1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
38 STATISTIC(NumThreads
, "Number of jumps threaded");
39 STATISTIC(NumFolds
, "Number of terminators folded");
40 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
42 static cl::opt
<unsigned>
43 Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden
);
48 /// This pass performs 'jump threading', which looks at blocks that have
49 /// multiple predecessors and multiple successors. If one or more of the
50 /// predecessors of the block can be proven to always jump to one of the
51 /// successors, we forward the edge from the predecessor to the successor by
52 /// duplicating the contents of this block.
54 /// An example of when this can occur is code like this:
61 /// In this case, the unconditional branch at the end of the first if can be
62 /// revectored to the false side of the second if.
64 class JumpThreading
: public FunctionPass
{
68 SmallPtrSet
<BasicBlock
*, 16> LoopHeaders
;
70 SmallSet
<AssertingVH
<BasicBlock
>, 16> LoopHeaders
;
72 DenseSet
<std::pair
<Value
*, BasicBlock
*> > RecursionSet
;
74 // RAII helper for updating the recursion stack.
75 struct RecursionSetRemover
{
76 DenseSet
<std::pair
<Value
*, BasicBlock
*> > &TheSet
;
77 std::pair
<Value
*, BasicBlock
*> ThePair
;
79 RecursionSetRemover(DenseSet
<std::pair
<Value
*, BasicBlock
*> > &S
,
80 std::pair
<Value
*, BasicBlock
*> P
)
81 : TheSet(S
), ThePair(P
) { }
83 ~RecursionSetRemover() {
84 TheSet
.erase(ThePair
);
88 static char ID
; // Pass identification
89 JumpThreading() : FunctionPass(ID
) {
90 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
93 bool runOnFunction(Function
&F
);
95 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
96 AU
.addRequired
<LazyValueInfo
>();
97 AU
.addPreserved
<LazyValueInfo
>();
100 void FindLoopHeaders(Function
&F
);
101 bool ProcessBlock(BasicBlock
*BB
);
102 bool ThreadEdge(BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
104 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
105 const SmallVectorImpl
<BasicBlock
*> &PredBBs
);
107 typedef SmallVectorImpl
<std::pair
<ConstantInt
*,
108 BasicBlock
*> > PredValueInfo
;
110 bool ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
,
111 PredValueInfo
&Result
);
112 bool ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
);
115 bool ProcessBranchOnDuplicateCond(BasicBlock
*PredBB
, BasicBlock
*DestBB
);
116 bool ProcessSwitchOnDuplicateCond(BasicBlock
*PredBB
, BasicBlock
*DestBB
);
118 bool ProcessBranchOnPHI(PHINode
*PN
);
119 bool ProcessBranchOnXOR(BinaryOperator
*BO
);
121 bool SimplifyPartiallyRedundantLoad(LoadInst
*LI
);
125 char JumpThreading::ID
= 0;
126 INITIALIZE_PASS_BEGIN(JumpThreading
, "jump-threading",
127 "Jump Threading", false, false)
128 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo
)
129 INITIALIZE_PASS_END(JumpThreading
, "jump-threading",
130 "Jump Threading", false, false)
132 // Public interface to the Jump Threading pass
133 FunctionPass
*llvm::createJumpThreadingPass() { return new JumpThreading(); }
135 /// runOnFunction - Top level algorithm.
137 bool JumpThreading::runOnFunction(Function
&F
) {
138 DEBUG(dbgs() << "Jump threading on function '" << F
.getName() << "'\n");
139 TD
= getAnalysisIfAvailable
<TargetData
>();
140 LVI
= &getAnalysis
<LazyValueInfo
>();
144 bool Changed
, EverChanged
= false;
147 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
;) {
149 // Thread all of the branches we can over this block.
150 while (ProcessBlock(BB
))
155 // If the block is trivially dead, zap it. This eliminates the successor
156 // edges which simplifies the CFG.
157 if (pred_begin(BB
) == pred_end(BB
) &&
158 BB
!= &BB
->getParent()->getEntryBlock()) {
159 DEBUG(dbgs() << " JT: Deleting dead block '" << BB
->getName()
160 << "' with terminator: " << *BB
->getTerminator() << '\n');
161 LoopHeaders
.erase(BB
);
165 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
166 // Can't thread an unconditional jump, but if the block is "almost
167 // empty", we can replace uses of it with uses of the successor and make
169 if (BI
->isUnconditional() &&
170 BB
!= &BB
->getParent()->getEntryBlock()) {
171 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
172 // Ignore dbg intrinsics.
173 while (isa
<DbgInfoIntrinsic
>(BBI
))
175 // If the terminator is the only non-phi instruction, try to nuke it.
176 if (BBI
->isTerminator()) {
177 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
178 // block, we have to make sure it isn't in the LoopHeaders set. We
179 // reinsert afterward if needed.
180 bool ErasedFromLoopHeaders
= LoopHeaders
.erase(BB
);
181 BasicBlock
*Succ
= BI
->getSuccessor(0);
183 // FIXME: It is always conservatively correct to drop the info
184 // for a block even if it doesn't get erased. This isn't totally
185 // awesome, but it allows us to use AssertingVH to prevent nasty
186 // dangling pointer issues within LazyValueInfo.
188 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
)) {
190 // If we deleted BB and BB was the header of a loop, then the
191 // successor is now the header of the loop.
195 if (ErasedFromLoopHeaders
)
196 LoopHeaders
.insert(BB
);
201 EverChanged
|= Changed
;
208 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
209 /// thread across it.
210 static unsigned getJumpThreadDuplicationCost(const BasicBlock
*BB
) {
211 /// Ignore PHI nodes, these will be flattened when duplication happens.
212 BasicBlock::const_iterator I
= BB
->getFirstNonPHI();
214 // FIXME: THREADING will delete values that are just used to compute the
215 // branch, so they shouldn't count against the duplication cost.
218 // Sum up the cost of each instruction until we get to the terminator. Don't
219 // include the terminator because the copy won't include it.
221 for (; !isa
<TerminatorInst
>(I
); ++I
) {
222 // Debugger intrinsics don't incur code size.
223 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
225 // If this is a pointer->pointer bitcast, it is free.
226 if (isa
<BitCastInst
>(I
) && I
->getType()->isPointerTy())
229 // All other instructions count for at least one unit.
232 // Calls are more expensive. If they are non-intrinsic calls, we model them
233 // as having cost of 4. If they are a non-vector intrinsic, we model them
234 // as having cost of 2 total, and if they are a vector intrinsic, we model
235 // them as having cost 1.
236 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
237 if (!isa
<IntrinsicInst
>(CI
))
239 else if (!CI
->getType()->isVectorTy())
244 // Threading through a switch statement is particularly profitable. If this
245 // block ends in a switch, decrease its cost to make it more likely to happen.
246 if (isa
<SwitchInst
>(I
))
247 Size
= Size
> 6 ? Size
-6 : 0;
252 /// FindLoopHeaders - We do not want jump threading to turn proper loop
253 /// structures into irreducible loops. Doing this breaks up the loop nesting
254 /// hierarchy and pessimizes later transformations. To prevent this from
255 /// happening, we first have to find the loop headers. Here we approximate this
256 /// by finding targets of backedges in the CFG.
258 /// Note that there definitely are cases when we want to allow threading of
259 /// edges across a loop header. For example, threading a jump from outside the
260 /// loop (the preheader) to an exit block of the loop is definitely profitable.
261 /// It is also almost always profitable to thread backedges from within the loop
262 /// to exit blocks, and is often profitable to thread backedges to other blocks
263 /// within the loop (forming a nested loop). This simple analysis is not rich
264 /// enough to track all of these properties and keep it up-to-date as the CFG
265 /// mutates, so we don't allow any of these transformations.
267 void JumpThreading::FindLoopHeaders(Function
&F
) {
268 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
269 FindFunctionBackedges(F
, Edges
);
271 for (unsigned i
= 0, e
= Edges
.size(); i
!= e
; ++i
)
272 LoopHeaders
.insert(const_cast<BasicBlock
*>(Edges
[i
].second
));
275 // Helper method for ComputeValueKnownInPredecessors. If Value is a
276 // ConstantInt, push it. If it's an undef, push 0. Otherwise, do nothing.
277 static void PushConstantIntOrUndef(SmallVectorImpl
<std::pair
<ConstantInt
*,
278 BasicBlock
*> > &Result
,
279 Constant
*Value
, BasicBlock
* BB
){
280 if (ConstantInt
*FoldedCInt
= dyn_cast
<ConstantInt
>(Value
))
281 Result
.push_back(std::make_pair(FoldedCInt
, BB
));
282 else if (isa
<UndefValue
>(Value
))
283 Result
.push_back(std::make_pair((ConstantInt
*)0, BB
));
286 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
287 /// if we can infer that the value is a known ConstantInt in any of our
288 /// predecessors. If so, return the known list of value and pred BB in the
289 /// result vector. If a value is known to be undef, it is returned as null.
291 /// This returns true if there were any known values.
294 ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
,PredValueInfo
&Result
){
295 // This method walks up use-def chains recursively. Because of this, we could
296 // get into an infinite loop going around loops in the use-def chain. To
297 // prevent this, keep track of what (value, block) pairs we've already visited
298 // and terminate the search if we loop back to them
299 if (!RecursionSet
.insert(std::make_pair(V
, BB
)).second
)
302 // An RAII help to remove this pair from the recursion set once the recursion
303 // stack pops back out again.
304 RecursionSetRemover
remover(RecursionSet
, std::make_pair(V
, BB
));
306 // If V is a constantint, then it is known in all predecessors.
307 if (isa
<ConstantInt
>(V
) || isa
<UndefValue
>(V
)) {
308 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
310 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
311 Result
.push_back(std::make_pair(CI
, *PI
));
316 // If V is a non-instruction value, or an instruction in a different block,
317 // then it can't be derived from a PHI.
318 Instruction
*I
= dyn_cast
<Instruction
>(V
);
319 if (I
== 0 || I
->getParent() != BB
) {
321 // Okay, if this is a live-in value, see if it has a known value at the end
322 // of any of our predecessors.
324 // FIXME: This should be an edge property, not a block end property.
325 /// TODO: Per PR2563, we could infer value range information about a
326 /// predecessor based on its terminator.
328 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
329 // "I" is a non-local compare-with-a-constant instruction. This would be
330 // able to handle value inequalities better, for example if the compare is
331 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
332 // Perhaps getConstantOnEdge should be smart enough to do this?
334 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
336 // If the value is known by LazyValueInfo to be a constant in a
337 // predecessor, use that information to try to thread this block.
338 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
);
340 (!isa
<ConstantInt
>(PredCst
) && !isa
<UndefValue
>(PredCst
)))
343 Result
.push_back(std::make_pair(dyn_cast
<ConstantInt
>(PredCst
), P
));
346 return !Result
.empty();
349 /// If I is a PHI node, then we know the incoming values for any constants.
350 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
351 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
352 Value
*InVal
= PN
->getIncomingValue(i
);
353 if (isa
<ConstantInt
>(InVal
) || isa
<UndefValue
>(InVal
)) {
354 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(InVal
);
355 Result
.push_back(std::make_pair(CI
, PN
->getIncomingBlock(i
)));
357 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
358 PN
->getIncomingBlock(i
), BB
);
359 // LVI returns null is no value could be determined.
361 PushConstantIntOrUndef(Result
, CI
, PN
->getIncomingBlock(i
));
365 return !Result
.empty();
368 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 8> LHSVals
, RHSVals
;
370 // Handle some boolean conditions.
371 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
373 // X & false -> false
374 if (I
->getOpcode() == Instruction::Or
||
375 I
->getOpcode() == Instruction::And
) {
376 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
);
377 ComputeValueKnownInPredecessors(I
->getOperand(1), BB
, RHSVals
);
379 if (LHSVals
.empty() && RHSVals
.empty())
382 ConstantInt
*InterestingVal
;
383 if (I
->getOpcode() == Instruction::Or
)
384 InterestingVal
= ConstantInt::getTrue(I
->getContext());
386 InterestingVal
= ConstantInt::getFalse(I
->getContext());
388 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
390 // Scan for the sentinel. If we find an undef, force it to the
391 // interesting value: x|undef -> true and x&undef -> false.
392 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
)
393 if (LHSVals
[i
].first
== InterestingVal
|| LHSVals
[i
].first
== 0) {
394 Result
.push_back(LHSVals
[i
]);
395 Result
.back().first
= InterestingVal
;
396 LHSKnownBBs
.insert(LHSVals
[i
].second
);
398 for (unsigned i
= 0, e
= RHSVals
.size(); i
!= e
; ++i
)
399 if (RHSVals
[i
].first
== InterestingVal
|| RHSVals
[i
].first
== 0) {
400 // If we already inferred a value for this block on the LHS, don't
402 if (!LHSKnownBBs
.count(RHSVals
[i
].second
)) {
403 Result
.push_back(RHSVals
[i
]);
404 Result
.back().first
= InterestingVal
;
408 return !Result
.empty();
411 // Handle the NOT form of XOR.
412 if (I
->getOpcode() == Instruction::Xor
&&
413 isa
<ConstantInt
>(I
->getOperand(1)) &&
414 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
415 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, Result
);
419 // Invert the known values.
420 for (unsigned i
= 0, e
= Result
.size(); i
!= e
; ++i
)
423 cast
<ConstantInt
>(ConstantExpr::getNot(Result
[i
].first
));
428 // Try to simplify some other binary operator values.
429 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
430 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
431 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 8> LHSVals
;
432 ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, LHSVals
);
434 // Try to use constant folding to simplify the binary operator.
435 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
436 Constant
*V
= LHSVals
[i
].first
;
437 if (V
== 0) V
= UndefValue::get(BO
->getType());
438 Constant
*Folded
= ConstantExpr::get(BO
->getOpcode(), V
, CI
);
440 PushConstantIntOrUndef(Result
, Folded
, LHSVals
[i
].second
);
444 return !Result
.empty();
447 // Handle compare with phi operand, where the PHI is defined in this block.
448 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
449 PHINode
*PN
= dyn_cast
<PHINode
>(Cmp
->getOperand(0));
450 if (PN
&& PN
->getParent() == BB
) {
451 // We can do this simplification if any comparisons fold to true or false.
453 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
454 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
455 Value
*LHS
= PN
->getIncomingValue(i
);
456 Value
*RHS
= Cmp
->getOperand(1)->DoPHITranslation(BB
, PredBB
);
458 Value
*Res
= SimplifyCmpInst(Cmp
->getPredicate(), LHS
, RHS
, TD
);
460 if (!isa
<Constant
>(RHS
))
463 LazyValueInfo::Tristate
464 ResT
= LVI
->getPredicateOnEdge(Cmp
->getPredicate(), LHS
,
465 cast
<Constant
>(RHS
), PredBB
, BB
);
466 if (ResT
== LazyValueInfo::Unknown
)
468 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
471 if (Constant
*ConstRes
= dyn_cast
<Constant
>(Res
))
472 PushConstantIntOrUndef(Result
, ConstRes
, PredBB
);
475 return !Result
.empty();
479 // If comparing a live-in value against a constant, see if we know the
480 // live-in value on any predecessors.
481 if (isa
<Constant
>(Cmp
->getOperand(1)) && Cmp
->getType()->isIntegerTy()) {
482 if (!isa
<Instruction
>(Cmp
->getOperand(0)) ||
483 cast
<Instruction
>(Cmp
->getOperand(0))->getParent() != BB
) {
484 Constant
*RHSCst
= cast
<Constant
>(Cmp
->getOperand(1));
486 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
);PI
!= E
; ++PI
){
488 // If the value is known by LazyValueInfo to be a constant in a
489 // predecessor, use that information to try to thread this block.
490 LazyValueInfo::Tristate Res
=
491 LVI
->getPredicateOnEdge(Cmp
->getPredicate(), Cmp
->getOperand(0),
493 if (Res
== LazyValueInfo::Unknown
)
496 Constant
*ResC
= ConstantInt::get(Cmp
->getType(), Res
);
497 Result
.push_back(std::make_pair(cast
<ConstantInt
>(ResC
), P
));
500 return !Result
.empty();
503 // Try to find a constant value for the LHS of a comparison,
504 // and evaluate it statically if we can.
505 if (Constant
*CmpConst
= dyn_cast
<Constant
>(Cmp
->getOperand(1))) {
506 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 8> LHSVals
;
507 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
);
509 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
510 Constant
*V
= LHSVals
[i
].first
;
511 if (V
== 0) V
= UndefValue::get(CmpConst
->getType());
512 Constant
*Folded
= ConstantExpr::getCompare(Cmp
->getPredicate(),
514 PushConstantIntOrUndef(Result
, Folded
, LHSVals
[i
].second
);
517 return !Result
.empty();
522 // If all else fails, see if LVI can figure out a constant value for us.
523 Constant
*CI
= LVI
->getConstant(V
, BB
);
524 ConstantInt
*CInt
= dyn_cast_or_null
<ConstantInt
>(CI
);
526 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
527 Result
.push_back(std::make_pair(CInt
, *PI
));
530 return !Result
.empty();
535 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
536 /// in an undefined jump, decide which block is best to revector to.
538 /// Since we can pick an arbitrary destination, we pick the successor with the
539 /// fewest predecessors. This should reduce the in-degree of the others.
541 static unsigned GetBestDestForJumpOnUndef(BasicBlock
*BB
) {
542 TerminatorInst
*BBTerm
= BB
->getTerminator();
543 unsigned MinSucc
= 0;
544 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
545 // Compute the successor with the minimum number of predecessors.
546 unsigned MinNumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
547 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
548 TestBB
= BBTerm
->getSuccessor(i
);
549 unsigned NumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
550 if (NumPreds
< MinNumPreds
)
557 /// ProcessBlock - If there are any predecessors whose control can be threaded
558 /// through to a successor, transform them now.
559 bool JumpThreading::ProcessBlock(BasicBlock
*BB
) {
560 // If the block is trivially dead, just return and let the caller nuke it.
561 // This simplifies other transformations.
562 if (pred_begin(BB
) == pred_end(BB
) &&
563 BB
!= &BB
->getParent()->getEntryBlock())
566 // If this block has a single predecessor, and if that pred has a single
567 // successor, merge the blocks. This encourages recursive jump threading
568 // because now the condition in this block can be threaded through
569 // predecessors of our predecessor block.
570 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor()) {
571 if (SinglePred
->getTerminator()->getNumSuccessors() == 1 &&
573 // If SinglePred was a loop header, BB becomes one.
574 if (LoopHeaders
.erase(SinglePred
))
575 LoopHeaders
.insert(BB
);
577 // Remember if SinglePred was the entry block of the function. If so, we
578 // will need to move BB back to the entry position.
579 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
580 LVI
->eraseBlock(SinglePred
);
581 MergeBasicBlockIntoOnlyPred(BB
);
583 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
584 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
589 // Look to see if the terminator is a branch of switch, if not we can't thread
592 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
593 // Can't thread an unconditional jump.
594 if (BI
->isUnconditional()) return false;
595 Condition
= BI
->getCondition();
596 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
597 Condition
= SI
->getCondition();
599 return false; // Must be an invoke.
601 // If the terminator of this block is branching on a constant, simplify the
602 // terminator to an unconditional branch. This can occur due to threading in
604 if (isa
<ConstantInt
>(Condition
)) {
605 DEBUG(dbgs() << " In block '" << BB
->getName()
606 << "' folding terminator: " << *BB
->getTerminator() << '\n');
608 ConstantFoldTerminator(BB
);
612 // If the terminator is branching on an undef, we can pick any of the
613 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
614 if (isa
<UndefValue
>(Condition
)) {
615 unsigned BestSucc
= GetBestDestForJumpOnUndef(BB
);
617 // Fold the branch/switch.
618 TerminatorInst
*BBTerm
= BB
->getTerminator();
619 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
620 if (i
== BestSucc
) continue;
621 BBTerm
->getSuccessor(i
)->removePredecessor(BB
, true);
624 DEBUG(dbgs() << " In block '" << BB
->getName()
625 << "' folding undef terminator: " << *BBTerm
<< '\n');
626 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
627 BBTerm
->eraseFromParent();
631 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
633 // All the rest of our checks depend on the condition being an instruction.
635 // FIXME: Unify this with code below.
636 if (ProcessThreadableEdges(Condition
, BB
))
642 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
643 // For a comparison where the LHS is outside this block, it's possible
644 // that we've branched on it before. Used LVI to see if we can simplify
645 // the branch based on that.
646 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
647 Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1));
648 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
649 if (CondBr
&& CondConst
&& CondBr
->isConditional() && PI
!= PE
&&
650 (!isa
<Instruction
>(CondCmp
->getOperand(0)) ||
651 cast
<Instruction
>(CondCmp
->getOperand(0))->getParent() != BB
)) {
652 // For predecessor edge, determine if the comparison is true or false
653 // on that edge. If they're all true or all false, we can simplify the
655 // FIXME: We could handle mixed true/false by duplicating code.
656 LazyValueInfo::Tristate Baseline
=
657 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
659 if (Baseline
!= LazyValueInfo::Unknown
) {
660 // Check that all remaining incoming values match the first one.
662 LazyValueInfo::Tristate Ret
=
663 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(),
664 CondCmp
->getOperand(0), CondConst
, *PI
, BB
);
665 if (Ret
!= Baseline
) break;
668 // If we terminated early, then one of the values didn't match.
670 unsigned ToRemove
= Baseline
== LazyValueInfo::True
? 1 : 0;
671 unsigned ToKeep
= Baseline
== LazyValueInfo::True
? 0 : 1;
672 CondBr
->getSuccessor(ToRemove
)->removePredecessor(BB
, true);
673 BranchInst::Create(CondBr
->getSuccessor(ToKeep
), CondBr
);
674 CondBr
->eraseFromParent();
681 // Check for some cases that are worth simplifying. Right now we want to look
682 // for loads that are used by a switch or by the condition for the branch. If
683 // we see one, check to see if it's partially redundant. If so, insert a PHI
684 // which can then be used to thread the values.
686 Value
*SimplifyValue
= CondInst
;
687 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
688 if (isa
<Constant
>(CondCmp
->getOperand(1)))
689 SimplifyValue
= CondCmp
->getOperand(0);
691 // TODO: There are other places where load PRE would be profitable, such as
692 // more complex comparisons.
693 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SimplifyValue
))
694 if (SimplifyPartiallyRedundantLoad(LI
))
698 // Handle a variety of cases where we are branching on something derived from
699 // a PHI node in the current block. If we can prove that any predecessors
700 // compute a predictable value based on a PHI node, thread those predecessors.
702 if (ProcessThreadableEdges(CondInst
, BB
))
705 // If this is an otherwise-unfoldable branch on a phi node in the current
706 // block, see if we can simplify.
707 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
708 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
709 return ProcessBranchOnPHI(PN
);
712 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
713 if (CondInst
->getOpcode() == Instruction::Xor
&&
714 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
715 return ProcessBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
718 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
719 // "(X == 4)", thread through this block.
724 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
725 /// block that jump on exactly the same condition. This means that we almost
726 /// always know the direction of the edge in the DESTBB:
728 /// br COND, DESTBB, BBY
730 /// br COND, BBZ, BBW
732 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
733 /// in DESTBB, we have to thread over it.
734 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock
*PredBB
,
736 BranchInst
*PredBI
= cast
<BranchInst
>(PredBB
->getTerminator());
738 // If both successors of PredBB go to DESTBB, we don't know anything. We can
739 // fold the branch to an unconditional one, which allows other recursive
742 if (PredBI
->getSuccessor(1) != BB
)
744 else if (PredBI
->getSuccessor(0) != BB
)
747 DEBUG(dbgs() << " In block '" << PredBB
->getName()
748 << "' folding terminator: " << *PredBB
->getTerminator() << '\n');
750 ConstantFoldTerminator(PredBB
);
754 BranchInst
*DestBI
= cast
<BranchInst
>(BB
->getTerminator());
756 // If the dest block has one predecessor, just fix the branch condition to a
757 // constant and fold it.
758 if (BB
->getSinglePredecessor()) {
759 DEBUG(dbgs() << " In block '" << BB
->getName()
760 << "' folding condition to '" << BranchDir
<< "': "
761 << *BB
->getTerminator() << '\n');
763 Value
*OldCond
= DestBI
->getCondition();
764 DestBI
->setCondition(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
766 // Delete dead instructions before we fold the branch. Folding the branch
767 // can eliminate edges from the CFG which can end up deleting OldCond.
768 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
769 ConstantFoldTerminator(BB
);
774 // Next, figure out which successor we are threading to.
775 BasicBlock
*SuccBB
= DestBI
->getSuccessor(!BranchDir
);
777 SmallVector
<BasicBlock
*, 2> Preds
;
778 Preds
.push_back(PredBB
);
780 // Ok, try to thread it!
781 return ThreadEdge(BB
, Preds
, SuccBB
);
784 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
785 /// block that switch on exactly the same condition. This means that we almost
786 /// always know the direction of the edge in the DESTBB:
788 /// switch COND [... DESTBB, BBY ... ]
790 /// switch COND [... BBZ, BBW ]
792 /// Optimizing switches like this is very important, because simplifycfg builds
793 /// switches out of repeated 'if' conditions.
794 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock
*PredBB
,
795 BasicBlock
*DestBB
) {
796 // Can't thread edge to self.
797 if (PredBB
== DestBB
)
800 SwitchInst
*PredSI
= cast
<SwitchInst
>(PredBB
->getTerminator());
801 SwitchInst
*DestSI
= cast
<SwitchInst
>(DestBB
->getTerminator());
803 // There are a variety of optimizations that we can potentially do on these
804 // blocks: we order them from most to least preferable.
806 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
807 // directly to their destination. This does not introduce *any* code size
808 // growth. Skip debug info first.
809 BasicBlock::iterator BBI
= DestBB
->begin();
810 while (isa
<DbgInfoIntrinsic
>(BBI
))
813 // FIXME: Thread if it just contains a PHI.
814 if (isa
<SwitchInst
>(BBI
)) {
815 bool MadeChange
= false;
816 // Ignore the default edge for now.
817 for (unsigned i
= 1, e
= DestSI
->getNumSuccessors(); i
!= e
; ++i
) {
818 ConstantInt
*DestVal
= DestSI
->getCaseValue(i
);
819 BasicBlock
*DestSucc
= DestSI
->getSuccessor(i
);
821 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
822 // PredSI has an explicit case for it. If so, forward. If it is covered
823 // by the default case, we can't update PredSI.
824 unsigned PredCase
= PredSI
->findCaseValue(DestVal
);
825 if (PredCase
== 0) continue;
827 // If PredSI doesn't go to DestBB on this value, then it won't reach the
828 // case on this condition.
829 if (PredSI
->getSuccessor(PredCase
) != DestBB
&&
830 DestSI
->getSuccessor(i
) != DestBB
)
833 // Do not forward this if it already goes to this destination, this would
834 // be an infinite loop.
835 if (PredSI
->getSuccessor(PredCase
) == DestSucc
)
838 // Otherwise, we're safe to make the change. Make sure that the edge from
839 // DestSI to DestSucc is not critical and has no PHI nodes.
840 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal
<< " FROM: " << *PredSI
);
841 DEBUG(dbgs() << "THROUGH: " << *DestSI
);
843 // If the destination has PHI nodes, just split the edge for updating
845 if (isa
<PHINode
>(DestSucc
->begin()) && !DestSucc
->getSinglePredecessor()){
846 SplitCriticalEdge(DestSI
, i
, this);
847 DestSucc
= DestSI
->getSuccessor(i
);
849 FoldSingleEntryPHINodes(DestSucc
);
850 PredSI
->setSuccessor(PredCase
, DestSucc
);
862 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
863 /// load instruction, eliminate it by replacing it with a PHI node. This is an
864 /// important optimization that encourages jump threading, and needs to be run
865 /// interlaced with other jump threading tasks.
866 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst
*LI
) {
867 // Don't hack volatile loads.
868 if (LI
->isVolatile()) return false;
870 // If the load is defined in a block with exactly one predecessor, it can't be
871 // partially redundant.
872 BasicBlock
*LoadBB
= LI
->getParent();
873 if (LoadBB
->getSinglePredecessor())
876 Value
*LoadedPtr
= LI
->getOperand(0);
878 // If the loaded operand is defined in the LoadBB, it can't be available.
879 // TODO: Could do simple PHI translation, that would be fun :)
880 if (Instruction
*PtrOp
= dyn_cast
<Instruction
>(LoadedPtr
))
881 if (PtrOp
->getParent() == LoadBB
)
884 // Scan a few instructions up from the load, to see if it is obviously live at
885 // the entry to its block.
886 BasicBlock::iterator BBIt
= LI
;
888 if (Value
*AvailableVal
=
889 FindAvailableLoadedValue(LoadedPtr
, LoadBB
, BBIt
, 6)) {
890 // If the value if the load is locally available within the block, just use
891 // it. This frequently occurs for reg2mem'd allocas.
892 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
894 // If the returned value is the load itself, replace with an undef. This can
895 // only happen in dead loops.
896 if (AvailableVal
== LI
) AvailableVal
= UndefValue::get(LI
->getType());
897 LI
->replaceAllUsesWith(AvailableVal
);
898 LI
->eraseFromParent();
902 // Otherwise, if we scanned the whole block and got to the top of the block,
903 // we know the block is locally transparent to the load. If not, something
904 // might clobber its value.
905 if (BBIt
!= LoadBB
->begin())
909 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
910 typedef SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> AvailablePredsTy
;
911 AvailablePredsTy AvailablePreds
;
912 BasicBlock
*OneUnavailablePred
= 0;
914 // If we got here, the loaded value is transparent through to the start of the
915 // block. Check to see if it is available in any of the predecessor blocks.
916 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
918 BasicBlock
*PredBB
= *PI
;
920 // If we already scanned this predecessor, skip it.
921 if (!PredsScanned
.insert(PredBB
))
924 // Scan the predecessor to see if the value is available in the pred.
925 BBIt
= PredBB
->end();
926 Value
*PredAvailable
= FindAvailableLoadedValue(LoadedPtr
, PredBB
, BBIt
, 6);
927 if (!PredAvailable
) {
928 OneUnavailablePred
= PredBB
;
932 // If so, this load is partially redundant. Remember this info so that we
933 // can create a PHI node.
934 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
937 // If the loaded value isn't available in any predecessor, it isn't partially
939 if (AvailablePreds
.empty()) return false;
941 // Okay, the loaded value is available in at least one (and maybe all!)
942 // predecessors. If the value is unavailable in more than one unique
943 // predecessor, we want to insert a merge block for those common predecessors.
944 // This ensures that we only have to insert one reload, thus not increasing
946 BasicBlock
*UnavailablePred
= 0;
948 // If there is exactly one predecessor where the value is unavailable, the
949 // already computed 'OneUnavailablePred' block is it. If it ends in an
950 // unconditional branch, we know that it isn't a critical edge.
951 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
952 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
953 UnavailablePred
= OneUnavailablePred
;
954 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
955 // Otherwise, we had multiple unavailable predecessors or we had a critical
956 // edge from the one.
957 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
958 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
960 for (unsigned i
= 0, e
= AvailablePreds
.size(); i
!= e
; ++i
)
961 AvailablePredSet
.insert(AvailablePreds
[i
].first
);
963 // Add all the unavailable predecessors to the PredsToSplit list.
964 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
967 // If the predecessor is an indirect goto, we can't split the edge.
968 if (isa
<IndirectBrInst
>(P
->getTerminator()))
971 if (!AvailablePredSet
.count(P
))
972 PredsToSplit
.push_back(P
);
975 // Split them out to their own block.
977 SplitBlockPredecessors(LoadBB
, &PredsToSplit
[0], PredsToSplit
.size(),
978 "thread-pre-split", this);
981 // If the value isn't available in all predecessors, then there will be
982 // exactly one where it isn't available. Insert a load on that edge and add
983 // it to the AvailablePreds list.
984 if (UnavailablePred
) {
985 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
986 "Can't handle critical edge here!");
987 Value
*NewVal
= new LoadInst(LoadedPtr
, LI
->getName()+".pr", false,
989 UnavailablePred
->getTerminator());
990 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
993 // Now we know that each predecessor of this block has a value in
994 // AvailablePreds, sort them for efficient access as we're walking the preds.
995 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
997 // Create a PHI node at the start of the block for the PRE'd load value.
998 PHINode
*PN
= PHINode::Create(LI
->getType(), "", LoadBB
->begin());
1001 // Insert new entries into the PHI for each predecessor. A single block may
1002 // have multiple entries here.
1003 for (pred_iterator PI
= pred_begin(LoadBB
), E
= pred_end(LoadBB
); PI
!= E
;
1005 BasicBlock
*P
= *PI
;
1006 AvailablePredsTy::iterator I
=
1007 std::lower_bound(AvailablePreds
.begin(), AvailablePreds
.end(),
1008 std::make_pair(P
, (Value
*)0));
1010 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
1011 "Didn't find entry for predecessor!");
1013 PN
->addIncoming(I
->second
, I
->first
);
1016 //cerr << "PRE: " << *LI << *PN << "\n";
1018 LI
->replaceAllUsesWith(PN
);
1019 LI
->eraseFromParent();
1024 /// FindMostPopularDest - The specified list contains multiple possible
1025 /// threadable destinations. Pick the one that occurs the most frequently in
1028 FindMostPopularDest(BasicBlock
*BB
,
1029 const SmallVectorImpl
<std::pair
<BasicBlock
*,
1030 BasicBlock
*> > &PredToDestList
) {
1031 assert(!PredToDestList
.empty());
1033 // Determine popularity. If there are multiple possible destinations, we
1034 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1035 // blocks with known and real destinations to threading undef. We'll handle
1036 // them later if interesting.
1037 DenseMap
<BasicBlock
*, unsigned> DestPopularity
;
1038 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
1039 if (PredToDestList
[i
].second
)
1040 DestPopularity
[PredToDestList
[i
].second
]++;
1042 // Find the most popular dest.
1043 DenseMap
<BasicBlock
*, unsigned>::iterator DPI
= DestPopularity
.begin();
1044 BasicBlock
*MostPopularDest
= DPI
->first
;
1045 unsigned Popularity
= DPI
->second
;
1046 SmallVector
<BasicBlock
*, 4> SamePopularity
;
1048 for (++DPI
; DPI
!= DestPopularity
.end(); ++DPI
) {
1049 // If the popularity of this entry isn't higher than the popularity we've
1050 // seen so far, ignore it.
1051 if (DPI
->second
< Popularity
)
1053 else if (DPI
->second
== Popularity
) {
1054 // If it is the same as what we've seen so far, keep track of it.
1055 SamePopularity
.push_back(DPI
->first
);
1057 // If it is more popular, remember it.
1058 SamePopularity
.clear();
1059 MostPopularDest
= DPI
->first
;
1060 Popularity
= DPI
->second
;
1064 // Okay, now we know the most popular destination. If there is more than
1065 // destination, we need to determine one. This is arbitrary, but we need
1066 // to make a deterministic decision. Pick the first one that appears in the
1068 if (!SamePopularity
.empty()) {
1069 SamePopularity
.push_back(MostPopularDest
);
1070 TerminatorInst
*TI
= BB
->getTerminator();
1071 for (unsigned i
= 0; ; ++i
) {
1072 assert(i
!= TI
->getNumSuccessors() && "Didn't find any successor!");
1074 if (std::find(SamePopularity
.begin(), SamePopularity
.end(),
1075 TI
->getSuccessor(i
)) == SamePopularity
.end())
1078 MostPopularDest
= TI
->getSuccessor(i
);
1083 // Okay, we have finally picked the most popular destination.
1084 return MostPopularDest
;
1087 bool JumpThreading::ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
) {
1088 // If threading this would thread across a loop header, don't even try to
1090 if (LoopHeaders
.count(BB
))
1093 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 8> PredValues
;
1094 if (!ComputeValueKnownInPredecessors(Cond
, BB
, PredValues
))
1097 assert(!PredValues
.empty() &&
1098 "ComputeValueKnownInPredecessors returned true with no values");
1100 DEBUG(dbgs() << "IN BB: " << *BB
;
1101 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1102 dbgs() << " BB '" << BB
->getName() << "': FOUND condition = ";
1103 if (PredValues
[i
].first
)
1104 dbgs() << *PredValues
[i
].first
;
1107 dbgs() << " for pred '" << PredValues
[i
].second
->getName()
1111 // Decide what we want to thread through. Convert our list of known values to
1112 // a list of known destinations for each pred. This also discards duplicate
1113 // predecessors and keeps track of the undefined inputs (which are represented
1114 // as a null dest in the PredToDestList).
1115 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1116 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1118 BasicBlock
*OnlyDest
= 0;
1119 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1121 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1122 BasicBlock
*Pred
= PredValues
[i
].second
;
1123 if (!SeenPreds
.insert(Pred
))
1124 continue; // Duplicate predecessor entry.
1126 // If the predecessor ends with an indirect goto, we can't change its
1128 if (isa
<IndirectBrInst
>(Pred
->getTerminator()))
1131 ConstantInt
*Val
= PredValues
[i
].first
;
1134 if (Val
== 0) // Undef.
1136 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator()))
1137 DestBB
= BI
->getSuccessor(Val
->isZero());
1139 SwitchInst
*SI
= cast
<SwitchInst
>(BB
->getTerminator());
1140 DestBB
= SI
->getSuccessor(SI
->findCaseValue(Val
));
1143 // If we have exactly one destination, remember it for efficiency below.
1146 else if (OnlyDest
!= DestBB
)
1147 OnlyDest
= MultipleDestSentinel
;
1149 PredToDestList
.push_back(std::make_pair(Pred
, DestBB
));
1152 // If all edges were unthreadable, we fail.
1153 if (PredToDestList
.empty())
1156 // Determine which is the most common successor. If we have many inputs and
1157 // this block is a switch, we want to start by threading the batch that goes
1158 // to the most popular destination first. If we only know about one
1159 // threadable destination (the common case) we can avoid this.
1160 BasicBlock
*MostPopularDest
= OnlyDest
;
1162 if (MostPopularDest
== MultipleDestSentinel
)
1163 MostPopularDest
= FindMostPopularDest(BB
, PredToDestList
);
1165 // Now that we know what the most popular destination is, factor all
1166 // predecessors that will jump to it into a single predecessor.
1167 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1168 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
1169 if (PredToDestList
[i
].second
== MostPopularDest
) {
1170 BasicBlock
*Pred
= PredToDestList
[i
].first
;
1172 // This predecessor may be a switch or something else that has multiple
1173 // edges to the block. Factor each of these edges by listing them
1174 // according to # occurrences in PredsToFactor.
1175 TerminatorInst
*PredTI
= Pred
->getTerminator();
1176 for (unsigned i
= 0, e
= PredTI
->getNumSuccessors(); i
!= e
; ++i
)
1177 if (PredTI
->getSuccessor(i
) == BB
)
1178 PredsToFactor
.push_back(Pred
);
1181 // If the threadable edges are branching on an undefined value, we get to pick
1182 // the destination that these predecessors should get to.
1183 if (MostPopularDest
== 0)
1184 MostPopularDest
= BB
->getTerminator()->
1185 getSuccessor(GetBestDestForJumpOnUndef(BB
));
1187 // Ok, try to thread it!
1188 return ThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1191 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1192 /// a PHI node in the current block. See if there are any simplifications we
1193 /// can do based on inputs to the phi node.
1195 bool JumpThreading::ProcessBranchOnPHI(PHINode
*PN
) {
1196 BasicBlock
*BB
= PN
->getParent();
1198 // TODO: We could make use of this to do it once for blocks with common PHI
1200 SmallVector
<BasicBlock
*, 1> PredBBs
;
1203 // If any of the predecessor blocks end in an unconditional branch, we can
1204 // *duplicate* the conditional branch into that block in order to further
1205 // encourage jump threading and to eliminate cases where we have branch on a
1206 // phi of an icmp (branch on icmp is much better).
1207 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1208 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1209 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1210 if (PredBr
->isUnconditional()) {
1211 PredBBs
[0] = PredBB
;
1212 // Try to duplicate BB into PredBB.
1213 if (DuplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1221 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1222 /// a xor instruction in the current block. See if there are any
1223 /// simplifications we can do based on inputs to the xor.
1225 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator
*BO
) {
1226 BasicBlock
*BB
= BO
->getParent();
1228 // If either the LHS or RHS of the xor is a constant, don't do this
1230 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1231 isa
<ConstantInt
>(BO
->getOperand(1)))
1234 // If the first instruction in BB isn't a phi, we won't be able to infer
1235 // anything special about any particular predecessor.
1236 if (!isa
<PHINode
>(BB
->front()))
1239 // If we have a xor as the branch input to this block, and we know that the
1240 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1241 // the condition into the predecessor and fix that value to true, saving some
1242 // logical ops on that path and encouraging other paths to simplify.
1244 // This copies something like this:
1247 // %X = phi i1 [1], [%X']
1248 // %Y = icmp eq i32 %A, %B
1249 // %Z = xor i1 %X, %Y
1254 // %Y = icmp ne i32 %A, %B
1257 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 8> XorOpValues
;
1259 if (!ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
)) {
1260 assert(XorOpValues
.empty());
1261 if (!ComputeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
))
1266 assert(!XorOpValues
.empty() &&
1267 "ComputeValueKnownInPredecessors returned true with no values");
1269 // Scan the information to see which is most popular: true or false. The
1270 // predecessors can be of the set true, false, or undef.
1271 unsigned NumTrue
= 0, NumFalse
= 0;
1272 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1273 if (!XorOpValues
[i
].first
) continue; // Ignore undefs for the count.
1274 if (XorOpValues
[i
].first
->isZero())
1280 // Determine which value to split on, true, false, or undef if neither.
1281 ConstantInt
*SplitVal
= 0;
1282 if (NumTrue
> NumFalse
)
1283 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1284 else if (NumTrue
!= 0 || NumFalse
!= 0)
1285 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1287 // Collect all of the blocks that this can be folded into so that we can
1288 // factor this once and clone it once.
1289 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1290 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1291 if (XorOpValues
[i
].first
!= SplitVal
&& XorOpValues
[i
].first
!= 0) continue;
1293 BlocksToFoldInto
.push_back(XorOpValues
[i
].second
);
1296 // If we inferred a value for all of the predecessors, then duplication won't
1297 // help us. However, we can just replace the LHS or RHS with the constant.
1298 if (BlocksToFoldInto
.size() ==
1299 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1300 if (SplitVal
== 0) {
1301 // If all preds provide undef, just nuke the xor, because it is undef too.
1302 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1303 BO
->eraseFromParent();
1304 } else if (SplitVal
->isZero()) {
1305 // If all preds provide 0, replace the xor with the other input.
1306 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1307 BO
->eraseFromParent();
1309 // If all preds provide 1, set the computed value to 1.
1310 BO
->setOperand(!isLHS
, SplitVal
);
1316 // Try to duplicate BB into PredBB.
1317 return DuplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1321 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1322 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1323 /// NewPred using the entries from OldPred (suitably mapped).
1324 static void AddPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1325 BasicBlock
*OldPred
,
1326 BasicBlock
*NewPred
,
1327 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1328 for (BasicBlock::iterator PNI
= PHIBB
->begin();
1329 PHINode
*PN
= dyn_cast
<PHINode
>(PNI
); ++PNI
) {
1330 // Ok, we have a PHI node. Figure out what the incoming value was for the
1332 Value
*IV
= PN
->getIncomingValueForBlock(OldPred
);
1334 // Remap the value if necessary.
1335 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1336 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1337 if (I
!= ValueMap
.end())
1341 PN
->addIncoming(IV
, NewPred
);
1345 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1346 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1347 /// across BB. Transform the IR to reflect this change.
1348 bool JumpThreading::ThreadEdge(BasicBlock
*BB
,
1349 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
1350 BasicBlock
*SuccBB
) {
1351 // If threading to the same block as we come from, we would infinite loop.
1353 DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
1354 << "' - would thread to self!\n");
1358 // If threading this would thread across a loop header, don't thread the edge.
1359 // See the comments above FindLoopHeaders for justifications and caveats.
1360 if (LoopHeaders
.count(BB
)) {
1361 DEBUG(dbgs() << " Not threading across loop header BB '" << BB
->getName()
1362 << "' to dest BB '" << SuccBB
->getName()
1363 << "' - it might create an irreducible loop!\n");
1367 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
1368 if (JumpThreadCost
> Threshold
) {
1369 DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
1370 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
1374 // And finally, do it! Start by factoring the predecessors is needed.
1376 if (PredBBs
.size() == 1)
1377 PredBB
= PredBBs
[0];
1379 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1380 << " common predecessors.\n");
1381 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1385 // And finally, do it!
1386 DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName() << "' to '"
1387 << SuccBB
->getName() << "' with cost: " << JumpThreadCost
1388 << ", across block:\n "
1391 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
1393 // We are going to have to map operands from the original BB block to the new
1394 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1395 // account for entry from PredBB.
1396 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1398 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
1399 BB
->getName()+".thread",
1400 BB
->getParent(), BB
);
1401 NewBB
->moveAfter(PredBB
);
1403 BasicBlock::iterator BI
= BB
->begin();
1404 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1405 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1407 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1408 // mapping and using it to remap operands in the cloned instructions.
1409 for (; !isa
<TerminatorInst
>(BI
); ++BI
) {
1410 Instruction
*New
= BI
->clone();
1411 New
->setName(BI
->getName());
1412 NewBB
->getInstList().push_back(New
);
1413 ValueMapping
[BI
] = New
;
1415 // Remap operands to patch up intra-block references.
1416 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1417 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1418 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1419 if (I
!= ValueMapping
.end())
1420 New
->setOperand(i
, I
->second
);
1424 // We didn't copy the terminator from BB over to NewBB, because there is now
1425 // an unconditional jump to SuccBB. Insert the unconditional jump.
1426 BranchInst::Create(SuccBB
, NewBB
);
1428 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1429 // PHI nodes for NewBB now.
1430 AddPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
1432 // If there were values defined in BB that are used outside the block, then we
1433 // now have to update all uses of the value to use either the original value,
1434 // the cloned value, or some PHI derived value. This can require arbitrary
1435 // PHI insertion, of which we are prepared to do, clean these up now.
1436 SSAUpdater SSAUpdate
;
1437 SmallVector
<Use
*, 16> UsesToRename
;
1438 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1439 // Scan all uses of this instruction to see if it is used outside of its
1440 // block, and if so, record them in UsesToRename.
1441 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1443 Instruction
*User
= cast
<Instruction
>(*UI
);
1444 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1445 if (UserPN
->getIncomingBlock(UI
) == BB
)
1447 } else if (User
->getParent() == BB
)
1450 UsesToRename
.push_back(&UI
.getUse());
1453 // If there are no uses outside the block, we're done with this instruction.
1454 if (UsesToRename
.empty())
1457 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1459 // We found a use of I outside of BB. Rename all uses of I that are outside
1460 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1461 // with the two values we know.
1462 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1463 SSAUpdate
.AddAvailableValue(BB
, I
);
1464 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[I
]);
1466 while (!UsesToRename
.empty())
1467 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1468 DEBUG(dbgs() << "\n");
1472 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1473 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1474 // us to simplify any PHI nodes in BB.
1475 TerminatorInst
*PredTerm
= PredBB
->getTerminator();
1476 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
1477 if (PredTerm
->getSuccessor(i
) == BB
) {
1478 BB
->removePredecessor(PredBB
, true);
1479 PredTerm
->setSuccessor(i
, NewBB
);
1482 // At this point, the IR is fully up to date and consistent. Do a quick scan
1483 // over the new instructions and zap any that are constants or dead. This
1484 // frequently happens because of phi translation.
1485 SimplifyInstructionsInBlock(NewBB
, TD
);
1487 // Threaded an edge!
1492 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1493 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1494 /// If we can duplicate the contents of BB up into PredBB do so now, this
1495 /// improves the odds that the branch will be on an analyzable instruction like
1497 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
1498 const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
1499 assert(!PredBBs
.empty() && "Can't handle an empty set");
1501 // If BB is a loop header, then duplicating this block outside the loop would
1502 // cause us to transform this into an irreducible loop, don't do this.
1503 // See the comments above FindLoopHeaders for justifications and caveats.
1504 if (LoopHeaders
.count(BB
)) {
1505 DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
1506 << "' into predecessor block '" << PredBBs
[0]->getName()
1507 << "' - it might create an irreducible loop!\n");
1511 unsigned DuplicationCost
= getJumpThreadDuplicationCost(BB
);
1512 if (DuplicationCost
> Threshold
) {
1513 DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
1514 << "' - Cost is too high: " << DuplicationCost
<< "\n");
1518 // And finally, do it! Start by factoring the predecessors is needed.
1520 if (PredBBs
.size() == 1)
1521 PredBB
= PredBBs
[0];
1523 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1524 << " common predecessors.\n");
1525 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1529 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1531 DEBUG(dbgs() << " Duplicating block '" << BB
->getName() << "' into end of '"
1532 << PredBB
->getName() << "' to eliminate branch on phi. Cost: "
1533 << DuplicationCost
<< " block is:" << *BB
<< "\n");
1535 // Unless PredBB ends with an unconditional branch, split the edge so that we
1536 // can just clone the bits from BB into the end of the new PredBB.
1537 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
1539 if (OldPredBranch
== 0 || !OldPredBranch
->isUnconditional()) {
1540 PredBB
= SplitEdge(PredBB
, BB
, this);
1541 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
1544 // We are going to have to map operands from the original BB block into the
1545 // PredBB block. Evaluate PHI nodes in BB.
1546 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1548 BasicBlock::iterator BI
= BB
->begin();
1549 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1550 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1552 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1553 // mapping and using it to remap operands in the cloned instructions.
1554 for (; BI
!= BB
->end(); ++BI
) {
1555 Instruction
*New
= BI
->clone();
1557 // Remap operands to patch up intra-block references.
1558 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1559 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1560 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1561 if (I
!= ValueMapping
.end())
1562 New
->setOperand(i
, I
->second
);
1565 // If this instruction can be simplified after the operands are updated,
1566 // just use the simplified value instead. This frequently happens due to
1568 if (Value
*IV
= SimplifyInstruction(New
, TD
)) {
1570 ValueMapping
[BI
] = IV
;
1572 // Otherwise, insert the new instruction into the block.
1573 New
->setName(BI
->getName());
1574 PredBB
->getInstList().insert(OldPredBranch
, New
);
1575 ValueMapping
[BI
] = New
;
1579 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1580 // add entries to the PHI nodes for branch from PredBB now.
1581 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
1582 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
1584 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
1587 // If there were values defined in BB that are used outside the block, then we
1588 // now have to update all uses of the value to use either the original value,
1589 // the cloned value, or some PHI derived value. This can require arbitrary
1590 // PHI insertion, of which we are prepared to do, clean these up now.
1591 SSAUpdater SSAUpdate
;
1592 SmallVector
<Use
*, 16> UsesToRename
;
1593 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1594 // Scan all uses of this instruction to see if it is used outside of its
1595 // block, and if so, record them in UsesToRename.
1596 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1598 Instruction
*User
= cast
<Instruction
>(*UI
);
1599 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1600 if (UserPN
->getIncomingBlock(UI
) == BB
)
1602 } else if (User
->getParent() == BB
)
1605 UsesToRename
.push_back(&UI
.getUse());
1608 // If there are no uses outside the block, we're done with this instruction.
1609 if (UsesToRename
.empty())
1612 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1614 // We found a use of I outside of BB. Rename all uses of I that are outside
1615 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1616 // with the two values we know.
1617 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1618 SSAUpdate
.AddAvailableValue(BB
, I
);
1619 SSAUpdate
.AddAvailableValue(PredBB
, ValueMapping
[I
]);
1621 while (!UsesToRename
.empty())
1622 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1623 DEBUG(dbgs() << "\n");
1626 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1628 BB
->removePredecessor(PredBB
, true);
1630 // Remove the unconditional branch at the end of the PredBB block.
1631 OldPredBranch
->eraseFromParent();