1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. The canonical induction variable is guaranteed to be in a wide enough
21 // type so that IV expressions need not be (directly) zero-extended or
23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts.
25 // If the trip count of a loop is computable, this pass also makes the following
27 // 1. The exit condition for the loop is canonicalized to compare the
28 // induction value against the exit value. This turns loops like:
29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 // 2. Any use outside of the loop of an expression derived from the indvar
31 // is changed to compute the derived value outside of the loop, eliminating
32 // the dependence on the exit value of the induction variable. If the only
33 // purpose of the loop is to compute the exit value of some derived
34 // expression, this transformation will make the loop dead.
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/ADT/STLExtras.h"
65 STATISTIC(NumRemoved
, "Number of aux indvars removed");
66 STATISTIC(NumInserted
, "Number of canonical indvars added");
67 STATISTIC(NumReplaced
, "Number of exit values replaced");
68 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
71 class IndVarSimplify
: public LoopPass
{
79 static char ID
; // Pass identification, replacement for typeid
80 IndVarSimplify() : LoopPass(ID
) {
81 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
84 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
86 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
87 AU
.addRequired
<DominatorTree
>();
88 AU
.addRequired
<LoopInfo
>();
89 AU
.addRequired
<ScalarEvolution
>();
90 AU
.addRequiredID(LoopSimplifyID
);
91 AU
.addRequiredID(LCSSAID
);
92 AU
.addRequired
<IVUsers
>();
93 AU
.addPreserved
<ScalarEvolution
>();
94 AU
.addPreservedID(LoopSimplifyID
);
95 AU
.addPreservedID(LCSSAID
);
96 AU
.addPreserved
<IVUsers
>();
102 void EliminateIVComparisons();
103 void EliminateIVRemainders();
104 void RewriteNonIntegerIVs(Loop
*L
);
106 ICmpInst
*LinearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
108 BasicBlock
*ExitingBlock
,
110 SCEVExpander
&Rewriter
);
111 void RewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
);
113 void RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
);
115 void SinkUnusedInvariants(Loop
*L
);
117 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
);
121 char IndVarSimplify::ID
= 0;
122 INITIALIZE_PASS_BEGIN(IndVarSimplify
, "indvars",
123 "Canonicalize Induction Variables", false, false)
124 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
125 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
126 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
127 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
128 INITIALIZE_PASS_DEPENDENCY(LCSSA
)
129 INITIALIZE_PASS_DEPENDENCY(IVUsers
)
130 INITIALIZE_PASS_END(IndVarSimplify
, "indvars",
131 "Canonicalize Induction Variables", false, false)
133 Pass
*llvm::createIndVarSimplifyPass() {
134 return new IndVarSimplify();
137 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
138 /// loop to be a canonical != comparison against the incremented loop induction
139 /// variable. This pass is able to rewrite the exit tests of any loop where the
140 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
141 /// is actually a much broader range than just linear tests.
142 ICmpInst
*IndVarSimplify::LinearFunctionTestReplace(Loop
*L
,
143 const SCEV
*BackedgeTakenCount
,
145 BasicBlock
*ExitingBlock
,
147 SCEVExpander
&Rewriter
) {
148 // Special case: If the backedge-taken count is a UDiv, it's very likely a
149 // UDiv that ScalarEvolution produced in order to compute a precise
150 // expression, rather than a UDiv from the user's code. If we can't find a
151 // UDiv in the code with some simple searching, assume the former and forego
152 // rewriting the loop.
153 if (isa
<SCEVUDivExpr
>(BackedgeTakenCount
)) {
154 ICmpInst
*OrigCond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
155 if (!OrigCond
) return 0;
156 const SCEV
*R
= SE
->getSCEV(OrigCond
->getOperand(1));
157 R
= SE
->getMinusSCEV(R
, SE
->getConstant(R
->getType(), 1));
158 if (R
!= BackedgeTakenCount
) {
159 const SCEV
*L
= SE
->getSCEV(OrigCond
->getOperand(0));
160 L
= SE
->getMinusSCEV(L
, SE
->getConstant(L
->getType(), 1));
161 if (L
!= BackedgeTakenCount
)
166 // If the exiting block is not the same as the backedge block, we must compare
167 // against the preincremented value, otherwise we prefer to compare against
168 // the post-incremented value.
170 const SCEV
*RHS
= BackedgeTakenCount
;
171 if (ExitingBlock
== L
->getLoopLatch()) {
172 // Add one to the "backedge-taken" count to get the trip count.
173 // If this addition may overflow, we have to be more pessimistic and
174 // cast the induction variable before doing the add.
175 const SCEV
*Zero
= SE
->getConstant(BackedgeTakenCount
->getType(), 0);
177 SE
->getAddExpr(BackedgeTakenCount
,
178 SE
->getConstant(BackedgeTakenCount
->getType(), 1));
179 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
180 SE
->isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
181 // No overflow. Cast the sum.
182 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
184 // Potential overflow. Cast before doing the add.
185 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
187 RHS
= SE
->getAddExpr(RHS
,
188 SE
->getConstant(IndVar
->getType(), 1));
191 // The BackedgeTaken expression contains the number of times that the
192 // backedge branches to the loop header. This is one less than the
193 // number of times the loop executes, so use the incremented indvar.
194 CmpIndVar
= IndVar
->getIncomingValueForBlock(ExitingBlock
);
196 // We have to use the preincremented value...
197 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
202 // Expand the code for the iteration count.
203 assert(RHS
->isLoopInvariant(L
) &&
204 "Computed iteration count is not loop invariant!");
205 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(), BI
);
207 // Insert a new icmp_ne or icmp_eq instruction before the branch.
208 ICmpInst::Predicate Opcode
;
209 if (L
->contains(BI
->getSuccessor(0)))
210 Opcode
= ICmpInst::ICMP_NE
;
212 Opcode
= ICmpInst::ICMP_EQ
;
214 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
215 << " LHS:" << *CmpIndVar
<< '\n'
217 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
218 << " RHS:\t" << *RHS
<< "\n");
220 ICmpInst
*Cond
= new ICmpInst(BI
, Opcode
, CmpIndVar
, ExitCnt
, "exitcond");
222 Value
*OrigCond
= BI
->getCondition();
223 // It's tempting to use replaceAllUsesWith here to fully replace the old
224 // comparison, but that's not immediately safe, since users of the old
225 // comparison may not be dominated by the new comparison. Instead, just
226 // update the branch to use the new comparison; in the common case this
227 // will make old comparison dead.
228 BI
->setCondition(Cond
);
229 RecursivelyDeleteTriviallyDeadInstructions(OrigCond
);
236 /// RewriteLoopExitValues - Check to see if this loop has a computable
237 /// loop-invariant execution count. If so, this means that we can compute the
238 /// final value of any expressions that are recurrent in the loop, and
239 /// substitute the exit values from the loop into any instructions outside of
240 /// the loop that use the final values of the current expressions.
242 /// This is mostly redundant with the regular IndVarSimplify activities that
243 /// happen later, except that it's more powerful in some cases, because it's
244 /// able to brute-force evaluate arbitrary instructions as long as they have
245 /// constant operands at the beginning of the loop.
246 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
,
247 SCEVExpander
&Rewriter
) {
248 // Verify the input to the pass in already in LCSSA form.
249 assert(L
->isLCSSAForm(*DT
));
251 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
252 L
->getUniqueExitBlocks(ExitBlocks
);
254 // Find all values that are computed inside the loop, but used outside of it.
255 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
256 // the exit blocks of the loop to find them.
257 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
258 BasicBlock
*ExitBB
= ExitBlocks
[i
];
260 // If there are no PHI nodes in this exit block, then no values defined
261 // inside the loop are used on this path, skip it.
262 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
265 unsigned NumPreds
= PN
->getNumIncomingValues();
267 // Iterate over all of the PHI nodes.
268 BasicBlock::iterator BBI
= ExitBB
->begin();
269 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
271 continue; // dead use, don't replace it
273 // SCEV only supports integer expressions for now.
274 if (!PN
->getType()->isIntegerTy() && !PN
->getType()->isPointerTy())
277 // It's necessary to tell ScalarEvolution about this explicitly so that
278 // it can walk the def-use list and forget all SCEVs, as it may not be
279 // watching the PHI itself. Once the new exit value is in place, there
280 // may not be a def-use connection between the loop and every instruction
281 // which got a SCEVAddRecExpr for that loop.
284 // Iterate over all of the values in all the PHI nodes.
285 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
286 // If the value being merged in is not integer or is not defined
287 // in the loop, skip it.
288 Value
*InVal
= PN
->getIncomingValue(i
);
289 if (!isa
<Instruction
>(InVal
))
292 // If this pred is for a subloop, not L itself, skip it.
293 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
294 continue; // The Block is in a subloop, skip it.
296 // Check that InVal is defined in the loop.
297 Instruction
*Inst
= cast
<Instruction
>(InVal
);
298 if (!L
->contains(Inst
))
301 // Okay, this instruction has a user outside of the current loop
302 // and varies predictably *inside* the loop. Evaluate the value it
303 // contains when the loop exits, if possible.
304 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
305 if (!ExitValue
->isLoopInvariant(L
))
311 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
313 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
<< '\n'
314 << " LoopVal = " << *Inst
<< "\n");
316 PN
->setIncomingValue(i
, ExitVal
);
318 // If this instruction is dead now, delete it.
319 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
322 // Completely replace a single-pred PHI. This is safe, because the
323 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
325 PN
->replaceAllUsesWith(ExitVal
);
326 RecursivelyDeleteTriviallyDeadInstructions(PN
);
330 // Clone the PHI and delete the original one. This lets IVUsers and
331 // any other maps purge the original user from their records.
332 PHINode
*NewPN
= cast
<PHINode
>(PN
->clone());
334 NewPN
->insertBefore(PN
);
335 PN
->replaceAllUsesWith(NewPN
);
336 PN
->eraseFromParent();
341 // The insertion point instruction may have been deleted; clear it out
342 // so that the rewriter doesn't trip over it later.
343 Rewriter
.clearInsertPoint();
346 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
347 // First step. Check to see if there are any floating-point recurrences.
348 // If there are, change them into integer recurrences, permitting analysis by
349 // the SCEV routines.
351 BasicBlock
*Header
= L
->getHeader();
353 SmallVector
<WeakVH
, 8> PHIs
;
354 for (BasicBlock::iterator I
= Header
->begin();
355 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
358 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
359 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(&*PHIs
[i
]))
360 HandleFloatingPointIV(L
, PN
);
362 // If the loop previously had floating-point IV, ScalarEvolution
363 // may not have been able to compute a trip count. Now that we've done some
364 // re-writing, the trip count may be computable.
369 void IndVarSimplify::EliminateIVComparisons() {
370 SmallVector
<WeakVH
, 16> DeadInsts
;
372 // Look for ICmp users.
373 for (IVUsers::iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
374 IVStrideUse
&UI
= *I
;
375 ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(UI
.getUser());
378 bool Swapped
= UI
.getOperandValToReplace() == ICmp
->getOperand(1);
379 ICmpInst::Predicate Pred
= ICmp
->getPredicate();
380 if (Swapped
) Pred
= ICmpInst::getSwappedPredicate(Pred
);
382 // Get the SCEVs for the ICmp operands.
383 const SCEV
*S
= IU
->getReplacementExpr(UI
);
384 const SCEV
*X
= SE
->getSCEV(ICmp
->getOperand(!Swapped
));
386 // Simplify unnecessary loops away.
387 const Loop
*ICmpLoop
= LI
->getLoopFor(ICmp
->getParent());
388 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
389 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
391 // If the condition is always true or always false, replace it with
393 if (SE
->isKnownPredicate(Pred
, S
, X
))
394 ICmp
->replaceAllUsesWith(ConstantInt::getTrue(ICmp
->getContext()));
395 else if (SE
->isKnownPredicate(ICmpInst::getInversePredicate(Pred
), S
, X
))
396 ICmp
->replaceAllUsesWith(ConstantInt::getFalse(ICmp
->getContext()));
400 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp
<< '\n');
401 DeadInsts
.push_back(ICmp
);
404 // Now that we're done iterating through lists, clean up any instructions
405 // which are now dead.
406 while (!DeadInsts
.empty())
407 if (Instruction
*Inst
=
408 dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val()))
409 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
412 void IndVarSimplify::EliminateIVRemainders() {
413 SmallVector
<WeakVH
, 16> DeadInsts
;
415 // Look for SRem and URem users.
416 for (IVUsers::iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
417 IVStrideUse
&UI
= *I
;
418 BinaryOperator
*Rem
= dyn_cast
<BinaryOperator
>(UI
.getUser());
421 bool isSigned
= Rem
->getOpcode() == Instruction::SRem
;
422 if (!isSigned
&& Rem
->getOpcode() != Instruction::URem
)
425 // We're only interested in the case where we know something about
427 if (UI
.getOperandValToReplace() != Rem
->getOperand(0))
430 // Get the SCEVs for the ICmp operands.
431 const SCEV
*S
= SE
->getSCEV(Rem
->getOperand(0));
432 const SCEV
*X
= SE
->getSCEV(Rem
->getOperand(1));
434 // Simplify unnecessary loops away.
435 const Loop
*ICmpLoop
= LI
->getLoopFor(Rem
->getParent());
436 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
437 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
439 // i % n --> i if i is in [0,n).
440 if ((!isSigned
|| SE
->isKnownNonNegative(S
)) &&
441 SE
->isKnownPredicate(isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
443 Rem
->replaceAllUsesWith(Rem
->getOperand(0));
445 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
446 const SCEV
*LessOne
=
447 SE
->getMinusSCEV(S
, SE
->getConstant(S
->getType(), 1));
448 if ((!isSigned
|| SE
->isKnownNonNegative(LessOne
)) &&
449 SE
->isKnownPredicate(isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
451 ICmpInst
*ICmp
= new ICmpInst(Rem
, ICmpInst::ICMP_EQ
,
452 Rem
->getOperand(0), Rem
->getOperand(1),
455 SelectInst::Create(ICmp
,
456 ConstantInt::get(Rem
->getType(), 0),
457 Rem
->getOperand(0), "tmp", Rem
);
458 Rem
->replaceAllUsesWith(Sel
);
463 // Inform IVUsers about the new users.
464 if (Instruction
*I
= dyn_cast
<Instruction
>(Rem
->getOperand(0)))
465 IU
->AddUsersIfInteresting(I
);
467 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem
<< '\n');
468 DeadInsts
.push_back(Rem
);
471 // Now that we're done iterating through lists, clean up any instructions
472 // which are now dead.
473 while (!DeadInsts
.empty())
474 if (Instruction
*Inst
=
475 dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val()))
476 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
479 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
480 // If LoopSimplify form is not available, stay out of trouble. Some notes:
481 // - LSR currently only supports LoopSimplify-form loops. Indvars'
482 // canonicalization can be a pessimization without LSR to "clean up"
484 // - We depend on having a preheader; in particular,
485 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
486 // and we're in trouble if we can't find the induction variable even when
487 // we've manually inserted one.
488 if (!L
->isLoopSimplifyForm())
491 IU
= &getAnalysis
<IVUsers
>();
492 LI
= &getAnalysis
<LoopInfo
>();
493 SE
= &getAnalysis
<ScalarEvolution
>();
494 DT
= &getAnalysis
<DominatorTree
>();
497 // If there are any floating-point recurrences, attempt to
498 // transform them to use integer recurrences.
499 RewriteNonIntegerIVs(L
);
501 BasicBlock
*ExitingBlock
= L
->getExitingBlock(); // may be null
502 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
504 // Create a rewriter object which we'll use to transform the code with.
505 SCEVExpander
Rewriter(*SE
);
507 // Check to see if this loop has a computable loop-invariant execution count.
508 // If so, this means that we can compute the final value of any expressions
509 // that are recurrent in the loop, and substitute the exit values from the
510 // loop into any instructions outside of the loop that use the final values of
511 // the current expressions.
513 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
514 RewriteLoopExitValues(L
, Rewriter
);
516 // Simplify ICmp IV users.
517 EliminateIVComparisons();
519 // Simplify SRem and URem IV users.
520 EliminateIVRemainders();
522 // Compute the type of the largest recurrence expression, and decide whether
523 // a canonical induction variable should be inserted.
524 const Type
*LargestType
= 0;
525 bool NeedCannIV
= false;
526 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
527 LargestType
= BackedgeTakenCount
->getType();
528 LargestType
= SE
->getEffectiveSCEVType(LargestType
);
529 // If we have a known trip count and a single exit block, we'll be
530 // rewriting the loop exit test condition below, which requires a
531 // canonical induction variable.
535 for (IVUsers::const_iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
537 SE
->getEffectiveSCEVType(I
->getOperandValToReplace()->getType());
539 SE
->getTypeSizeInBits(Ty
) >
540 SE
->getTypeSizeInBits(LargestType
))
545 // Now that we know the largest of the induction variable expressions
546 // in this loop, insert a canonical induction variable of the largest size.
549 // Check to see if the loop already has any canonical-looking induction
550 // variables. If any are present and wider than the planned canonical
551 // induction variable, temporarily remove them, so that the Rewriter
552 // doesn't attempt to reuse them.
553 SmallVector
<PHINode
*, 2> OldCannIVs
;
554 while (PHINode
*OldCannIV
= L
->getCanonicalInductionVariable()) {
555 if (SE
->getTypeSizeInBits(OldCannIV
->getType()) >
556 SE
->getTypeSizeInBits(LargestType
))
557 OldCannIV
->removeFromParent();
560 OldCannIVs
.push_back(OldCannIV
);
563 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
, LargestType
);
567 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar
<< '\n');
569 // Now that the official induction variable is established, reinsert
570 // any old canonical-looking variables after it so that the IR remains
571 // consistent. They will be deleted as part of the dead-PHI deletion at
572 // the end of the pass.
573 while (!OldCannIVs
.empty()) {
574 PHINode
*OldCannIV
= OldCannIVs
.pop_back_val();
575 OldCannIV
->insertBefore(L
->getHeader()->getFirstNonPHI());
579 // If we have a trip count expression, rewrite the loop's exit condition
580 // using it. We can currently only handle loops with a single exit.
581 ICmpInst
*NewICmp
= 0;
582 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
583 !BackedgeTakenCount
->isZero() &&
586 "LinearFunctionTestReplace requires a canonical induction variable");
587 // Can't rewrite non-branch yet.
588 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
589 NewICmp
= LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
590 ExitingBlock
, BI
, Rewriter
);
593 // Rewrite IV-derived expressions. Clears the rewriter cache.
594 RewriteIVExpressions(L
, Rewriter
);
596 // The Rewriter may not be used from this point on.
598 // Loop-invariant instructions in the preheader that aren't used in the
599 // loop may be sunk below the loop to reduce register pressure.
600 SinkUnusedInvariants(L
);
602 // For completeness, inform IVUsers of the IV use in the newly-created
603 // loop exit test instruction.
605 IU
->AddUsersIfInteresting(cast
<Instruction
>(NewICmp
->getOperand(0)));
607 // Clean up dead instructions.
608 Changed
|= DeleteDeadPHIs(L
->getHeader());
609 // Check a post-condition.
610 assert(L
->isLCSSAForm(*DT
) && "Indvars did not leave the loop in lcssa form!");
614 // FIXME: It is an extremely bad idea to indvar substitute anything more
615 // complex than affine induction variables. Doing so will put expensive
616 // polynomial evaluations inside of the loop, and the str reduction pass
617 // currently can only reduce affine polynomials. For now just disable
618 // indvar subst on anything more complex than an affine addrec, unless
619 // it can be expanded to a trivial value.
620 static bool isSafe(const SCEV
*S
, const Loop
*L
) {
621 // Loop-invariant values are safe.
622 if (S
->isLoopInvariant(L
)) return true;
624 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
625 // to transform them into efficient code.
626 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
627 return AR
->isAffine();
629 // An add is safe it all its operands are safe.
630 if (const SCEVCommutativeExpr
*Commutative
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
631 for (SCEVCommutativeExpr::op_iterator I
= Commutative
->op_begin(),
632 E
= Commutative
->op_end(); I
!= E
; ++I
)
633 if (!isSafe(*I
, L
)) return false;
637 // A cast is safe if its operand is.
638 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
639 return isSafe(C
->getOperand(), L
);
641 // A udiv is safe if its operands are.
642 if (const SCEVUDivExpr
*UD
= dyn_cast
<SCEVUDivExpr
>(S
))
643 return isSafe(UD
->getLHS(), L
) &&
644 isSafe(UD
->getRHS(), L
);
646 // SCEVUnknown is always safe.
647 if (isa
<SCEVUnknown
>(S
))
650 // Nothing else is safe.
654 void IndVarSimplify::RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
) {
655 SmallVector
<WeakVH
, 16> DeadInsts
;
657 // Rewrite all induction variable expressions in terms of the canonical
658 // induction variable.
660 // If there were induction variables of other sizes or offsets, manually
661 // add the offsets to the primary induction variable and cast, avoiding
662 // the need for the code evaluation methods to insert induction variables
663 // of different sizes.
664 for (IVUsers::iterator UI
= IU
->begin(), E
= IU
->end(); UI
!= E
; ++UI
) {
665 Value
*Op
= UI
->getOperandValToReplace();
666 const Type
*UseTy
= Op
->getType();
667 Instruction
*User
= UI
->getUser();
669 // Compute the final addrec to expand into code.
670 const SCEV
*AR
= IU
->getReplacementExpr(*UI
);
672 // Evaluate the expression out of the loop, if possible.
673 if (!L
->contains(UI
->getUser())) {
674 const SCEV
*ExitVal
= SE
->getSCEVAtScope(AR
, L
->getParentLoop());
675 if (ExitVal
->isLoopInvariant(L
))
679 // FIXME: It is an extremely bad idea to indvar substitute anything more
680 // complex than affine induction variables. Doing so will put expensive
681 // polynomial evaluations inside of the loop, and the str reduction pass
682 // currently can only reduce affine polynomials. For now just disable
683 // indvar subst on anything more complex than an affine addrec, unless
684 // it can be expanded to a trivial value.
688 // Determine the insertion point for this user. By default, insert
689 // immediately before the user. The SCEVExpander class will automatically
690 // hoist loop invariants out of the loop. For PHI nodes, there may be
691 // multiple uses, so compute the nearest common dominator for the
693 Instruction
*InsertPt
= User
;
694 if (PHINode
*PHI
= dyn_cast
<PHINode
>(InsertPt
))
695 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
)
696 if (PHI
->getIncomingValue(i
) == Op
) {
697 if (InsertPt
== User
)
698 InsertPt
= PHI
->getIncomingBlock(i
)->getTerminator();
701 DT
->findNearestCommonDominator(InsertPt
->getParent(),
702 PHI
->getIncomingBlock(i
))
706 // Now expand it into actual Instructions and patch it into place.
707 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, UseTy
, InsertPt
);
709 // Inform ScalarEvolution that this value is changing. The change doesn't
710 // affect its value, but it does potentially affect which use lists the
711 // value will be on after the replacement, which affects ScalarEvolution's
712 // ability to walk use lists and drop dangling pointers when a value is
714 SE
->forgetValue(User
);
716 // Patch the new value into place.
718 NewVal
->takeName(Op
);
719 User
->replaceUsesOfWith(Op
, NewVal
);
720 UI
->setOperandValToReplace(NewVal
);
721 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR
<< "' " << *Op
<< '\n'
722 << " into = " << *NewVal
<< "\n");
726 // The old value may be dead now.
727 DeadInsts
.push_back(Op
);
730 // Clear the rewriter cache, because values that are in the rewriter's cache
731 // can be deleted in the loop below, causing the AssertingVH in the cache to
734 // Now that we're done iterating through lists, clean up any instructions
735 // which are now dead.
736 while (!DeadInsts
.empty())
737 if (Instruction
*Inst
=
738 dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val()))
739 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
742 /// If there's a single exit block, sink any loop-invariant values that
743 /// were defined in the preheader but not used inside the loop into the
744 /// exit block to reduce register pressure in the loop.
745 void IndVarSimplify::SinkUnusedInvariants(Loop
*L
) {
746 BasicBlock
*ExitBlock
= L
->getExitBlock();
747 if (!ExitBlock
) return;
749 BasicBlock
*Preheader
= L
->getLoopPreheader();
750 if (!Preheader
) return;
752 Instruction
*InsertPt
= ExitBlock
->getFirstNonPHI();
753 BasicBlock::iterator I
= Preheader
->getTerminator();
754 while (I
!= Preheader
->begin()) {
756 // New instructions were inserted at the end of the preheader.
760 // Don't move instructions which might have side effects, since the side
761 // effects need to complete before instructions inside the loop. Also don't
762 // move instructions which might read memory, since the loop may modify
763 // memory. Note that it's okay if the instruction might have undefined
764 // behavior: LoopSimplify guarantees that the preheader dominates the exit
766 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
769 // Skip debug info intrinsics.
770 if (isa
<DbgInfoIntrinsic
>(I
))
773 // Don't sink static AllocaInsts out of the entry block, which would
774 // turn them into dynamic allocas!
775 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
776 if (AI
->isStaticAlloca())
779 // Determine if there is a use in or before the loop (direct or
781 bool UsedInLoop
= false;
782 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
785 BasicBlock
*UseBB
= cast
<Instruction
>(U
)->getParent();
786 if (PHINode
*P
= dyn_cast
<PHINode
>(U
)) {
788 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo());
789 UseBB
= P
->getIncomingBlock(i
);
791 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
797 // If there is, the def must remain in the preheader.
801 // Otherwise, sink it to the exit block.
802 Instruction
*ToMove
= I
;
805 if (I
!= Preheader
->begin()) {
806 // Skip debug info intrinsics.
809 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= Preheader
->begin());
811 if (isa
<DbgInfoIntrinsic
>(I
) && I
== Preheader
->begin())
817 ToMove
->moveBefore(InsertPt
);
823 /// ConvertToSInt - Convert APF to an integer, if possible.
824 static bool ConvertToSInt(const APFloat
&APF
, int64_t &IntVal
) {
825 bool isExact
= false;
826 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
828 // See if we can convert this to an int64_t
830 if (APF
.convertToInteger(&UIntVal
, 64, true, APFloat::rmTowardZero
,
831 &isExact
) != APFloat::opOK
|| !isExact
)
837 /// HandleFloatingPointIV - If the loop has floating induction variable
838 /// then insert corresponding integer induction variable if possible.
840 /// for(double i = 0; i < 10000; ++i)
842 /// is converted into
843 /// for(int i = 0; i < 10000; ++i)
846 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PN
) {
847 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
848 unsigned BackEdge
= IncomingEdge
^1;
850 // Check incoming value.
851 ConstantFP
*InitValueVal
=
852 dyn_cast
<ConstantFP
>(PN
->getIncomingValue(IncomingEdge
));
855 if (!InitValueVal
|| !ConvertToSInt(InitValueVal
->getValueAPF(), InitValue
))
858 // Check IV increment. Reject this PN if increment operation is not
859 // an add or increment value can not be represented by an integer.
860 BinaryOperator
*Incr
=
861 dyn_cast
<BinaryOperator
>(PN
->getIncomingValue(BackEdge
));
862 if (Incr
== 0 || Incr
->getOpcode() != Instruction::FAdd
) return;
864 // If this is not an add of the PHI with a constantfp, or if the constant fp
865 // is not an integer, bail out.
866 ConstantFP
*IncValueVal
= dyn_cast
<ConstantFP
>(Incr
->getOperand(1));
868 if (IncValueVal
== 0 || Incr
->getOperand(0) != PN
||
869 !ConvertToSInt(IncValueVal
->getValueAPF(), IncValue
))
872 // Check Incr uses. One user is PN and the other user is an exit condition
873 // used by the conditional terminator.
874 Value::use_iterator IncrUse
= Incr
->use_begin();
875 Instruction
*U1
= cast
<Instruction
>(*IncrUse
++);
876 if (IncrUse
== Incr
->use_end()) return;
877 Instruction
*U2
= cast
<Instruction
>(*IncrUse
++);
878 if (IncrUse
!= Incr
->use_end()) return;
880 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
881 // only used by a branch, we can't transform it.
882 FCmpInst
*Compare
= dyn_cast
<FCmpInst
>(U1
);
884 Compare
= dyn_cast
<FCmpInst
>(U2
);
885 if (Compare
== 0 || !Compare
->hasOneUse() ||
886 !isa
<BranchInst
>(Compare
->use_back()))
889 BranchInst
*TheBr
= cast
<BranchInst
>(Compare
->use_back());
891 // We need to verify that the branch actually controls the iteration count
892 // of the loop. If not, the new IV can overflow and no one will notice.
893 // The branch block must be in the loop and one of the successors must be out
895 assert(TheBr
->isConditional() && "Can't use fcmp if not conditional");
896 if (!L
->contains(TheBr
->getParent()) ||
897 (L
->contains(TheBr
->getSuccessor(0)) &&
898 L
->contains(TheBr
->getSuccessor(1))))
902 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
904 ConstantFP
*ExitValueVal
= dyn_cast
<ConstantFP
>(Compare
->getOperand(1));
906 if (ExitValueVal
== 0 ||
907 !ConvertToSInt(ExitValueVal
->getValueAPF(), ExitValue
))
910 // Find new predicate for integer comparison.
911 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
912 switch (Compare
->getPredicate()) {
913 default: return; // Unknown comparison.
914 case CmpInst::FCMP_OEQ
:
915 case CmpInst::FCMP_UEQ
: NewPred
= CmpInst::ICMP_EQ
; break;
916 case CmpInst::FCMP_ONE
:
917 case CmpInst::FCMP_UNE
: NewPred
= CmpInst::ICMP_NE
; break;
918 case CmpInst::FCMP_OGT
:
919 case CmpInst::FCMP_UGT
: NewPred
= CmpInst::ICMP_SGT
; break;
920 case CmpInst::FCMP_OGE
:
921 case CmpInst::FCMP_UGE
: NewPred
= CmpInst::ICMP_SGE
; break;
922 case CmpInst::FCMP_OLT
:
923 case CmpInst::FCMP_ULT
: NewPred
= CmpInst::ICMP_SLT
; break;
924 case CmpInst::FCMP_OLE
:
925 case CmpInst::FCMP_ULE
: NewPred
= CmpInst::ICMP_SLE
; break;
928 // We convert the floating point induction variable to a signed i32 value if
929 // we can. This is only safe if the comparison will not overflow in a way
930 // that won't be trapped by the integer equivalent operations. Check for this
932 // TODO: We could use i64 if it is native and the range requires it.
934 // The start/stride/exit values must all fit in signed i32.
935 if (!isInt
<32>(InitValue
) || !isInt
<32>(IncValue
) || !isInt
<32>(ExitValue
))
938 // If not actually striding (add x, 0.0), avoid touching the code.
942 // Positive and negative strides have different safety conditions.
944 // If we have a positive stride, we require the init to be less than the
945 // exit value and an equality or less than comparison.
946 if (InitValue
>= ExitValue
||
947 NewPred
== CmpInst::ICMP_SGT
|| NewPred
== CmpInst::ICMP_SGE
)
950 uint32_t Range
= uint32_t(ExitValue
-InitValue
);
951 if (NewPred
== CmpInst::ICMP_SLE
) {
952 // Normalize SLE -> SLT, check for infinite loop.
953 if (++Range
== 0) return; // Range overflows.
956 unsigned Leftover
= Range
% uint32_t(IncValue
);
958 // If this is an equality comparison, we require that the strided value
959 // exactly land on the exit value, otherwise the IV condition will wrap
960 // around and do things the fp IV wouldn't.
961 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
965 // If the stride would wrap around the i32 before exiting, we can't
967 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) < ExitValue
)
971 // If we have a negative stride, we require the init to be greater than the
972 // exit value and an equality or greater than comparison.
973 if (InitValue
>= ExitValue
||
974 NewPred
== CmpInst::ICMP_SLT
|| NewPred
== CmpInst::ICMP_SLE
)
977 uint32_t Range
= uint32_t(InitValue
-ExitValue
);
978 if (NewPred
== CmpInst::ICMP_SGE
) {
979 // Normalize SGE -> SGT, check for infinite loop.
980 if (++Range
== 0) return; // Range overflows.
983 unsigned Leftover
= Range
% uint32_t(-IncValue
);
985 // If this is an equality comparison, we require that the strided value
986 // exactly land on the exit value, otherwise the IV condition will wrap
987 // around and do things the fp IV wouldn't.
988 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
992 // If the stride would wrap around the i32 before exiting, we can't
994 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) > ExitValue
)
998 const IntegerType
*Int32Ty
= Type::getInt32Ty(PN
->getContext());
1000 // Insert new integer induction variable.
1001 PHINode
*NewPHI
= PHINode::Create(Int32Ty
, PN
->getName()+".int", PN
);
1002 NewPHI
->addIncoming(ConstantInt::get(Int32Ty
, InitValue
),
1003 PN
->getIncomingBlock(IncomingEdge
));
1006 BinaryOperator::CreateAdd(NewPHI
, ConstantInt::get(Int32Ty
, IncValue
),
1007 Incr
->getName()+".int", Incr
);
1008 NewPHI
->addIncoming(NewAdd
, PN
->getIncomingBlock(BackEdge
));
1010 ICmpInst
*NewCompare
= new ICmpInst(TheBr
, NewPred
, NewAdd
,
1011 ConstantInt::get(Int32Ty
, ExitValue
),
1012 Compare
->getName());
1014 // In the following deletions, PN may become dead and may be deleted.
1015 // Use a WeakVH to observe whether this happens.
1018 // Delete the old floating point exit comparison. The branch starts using the
1020 NewCompare
->takeName(Compare
);
1021 Compare
->replaceAllUsesWith(NewCompare
);
1022 RecursivelyDeleteTriviallyDeadInstructions(Compare
);
1024 // Delete the old floating point increment.
1025 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
1026 RecursivelyDeleteTriviallyDeadInstructions(Incr
);
1028 // If the FP induction variable still has uses, this is because something else
1029 // in the loop uses its value. In order to canonicalize the induction
1030 // variable, we chose to eliminate the IV and rewrite it in terms of an
1033 // We give preference to sitofp over uitofp because it is faster on most
1036 Value
*Conv
= new SIToFPInst(NewPHI
, PN
->getType(), "indvar.conv",
1037 PN
->getParent()->getFirstNonPHI());
1038 PN
->replaceAllUsesWith(Conv
);
1039 RecursivelyDeleteTriviallyDeadInstructions(PN
);
1042 // Add a new IVUsers entry for the newly-created integer PHI.
1043 IU
->AddUsersIfInteresting(NewPHI
);