi
!= e
; ++pi
) {
331 BasicBlock
*Pred
= DestPHI
->getIncomingBlock(pi
);
332 // To be usable, the pred has to end with an uncond branch to the dest.
333 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
334 if (!PredBr
|| !PredBr
->isUnconditional())
336 // Must be empty other than the branch and debug info.
337 BasicBlock::iterator I
= Pred
->begin();
338 while (isa
<DbgInfoIntrinsic
>(I
))
342 // Cannot be the entry block; its label does not get emitted.
343 if (Pred
== &Dest
->getParent()->getEntryBlock())
346 // Finally, since we know that Dest has phi nodes in it, we have to make
347 // sure that jumping to Pred will have the same effect as going to Dest in
348 // terms of PHI values.
351 unsigned PredEntryNo
= pi
;
353 bool FoundMatch
= true;
354 for (BasicBlock::iterator I
= Dest
->begin();
355 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
) {
356 if (PHINo
== TIPHIValues
.size()) {
357 if (PN
->getIncomingBlock(TIBBEntryNo
) != TIBB
)
358 TIBBEntryNo
= PN
->getBasicBlockIndex(TIBB
);
359 TIPHIValues
.push_back(PN
->getIncomingValue(TIBBEntryNo
));
362 // If the PHI entry doesn't work, we can't use this pred.
363 if (PN
->getIncomingBlock(PredEntryNo
) != Pred
)
364 PredEntryNo
= PN
->getBasicBlockIndex(Pred
);
366 if (TIPHIValues
[PHINo
] != PN
->getIncomingValue(PredEntryNo
)) {
372 // If we found a workable predecessor, change TI to branch to Succ.
380 /// SplitEdgeNicely - Split the critical edge from TI to its specified
381 /// successor if it will improve codegen. We only do this if the successor has
382 /// phi nodes (otherwise critical edges are ok). If there is already another
383 /// predecessor of the succ that is empty (and thus has no phi nodes), use it
384 /// instead of introducing a new block.
385 static void SplitEdgeNicely(TerminatorInst
*TI
, unsigned SuccNum
,
386 SmallSet
<std::pair
<const BasicBlock
*,
387 const BasicBlock
*>, 8> &BackEdges
,
389 BasicBlock
*TIBB
= TI
->getParent();
390 BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
391 assert(isa
<PHINode
>(Dest
->begin()) &&
392 "This should only be called if Dest has a PHI!");
393 PHINode
*DestPHI
= cast
<PHINode
>(Dest
->begin());
395 // Do not split edges to EH landing pads.
396 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(TI
))
397 if (Invoke
->getSuccessor(1) == Dest
)
400 // As a hack, never split backedges of loops. Even though the copy for any
401 // PHIs inserted on the backedge would be dead for exits from the loop, we
402 // assume that the cost of *splitting* the backedge would be too high.
403 if (BackEdges
.count(std::make_pair(TIBB
, Dest
)))
406 if (BasicBlock
*ReuseBB
= FindReusablePredBB(DestPHI
, TIBB
)) {
407 ProfileInfo
*PFI
= P
->getAnalysisIfAvailable
<ProfileInfo
>();
409 PFI
->splitEdge(TIBB
, Dest
, ReuseBB
);
410 Dest
->removePredecessor(TIBB
);
411 TI
->setSuccessor(SuccNum
, ReuseBB
);
415 SplitCriticalEdge(TI
, SuccNum
, P
, true);
419 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
420 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
421 /// sink it into user blocks to reduce the number of virtual
422 /// registers that must be created and coalesced.
424 /// Return true if any changes are made.
426 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
){
427 // If this is a noop copy,
428 EVT SrcVT
= TLI
.getValueType(CI
->getOperand(0)->getType());
429 EVT DstVT
= TLI
.getValueType(CI
->getType());
431 // This is an fp<->int conversion?
432 if (SrcVT
.isInteger() != DstVT
.isInteger())
435 // If this is an extension, it will be a zero or sign extension, which
437 if (SrcVT
.bitsLT(DstVT
)) return false;
439 // If these values will be promoted, find out what they will be promoted
440 // to. This helps us consider truncates on PPC as noop copies when they
442 if (TLI
.getTypeAction(SrcVT
) == TargetLowering::Promote
)
443 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
444 if (TLI
.getTypeAction(DstVT
) == TargetLowering::Promote
)
445 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
447 // If, after promotion, these are the same types, this is a noop copy.
451 BasicBlock
*DefBB
= CI
->getParent();
453 /// InsertedCasts - Only insert a cast in each block once.
454 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
456 bool MadeChange
= false;
457 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
459 Use
&TheUse
= UI
.getUse();
460 Instruction
*User
= cast
<Instruction
>(*UI
);
462 // Figure out which BB this cast is used in. For PHI's this is the
463 // appropriate predecessor block.
464 BasicBlock
*UserBB
= User
->getParent();
465 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
466 UserBB
= PN
->getIncomingBlock(UI
);
469 // Preincrement use iterator so we don't invalidate it.
472 // If this user is in the same block as the cast, don't change the cast.
473 if (UserBB
== DefBB
) continue;
475 // If we have already inserted a cast into this block, use it.
476 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
479 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
482 CastInst::Create(CI
->getOpcode(), CI
->getOperand(0), CI
->getType(), "",
487 // Replace a use of the cast with a use of the new cast.
488 TheUse
= InsertedCast
;
491 // If we removed all uses, nuke the cast.
492 if (CI
->use_empty()) {
493 CI
->eraseFromParent();
500 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
501 /// the number of virtual registers that must be created and coalesced. This is
502 /// a clear win except on targets with multiple condition code registers
503 /// (PowerPC), where it might lose; some adjustment may be wanted there.
505 /// Return true if any changes are made.
506 static bool OptimizeCmpExpression(CmpInst
*CI
) {
507 BasicBlock
*DefBB
= CI
->getParent();
509 /// InsertedCmp - Only insert a cmp in each block once.
510 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
512 bool MadeChange
= false;
513 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
515 Use
&TheUse
= UI
.getUse();
516 Instruction
*User
= cast
<Instruction
>(*UI
);
518 // Preincrement use iterator so we don't invalidate it.
521 // Don't bother for PHI nodes.
522 if (isa
<PHINode
>(User
))
525 // Figure out which BB this cmp is used in.
526 BasicBlock
*UserBB
= User
->getParent();
528 // If this user is in the same block as the cmp, don't change the cmp.
529 if (UserBB
== DefBB
) continue;
531 // If we have already inserted a cmp into this block, use it.
532 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
535 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
538 CmpInst::Create(CI
->getOpcode(),
539 CI
->getPredicate(), CI
->getOperand(0),
540 CI
->getOperand(1), "", InsertPt
);
544 // Replace a use of the cmp with a use of the new cmp.
545 TheUse
= InsertedCmp
;
548 // If we removed all uses, nuke the cmp.
550 CI
->eraseFromParent();
556 class CodeGenPrepareFortifiedLibCalls
: public SimplifyFortifiedLibCalls
{
558 void replaceCall(Value
*With
) {
559 CI
->replaceAllUsesWith(With
);
560 CI
->eraseFromParent();
562 bool isFoldable(unsigned SizeCIOp
, unsigned, bool) const {
563 if (ConstantInt
*SizeCI
=
564 dyn_cast
<ConstantInt
>(CI
->getArgOperand(SizeCIOp
)))
565 return SizeCI
->isAllOnesValue();
569 } // end anonymous namespace
571 bool CodeGenPrepare::OptimizeCallInst(CallInst
*CI
) {
572 // Lower all uses of llvm.objectsize.*
573 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
574 if (II
&& II
->getIntrinsicID() == Intrinsic::objectsize
) {
575 bool Min
= (cast
<ConstantInt
>(II
->getArgOperand(1))->getZExtValue() == 1);
576 const Type
*ReturnTy
= CI
->getType();
577 Constant
*RetVal
= ConstantInt::get(ReturnTy
, Min
? 0 : -1ULL);
578 CI
->replaceAllUsesWith(RetVal
);
579 CI
->eraseFromParent();
583 // From here on out we're working with named functions.
584 if (CI
->getCalledFunction() == 0) return false;
586 // We'll need TargetData from here on out.
587 const TargetData
*TD
= TLI
? TLI
->getTargetData() : 0;
588 if (!TD
) return false;
590 // Lower all default uses of _chk calls. This is very similar
591 // to what InstCombineCalls does, but here we are only lowering calls
592 // that have the default "don't know" as the objectsize. Anything else
593 // should be left alone.
594 CodeGenPrepareFortifiedLibCalls Simplifier
;
595 return Simplifier
.fold(CI
, TD
);
597 //===----------------------------------------------------------------------===//
598 // Memory Optimization
599 //===----------------------------------------------------------------------===//
601 /// IsNonLocalValue - Return true if the specified values are defined in a
602 /// different basic block than BB.
603 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
604 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
605 return I
->getParent() != BB
;
609 /// OptimizeMemoryInst - Load and Store Instructions often have
610 /// addressing modes that can do significant amounts of computation. As such,
611 /// instruction selection will try to get the load or store to do as much
612 /// computation as possible for the program. The problem is that isel can only
613 /// see within a single block. As such, we sink as much legal addressing mode
614 /// stuff into the block as possible.
616 /// This method is used to optimize both load/store and inline asms with memory
618 bool CodeGenPrepare::OptimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
619 const Type
*AccessTy
,
620 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
621 // Figure out what addressing mode will be built up for this operation.
622 SmallVector
<Instruction
*, 16> AddrModeInsts
;
623 ExtAddrMode AddrMode
= AddressingModeMatcher::Match(Addr
, AccessTy
,MemoryInst
,
624 AddrModeInsts
, *TLI
);
626 // Check to see if any of the instructions supersumed by this addr mode are
627 // non-local to I's BB.
628 bool AnyNonLocal
= false;
629 for (unsigned i
= 0, e
= AddrModeInsts
.size(); i
!= e
; ++i
) {
630 if (IsNonLocalValue(AddrModeInsts
[i
], MemoryInst
->getParent())) {
636 // If all the instructions matched are already in this BB, don't do anything.
638 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
<< "\n");
642 // Insert this computation right after this user. Since our caller is
643 // scanning from the top of the BB to the bottom, reuse of the expr are
644 // guaranteed to happen later.
645 BasicBlock::iterator InsertPt
= MemoryInst
;
647 // Now that we determined the addressing expression we want to use and know
648 // that we have to sink it into this block. Check to see if we have already
649 // done this for some other load/store instr in this block. If so, reuse the
651 Value
*&SunkAddr
= SunkAddrs
[Addr
];
653 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
<< " for "
655 if (SunkAddr
->getType() != Addr
->getType())
656 SunkAddr
= new BitCastInst(SunkAddr
, Addr
->getType(), "tmp", InsertPt
);
658 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for "
660 const Type
*IntPtrTy
=
661 TLI
->getTargetData()->getIntPtrType(AccessTy
->getContext());
665 // Start with the base register. Do this first so that subsequent address
666 // matching finds it last, which will prevent it from trying to match it
667 // as the scaled value in case it happens to be a mul. That would be
668 // problematic if we've sunk a different mul for the scale, because then
669 // we'd end up sinking both muls.
670 if (AddrMode
.BaseReg
) {
671 Value
*V
= AddrMode
.BaseReg
;
672 if (V
->getType()->isPointerTy())
673 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
674 if (V
->getType() != IntPtrTy
)
675 V
= CastInst::CreateIntegerCast(V
, IntPtrTy
, /*isSigned=*/true,
676 "sunkaddr", InsertPt
);
680 // Add the scale value.
681 if (AddrMode
.Scale
) {
682 Value
*V
= AddrMode
.ScaledReg
;
683 if (V
->getType() == IntPtrTy
) {
685 } else if (V
->getType()->isPointerTy()) {
686 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
687 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
688 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
689 V
= new TruncInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
691 V
= new SExtInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
693 if (AddrMode
.Scale
!= 1)
694 V
= BinaryOperator::CreateMul(V
, ConstantInt::get(IntPtrTy
,
696 "sunkaddr", InsertPt
);
698 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
703 // Add in the BaseGV if present.
704 if (AddrMode
.BaseGV
) {
705 Value
*V
= new PtrToIntInst(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr",
708 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
713 // Add in the Base Offset if present.
714 if (AddrMode
.BaseOffs
) {
715 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
717 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
723 SunkAddr
= Constant::getNullValue(Addr
->getType());
725 SunkAddr
= new IntToPtrInst(Result
, Addr
->getType(), "sunkaddr",InsertPt
);
728 MemoryInst
->replaceUsesOfWith(Addr
, SunkAddr
);
730 if (Addr
->use_empty()) {
731 RecursivelyDeleteTriviallyDeadInstructions(Addr
);
732 // This address is now available for reassignment, so erase the table entry;
733 // we don't want to match some completely different instruction.
739 /// OptimizeInlineAsmInst - If there are any memory operands, use
740 /// OptimizeMemoryInst to sink their address computing into the block when
741 /// possible / profitable.
742 bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
743 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
744 bool MadeChange
= false;
746 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
->ParseConstraints(CS
);
748 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
749 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
751 // Compute the constraint code and ConstraintType to use.
752 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
754 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
756 Value
*OpVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
757 MadeChange
|= OptimizeMemoryInst(I
, OpVal
, OpVal
->getType(), SunkAddrs
);
758 } else if (OpInfo
.Type
== InlineAsm::isInput
)
765 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
766 /// basic block as the load, unless conditions are unfavorable. This allows
767 /// SelectionDAG to fold the extend into the load.
769 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction
*I
) {
770 // Look for a load being extended.
771 LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->getOperand(0));
772 if (!LI
) return false;
774 // If they're already in the same block, there's nothing to do.
775 if (LI
->getParent() == I
->getParent())
778 // If the load has other users and the truncate is not free, this probably
780 if (!LI
->hasOneUse() &&
781 TLI
&& (TLI
->isTypeLegal(TLI
->getValueType(LI
->getType())) ||
782 !TLI
->isTypeLegal(TLI
->getValueType(I
->getType()))) &&
783 !TLI
->isTruncateFree(I
->getType(), LI
->getType()))
786 // Check whether the target supports casts folded into loads.
788 if (isa
<ZExtInst
>(I
))
789 LType
= ISD::ZEXTLOAD
;
791 assert(isa
<SExtInst
>(I
) && "Unexpected ext type!");
792 LType
= ISD::SEXTLOAD
;
794 if (TLI
&& !TLI
->isLoadExtLegal(LType
, TLI
->getValueType(LI
->getType())))
797 // Move the extend into the same block as the load, so that SelectionDAG
799 I
->removeFromParent();
804 bool CodeGenPrepare::OptimizeExtUses(Instruction
*I
) {
805 BasicBlock
*DefBB
= I
->getParent();
807 // If the result of a {s|z}ext and its source are both live out, rewrite all
808 // other uses of the source with result of extension.
809 Value
*Src
= I
->getOperand(0);
810 if (Src
->hasOneUse())
813 // Only do this xform if truncating is free.
814 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
817 // Only safe to perform the optimization if the source is also defined in
819 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
822 bool DefIsLiveOut
= false;
823 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
825 Instruction
*User
= cast
<Instruction
>(*UI
);
827 // Figure out which BB this ext is used in.
828 BasicBlock
*UserBB
= User
->getParent();
829 if (UserBB
== DefBB
) continue;
836 // Make sure non of the uses are PHI nodes.
837 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
839 Instruction
*User
= cast
<Instruction
>(*UI
);
840 BasicBlock
*UserBB
= User
->getParent();
841 if (UserBB
== DefBB
) continue;
842 // Be conservative. We don't want this xform to end up introducing
843 // reloads just before load / store instructions.
844 if (isa
<PHINode
>(User
) || isa
<LoadInst
>(User
) || isa
<StoreInst
>(User
))
848 // InsertedTruncs - Only insert one trunc in each block once.
849 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
851 bool MadeChange
= false;
852 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
854 Use
&TheUse
= UI
.getUse();
855 Instruction
*User
= cast
<Instruction
>(*UI
);
857 // Figure out which BB this ext is used in.
858 BasicBlock
*UserBB
= User
->getParent();
859 if (UserBB
== DefBB
) continue;
861 // Both src and def are live in this block. Rewrite the use.
862 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
864 if (!InsertedTrunc
) {
865 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
867 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", InsertPt
);
870 // Replace a use of the {s|z}ext source with a use of the result.
871 TheUse
= InsertedTrunc
;
879 // In this pass we look for GEP and cast instructions that are used
880 // across basic blocks and rewrite them to improve basic-block-at-a-time
882 bool CodeGenPrepare::OptimizeBlock(BasicBlock
&BB
) {
883 bool MadeChange
= false;
885 // Split all critical edges where the dest block has a PHI.
886 if (CriticalEdgeSplit
) {
887 TerminatorInst
*BBTI
= BB
.getTerminator();
888 if (BBTI
->getNumSuccessors() > 1 && !isa
<IndirectBrInst
>(BBTI
)) {
889 for (unsigned i
= 0, e
= BBTI
->getNumSuccessors(); i
!= e
; ++i
) {
890 BasicBlock
*SuccBB
= BBTI
->getSuccessor(i
);
891 if (isa
<PHINode
>(SuccBB
->begin()) && isCriticalEdge(BBTI
, i
, true))
892 SplitEdgeNicely(BBTI
, i
, BackEdges
, this);
897 // Keep track of non-local addresses that have been sunk into this block.
898 // This allows us to avoid inserting duplicate code for blocks with multiple
899 // load/stores of the same address.
900 DenseMap
<Value
*, Value
*> SunkAddrs
;
902 for (BasicBlock::iterator BBI
= BB
.begin(), E
= BB
.end(); BBI
!= E
; ) {
903 Instruction
*I
= BBI
++;
905 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
906 // If the source of the cast is a constant, then this should have
907 // already been constant folded. The only reason NOT to constant fold
908 // it is if something (e.g. LSR) was careful to place the constant
909 // evaluation in a block other than then one that uses it (e.g. to hoist
910 // the address of globals out of a loop). If this is the case, we don't
911 // want to forward-subst the cast.
912 if (isa
<Constant
>(CI
->getOperand(0)))
917 Change
= OptimizeNoopCopyExpression(CI
, *TLI
);
918 MadeChange
|= Change
;
921 if (!Change
&& (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
))) {
922 MadeChange
|= MoveExtToFormExtLoad(I
);
923 MadeChange
|= OptimizeExtUses(I
);
925 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
)) {
926 MadeChange
|= OptimizeCmpExpression(CI
);
927 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
929 MadeChange
|= OptimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(),
931 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
933 MadeChange
|= OptimizeMemoryInst(I
, SI
->getOperand(1),
934 SI
->getOperand(0)->getType(),
936 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
937 if (GEPI
->hasAllZeroIndices()) {
938 /// The GEP operand must be a pointer, so must its result -> BitCast
939 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
940 GEPI
->getName(), GEPI
);
941 GEPI
->replaceAllUsesWith(NC
);
942 GEPI
->eraseFromParent();
946 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
947 // If we found an inline asm expession, and if the target knows how to
948 // lower it to normal LLVM code, do so now.
949 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
950 if (TLI
->ExpandInlineAsm(CI
)) {
952 // Avoid processing instructions out of order, which could cause
953 // reuse before a value is defined.
956 // Sink address computing for memory operands into the block.
957 MadeChange
|= OptimizeInlineAsmInst(I
, &(*CI
), SunkAddrs
);
959 // Other CallInst optimizations that don't need to muck with the
960 // enclosing iterator here.
961 MadeChange
|= OptimizeCallInst(CI
);