zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / Scalar / CodeGenPrepare.cpp
blob35d02d9740179f67f26ecc32658257c2d620120f
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/ProfileInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Utils/BuildLibCalls.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Assembly/Writer.h"
36 #include "llvm/Support/CallSite.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/GetElementPtrTypeIterator.h"
40 #include "llvm/Support/PatternMatch.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Support/IRBuilder.h"
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
46 STATISTIC(NumElim, "Number of blocks eliminated");
48 static cl::opt<bool>
49 CriticalEdgeSplit("cgp-critical-edge-splitting",
50 cl::desc("Split critical edges during codegen prepare"),
51 cl::init(false), cl::Hidden);
53 namespace {
54 class CodeGenPrepare : public FunctionPass {
55 /// TLI - Keep a pointer of a TargetLowering to consult for determining
56 /// transformation profitability.
57 const TargetLowering *TLI;
58 ProfileInfo *PFI;
60 /// BackEdges - Keep a set of all the loop back edges.
61 ///
62 SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
63 public:
64 static char ID; // Pass identification, replacement for typeid
65 explicit CodeGenPrepare(const TargetLowering *tli = 0)
66 : FunctionPass(ID), TLI(tli) {
67 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
69 bool runOnFunction(Function &F);
71 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.addPreserved<ProfileInfo>();
75 virtual void releaseMemory() {
76 BackEdges.clear();
79 private:
80 bool EliminateMostlyEmptyBlocks(Function &F);
81 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
82 void EliminateMostlyEmptyBlock(BasicBlock *BB);
83 bool OptimizeBlock(BasicBlock &BB);
84 bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
85 DenseMap<Value*,Value*> &SunkAddrs);
86 bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
87 DenseMap<Value*,Value*> &SunkAddrs);
88 bool OptimizeCallInst(CallInst *CI);
89 bool MoveExtToFormExtLoad(Instruction *I);
90 bool OptimizeExtUses(Instruction *I);
91 void findLoopBackEdges(const Function &F);
95 char CodeGenPrepare::ID = 0;
96 INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
97 "Optimize for code generation", false, false)
99 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
100 return new CodeGenPrepare(TLI);
103 /// findLoopBackEdges - Do a DFS walk to find loop back edges.
105 void CodeGenPrepare::findLoopBackEdges(const Function &F) {
106 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
107 FindFunctionBackedges(F, Edges);
109 BackEdges.insert(Edges.begin(), Edges.end());
113 bool CodeGenPrepare::runOnFunction(Function &F) {
114 bool EverMadeChange = false;
116 PFI = getAnalysisIfAvailable<ProfileInfo>();
117 // First pass, eliminate blocks that contain only PHI nodes and an
118 // unconditional branch.
119 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
121 // Now find loop back edges.
122 findLoopBackEdges(F);
124 bool MadeChange = true;
125 while (MadeChange) {
126 MadeChange = false;
127 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
128 MadeChange |= OptimizeBlock(*BB);
129 EverMadeChange |= MadeChange;
131 return EverMadeChange;
134 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
135 /// debug info directives, and an unconditional branch. Passes before isel
136 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
137 /// isel. Start by eliminating these blocks so we can split them the way we
138 /// want them.
139 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
140 bool MadeChange = false;
141 // Note that this intentionally skips the entry block.
142 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
143 BasicBlock *BB = I++;
145 // If this block doesn't end with an uncond branch, ignore it.
146 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
147 if (!BI || !BI->isUnconditional())
148 continue;
150 // If the instruction before the branch (skipping debug info) isn't a phi
151 // node, then other stuff is happening here.
152 BasicBlock::iterator BBI = BI;
153 if (BBI != BB->begin()) {
154 --BBI;
155 while (isa<DbgInfoIntrinsic>(BBI)) {
156 if (BBI == BB->begin())
157 break;
158 --BBI;
160 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
161 continue;
164 // Do not break infinite loops.
165 BasicBlock *DestBB = BI->getSuccessor(0);
166 if (DestBB == BB)
167 continue;
169 if (!CanMergeBlocks(BB, DestBB))
170 continue;
172 EliminateMostlyEmptyBlock(BB);
173 MadeChange = true;
175 return MadeChange;
178 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
179 /// single uncond branch between them, and BB contains no other non-phi
180 /// instructions.
181 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
182 const BasicBlock *DestBB) const {
183 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
184 // the successor. If there are more complex condition (e.g. preheaders),
185 // don't mess around with them.
186 BasicBlock::const_iterator BBI = BB->begin();
187 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
188 for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
189 UI != E; ++UI) {
190 const Instruction *User = cast<Instruction>(*UI);
191 if (User->getParent() != DestBB || !isa<PHINode>(User))
192 return false;
193 // If User is inside DestBB block and it is a PHINode then check
194 // incoming value. If incoming value is not from BB then this is
195 // a complex condition (e.g. preheaders) we want to avoid here.
196 if (User->getParent() == DestBB) {
197 if (const PHINode *UPN = dyn_cast<PHINode>(User))
198 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
199 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
200 if (Insn && Insn->getParent() == BB &&
201 Insn->getParent() != UPN->getIncomingBlock(I))
202 return false;
208 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
209 // and DestBB may have conflicting incoming values for the block. If so, we
210 // can't merge the block.
211 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
212 if (!DestBBPN) return true; // no conflict.
214 // Collect the preds of BB.
215 SmallPtrSet<const BasicBlock*, 16> BBPreds;
216 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
217 // It is faster to get preds from a PHI than with pred_iterator.
218 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
219 BBPreds.insert(BBPN->getIncomingBlock(i));
220 } else {
221 BBPreds.insert(pred_begin(BB), pred_end(BB));
224 // Walk the preds of DestBB.
225 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
226 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
227 if (BBPreds.count(Pred)) { // Common predecessor?
228 BBI = DestBB->begin();
229 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
230 const Value *V1 = PN->getIncomingValueForBlock(Pred);
231 const Value *V2 = PN->getIncomingValueForBlock(BB);
233 // If V2 is a phi node in BB, look up what the mapped value will be.
234 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
235 if (V2PN->getParent() == BB)
236 V2 = V2PN->getIncomingValueForBlock(Pred);
238 // If there is a conflict, bail out.
239 if (V1 != V2) return false;
244 return true;
248 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
249 /// an unconditional branch in it.
250 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
251 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
252 BasicBlock *DestBB = BI->getSuccessor(0);
254 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
256 // If the destination block has a single pred, then this is a trivial edge,
257 // just collapse it.
258 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
259 if (SinglePred != DestBB) {
260 // Remember if SinglePred was the entry block of the function. If so, we
261 // will need to move BB back to the entry position.
262 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
263 MergeBasicBlockIntoOnlyPred(DestBB, this);
265 if (isEntry && BB != &BB->getParent()->getEntryBlock())
266 BB->moveBefore(&BB->getParent()->getEntryBlock());
268 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
269 return;
273 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
274 // to handle the new incoming edges it is about to have.
275 PHINode *PN;
276 for (BasicBlock::iterator BBI = DestBB->begin();
277 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
278 // Remove the incoming value for BB, and remember it.
279 Value *InVal = PN->removeIncomingValue(BB, false);
281 // Two options: either the InVal is a phi node defined in BB or it is some
282 // value that dominates BB.
283 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
284 if (InValPhi && InValPhi->getParent() == BB) {
285 // Add all of the input values of the input PHI as inputs of this phi.
286 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
287 PN->addIncoming(InValPhi->getIncomingValue(i),
288 InValPhi->getIncomingBlock(i));
289 } else {
290 // Otherwise, add one instance of the dominating value for each edge that
291 // we will be adding.
292 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
293 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
294 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
295 } else {
296 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
297 PN->addIncoming(InVal, *PI);
302 // The PHIs are now updated, change everything that refers to BB to use
303 // DestBB and remove BB.
304 BB->replaceAllUsesWith(DestBB);
305 if (PFI) {
306 PFI->replaceAllUses(BB, DestBB);
307 PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
309 BB->eraseFromParent();
310 ++NumElim;
312 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
315 /// FindReusablePredBB - Check all of the predecessors of the block DestPHI
316 /// lives in to see if there is a block that we can reuse as a critical edge
317 /// from TIBB.
318 static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) {
319 BasicBlock *Dest = DestPHI->getParent();
321 /// TIPHIValues - This array is lazily computed to determine the values of
322 /// PHIs in Dest that TI would provide.
323 SmallVector<Value*, 32> TIPHIValues;
325 /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
326 unsigned TIBBEntryNo = 0;
328 // Check to see if Dest has any blocks that can be used as a split edge for
329 // this terminator.
330 for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) {
331 BasicBlock *Pred = DestPHI->getIncomingBlock(pi);
332 // To be usable, the pred has to end with an uncond branch to the dest.
333 BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
334 if (!PredBr || !PredBr->isUnconditional())
335 continue;
336 // Must be empty other than the branch and debug info.
337 BasicBlock::iterator I = Pred->begin();
338 while (isa<DbgInfoIntrinsic>(I))
339 I++;
340 if (&*I != PredBr)
341 continue;
342 // Cannot be the entry block; its label does not get emitted.
343 if (Pred == &Dest->getParent()->getEntryBlock())
344 continue;
346 // Finally, since we know that Dest has phi nodes in it, we have to make
347 // sure that jumping to Pred will have the same effect as going to Dest in
348 // terms of PHI values.
349 PHINode *PN;
350 unsigned PHINo = 0;
351 unsigned PredEntryNo = pi;
353 bool FoundMatch = true;
354 for (BasicBlock::iterator I = Dest->begin();
355 (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
356 if (PHINo == TIPHIValues.size()) {
357 if (PN->getIncomingBlock(TIBBEntryNo) != TIBB)
358 TIBBEntryNo = PN->getBasicBlockIndex(TIBB);
359 TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo));
362 // If the PHI entry doesn't work, we can't use this pred.
363 if (PN->getIncomingBlock(PredEntryNo) != Pred)
364 PredEntryNo = PN->getBasicBlockIndex(Pred);
366 if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) {
367 FoundMatch = false;
368 break;
372 // If we found a workable predecessor, change TI to branch to Succ.
373 if (FoundMatch)
374 return Pred;
376 return 0;
380 /// SplitEdgeNicely - Split the critical edge from TI to its specified
381 /// successor if it will improve codegen. We only do this if the successor has
382 /// phi nodes (otherwise critical edges are ok). If there is already another
383 /// predecessor of the succ that is empty (and thus has no phi nodes), use it
384 /// instead of introducing a new block.
385 static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
386 SmallSet<std::pair<const BasicBlock*,
387 const BasicBlock*>, 8> &BackEdges,
388 Pass *P) {
389 BasicBlock *TIBB = TI->getParent();
390 BasicBlock *Dest = TI->getSuccessor(SuccNum);
391 assert(isa<PHINode>(Dest->begin()) &&
392 "This should only be called if Dest has a PHI!");
393 PHINode *DestPHI = cast<PHINode>(Dest->begin());
395 // Do not split edges to EH landing pads.
396 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI))
397 if (Invoke->getSuccessor(1) == Dest)
398 return;
400 // As a hack, never split backedges of loops. Even though the copy for any
401 // PHIs inserted on the backedge would be dead for exits from the loop, we
402 // assume that the cost of *splitting* the backedge would be too high.
403 if (BackEdges.count(std::make_pair(TIBB, Dest)))
404 return;
406 if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) {
407 ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>();
408 if (PFI)
409 PFI->splitEdge(TIBB, Dest, ReuseBB);
410 Dest->removePredecessor(TIBB);
411 TI->setSuccessor(SuccNum, ReuseBB);
412 return;
415 SplitCriticalEdge(TI, SuccNum, P, true);
419 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
420 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
421 /// sink it into user blocks to reduce the number of virtual
422 /// registers that must be created and coalesced.
424 /// Return true if any changes are made.
426 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
427 // If this is a noop copy,
428 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
429 EVT DstVT = TLI.getValueType(CI->getType());
431 // This is an fp<->int conversion?
432 if (SrcVT.isInteger() != DstVT.isInteger())
433 return false;
435 // If this is an extension, it will be a zero or sign extension, which
436 // isn't a noop.
437 if (SrcVT.bitsLT(DstVT)) return false;
439 // If these values will be promoted, find out what they will be promoted
440 // to. This helps us consider truncates on PPC as noop copies when they
441 // are.
442 if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
443 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
444 if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
445 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
447 // If, after promotion, these are the same types, this is a noop copy.
448 if (SrcVT != DstVT)
449 return false;
451 BasicBlock *DefBB = CI->getParent();
453 /// InsertedCasts - Only insert a cast in each block once.
454 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
456 bool MadeChange = false;
457 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
458 UI != E; ) {
459 Use &TheUse = UI.getUse();
460 Instruction *User = cast<Instruction>(*UI);
462 // Figure out which BB this cast is used in. For PHI's this is the
463 // appropriate predecessor block.
464 BasicBlock *UserBB = User->getParent();
465 if (PHINode *PN = dyn_cast<PHINode>(User)) {
466 UserBB = PN->getIncomingBlock(UI);
469 // Preincrement use iterator so we don't invalidate it.
470 ++UI;
472 // If this user is in the same block as the cast, don't change the cast.
473 if (UserBB == DefBB) continue;
475 // If we have already inserted a cast into this block, use it.
476 CastInst *&InsertedCast = InsertedCasts[UserBB];
478 if (!InsertedCast) {
479 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
481 InsertedCast =
482 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
483 InsertPt);
484 MadeChange = true;
487 // Replace a use of the cast with a use of the new cast.
488 TheUse = InsertedCast;
491 // If we removed all uses, nuke the cast.
492 if (CI->use_empty()) {
493 CI->eraseFromParent();
494 MadeChange = true;
497 return MadeChange;
500 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
501 /// the number of virtual registers that must be created and coalesced. This is
502 /// a clear win except on targets with multiple condition code registers
503 /// (PowerPC), where it might lose; some adjustment may be wanted there.
505 /// Return true if any changes are made.
506 static bool OptimizeCmpExpression(CmpInst *CI) {
507 BasicBlock *DefBB = CI->getParent();
509 /// InsertedCmp - Only insert a cmp in each block once.
510 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
512 bool MadeChange = false;
513 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
514 UI != E; ) {
515 Use &TheUse = UI.getUse();
516 Instruction *User = cast<Instruction>(*UI);
518 // Preincrement use iterator so we don't invalidate it.
519 ++UI;
521 // Don't bother for PHI nodes.
522 if (isa<PHINode>(User))
523 continue;
525 // Figure out which BB this cmp is used in.
526 BasicBlock *UserBB = User->getParent();
528 // If this user is in the same block as the cmp, don't change the cmp.
529 if (UserBB == DefBB) continue;
531 // If we have already inserted a cmp into this block, use it.
532 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
534 if (!InsertedCmp) {
535 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
537 InsertedCmp =
538 CmpInst::Create(CI->getOpcode(),
539 CI->getPredicate(), CI->getOperand(0),
540 CI->getOperand(1), "", InsertPt);
541 MadeChange = true;
544 // Replace a use of the cmp with a use of the new cmp.
545 TheUse = InsertedCmp;
548 // If we removed all uses, nuke the cmp.
549 if (CI->use_empty())
550 CI->eraseFromParent();
552 return MadeChange;
555 namespace {
556 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
557 protected:
558 void replaceCall(Value *With) {
559 CI->replaceAllUsesWith(With);
560 CI->eraseFromParent();
562 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
563 if (ConstantInt *SizeCI =
564 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
565 return SizeCI->isAllOnesValue();
566 return false;
569 } // end anonymous namespace
571 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
572 // Lower all uses of llvm.objectsize.*
573 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
574 if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
575 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
576 const Type *ReturnTy = CI->getType();
577 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
578 CI->replaceAllUsesWith(RetVal);
579 CI->eraseFromParent();
580 return true;
583 // From here on out we're working with named functions.
584 if (CI->getCalledFunction() == 0) return false;
586 // We'll need TargetData from here on out.
587 const TargetData *TD = TLI ? TLI->getTargetData() : 0;
588 if (!TD) return false;
590 // Lower all default uses of _chk calls. This is very similar
591 // to what InstCombineCalls does, but here we are only lowering calls
592 // that have the default "don't know" as the objectsize. Anything else
593 // should be left alone.
594 CodeGenPrepareFortifiedLibCalls Simplifier;
595 return Simplifier.fold(CI, TD);
597 //===----------------------------------------------------------------------===//
598 // Memory Optimization
599 //===----------------------------------------------------------------------===//
601 /// IsNonLocalValue - Return true if the specified values are defined in a
602 /// different basic block than BB.
603 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
604 if (Instruction *I = dyn_cast<Instruction>(V))
605 return I->getParent() != BB;
606 return false;
609 /// OptimizeMemoryInst - Load and Store Instructions often have
610 /// addressing modes that can do significant amounts of computation. As such,
611 /// instruction selection will try to get the load or store to do as much
612 /// computation as possible for the program. The problem is that isel can only
613 /// see within a single block. As such, we sink as much legal addressing mode
614 /// stuff into the block as possible.
616 /// This method is used to optimize both load/store and inline asms with memory
617 /// operands.
618 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
619 const Type *AccessTy,
620 DenseMap<Value*,Value*> &SunkAddrs) {
621 // Figure out what addressing mode will be built up for this operation.
622 SmallVector<Instruction*, 16> AddrModeInsts;
623 ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
624 AddrModeInsts, *TLI);
626 // Check to see if any of the instructions supersumed by this addr mode are
627 // non-local to I's BB.
628 bool AnyNonLocal = false;
629 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
630 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
631 AnyNonLocal = true;
632 break;
636 // If all the instructions matched are already in this BB, don't do anything.
637 if (!AnyNonLocal) {
638 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
639 return false;
642 // Insert this computation right after this user. Since our caller is
643 // scanning from the top of the BB to the bottom, reuse of the expr are
644 // guaranteed to happen later.
645 BasicBlock::iterator InsertPt = MemoryInst;
647 // Now that we determined the addressing expression we want to use and know
648 // that we have to sink it into this block. Check to see if we have already
649 // done this for some other load/store instr in this block. If so, reuse the
650 // computation.
651 Value *&SunkAddr = SunkAddrs[Addr];
652 if (SunkAddr) {
653 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
654 << *MemoryInst);
655 if (SunkAddr->getType() != Addr->getType())
656 SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
657 } else {
658 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
659 << *MemoryInst);
660 const Type *IntPtrTy =
661 TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
663 Value *Result = 0;
665 // Start with the base register. Do this first so that subsequent address
666 // matching finds it last, which will prevent it from trying to match it
667 // as the scaled value in case it happens to be a mul. That would be
668 // problematic if we've sunk a different mul for the scale, because then
669 // we'd end up sinking both muls.
670 if (AddrMode.BaseReg) {
671 Value *V = AddrMode.BaseReg;
672 if (V->getType()->isPointerTy())
673 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
674 if (V->getType() != IntPtrTy)
675 V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
676 "sunkaddr", InsertPt);
677 Result = V;
680 // Add the scale value.
681 if (AddrMode.Scale) {
682 Value *V = AddrMode.ScaledReg;
683 if (V->getType() == IntPtrTy) {
684 // done.
685 } else if (V->getType()->isPointerTy()) {
686 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
687 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
688 cast<IntegerType>(V->getType())->getBitWidth()) {
689 V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
690 } else {
691 V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
693 if (AddrMode.Scale != 1)
694 V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
695 AddrMode.Scale),
696 "sunkaddr", InsertPt);
697 if (Result)
698 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
699 else
700 Result = V;
703 // Add in the BaseGV if present.
704 if (AddrMode.BaseGV) {
705 Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
706 InsertPt);
707 if (Result)
708 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
709 else
710 Result = V;
713 // Add in the Base Offset if present.
714 if (AddrMode.BaseOffs) {
715 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
716 if (Result)
717 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
718 else
719 Result = V;
722 if (Result == 0)
723 SunkAddr = Constant::getNullValue(Addr->getType());
724 else
725 SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
728 MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
730 if (Addr->use_empty()) {
731 RecursivelyDeleteTriviallyDeadInstructions(Addr);
732 // This address is now available for reassignment, so erase the table entry;
733 // we don't want to match some completely different instruction.
734 SunkAddrs[Addr] = 0;
736 return true;
739 /// OptimizeInlineAsmInst - If there are any memory operands, use
740 /// OptimizeMemoryInst to sink their address computing into the block when
741 /// possible / profitable.
742 bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
743 DenseMap<Value*,Value*> &SunkAddrs) {
744 bool MadeChange = false;
746 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS);
747 unsigned ArgNo = 0;
748 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
749 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
751 // Compute the constraint code and ConstraintType to use.
752 TLI->ComputeConstraintToUse(OpInfo, SDValue());
754 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
755 OpInfo.isIndirect) {
756 Value *OpVal = const_cast<Value *>(CS.getArgument(ArgNo++));
757 MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
758 } else if (OpInfo.Type == InlineAsm::isInput)
759 ArgNo++;
762 return MadeChange;
765 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
766 /// basic block as the load, unless conditions are unfavorable. This allows
767 /// SelectionDAG to fold the extend into the load.
769 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
770 // Look for a load being extended.
771 LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
772 if (!LI) return false;
774 // If they're already in the same block, there's nothing to do.
775 if (LI->getParent() == I->getParent())
776 return false;
778 // If the load has other users and the truncate is not free, this probably
779 // isn't worthwhile.
780 if (!LI->hasOneUse() &&
781 TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
782 !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
783 !TLI->isTruncateFree(I->getType(), LI->getType()))
784 return false;
786 // Check whether the target supports casts folded into loads.
787 unsigned LType;
788 if (isa<ZExtInst>(I))
789 LType = ISD::ZEXTLOAD;
790 else {
791 assert(isa<SExtInst>(I) && "Unexpected ext type!");
792 LType = ISD::SEXTLOAD;
794 if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
795 return false;
797 // Move the extend into the same block as the load, so that SelectionDAG
798 // can fold it.
799 I->removeFromParent();
800 I->insertAfter(LI);
801 return true;
804 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
805 BasicBlock *DefBB = I->getParent();
807 // If the result of a {s|z}ext and its source are both live out, rewrite all
808 // other uses of the source with result of extension.
809 Value *Src = I->getOperand(0);
810 if (Src->hasOneUse())
811 return false;
813 // Only do this xform if truncating is free.
814 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
815 return false;
817 // Only safe to perform the optimization if the source is also defined in
818 // this block.
819 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
820 return false;
822 bool DefIsLiveOut = false;
823 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
824 UI != E; ++UI) {
825 Instruction *User = cast<Instruction>(*UI);
827 // Figure out which BB this ext is used in.
828 BasicBlock *UserBB = User->getParent();
829 if (UserBB == DefBB) continue;
830 DefIsLiveOut = true;
831 break;
833 if (!DefIsLiveOut)
834 return false;
836 // Make sure non of the uses are PHI nodes.
837 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
838 UI != E; ++UI) {
839 Instruction *User = cast<Instruction>(*UI);
840 BasicBlock *UserBB = User->getParent();
841 if (UserBB == DefBB) continue;
842 // Be conservative. We don't want this xform to end up introducing
843 // reloads just before load / store instructions.
844 if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
845 return false;
848 // InsertedTruncs - Only insert one trunc in each block once.
849 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
851 bool MadeChange = false;
852 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
853 UI != E; ++UI) {
854 Use &TheUse = UI.getUse();
855 Instruction *User = cast<Instruction>(*UI);
857 // Figure out which BB this ext is used in.
858 BasicBlock *UserBB = User->getParent();
859 if (UserBB == DefBB) continue;
861 // Both src and def are live in this block. Rewrite the use.
862 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
864 if (!InsertedTrunc) {
865 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
867 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
870 // Replace a use of the {s|z}ext source with a use of the result.
871 TheUse = InsertedTrunc;
873 MadeChange = true;
876 return MadeChange;
879 // In this pass we look for GEP and cast instructions that are used
880 // across basic blocks and rewrite them to improve basic-block-at-a-time
881 // selection.
882 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
883 bool MadeChange = false;
885 // Split all critical edges where the dest block has a PHI.
886 if (CriticalEdgeSplit) {
887 TerminatorInst *BBTI = BB.getTerminator();
888 if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
889 for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
890 BasicBlock *SuccBB = BBTI->getSuccessor(i);
891 if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
892 SplitEdgeNicely(BBTI, i, BackEdges, this);
897 // Keep track of non-local addresses that have been sunk into this block.
898 // This allows us to avoid inserting duplicate code for blocks with multiple
899 // load/stores of the same address.
900 DenseMap<Value*, Value*> SunkAddrs;
902 for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
903 Instruction *I = BBI++;
905 if (CastInst *CI = dyn_cast<CastInst>(I)) {
906 // If the source of the cast is a constant, then this should have
907 // already been constant folded. The only reason NOT to constant fold
908 // it is if something (e.g. LSR) was careful to place the constant
909 // evaluation in a block other than then one that uses it (e.g. to hoist
910 // the address of globals out of a loop). If this is the case, we don't
911 // want to forward-subst the cast.
912 if (isa<Constant>(CI->getOperand(0)))
913 continue;
915 bool Change = false;
916 if (TLI) {
917 Change = OptimizeNoopCopyExpression(CI, *TLI);
918 MadeChange |= Change;
921 if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
922 MadeChange |= MoveExtToFormExtLoad(I);
923 MadeChange |= OptimizeExtUses(I);
925 } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
926 MadeChange |= OptimizeCmpExpression(CI);
927 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
928 if (TLI)
929 MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
930 SunkAddrs);
931 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
932 if (TLI)
933 MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
934 SI->getOperand(0)->getType(),
935 SunkAddrs);
936 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
937 if (GEPI->hasAllZeroIndices()) {
938 /// The GEP operand must be a pointer, so must its result -> BitCast
939 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
940 GEPI->getName(), GEPI);
941 GEPI->replaceAllUsesWith(NC);
942 GEPI->eraseFromParent();
943 MadeChange = true;
944 BBI = NC;
946 } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
947 // If we found an inline asm expession, and if the target knows how to
948 // lower it to normal LLVM code, do so now.
949 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
950 if (TLI->ExpandInlineAsm(CI)) {
951 BBI = BB.begin();
952 // Avoid processing instructions out of order, which could cause
953 // reuse before a value is defined.
954 SunkAddrs.clear();
955 } else
956 // Sink address computing for memory operands into the block.
957 MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
958 } else {
959 // Other CallInst optimizations that don't need to muck with the
960 // enclosing iterator here.
961 MadeChange |= OptimizeCallInst(CI);
966 return MadeChange;