zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / Scalar / GVN.cpp
bloba65ca1dbe770eb0380a2f3f489441f3833f373ba
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/BasicBlock.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Operator.h"
28 #include "llvm/Value.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/Dominators.h"
38 #include "llvm/Analysis/Loads.h"
39 #include "llvm/Analysis/MemoryBuiltins.h"
40 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
41 #include "llvm/Analysis/PHITransAddr.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/GetElementPtrTypeIterator.h"
47 #include "llvm/Support/IRBuilder.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetData.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
55 STATISTIC(NumGVNInstr, "Number of instructions deleted");
56 STATISTIC(NumGVNLoad, "Number of loads deleted");
57 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
58 STATISTIC(NumGVNBlocks, "Number of blocks merged");
59 STATISTIC(NumPRELoad, "Number of loads PRE'd");
61 static cl::opt<bool> EnablePRE("enable-pre",
62 cl::init(true), cl::Hidden);
63 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
65 //===----------------------------------------------------------------------===//
66 // ValueTable Class
67 //===----------------------------------------------------------------------===//
69 /// This class holds the mapping between values and value numbers. It is used
70 /// as an efficient mechanism to determine the expression-wise equivalence of
71 /// two values.
72 namespace {
73 struct Expression {
74 enum ExpressionOpcode {
75 ADD = Instruction::Add,
76 FADD = Instruction::FAdd,
77 SUB = Instruction::Sub,
78 FSUB = Instruction::FSub,
79 MUL = Instruction::Mul,
80 FMUL = Instruction::FMul,
81 UDIV = Instruction::UDiv,
82 SDIV = Instruction::SDiv,
83 FDIV = Instruction::FDiv,
84 UREM = Instruction::URem,
85 SREM = Instruction::SRem,
86 FREM = Instruction::FRem,
87 SHL = Instruction::Shl,
88 LSHR = Instruction::LShr,
89 ASHR = Instruction::AShr,
90 AND = Instruction::And,
91 OR = Instruction::Or,
92 XOR = Instruction::Xor,
93 TRUNC = Instruction::Trunc,
94 ZEXT = Instruction::ZExt,
95 SEXT = Instruction::SExt,
96 FPTOUI = Instruction::FPToUI,
97 FPTOSI = Instruction::FPToSI,
98 UITOFP = Instruction::UIToFP,
99 SITOFP = Instruction::SIToFP,
100 FPTRUNC = Instruction::FPTrunc,
101 FPEXT = Instruction::FPExt,
102 PTRTOINT = Instruction::PtrToInt,
103 INTTOPTR = Instruction::IntToPtr,
104 BITCAST = Instruction::BitCast,
105 ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106 ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107 FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108 FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109 FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110 SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111 INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
113 ExpressionOpcode opcode;
114 const Type* type;
115 SmallVector<uint32_t, 4> varargs;
116 Value *function;
118 Expression() { }
119 Expression(ExpressionOpcode o) : opcode(o) { }
121 bool operator==(const Expression &other) const {
122 if (opcode != other.opcode)
123 return false;
124 else if (opcode == EMPTY || opcode == TOMBSTONE)
125 return true;
126 else if (type != other.type)
127 return false;
128 else if (function != other.function)
129 return false;
130 else {
131 if (varargs.size() != other.varargs.size())
132 return false;
134 for (size_t i = 0; i < varargs.size(); ++i)
135 if (varargs[i] != other.varargs[i])
136 return false;
138 return true;
142 /*bool operator!=(const Expression &other) const {
143 return !(*this == other);
147 class ValueTable {
148 private:
149 DenseMap<Value*, uint32_t> valueNumbering;
150 DenseMap<Expression, uint32_t> expressionNumbering;
151 AliasAnalysis* AA;
152 MemoryDependenceAnalysis* MD;
153 DominatorTree* DT;
155 uint32_t nextValueNumber;
157 Expression::ExpressionOpcode getOpcode(CmpInst* C);
158 Expression create_expression(BinaryOperator* BO);
159 Expression create_expression(CmpInst* C);
160 Expression create_expression(ShuffleVectorInst* V);
161 Expression create_expression(ExtractElementInst* C);
162 Expression create_expression(InsertElementInst* V);
163 Expression create_expression(SelectInst* V);
164 Expression create_expression(CastInst* C);
165 Expression create_expression(GetElementPtrInst* G);
166 Expression create_expression(CallInst* C);
167 Expression create_expression(ExtractValueInst* C);
168 Expression create_expression(InsertValueInst* C);
170 uint32_t lookup_or_add_call(CallInst* C);
171 public:
172 ValueTable() : nextValueNumber(1) { }
173 uint32_t lookup_or_add(Value *V);
174 uint32_t lookup(Value *V) const;
175 void add(Value *V, uint32_t num);
176 void clear();
177 void erase(Value *v);
178 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
179 AliasAnalysis *getAliasAnalysis() const { return AA; }
180 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
181 void setDomTree(DominatorTree* D) { DT = D; }
182 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
183 void verifyRemoved(const Value *) const;
187 namespace llvm {
188 template <> struct DenseMapInfo<Expression> {
189 static inline Expression getEmptyKey() {
190 return Expression(Expression::EMPTY);
193 static inline Expression getTombstoneKey() {
194 return Expression(Expression::TOMBSTONE);
197 static unsigned getHashValue(const Expression e) {
198 unsigned hash = e.opcode;
200 hash = ((unsigned)((uintptr_t)e.type >> 4) ^
201 (unsigned)((uintptr_t)e.type >> 9));
203 for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
204 E = e.varargs.end(); I != E; ++I)
205 hash = *I + hash * 37;
207 hash = ((unsigned)((uintptr_t)e.function >> 4) ^
208 (unsigned)((uintptr_t)e.function >> 9)) +
209 hash * 37;
211 return hash;
213 static bool isEqual(const Expression &LHS, const Expression &RHS) {
214 return LHS == RHS;
218 template <>
219 struct isPodLike<Expression> { static const bool value = true; };
223 //===----------------------------------------------------------------------===//
224 // ValueTable Internal Functions
225 //===----------------------------------------------------------------------===//
227 Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228 if (isa<ICmpInst>(C)) {
229 switch (C->getPredicate()) {
230 default: // THIS SHOULD NEVER HAPPEN
231 llvm_unreachable("Comparison with unknown predicate?");
232 case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
233 case ICmpInst::ICMP_NE: return Expression::ICMPNE;
234 case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235 case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236 case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237 case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238 case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239 case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240 case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241 case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243 } else {
244 switch (C->getPredicate()) {
245 default: // THIS SHOULD NEVER HAPPEN
246 llvm_unreachable("Comparison with unknown predicate?");
247 case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248 case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249 case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250 case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251 case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252 case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253 case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254 case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255 case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256 case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257 case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258 case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259 case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260 case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
265 Expression ValueTable::create_expression(CallInst* C) {
266 Expression e;
268 e.type = C->getType();
269 e.function = C->getCalledFunction();
270 e.opcode = Expression::CALL;
272 CallSite CS(C);
273 for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
274 I != E; ++I)
275 e.varargs.push_back(lookup_or_add(*I));
277 return e;
280 Expression ValueTable::create_expression(BinaryOperator* BO) {
281 Expression e;
282 e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
283 e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
284 e.function = 0;
285 e.type = BO->getType();
286 e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
288 return e;
291 Expression ValueTable::create_expression(CmpInst* C) {
292 Expression e;
294 e.varargs.push_back(lookup_or_add(C->getOperand(0)));
295 e.varargs.push_back(lookup_or_add(C->getOperand(1)));
296 e.function = 0;
297 e.type = C->getType();
298 e.opcode = getOpcode(C);
300 return e;
303 Expression ValueTable::create_expression(CastInst* C) {
304 Expression e;
306 e.varargs.push_back(lookup_or_add(C->getOperand(0)));
307 e.function = 0;
308 e.type = C->getType();
309 e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
311 return e;
314 Expression ValueTable::create_expression(ShuffleVectorInst* S) {
315 Expression e;
317 e.varargs.push_back(lookup_or_add(S->getOperand(0)));
318 e.varargs.push_back(lookup_or_add(S->getOperand(1)));
319 e.varargs.push_back(lookup_or_add(S->getOperand(2)));
320 e.function = 0;
321 e.type = S->getType();
322 e.opcode = Expression::SHUFFLE;
324 return e;
327 Expression ValueTable::create_expression(ExtractElementInst* E) {
328 Expression e;
330 e.varargs.push_back(lookup_or_add(E->getOperand(0)));
331 e.varargs.push_back(lookup_or_add(E->getOperand(1)));
332 e.function = 0;
333 e.type = E->getType();
334 e.opcode = Expression::EXTRACT;
336 return e;
339 Expression ValueTable::create_expression(InsertElementInst* I) {
340 Expression e;
342 e.varargs.push_back(lookup_or_add(I->getOperand(0)));
343 e.varargs.push_back(lookup_or_add(I->getOperand(1)));
344 e.varargs.push_back(lookup_or_add(I->getOperand(2)));
345 e.function = 0;
346 e.type = I->getType();
347 e.opcode = Expression::INSERT;
349 return e;
352 Expression ValueTable::create_expression(SelectInst* I) {
353 Expression e;
355 e.varargs.push_back(lookup_or_add(I->getCondition()));
356 e.varargs.push_back(lookup_or_add(I->getTrueValue()));
357 e.varargs.push_back(lookup_or_add(I->getFalseValue()));
358 e.function = 0;
359 e.type = I->getType();
360 e.opcode = Expression::SELECT;
362 return e;
365 Expression ValueTable::create_expression(GetElementPtrInst* G) {
366 Expression e;
368 e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
369 e.function = 0;
370 e.type = G->getType();
371 e.opcode = Expression::GEP;
373 for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
374 I != E; ++I)
375 e.varargs.push_back(lookup_or_add(*I));
377 return e;
380 Expression ValueTable::create_expression(ExtractValueInst* E) {
381 Expression e;
383 e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
384 for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
385 II != IE; ++II)
386 e.varargs.push_back(*II);
387 e.function = 0;
388 e.type = E->getType();
389 e.opcode = Expression::EXTRACTVALUE;
391 return e;
394 Expression ValueTable::create_expression(InsertValueInst* E) {
395 Expression e;
397 e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
398 e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
399 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
400 II != IE; ++II)
401 e.varargs.push_back(*II);
402 e.function = 0;
403 e.type = E->getType();
404 e.opcode = Expression::INSERTVALUE;
406 return e;
409 //===----------------------------------------------------------------------===//
410 // ValueTable External Functions
411 //===----------------------------------------------------------------------===//
413 /// add - Insert a value into the table with a specified value number.
414 void ValueTable::add(Value *V, uint32_t num) {
415 valueNumbering.insert(std::make_pair(V, num));
418 uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
419 if (AA->doesNotAccessMemory(C)) {
420 Expression exp = create_expression(C);
421 uint32_t& e = expressionNumbering[exp];
422 if (!e) e = nextValueNumber++;
423 valueNumbering[C] = e;
424 return e;
425 } else if (AA->onlyReadsMemory(C)) {
426 Expression exp = create_expression(C);
427 uint32_t& e = expressionNumbering[exp];
428 if (!e) {
429 e = nextValueNumber++;
430 valueNumbering[C] = e;
431 return e;
433 if (!MD) {
434 e = nextValueNumber++;
435 valueNumbering[C] = e;
436 return e;
439 MemDepResult local_dep = MD->getDependency(C);
441 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
442 valueNumbering[C] = nextValueNumber;
443 return nextValueNumber++;
446 if (local_dep.isDef()) {
447 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
449 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
450 valueNumbering[C] = nextValueNumber;
451 return nextValueNumber++;
454 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
455 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
456 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
457 if (c_vn != cd_vn) {
458 valueNumbering[C] = nextValueNumber;
459 return nextValueNumber++;
463 uint32_t v = lookup_or_add(local_cdep);
464 valueNumbering[C] = v;
465 return v;
468 // Non-local case.
469 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
470 MD->getNonLocalCallDependency(CallSite(C));
471 // FIXME: call/call dependencies for readonly calls should return def, not
472 // clobber! Move the checking logic to MemDep!
473 CallInst* cdep = 0;
475 // Check to see if we have a single dominating call instruction that is
476 // identical to C.
477 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
478 const NonLocalDepEntry *I = &deps[i];
479 // Ignore non-local dependencies.
480 if (I->getResult().isNonLocal())
481 continue;
483 // We don't handle non-depedencies. If we already have a call, reject
484 // instruction dependencies.
485 if (I->getResult().isClobber() || cdep != 0) {
486 cdep = 0;
487 break;
490 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
491 // FIXME: All duplicated with non-local case.
492 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
493 cdep = NonLocalDepCall;
494 continue;
497 cdep = 0;
498 break;
501 if (!cdep) {
502 valueNumbering[C] = nextValueNumber;
503 return nextValueNumber++;
506 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
507 valueNumbering[C] = nextValueNumber;
508 return nextValueNumber++;
510 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
511 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
512 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
513 if (c_vn != cd_vn) {
514 valueNumbering[C] = nextValueNumber;
515 return nextValueNumber++;
519 uint32_t v = lookup_or_add(cdep);
520 valueNumbering[C] = v;
521 return v;
523 } else {
524 valueNumbering[C] = nextValueNumber;
525 return nextValueNumber++;
529 /// lookup_or_add - Returns the value number for the specified value, assigning
530 /// it a new number if it did not have one before.
531 uint32_t ValueTable::lookup_or_add(Value *V) {
532 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
533 if (VI != valueNumbering.end())
534 return VI->second;
536 if (!isa<Instruction>(V)) {
537 valueNumbering[V] = nextValueNumber;
538 return nextValueNumber++;
541 Instruction* I = cast<Instruction>(V);
542 Expression exp;
543 switch (I->getOpcode()) {
544 case Instruction::Call:
545 return lookup_or_add_call(cast<CallInst>(I));
546 case Instruction::Add:
547 case Instruction::FAdd:
548 case Instruction::Sub:
549 case Instruction::FSub:
550 case Instruction::Mul:
551 case Instruction::FMul:
552 case Instruction::UDiv:
553 case Instruction::SDiv:
554 case Instruction::FDiv:
555 case Instruction::URem:
556 case Instruction::SRem:
557 case Instruction::FRem:
558 case Instruction::Shl:
559 case Instruction::LShr:
560 case Instruction::AShr:
561 case Instruction::And:
562 case Instruction::Or :
563 case Instruction::Xor:
564 exp = create_expression(cast<BinaryOperator>(I));
565 break;
566 case Instruction::ICmp:
567 case Instruction::FCmp:
568 exp = create_expression(cast<CmpInst>(I));
569 break;
570 case Instruction::Trunc:
571 case Instruction::ZExt:
572 case Instruction::SExt:
573 case Instruction::FPToUI:
574 case Instruction::FPToSI:
575 case Instruction::UIToFP:
576 case Instruction::SIToFP:
577 case Instruction::FPTrunc:
578 case Instruction::FPExt:
579 case Instruction::PtrToInt:
580 case Instruction::IntToPtr:
581 case Instruction::BitCast:
582 exp = create_expression(cast<CastInst>(I));
583 break;
584 case Instruction::Select:
585 exp = create_expression(cast<SelectInst>(I));
586 break;
587 case Instruction::ExtractElement:
588 exp = create_expression(cast<ExtractElementInst>(I));
589 break;
590 case Instruction::InsertElement:
591 exp = create_expression(cast<InsertElementInst>(I));
592 break;
593 case Instruction::ShuffleVector:
594 exp = create_expression(cast<ShuffleVectorInst>(I));
595 break;
596 case Instruction::ExtractValue:
597 exp = create_expression(cast<ExtractValueInst>(I));
598 break;
599 case Instruction::InsertValue:
600 exp = create_expression(cast<InsertValueInst>(I));
601 break;
602 case Instruction::GetElementPtr:
603 exp = create_expression(cast<GetElementPtrInst>(I));
604 break;
605 default:
606 valueNumbering[V] = nextValueNumber;
607 return nextValueNumber++;
610 uint32_t& e = expressionNumbering[exp];
611 if (!e) e = nextValueNumber++;
612 valueNumbering[V] = e;
613 return e;
616 /// lookup - Returns the value number of the specified value. Fails if
617 /// the value has not yet been numbered.
618 uint32_t ValueTable::lookup(Value *V) const {
619 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
620 assert(VI != valueNumbering.end() && "Value not numbered?");
621 return VI->second;
624 /// clear - Remove all entries from the ValueTable
625 void ValueTable::clear() {
626 valueNumbering.clear();
627 expressionNumbering.clear();
628 nextValueNumber = 1;
631 /// erase - Remove a value from the value numbering
632 void ValueTable::erase(Value *V) {
633 valueNumbering.erase(V);
636 /// verifyRemoved - Verify that the value is removed from all internal data
637 /// structures.
638 void ValueTable::verifyRemoved(const Value *V) const {
639 for (DenseMap<Value*, uint32_t>::const_iterator
640 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
641 assert(I->first != V && "Inst still occurs in value numbering map!");
645 //===----------------------------------------------------------------------===//
646 // GVN Pass
647 //===----------------------------------------------------------------------===//
649 namespace {
650 struct ValueNumberScope {
651 ValueNumberScope* parent;
652 DenseMap<uint32_t, Value*> table;
654 ValueNumberScope(ValueNumberScope* p) : parent(p) { }
658 namespace {
660 class GVN : public FunctionPass {
661 bool runOnFunction(Function &F);
662 public:
663 static char ID; // Pass identification, replacement for typeid
664 explicit GVN(bool noloads = false)
665 : FunctionPass(ID), NoLoads(noloads), MD(0) {
666 initializeGVNPass(*PassRegistry::getPassRegistry());
669 private:
670 bool NoLoads;
671 MemoryDependenceAnalysis *MD;
672 DominatorTree *DT;
674 ValueTable VN;
675 DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
677 // List of critical edges to be split between iterations.
678 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
680 // This transformation requires dominator postdominator info
681 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
682 AU.addRequired<DominatorTree>();
683 if (!NoLoads)
684 AU.addRequired<MemoryDependenceAnalysis>();
685 AU.addRequired<AliasAnalysis>();
687 AU.addPreserved<DominatorTree>();
688 AU.addPreserved<AliasAnalysis>();
691 // Helper fuctions
692 // FIXME: eliminate or document these better
693 bool processLoad(LoadInst* L,
694 SmallVectorImpl<Instruction*> &toErase);
695 bool processInstruction(Instruction *I,
696 SmallVectorImpl<Instruction*> &toErase);
697 bool processNonLocalLoad(LoadInst* L,
698 SmallVectorImpl<Instruction*> &toErase);
699 bool processBlock(BasicBlock *BB);
700 void dump(DenseMap<uint32_t, Value*>& d);
701 bool iterateOnFunction(Function &F);
702 Value *CollapsePhi(PHINode* p);
703 bool performPRE(Function& F);
704 Value *lookupNumber(BasicBlock *BB, uint32_t num);
705 void cleanupGlobalSets();
706 void verifyRemoved(const Instruction *I) const;
707 bool splitCriticalEdges();
710 char GVN::ID = 0;
713 // createGVNPass - The public interface to this file...
714 FunctionPass *llvm::createGVNPass(bool NoLoads) {
715 return new GVN(NoLoads);
718 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
719 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
720 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
721 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
722 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
724 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
725 errs() << "{\n";
726 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
727 E = d.end(); I != E; ++I) {
728 errs() << I->first << "\n";
729 I->second->dump();
731 errs() << "}\n";
734 static bool isSafeReplacement(PHINode* p, Instruction *inst) {
735 if (!isa<PHINode>(inst))
736 return true;
738 for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
739 UI != E; ++UI)
740 if (PHINode* use_phi = dyn_cast<PHINode>(*UI))
741 if (use_phi->getParent() == inst->getParent())
742 return false;
744 return true;
747 Value *GVN::CollapsePhi(PHINode *PN) {
748 Value *ConstVal = PN->hasConstantValue(DT);
749 if (!ConstVal) return 0;
751 Instruction *Inst = dyn_cast<Instruction>(ConstVal);
752 if (!Inst)
753 return ConstVal;
755 if (DT->dominates(Inst, PN))
756 if (isSafeReplacement(PN, Inst))
757 return Inst;
758 return 0;
761 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
762 /// we're analyzing is fully available in the specified block. As we go, keep
763 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
764 /// map is actually a tri-state map with the following values:
765 /// 0) we know the block *is not* fully available.
766 /// 1) we know the block *is* fully available.
767 /// 2) we do not know whether the block is fully available or not, but we are
768 /// currently speculating that it will be.
769 /// 3) we are speculating for this block and have used that to speculate for
770 /// other blocks.
771 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
772 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
773 // Optimistically assume that the block is fully available and check to see
774 // if we already know about this block in one lookup.
775 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
776 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
778 // If the entry already existed for this block, return the precomputed value.
779 if (!IV.second) {
780 // If this is a speculative "available" value, mark it as being used for
781 // speculation of other blocks.
782 if (IV.first->second == 2)
783 IV.first->second = 3;
784 return IV.first->second != 0;
787 // Otherwise, see if it is fully available in all predecessors.
788 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
790 // If this block has no predecessors, it isn't live-in here.
791 if (PI == PE)
792 goto SpeculationFailure;
794 for (; PI != PE; ++PI)
795 // If the value isn't fully available in one of our predecessors, then it
796 // isn't fully available in this block either. Undo our previous
797 // optimistic assumption and bail out.
798 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
799 goto SpeculationFailure;
801 return true;
803 // SpeculationFailure - If we get here, we found out that this is not, after
804 // all, a fully-available block. We have a problem if we speculated on this and
805 // used the speculation to mark other blocks as available.
806 SpeculationFailure:
807 char &BBVal = FullyAvailableBlocks[BB];
809 // If we didn't speculate on this, just return with it set to false.
810 if (BBVal == 2) {
811 BBVal = 0;
812 return false;
815 // If we did speculate on this value, we could have blocks set to 1 that are
816 // incorrect. Walk the (transitive) successors of this block and mark them as
817 // 0 if set to one.
818 SmallVector<BasicBlock*, 32> BBWorklist;
819 BBWorklist.push_back(BB);
821 do {
822 BasicBlock *Entry = BBWorklist.pop_back_val();
823 // Note that this sets blocks to 0 (unavailable) if they happen to not
824 // already be in FullyAvailableBlocks. This is safe.
825 char &EntryVal = FullyAvailableBlocks[Entry];
826 if (EntryVal == 0) continue; // Already unavailable.
828 // Mark as unavailable.
829 EntryVal = 0;
831 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
832 BBWorklist.push_back(*I);
833 } while (!BBWorklist.empty());
835 return false;
839 /// CanCoerceMustAliasedValueToLoad - Return true if
840 /// CoerceAvailableValueToLoadType will succeed.
841 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
842 const Type *LoadTy,
843 const TargetData &TD) {
844 // If the loaded or stored value is an first class array or struct, don't try
845 // to transform them. We need to be able to bitcast to integer.
846 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
847 StoredVal->getType()->isStructTy() ||
848 StoredVal->getType()->isArrayTy())
849 return false;
851 // The store has to be at least as big as the load.
852 if (TD.getTypeSizeInBits(StoredVal->getType()) <
853 TD.getTypeSizeInBits(LoadTy))
854 return false;
856 return true;
860 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
861 /// then a load from a must-aliased pointer of a different type, try to coerce
862 /// the stored value. LoadedTy is the type of the load we want to replace and
863 /// InsertPt is the place to insert new instructions.
865 /// If we can't do it, return null.
866 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
867 const Type *LoadedTy,
868 Instruction *InsertPt,
869 const TargetData &TD) {
870 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
871 return 0;
873 const Type *StoredValTy = StoredVal->getType();
875 uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
876 uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
878 // If the store and reload are the same size, we can always reuse it.
879 if (StoreSize == LoadSize) {
880 if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
881 // Pointer to Pointer -> use bitcast.
882 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
885 // Convert source pointers to integers, which can be bitcast.
886 if (StoredValTy->isPointerTy()) {
887 StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
888 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
891 const Type *TypeToCastTo = LoadedTy;
892 if (TypeToCastTo->isPointerTy())
893 TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
895 if (StoredValTy != TypeToCastTo)
896 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
898 // Cast to pointer if the load needs a pointer type.
899 if (LoadedTy->isPointerTy())
900 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
902 return StoredVal;
905 // If the loaded value is smaller than the available value, then we can
906 // extract out a piece from it. If the available value is too small, then we
907 // can't do anything.
908 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
910 // Convert source pointers to integers, which can be manipulated.
911 if (StoredValTy->isPointerTy()) {
912 StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
913 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
916 // Convert vectors and fp to integer, which can be manipulated.
917 if (!StoredValTy->isIntegerTy()) {
918 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
919 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
922 // If this is a big-endian system, we need to shift the value down to the low
923 // bits so that a truncate will work.
924 if (TD.isBigEndian()) {
925 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
926 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
929 // Truncate the integer to the right size now.
930 const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
931 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
933 if (LoadedTy == NewIntTy)
934 return StoredVal;
936 // If the result is a pointer, inttoptr.
937 if (LoadedTy->isPointerTy())
938 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
940 // Otherwise, bitcast.
941 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
944 /// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
945 /// be expressed as a base pointer plus a constant offset. Return the base and
946 /// offset to the caller.
947 static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
948 const TargetData &TD) {
949 Operator *PtrOp = dyn_cast<Operator>(Ptr);
950 if (PtrOp == 0) return Ptr;
952 // Just look through bitcasts.
953 if (PtrOp->getOpcode() == Instruction::BitCast)
954 return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
956 // If this is a GEP with constant indices, we can look through it.
957 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
958 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
960 gep_type_iterator GTI = gep_type_begin(GEP);
961 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
962 ++I, ++GTI) {
963 ConstantInt *OpC = cast<ConstantInt>(*I);
964 if (OpC->isZero()) continue;
966 // Handle a struct and array indices which add their offset to the pointer.
967 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
968 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
969 } else {
970 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
971 Offset += OpC->getSExtValue()*Size;
975 // Re-sign extend from the pointer size if needed to get overflow edge cases
976 // right.
977 unsigned PtrSize = TD.getPointerSizeInBits();
978 if (PtrSize < 64)
979 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
981 return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
985 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
986 /// memdep query of a load that ends up being a clobbering memory write (store,
987 /// memset, memcpy, memmove). This means that the write *may* provide bits used
988 /// by the load but we can't be sure because the pointers don't mustalias.
990 /// Check this case to see if there is anything more we can do before we give
991 /// up. This returns -1 if we have to give up, or a byte number in the stored
992 /// value of the piece that feeds the load.
993 static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
994 Value *WritePtr,
995 uint64_t WriteSizeInBits,
996 const TargetData &TD) {
997 // If the loaded or stored value is an first class array or struct, don't try
998 // to transform them. We need to be able to bitcast to integer.
999 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
1000 return -1;
1002 int64_t StoreOffset = 0, LoadOffset = 0;
1003 Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1004 Value *LoadBase =
1005 GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1006 if (StoreBase != LoadBase)
1007 return -1;
1009 // If the load and store are to the exact same address, they should have been
1010 // a must alias. AA must have gotten confused.
1011 // FIXME: Study to see if/when this happens. One case is forwarding a memset
1012 // to a load from the base of the memset.
1013 #if 0
1014 if (LoadOffset == StoreOffset) {
1015 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1016 << "Base = " << *StoreBase << "\n"
1017 << "Store Ptr = " << *WritePtr << "\n"
1018 << "Store Offs = " << StoreOffset << "\n"
1019 << "Load Ptr = " << *LoadPtr << "\n";
1020 abort();
1022 #endif
1024 // If the load and store don't overlap at all, the store doesn't provide
1025 // anything to the load. In this case, they really don't alias at all, AA
1026 // must have gotten confused.
1027 // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1028 // remove this check, as it is duplicated with what we have below.
1029 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1031 if ((WriteSizeInBits & 7) | (LoadSize & 7))
1032 return -1;
1033 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
1034 LoadSize >>= 3;
1037 bool isAAFailure = false;
1038 if (StoreOffset < LoadOffset)
1039 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1040 else
1041 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1043 if (isAAFailure) {
1044 #if 0
1045 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1046 << "Base = " << *StoreBase << "\n"
1047 << "Store Ptr = " << *WritePtr << "\n"
1048 << "Store Offs = " << StoreOffset << "\n"
1049 << "Load Ptr = " << *LoadPtr << "\n";
1050 abort();
1051 #endif
1052 return -1;
1055 // If the Load isn't completely contained within the stored bits, we don't
1056 // have all the bits to feed it. We could do something crazy in the future
1057 // (issue a smaller load then merge the bits in) but this seems unlikely to be
1058 // valuable.
1059 if (StoreOffset > LoadOffset ||
1060 StoreOffset+StoreSize < LoadOffset+LoadSize)
1061 return -1;
1063 // Okay, we can do this transformation. Return the number of bytes into the
1064 // store that the load is.
1065 return LoadOffset-StoreOffset;
1068 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
1069 /// memdep query of a load that ends up being a clobbering store.
1070 static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1071 StoreInst *DepSI,
1072 const TargetData &TD) {
1073 // Cannot handle reading from store of first-class aggregate yet.
1074 if (DepSI->getOperand(0)->getType()->isStructTy() ||
1075 DepSI->getOperand(0)->getType()->isArrayTy())
1076 return -1;
1078 Value *StorePtr = DepSI->getPointerOperand();
1079 uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1080 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1081 StorePtr, StoreSize, TD);
1084 static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1085 MemIntrinsic *MI,
1086 const TargetData &TD) {
1087 // If the mem operation is a non-constant size, we can't handle it.
1088 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1089 if (SizeCst == 0) return -1;
1090 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1092 // If this is memset, we just need to see if the offset is valid in the size
1093 // of the memset..
1094 if (MI->getIntrinsicID() == Intrinsic::memset)
1095 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1096 MemSizeInBits, TD);
1098 // If we have a memcpy/memmove, the only case we can handle is if this is a
1099 // copy from constant memory. In that case, we can read directly from the
1100 // constant memory.
1101 MemTransferInst *MTI = cast<MemTransferInst>(MI);
1103 Constant *Src = dyn_cast<Constant>(MTI->getSource());
1104 if (Src == 0) return -1;
1106 GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1107 if (GV == 0 || !GV->isConstant()) return -1;
1109 // See if the access is within the bounds of the transfer.
1110 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1111 MI->getDest(), MemSizeInBits, TD);
1112 if (Offset == -1)
1113 return Offset;
1115 // Otherwise, see if we can constant fold a load from the constant with the
1116 // offset applied as appropriate.
1117 Src = ConstantExpr::getBitCast(Src,
1118 llvm::Type::getInt8PtrTy(Src->getContext()));
1119 Constant *OffsetCst =
1120 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1121 Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1122 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1123 if (ConstantFoldLoadFromConstPtr(Src, &TD))
1124 return Offset;
1125 return -1;
1129 /// GetStoreValueForLoad - This function is called when we have a
1130 /// memdep query of a load that ends up being a clobbering store. This means
1131 /// that the store *may* provide bits used by the load but we can't be sure
1132 /// because the pointers don't mustalias. Check this case to see if there is
1133 /// anything more we can do before we give up.
1134 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1135 const Type *LoadTy,
1136 Instruction *InsertPt, const TargetData &TD){
1137 LLVMContext &Ctx = SrcVal->getType()->getContext();
1139 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1140 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1142 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1144 // Compute which bits of the stored value are being used by the load. Convert
1145 // to an integer type to start with.
1146 if (SrcVal->getType()->isPointerTy())
1147 SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1148 if (!SrcVal->getType()->isIntegerTy())
1149 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1150 "tmp");
1152 // Shift the bits to the least significant depending on endianness.
1153 unsigned ShiftAmt;
1154 if (TD.isLittleEndian())
1155 ShiftAmt = Offset*8;
1156 else
1157 ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1159 if (ShiftAmt)
1160 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1162 if (LoadSize != StoreSize)
1163 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1164 "tmp");
1166 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1169 /// GetMemInstValueForLoad - This function is called when we have a
1170 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1171 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1172 const Type *LoadTy, Instruction *InsertPt,
1173 const TargetData &TD){
1174 LLVMContext &Ctx = LoadTy->getContext();
1175 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1177 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1179 // We know that this method is only called when the mem transfer fully
1180 // provides the bits for the load.
1181 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1182 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1183 // independently of what the offset is.
1184 Value *Val = MSI->getValue();
1185 if (LoadSize != 1)
1186 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1188 Value *OneElt = Val;
1190 // Splat the value out to the right number of bits.
1191 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1192 // If we can double the number of bytes set, do it.
1193 if (NumBytesSet*2 <= LoadSize) {
1194 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1195 Val = Builder.CreateOr(Val, ShVal);
1196 NumBytesSet <<= 1;
1197 continue;
1200 // Otherwise insert one byte at a time.
1201 Value *ShVal = Builder.CreateShl(Val, 1*8);
1202 Val = Builder.CreateOr(OneElt, ShVal);
1203 ++NumBytesSet;
1206 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1209 // Otherwise, this is a memcpy/memmove from a constant global.
1210 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1211 Constant *Src = cast<Constant>(MTI->getSource());
1213 // Otherwise, see if we can constant fold a load from the constant with the
1214 // offset applied as appropriate.
1215 Src = ConstantExpr::getBitCast(Src,
1216 llvm::Type::getInt8PtrTy(Src->getContext()));
1217 Constant *OffsetCst =
1218 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1219 Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1220 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1221 return ConstantFoldLoadFromConstPtr(Src, &TD);
1224 namespace {
1226 struct AvailableValueInBlock {
1227 /// BB - The basic block in question.
1228 BasicBlock *BB;
1229 enum ValType {
1230 SimpleVal, // A simple offsetted value that is accessed.
1231 MemIntrin // A memory intrinsic which is loaded from.
1234 /// V - The value that is live out of the block.
1235 PointerIntPair<Value *, 1, ValType> Val;
1237 /// Offset - The byte offset in Val that is interesting for the load query.
1238 unsigned Offset;
1240 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1241 unsigned Offset = 0) {
1242 AvailableValueInBlock Res;
1243 Res.BB = BB;
1244 Res.Val.setPointer(V);
1245 Res.Val.setInt(SimpleVal);
1246 Res.Offset = Offset;
1247 return Res;
1250 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1251 unsigned Offset = 0) {
1252 AvailableValueInBlock Res;
1253 Res.BB = BB;
1254 Res.Val.setPointer(MI);
1255 Res.Val.setInt(MemIntrin);
1256 Res.Offset = Offset;
1257 return Res;
1260 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1261 Value *getSimpleValue() const {
1262 assert(isSimpleValue() && "Wrong accessor");
1263 return Val.getPointer();
1266 MemIntrinsic *getMemIntrinValue() const {
1267 assert(!isSimpleValue() && "Wrong accessor");
1268 return cast<MemIntrinsic>(Val.getPointer());
1271 /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1272 /// defined here to the specified type. This handles various coercion cases.
1273 Value *MaterializeAdjustedValue(const Type *LoadTy,
1274 const TargetData *TD) const {
1275 Value *Res;
1276 if (isSimpleValue()) {
1277 Res = getSimpleValue();
1278 if (Res->getType() != LoadTy) {
1279 assert(TD && "Need target data to handle type mismatch case");
1280 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1281 *TD);
1283 DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1284 << *getSimpleValue() << '\n'
1285 << *Res << '\n' << "\n\n\n");
1287 } else {
1288 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1289 LoadTy, BB->getTerminator(), *TD);
1290 DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1291 << " " << *getMemIntrinValue() << '\n'
1292 << *Res << '\n' << "\n\n\n");
1294 return Res;
1300 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1301 /// construct SSA form, allowing us to eliminate LI. This returns the value
1302 /// that should be used at LI's definition site.
1303 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1304 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1305 const TargetData *TD,
1306 const DominatorTree &DT,
1307 AliasAnalysis *AA) {
1308 // Check for the fully redundant, dominating load case. In this case, we can
1309 // just use the dominating value directly.
1310 if (ValuesPerBlock.size() == 1 &&
1311 DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1312 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1314 // Otherwise, we have to construct SSA form.
1315 SmallVector<PHINode*, 8> NewPHIs;
1316 SSAUpdater SSAUpdate(&NewPHIs);
1317 SSAUpdate.Initialize(LI->getType(), LI->getName());
1319 const Type *LoadTy = LI->getType();
1321 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1322 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1323 BasicBlock *BB = AV.BB;
1325 if (SSAUpdate.HasValueForBlock(BB))
1326 continue;
1328 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1331 // Perform PHI construction.
1332 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1334 // If new PHI nodes were created, notify alias analysis.
1335 if (V->getType()->isPointerTy())
1336 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1337 AA->copyValue(LI, NewPHIs[i]);
1339 return V;
1342 static bool isLifetimeStart(const Instruction *Inst) {
1343 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1344 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1345 return false;
1348 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1349 /// non-local by performing PHI construction.
1350 bool GVN::processNonLocalLoad(LoadInst *LI,
1351 SmallVectorImpl<Instruction*> &toErase) {
1352 // Find the non-local dependencies of the load.
1353 SmallVector<NonLocalDepResult, 64> Deps;
1354 MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1355 Deps);
1356 //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1357 // << Deps.size() << *LI << '\n');
1359 // If we had to process more than one hundred blocks to find the
1360 // dependencies, this load isn't worth worrying about. Optimizing
1361 // it will be too expensive.
1362 if (Deps.size() > 100)
1363 return false;
1365 // If we had a phi translation failure, we'll have a single entry which is a
1366 // clobber in the current block. Reject this early.
1367 if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1368 DEBUG(
1369 dbgs() << "GVN: non-local load ";
1370 WriteAsOperand(dbgs(), LI);
1371 dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1373 return false;
1376 // Filter out useless results (non-locals, etc). Keep track of the blocks
1377 // where we have a value available in repl, also keep track of whether we see
1378 // dependencies that produce an unknown value for the load (such as a call
1379 // that could potentially clobber the load).
1380 SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1381 SmallVector<BasicBlock*, 16> UnavailableBlocks;
1383 const TargetData *TD = 0;
1385 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1386 BasicBlock *DepBB = Deps[i].getBB();
1387 MemDepResult DepInfo = Deps[i].getResult();
1389 if (DepInfo.isClobber()) {
1390 // The address being loaded in this non-local block may not be the same as
1391 // the pointer operand of the load if PHI translation occurs. Make sure
1392 // to consider the right address.
1393 Value *Address = Deps[i].getAddress();
1395 // If the dependence is to a store that writes to a superset of the bits
1396 // read by the load, we can extract the bits we need for the load from the
1397 // stored value.
1398 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1399 if (TD == 0)
1400 TD = getAnalysisIfAvailable<TargetData>();
1401 if (TD && Address) {
1402 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1403 DepSI, *TD);
1404 if (Offset != -1) {
1405 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1406 DepSI->getOperand(0),
1407 Offset));
1408 continue;
1413 // If the clobbering value is a memset/memcpy/memmove, see if we can
1414 // forward a value on from it.
1415 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1416 if (TD == 0)
1417 TD = getAnalysisIfAvailable<TargetData>();
1418 if (TD && Address) {
1419 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1420 DepMI, *TD);
1421 if (Offset != -1) {
1422 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1423 Offset));
1424 continue;
1429 UnavailableBlocks.push_back(DepBB);
1430 continue;
1433 Instruction *DepInst = DepInfo.getInst();
1435 // Loading the allocation -> undef.
1436 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1437 // Loading immediately after lifetime begin -> undef.
1438 isLifetimeStart(DepInst)) {
1439 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1440 UndefValue::get(LI->getType())));
1441 continue;
1444 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1445 // Reject loads and stores that are to the same address but are of
1446 // different types if we have to.
1447 if (S->getOperand(0)->getType() != LI->getType()) {
1448 if (TD == 0)
1449 TD = getAnalysisIfAvailable<TargetData>();
1451 // If the stored value is larger or equal to the loaded value, we can
1452 // reuse it.
1453 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1454 LI->getType(), *TD)) {
1455 UnavailableBlocks.push_back(DepBB);
1456 continue;
1460 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1461 S->getOperand(0)));
1462 continue;
1465 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1466 // If the types mismatch and we can't handle it, reject reuse of the load.
1467 if (LD->getType() != LI->getType()) {
1468 if (TD == 0)
1469 TD = getAnalysisIfAvailable<TargetData>();
1471 // If the stored value is larger or equal to the loaded value, we can
1472 // reuse it.
1473 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1474 UnavailableBlocks.push_back(DepBB);
1475 continue;
1478 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1479 continue;
1482 UnavailableBlocks.push_back(DepBB);
1483 continue;
1486 // If we have no predecessors that produce a known value for this load, exit
1487 // early.
1488 if (ValuesPerBlock.empty()) return false;
1490 // If all of the instructions we depend on produce a known value for this
1491 // load, then it is fully redundant and we can use PHI insertion to compute
1492 // its value. Insert PHIs and remove the fully redundant value now.
1493 if (UnavailableBlocks.empty()) {
1494 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1496 // Perform PHI construction.
1497 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1498 VN.getAliasAnalysis());
1499 LI->replaceAllUsesWith(V);
1501 if (isa<PHINode>(V))
1502 V->takeName(LI);
1503 if (V->getType()->isPointerTy())
1504 MD->invalidateCachedPointerInfo(V);
1505 VN.erase(LI);
1506 toErase.push_back(LI);
1507 ++NumGVNLoad;
1508 return true;
1511 if (!EnablePRE || !EnableLoadPRE)
1512 return false;
1514 // Okay, we have *some* definitions of the value. This means that the value
1515 // is available in some of our (transitive) predecessors. Lets think about
1516 // doing PRE of this load. This will involve inserting a new load into the
1517 // predecessor when it's not available. We could do this in general, but
1518 // prefer to not increase code size. As such, we only do this when we know
1519 // that we only have to insert *one* load (which means we're basically moving
1520 // the load, not inserting a new one).
1522 SmallPtrSet<BasicBlock *, 4> Blockers;
1523 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1524 Blockers.insert(UnavailableBlocks[i]);
1526 // Lets find first basic block with more than one predecessor. Walk backwards
1527 // through predecessors if needed.
1528 BasicBlock *LoadBB = LI->getParent();
1529 BasicBlock *TmpBB = LoadBB;
1531 bool isSinglePred = false;
1532 bool allSingleSucc = true;
1533 while (TmpBB->getSinglePredecessor()) {
1534 isSinglePred = true;
1535 TmpBB = TmpBB->getSinglePredecessor();
1536 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1537 return false;
1538 if (Blockers.count(TmpBB))
1539 return false;
1541 // If any of these blocks has more than one successor (i.e. if the edge we
1542 // just traversed was critical), then there are other paths through this
1543 // block along which the load may not be anticipated. Hoisting the load
1544 // above this block would be adding the load to execution paths along
1545 // which it was not previously executed.
1546 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1547 return false;
1550 assert(TmpBB);
1551 LoadBB = TmpBB;
1553 // FIXME: It is extremely unclear what this loop is doing, other than
1554 // artificially restricting loadpre.
1555 if (isSinglePred) {
1556 bool isHot = false;
1557 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1558 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1559 if (AV.isSimpleValue())
1560 // "Hot" Instruction is in some loop (because it dominates its dep.
1561 // instruction).
1562 if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1563 if (DT->dominates(LI, I)) {
1564 isHot = true;
1565 break;
1569 // We are interested only in "hot" instructions. We don't want to do any
1570 // mis-optimizations here.
1571 if (!isHot)
1572 return false;
1575 // Check to see how many predecessors have the loaded value fully
1576 // available.
1577 DenseMap<BasicBlock*, Value*> PredLoads;
1578 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1579 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1580 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1581 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1582 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1584 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1585 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1586 PI != E; ++PI) {
1587 BasicBlock *Pred = *PI;
1588 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1589 continue;
1591 PredLoads[Pred] = 0;
1593 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1594 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1595 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1596 << Pred->getName() << "': " << *LI << '\n');
1597 return false;
1599 unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1600 NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1603 if (!NeedToSplit.empty()) {
1604 toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1605 return false;
1608 // Decide whether PRE is profitable for this load.
1609 unsigned NumUnavailablePreds = PredLoads.size();
1610 assert(NumUnavailablePreds != 0 &&
1611 "Fully available value should be eliminated above!");
1613 // If this load is unavailable in multiple predecessors, reject it.
1614 // FIXME: If we could restructure the CFG, we could make a common pred with
1615 // all the preds that don't have an available LI and insert a new load into
1616 // that one block.
1617 if (NumUnavailablePreds != 1)
1618 return false;
1620 // Check if the load can safely be moved to all the unavailable predecessors.
1621 bool CanDoPRE = true;
1622 SmallVector<Instruction*, 8> NewInsts;
1623 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1624 E = PredLoads.end(); I != E; ++I) {
1625 BasicBlock *UnavailablePred = I->first;
1627 // Do PHI translation to get its value in the predecessor if necessary. The
1628 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1630 // If all preds have a single successor, then we know it is safe to insert
1631 // the load on the pred (?!?), so we can insert code to materialize the
1632 // pointer if it is not available.
1633 PHITransAddr Address(LI->getOperand(0), TD);
1634 Value *LoadPtr = 0;
1635 if (allSingleSucc) {
1636 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1637 *DT, NewInsts);
1638 } else {
1639 Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1640 LoadPtr = Address.getAddr();
1643 // If we couldn't find or insert a computation of this phi translated value,
1644 // we fail PRE.
1645 if (LoadPtr == 0) {
1646 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1647 << *LI->getOperand(0) << "\n");
1648 CanDoPRE = false;
1649 break;
1652 // Make sure it is valid to move this load here. We have to watch out for:
1653 // @1 = getelementptr (i8* p, ...
1654 // test p and branch if == 0
1655 // load @1
1656 // It is valid to have the getelementptr before the test, even if p can be 0,
1657 // as getelementptr only does address arithmetic.
1658 // If we are not pushing the value through any multiple-successor blocks
1659 // we do not have this case. Otherwise, check that the load is safe to
1660 // put anywhere; this can be improved, but should be conservatively safe.
1661 if (!allSingleSucc &&
1662 // FIXME: REEVALUTE THIS.
1663 !isSafeToLoadUnconditionally(LoadPtr,
1664 UnavailablePred->getTerminator(),
1665 LI->getAlignment(), TD)) {
1666 CanDoPRE = false;
1667 break;
1670 I->second = LoadPtr;
1673 if (!CanDoPRE) {
1674 while (!NewInsts.empty())
1675 NewInsts.pop_back_val()->eraseFromParent();
1676 return false;
1679 // Okay, we can eliminate this load by inserting a reload in the predecessor
1680 // and using PHI construction to get the value in the other predecessors, do
1681 // it.
1682 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1683 DEBUG(if (!NewInsts.empty())
1684 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1685 << *NewInsts.back() << '\n');
1687 // Assign value numbers to the new instructions.
1688 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1689 // FIXME: We really _ought_ to insert these value numbers into their
1690 // parent's availability map. However, in doing so, we risk getting into
1691 // ordering issues. If a block hasn't been processed yet, we would be
1692 // marking a value as AVAIL-IN, which isn't what we intend.
1693 VN.lookup_or_add(NewInsts[i]);
1696 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1697 E = PredLoads.end(); I != E; ++I) {
1698 BasicBlock *UnavailablePred = I->first;
1699 Value *LoadPtr = I->second;
1701 Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1702 LI->getAlignment(),
1703 UnavailablePred->getTerminator());
1705 // Add the newly created load.
1706 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1707 NewLoad));
1708 MD->invalidateCachedPointerInfo(LoadPtr);
1709 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1712 // Perform PHI construction.
1713 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1714 VN.getAliasAnalysis());
1715 LI->replaceAllUsesWith(V);
1716 if (isa<PHINode>(V))
1717 V->takeName(LI);
1718 if (V->getType()->isPointerTy())
1719 MD->invalidateCachedPointerInfo(V);
1720 VN.erase(LI);
1721 toErase.push_back(LI);
1722 ++NumPRELoad;
1723 return true;
1726 /// processLoad - Attempt to eliminate a load, first by eliminating it
1727 /// locally, and then attempting non-local elimination if that fails.
1728 bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1729 if (!MD)
1730 return false;
1732 if (L->isVolatile())
1733 return false;
1735 // ... to a pointer that has been loaded from before...
1736 MemDepResult Dep = MD->getDependency(L);
1738 // If the value isn't available, don't do anything!
1739 if (Dep.isClobber()) {
1740 // Check to see if we have something like this:
1741 // store i32 123, i32* %P
1742 // %A = bitcast i32* %P to i8*
1743 // %B = gep i8* %A, i32 1
1744 // %C = load i8* %B
1746 // We could do that by recognizing if the clobber instructions are obviously
1747 // a common base + constant offset, and if the previous store (or memset)
1748 // completely covers this load. This sort of thing can happen in bitfield
1749 // access code.
1750 Value *AvailVal = 0;
1751 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1752 if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1753 int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1754 L->getPointerOperand(),
1755 DepSI, *TD);
1756 if (Offset != -1)
1757 AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1758 L->getType(), L, *TD);
1761 // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1762 // a value on from it.
1763 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1764 if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1765 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1766 L->getPointerOperand(),
1767 DepMI, *TD);
1768 if (Offset != -1)
1769 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1773 if (AvailVal) {
1774 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1775 << *AvailVal << '\n' << *L << "\n\n\n");
1777 // Replace the load!
1778 L->replaceAllUsesWith(AvailVal);
1779 if (AvailVal->getType()->isPointerTy())
1780 MD->invalidateCachedPointerInfo(AvailVal);
1781 VN.erase(L);
1782 toErase.push_back(L);
1783 ++NumGVNLoad;
1784 return true;
1787 DEBUG(
1788 // fast print dep, using operator<< on instruction would be too slow
1789 dbgs() << "GVN: load ";
1790 WriteAsOperand(dbgs(), L);
1791 Instruction *I = Dep.getInst();
1792 dbgs() << " is clobbered by " << *I << '\n';
1794 return false;
1797 // If it is defined in another block, try harder.
1798 if (Dep.isNonLocal())
1799 return processNonLocalLoad(L, toErase);
1801 Instruction *DepInst = Dep.getInst();
1802 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1803 Value *StoredVal = DepSI->getOperand(0);
1805 // The store and load are to a must-aliased pointer, but they may not
1806 // actually have the same type. See if we know how to reuse the stored
1807 // value (depending on its type).
1808 const TargetData *TD = 0;
1809 if (StoredVal->getType() != L->getType()) {
1810 if ((TD = getAnalysisIfAvailable<TargetData>())) {
1811 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1812 L, *TD);
1813 if (StoredVal == 0)
1814 return false;
1816 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1817 << '\n' << *L << "\n\n\n");
1819 else
1820 return false;
1823 // Remove it!
1824 L->replaceAllUsesWith(StoredVal);
1825 if (StoredVal->getType()->isPointerTy())
1826 MD->invalidateCachedPointerInfo(StoredVal);
1827 VN.erase(L);
1828 toErase.push_back(L);
1829 ++NumGVNLoad;
1830 return true;
1833 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1834 Value *AvailableVal = DepLI;
1836 // The loads are of a must-aliased pointer, but they may not actually have
1837 // the same type. See if we know how to reuse the previously loaded value
1838 // (depending on its type).
1839 const TargetData *TD = 0;
1840 if (DepLI->getType() != L->getType()) {
1841 if ((TD = getAnalysisIfAvailable<TargetData>())) {
1842 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1843 if (AvailableVal == 0)
1844 return false;
1846 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1847 << "\n" << *L << "\n\n\n");
1849 else
1850 return false;
1853 // Remove it!
1854 L->replaceAllUsesWith(AvailableVal);
1855 if (DepLI->getType()->isPointerTy())
1856 MD->invalidateCachedPointerInfo(DepLI);
1857 VN.erase(L);
1858 toErase.push_back(L);
1859 ++NumGVNLoad;
1860 return true;
1863 // If this load really doesn't depend on anything, then we must be loading an
1864 // undef value. This can happen when loading for a fresh allocation with no
1865 // intervening stores, for example.
1866 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1867 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1868 VN.erase(L);
1869 toErase.push_back(L);
1870 ++NumGVNLoad;
1871 return true;
1874 // If this load occurs either right after a lifetime begin,
1875 // then the loaded value is undefined.
1876 if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1877 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1878 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1879 VN.erase(L);
1880 toErase.push_back(L);
1881 ++NumGVNLoad;
1882 return true;
1886 return false;
1889 Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1890 DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1891 if (I == localAvail.end())
1892 return 0;
1894 ValueNumberScope *Locals = I->second;
1895 while (Locals) {
1896 DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1897 if (I != Locals->table.end())
1898 return I->second;
1899 Locals = Locals->parent;
1902 return 0;
1906 /// processInstruction - When calculating availability, handle an instruction
1907 /// by inserting it into the appropriate sets
1908 bool GVN::processInstruction(Instruction *I,
1909 SmallVectorImpl<Instruction*> &toErase) {
1910 // Ignore dbg info intrinsics.
1911 if (isa<DbgInfoIntrinsic>(I))
1912 return false;
1914 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1915 bool Changed = processLoad(LI, toErase);
1917 if (!Changed) {
1918 unsigned Num = VN.lookup_or_add(LI);
1919 localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1922 return Changed;
1925 uint32_t NextNum = VN.getNextUnusedValueNumber();
1926 unsigned Num = VN.lookup_or_add(I);
1928 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1929 localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1931 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1932 return false;
1934 Value *BranchCond = BI->getCondition();
1935 uint32_t CondVN = VN.lookup_or_add(BranchCond);
1937 BasicBlock *TrueSucc = BI->getSuccessor(0);
1938 BasicBlock *FalseSucc = BI->getSuccessor(1);
1940 if (TrueSucc->getSinglePredecessor())
1941 localAvail[TrueSucc]->table[CondVN] =
1942 ConstantInt::getTrue(TrueSucc->getContext());
1943 if (FalseSucc->getSinglePredecessor())
1944 localAvail[FalseSucc]->table[CondVN] =
1945 ConstantInt::getFalse(TrueSucc->getContext());
1947 return false;
1949 // Allocations are always uniquely numbered, so we can save time and memory
1950 // by fast failing them.
1951 } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1952 localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1953 return false;
1956 // Collapse PHI nodes
1957 if (PHINode* p = dyn_cast<PHINode>(I)) {
1958 Value *constVal = CollapsePhi(p);
1960 if (constVal) {
1961 p->replaceAllUsesWith(constVal);
1962 if (MD && constVal->getType()->isPointerTy())
1963 MD->invalidateCachedPointerInfo(constVal);
1964 VN.erase(p);
1966 toErase.push_back(p);
1967 } else {
1968 localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1971 // If the number we were assigned was a brand new VN, then we don't
1972 // need to do a lookup to see if the number already exists
1973 // somewhere in the domtree: it can't!
1974 } else if (Num == NextNum) {
1975 localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1977 // Perform fast-path value-number based elimination of values inherited from
1978 // dominators.
1979 } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1980 // Remove it!
1981 VN.erase(I);
1982 I->replaceAllUsesWith(repl);
1983 if (MD && repl->getType()->isPointerTy())
1984 MD->invalidateCachedPointerInfo(repl);
1985 toErase.push_back(I);
1986 return true;
1988 } else {
1989 localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1992 return false;
1995 /// runOnFunction - This is the main transformation entry point for a function.
1996 bool GVN::runOnFunction(Function& F) {
1997 if (!NoLoads)
1998 MD = &getAnalysis<MemoryDependenceAnalysis>();
1999 DT = &getAnalysis<DominatorTree>();
2000 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2001 VN.setMemDep(MD);
2002 VN.setDomTree(DT);
2004 bool Changed = false;
2005 bool ShouldContinue = true;
2007 // Merge unconditional branches, allowing PRE to catch more
2008 // optimization opportunities.
2009 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2010 BasicBlock *BB = FI;
2011 ++FI;
2012 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2013 if (removedBlock) ++NumGVNBlocks;
2015 Changed |= removedBlock;
2018 unsigned Iteration = 0;
2020 while (ShouldContinue) {
2021 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2022 ShouldContinue = iterateOnFunction(F);
2023 if (splitCriticalEdges())
2024 ShouldContinue = true;
2025 Changed |= ShouldContinue;
2026 ++Iteration;
2029 if (EnablePRE) {
2030 bool PREChanged = true;
2031 while (PREChanged) {
2032 PREChanged = performPRE(F);
2033 Changed |= PREChanged;
2036 // FIXME: Should perform GVN again after PRE does something. PRE can move
2037 // computations into blocks where they become fully redundant. Note that
2038 // we can't do this until PRE's critical edge splitting updates memdep.
2039 // Actually, when this happens, we should just fully integrate PRE into GVN.
2041 cleanupGlobalSets();
2043 return Changed;
2047 bool GVN::processBlock(BasicBlock *BB) {
2048 // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2049 // incrementing BI before processing an instruction).
2050 SmallVector<Instruction*, 8> toErase;
2051 bool ChangedFunction = false;
2053 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2054 BI != BE;) {
2055 ChangedFunction |= processInstruction(BI, toErase);
2056 if (toErase.empty()) {
2057 ++BI;
2058 continue;
2061 // If we need some instructions deleted, do it now.
2062 NumGVNInstr += toErase.size();
2064 // Avoid iterator invalidation.
2065 bool AtStart = BI == BB->begin();
2066 if (!AtStart)
2067 --BI;
2069 for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2070 E = toErase.end(); I != E; ++I) {
2071 DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2072 if (MD) MD->removeInstruction(*I);
2073 (*I)->eraseFromParent();
2074 DEBUG(verifyRemoved(*I));
2076 toErase.clear();
2078 if (AtStart)
2079 BI = BB->begin();
2080 else
2081 ++BI;
2084 return ChangedFunction;
2087 /// performPRE - Perform a purely local form of PRE that looks for diamond
2088 /// control flow patterns and attempts to perform simple PRE at the join point.
2089 bool GVN::performPRE(Function &F) {
2090 bool Changed = false;
2091 DenseMap<BasicBlock*, Value*> predMap;
2092 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2093 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2094 BasicBlock *CurrentBlock = *DI;
2096 // Nothing to PRE in the entry block.
2097 if (CurrentBlock == &F.getEntryBlock()) continue;
2099 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2100 BE = CurrentBlock->end(); BI != BE; ) {
2101 Instruction *CurInst = BI++;
2103 if (isa<AllocaInst>(CurInst) ||
2104 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2105 CurInst->getType()->isVoidTy() ||
2106 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2107 isa<DbgInfoIntrinsic>(CurInst))
2108 continue;
2110 // We don't currently value number ANY inline asm calls.
2111 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2112 if (CallI->isInlineAsm())
2113 continue;
2115 uint32_t ValNo = VN.lookup(CurInst);
2117 // Look for the predecessors for PRE opportunities. We're
2118 // only trying to solve the basic diamond case, where
2119 // a value is computed in the successor and one predecessor,
2120 // but not the other. We also explicitly disallow cases
2121 // where the successor is its own predecessor, because they're
2122 // more complicated to get right.
2123 unsigned NumWith = 0;
2124 unsigned NumWithout = 0;
2125 BasicBlock *PREPred = 0;
2126 predMap.clear();
2128 for (pred_iterator PI = pred_begin(CurrentBlock),
2129 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2130 BasicBlock *P = *PI;
2131 // We're not interested in PRE where the block is its
2132 // own predecessor, or in blocks with predecessors
2133 // that are not reachable.
2134 if (P == CurrentBlock) {
2135 NumWithout = 2;
2136 break;
2137 } else if (!localAvail.count(P)) {
2138 NumWithout = 2;
2139 break;
2142 DenseMap<uint32_t, Value*>::iterator predV =
2143 localAvail[P]->table.find(ValNo);
2144 if (predV == localAvail[P]->table.end()) {
2145 PREPred = P;
2146 ++NumWithout;
2147 } else if (predV->second == CurInst) {
2148 NumWithout = 2;
2149 } else {
2150 predMap[P] = predV->second;
2151 ++NumWith;
2155 // Don't do PRE when it might increase code size, i.e. when
2156 // we would need to insert instructions in more than one pred.
2157 if (NumWithout != 1 || NumWith == 0)
2158 continue;
2160 // Don't do PRE across indirect branch.
2161 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2162 continue;
2164 // We can't do PRE safely on a critical edge, so instead we schedule
2165 // the edge to be split and perform the PRE the next time we iterate
2166 // on the function.
2167 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2168 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2169 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2170 continue;
2173 // Instantiate the expression in the predecessor that lacked it.
2174 // Because we are going top-down through the block, all value numbers
2175 // will be available in the predecessor by the time we need them. Any
2176 // that weren't originally present will have been instantiated earlier
2177 // in this loop.
2178 Instruction *PREInstr = CurInst->clone();
2179 bool success = true;
2180 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2181 Value *Op = PREInstr->getOperand(i);
2182 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2183 continue;
2185 if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2186 PREInstr->setOperand(i, V);
2187 } else {
2188 success = false;
2189 break;
2193 // Fail out if we encounter an operand that is not available in
2194 // the PRE predecessor. This is typically because of loads which
2195 // are not value numbered precisely.
2196 if (!success) {
2197 delete PREInstr;
2198 DEBUG(verifyRemoved(PREInstr));
2199 continue;
2202 PREInstr->insertBefore(PREPred->getTerminator());
2203 PREInstr->setName(CurInst->getName() + ".pre");
2204 predMap[PREPred] = PREInstr;
2205 VN.add(PREInstr, ValNo);
2206 ++NumGVNPRE;
2208 // Update the availability map to include the new instruction.
2209 localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2211 // Create a PHI to make the value available in this block.
2212 PHINode* Phi = PHINode::Create(CurInst->getType(),
2213 CurInst->getName() + ".pre-phi",
2214 CurrentBlock->begin());
2215 for (pred_iterator PI = pred_begin(CurrentBlock),
2216 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2217 BasicBlock *P = *PI;
2218 Phi->addIncoming(predMap[P], P);
2221 VN.add(Phi, ValNo);
2222 localAvail[CurrentBlock]->table[ValNo] = Phi;
2224 CurInst->replaceAllUsesWith(Phi);
2225 if (MD && Phi->getType()->isPointerTy())
2226 MD->invalidateCachedPointerInfo(Phi);
2227 VN.erase(CurInst);
2229 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2230 if (MD) MD->removeInstruction(CurInst);
2231 CurInst->eraseFromParent();
2232 DEBUG(verifyRemoved(CurInst));
2233 Changed = true;
2237 if (splitCriticalEdges())
2238 Changed = true;
2240 return Changed;
2243 /// splitCriticalEdges - Split critical edges found during the previous
2244 /// iteration that may enable further optimization.
2245 bool GVN::splitCriticalEdges() {
2246 if (toSplit.empty())
2247 return false;
2248 do {
2249 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2250 SplitCriticalEdge(Edge.first, Edge.second, this);
2251 } while (!toSplit.empty());
2252 if (MD) MD->invalidateCachedPredecessors();
2253 return true;
2256 /// iterateOnFunction - Executes one iteration of GVN
2257 bool GVN::iterateOnFunction(Function &F) {
2258 cleanupGlobalSets();
2260 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2261 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2262 if (DI->getIDom())
2263 localAvail[DI->getBlock()] =
2264 new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2265 else
2266 localAvail[DI->getBlock()] = new ValueNumberScope(0);
2269 // Top-down walk of the dominator tree
2270 bool Changed = false;
2271 #if 0
2272 // Needed for value numbering with phi construction to work.
2273 ReversePostOrderTraversal<Function*> RPOT(&F);
2274 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2275 RE = RPOT.end(); RI != RE; ++RI)
2276 Changed |= processBlock(*RI);
2277 #else
2278 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2279 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2280 Changed |= processBlock(DI->getBlock());
2281 #endif
2283 return Changed;
2286 void GVN::cleanupGlobalSets() {
2287 VN.clear();
2289 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2290 I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2291 delete I->second;
2292 localAvail.clear();
2295 /// verifyRemoved - Verify that the specified instruction does not occur in our
2296 /// internal data structures.
2297 void GVN::verifyRemoved(const Instruction *Inst) const {
2298 VN.verifyRemoved(Inst);
2300 // Walk through the value number scope to make sure the instruction isn't
2301 // ferreted away in it.
2302 for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2303 I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2304 const ValueNumberScope *VNS = I->second;
2306 while (VNS) {
2307 for (DenseMap<uint32_t, Value*>::const_iterator
2308 II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2309 assert(II->second != Inst && "Inst still in value numbering scope!");
2312 VNS = VNS->parent;