1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
16 // This pass uses alias analysis for two purposes:
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the SSAUpdater to construct the appropriate SSA form for the value.
31 //===----------------------------------------------------------------------===//
33 #define DEBUG_TYPE "licm"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Constants.h"
36 #include "llvm/DerivedTypes.h"
37 #include "llvm/IntrinsicInst.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AliasSetTracker.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopPass.h"
45 #include "llvm/Analysis/Dominators.h"
46 #include "llvm/Analysis/ScalarEvolution.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/ADT/Statistic.h"
57 STATISTIC(NumSunk
, "Number of instructions sunk out of loop");
58 STATISTIC(NumHoisted
, "Number of instructions hoisted out of loop");
59 STATISTIC(NumMovedLoads
, "Number of load insts hoisted or sunk");
60 STATISTIC(NumMovedCalls
, "Number of call insts hoisted or sunk");
61 STATISTIC(NumPromoted
, "Number of memory locations promoted to registers");
64 DisablePromotion("disable-licm-promotion", cl::Hidden
,
65 cl::desc("Disable memory promotion in LICM pass"));
68 struct LICM
: public LoopPass
{
69 static char ID
; // Pass identification, replacement for typeid
70 LICM() : LoopPass(ID
) {
71 initializeLICMPass(*PassRegistry::getPassRegistry());
74 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
76 /// This transformation requires natural loop information & requires that
77 /// loop preheaders be inserted into the CFG...
79 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
81 AU
.addRequired
<DominatorTree
>();
82 AU
.addRequired
<LoopInfo
>();
83 AU
.addRequiredID(LoopSimplifyID
);
84 AU
.addRequired
<AliasAnalysis
>();
85 AU
.addPreserved
<AliasAnalysis
>();
86 AU
.addPreserved
<ScalarEvolution
>();
87 AU
.addPreservedID(LoopSimplifyID
);
90 bool doFinalization() {
91 assert(LoopToAliasSetMap
.empty() && "Didn't free loop alias sets");
96 AliasAnalysis
*AA
; // Current AliasAnalysis information
97 LoopInfo
*LI
; // Current LoopInfo
98 DominatorTree
*DT
; // Dominator Tree for the current Loop.
100 // State that is updated as we process loops.
101 bool Changed
; // Set to true when we change anything.
102 BasicBlock
*Preheader
; // The preheader block of the current loop...
103 Loop
*CurLoop
; // The current loop we are working on...
104 AliasSetTracker
*CurAST
; // AliasSet information for the current loop...
105 DenseMap
<Loop
*, AliasSetTracker
*> LoopToAliasSetMap
;
107 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
108 void cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
);
110 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
112 void deleteAnalysisValue(Value
*V
, Loop
*L
);
114 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
115 /// dominated by the specified block, and that are in the current loop) in
116 /// reverse depth first order w.r.t the DominatorTree. This allows us to
117 /// visit uses before definitions, allowing us to sink a loop body in one
118 /// pass without iteration.
120 void SinkRegion(DomTreeNode
*N
);
122 /// HoistRegion - Walk the specified region of the CFG (defined by all
123 /// blocks dominated by the specified block, and that are in the current
124 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
125 /// visit definitions before uses, allowing us to hoist a loop body in one
126 /// pass without iteration.
128 void HoistRegion(DomTreeNode
*N
);
130 /// inSubLoop - Little predicate that returns true if the specified basic
131 /// block is in a subloop of the current one, not the current one itself.
133 bool inSubLoop(BasicBlock
*BB
) {
134 assert(CurLoop
->contains(BB
) && "Only valid if BB is IN the loop");
135 for (Loop::iterator I
= CurLoop
->begin(), E
= CurLoop
->end(); I
!= E
; ++I
)
136 if ((*I
)->contains(BB
))
137 return true; // A subloop actually contains this block!
141 /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
142 /// specified exit block of the loop is dominated by the specified block
143 /// that is in the body of the loop. We use these constraints to
144 /// dramatically limit the amount of the dominator tree that needs to be
146 bool isExitBlockDominatedByBlockInLoop(BasicBlock
*ExitBlock
,
147 BasicBlock
*BlockInLoop
) const {
148 // If the block in the loop is the loop header, it must be dominated!
149 BasicBlock
*LoopHeader
= CurLoop
->getHeader();
150 if (BlockInLoop
== LoopHeader
)
153 DomTreeNode
*BlockInLoopNode
= DT
->getNode(BlockInLoop
);
154 DomTreeNode
*IDom
= DT
->getNode(ExitBlock
);
156 // Because the exit block is not in the loop, we know we have to get _at
157 // least_ its immediate dominator.
158 IDom
= IDom
->getIDom();
160 while (IDom
&& IDom
!= BlockInLoopNode
) {
161 // If we have got to the header of the loop, then the instructions block
162 // did not dominate the exit node, so we can't hoist it.
163 if (IDom
->getBlock() == LoopHeader
)
166 // Get next Immediate Dominator.
167 IDom
= IDom
->getIDom();
173 /// sink - When an instruction is found to only be used outside of the loop,
174 /// this function moves it to the exit blocks and patches up SSA form as
177 void sink(Instruction
&I
);
179 /// hoist - When an instruction is found to only use loop invariant operands
180 /// that is safe to hoist, this instruction is called to do the dirty work.
182 void hoist(Instruction
&I
);
184 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
185 /// is not a trapping instruction or if it is a trapping instruction and is
186 /// guaranteed to execute.
188 bool isSafeToExecuteUnconditionally(Instruction
&I
);
190 /// pointerInvalidatedByLoop - Return true if the body of this loop may
191 /// store into the memory location pointed to by V.
193 bool pointerInvalidatedByLoop(Value
*V
, uint64_t Size
,
194 const MDNode
*TBAAInfo
) {
195 // Check to see if any of the basic blocks in CurLoop invalidate *V.
196 return CurAST
->getAliasSetForPointer(V
, Size
, TBAAInfo
).isMod();
199 bool canSinkOrHoistInst(Instruction
&I
);
200 bool isNotUsedInLoop(Instruction
&I
);
202 void PromoteAliasSet(AliasSet
&AS
);
207 INITIALIZE_PASS_BEGIN(LICM
, "licm", "Loop Invariant Code Motion", false, false)
208 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
209 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
210 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
211 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
212 INITIALIZE_PASS_END(LICM
, "licm", "Loop Invariant Code Motion", false, false)
214 Pass
*llvm::createLICMPass() { return new LICM(); }
216 /// Hoist expressions out of the specified loop. Note, alias info for inner
217 /// loop is not preserved so it is not a good idea to run LICM multiple
218 /// times on one loop.
220 bool LICM::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
223 // Get our Loop and Alias Analysis information...
224 LI
= &getAnalysis
<LoopInfo
>();
225 AA
= &getAnalysis
<AliasAnalysis
>();
226 DT
= &getAnalysis
<DominatorTree
>();
228 CurAST
= new AliasSetTracker(*AA
);
229 // Collect Alias info from subloops.
230 for (Loop::iterator LoopItr
= L
->begin(), LoopItrE
= L
->end();
231 LoopItr
!= LoopItrE
; ++LoopItr
) {
232 Loop
*InnerL
= *LoopItr
;
233 AliasSetTracker
*InnerAST
= LoopToAliasSetMap
[InnerL
];
234 assert(InnerAST
&& "Where is my AST?");
236 // What if InnerLoop was modified by other passes ?
237 CurAST
->add(*InnerAST
);
239 // Once we've incorporated the inner loop's AST into ours, we don't need the
240 // subloop's anymore.
242 LoopToAliasSetMap
.erase(InnerL
);
247 // Get the preheader block to move instructions into...
248 Preheader
= L
->getLoopPreheader();
250 // Loop over the body of this loop, looking for calls, invokes, and stores.
251 // Because subloops have already been incorporated into AST, we skip blocks in
254 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
257 if (LI
->getLoopFor(BB
) == L
) // Ignore blocks in subloops.
258 CurAST
->add(*BB
); // Incorporate the specified basic block
261 // We want to visit all of the instructions in this loop... that are not parts
262 // of our subloops (they have already had their invariants hoisted out of
263 // their loop, into this loop, so there is no need to process the BODIES of
266 // Traverse the body of the loop in depth first order on the dominator tree so
267 // that we are guaranteed to see definitions before we see uses. This allows
268 // us to sink instructions in one pass, without iteration. After sinking
269 // instructions, we perform another pass to hoist them out of the loop.
271 if (L
->hasDedicatedExits())
272 SinkRegion(DT
->getNode(L
->getHeader()));
274 HoistRegion(DT
->getNode(L
->getHeader()));
276 // Now that all loop invariants have been removed from the loop, promote any
277 // memory references to scalars that we can.
278 if (!DisablePromotion
&& Preheader
&& L
->hasDedicatedExits()) {
279 // Loop over all of the alias sets in the tracker object.
280 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
285 // Clear out loops state information for the next iteration
289 // If this loop is nested inside of another one, save the alias information
290 // for when we process the outer loop.
291 if (L
->getParentLoop())
292 LoopToAliasSetMap
[L
] = CurAST
;
298 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
299 /// dominated by the specified block, and that are in the current loop) in
300 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
301 /// uses before definitions, allowing us to sink a loop body in one pass without
304 void LICM::SinkRegion(DomTreeNode
*N
) {
305 assert(N
!= 0 && "Null dominator tree node?");
306 BasicBlock
*BB
= N
->getBlock();
308 // If this subregion is not in the top level loop at all, exit.
309 if (!CurLoop
->contains(BB
)) return;
311 // We are processing blocks in reverse dfo, so process children first.
312 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
313 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
314 SinkRegion(Children
[i
]);
316 // Only need to process the contents of this block if it is not part of a
317 // subloop (which would already have been processed).
318 if (inSubLoop(BB
)) return;
320 for (BasicBlock::iterator II
= BB
->end(); II
!= BB
->begin(); ) {
321 Instruction
&I
= *--II
;
323 // If the instruction is dead, we would try to sink it because it isn't used
324 // in the loop, instead, just delete it.
325 if (isInstructionTriviallyDead(&I
)) {
326 DEBUG(dbgs() << "LICM deleting dead inst: " << I
<< '\n');
328 CurAST
->deleteValue(&I
);
334 // Check to see if we can sink this instruction to the exit blocks
335 // of the loop. We can do this if the all users of the instruction are
336 // outside of the loop. In this case, it doesn't even matter if the
337 // operands of the instruction are loop invariant.
339 if (isNotUsedInLoop(I
) && canSinkOrHoistInst(I
)) {
346 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
347 /// dominated by the specified block, and that are in the current loop) in depth
348 /// first order w.r.t the DominatorTree. This allows us to visit definitions
349 /// before uses, allowing us to hoist a loop body in one pass without iteration.
351 void LICM::HoistRegion(DomTreeNode
*N
) {
352 assert(N
!= 0 && "Null dominator tree node?");
353 BasicBlock
*BB
= N
->getBlock();
355 // If this subregion is not in the top level loop at all, exit.
356 if (!CurLoop
->contains(BB
)) return;
358 // Only need to process the contents of this block if it is not part of a
359 // subloop (which would already have been processed).
361 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ) {
362 Instruction
&I
= *II
++;
364 // Try constant folding this instruction. If all the operands are
365 // constants, it is technically hoistable, but it would be better to just
367 if (Constant
*C
= ConstantFoldInstruction(&I
)) {
368 DEBUG(dbgs() << "LICM folding inst: " << I
<< " --> " << *C
<< '\n');
369 CurAST
->copyValue(&I
, C
);
370 CurAST
->deleteValue(&I
);
371 I
.replaceAllUsesWith(C
);
376 // Try hoisting the instruction out to the preheader. We can only do this
377 // if all of the operands of the instruction are loop invariant and if it
378 // is safe to hoist the instruction.
380 if (CurLoop
->hasLoopInvariantOperands(&I
) && canSinkOrHoistInst(I
) &&
381 isSafeToExecuteUnconditionally(I
))
385 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
386 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
387 HoistRegion(Children
[i
]);
390 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
393 bool LICM::canSinkOrHoistInst(Instruction
&I
) {
394 // Loads have extra constraints we have to verify before we can hoist them.
395 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
396 if (LI
->isVolatile())
397 return false; // Don't hoist volatile loads!
399 // Loads from constant memory are always safe to move, even if they end up
400 // in the same alias set as something that ends up being modified.
401 if (AA
->pointsToConstantMemory(LI
->getOperand(0)))
404 // Don't hoist loads which have may-aliased stores in loop.
406 if (LI
->getType()->isSized())
407 Size
= AA
->getTypeStoreSize(LI
->getType());
408 return !pointerInvalidatedByLoop(LI
->getOperand(0), Size
,
409 LI
->getMetadata(LLVMContext::MD_tbaa
));
410 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
411 // Handle obvious cases efficiently.
412 AliasAnalysis::ModRefBehavior Behavior
= AA
->getModRefBehavior(CI
);
413 if (Behavior
== AliasAnalysis::DoesNotAccessMemory
)
415 else if (Behavior
== AliasAnalysis::OnlyReadsMemory
) {
416 // If this call only reads from memory and there are no writes to memory
417 // in the loop, we can hoist or sink the call as appropriate.
418 bool FoundMod
= false;
419 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
422 if (!AS
.isForwardingAliasSet() && AS
.isMod()) {
427 if (!FoundMod
) return true;
430 // FIXME: This should use mod/ref information to see if we can hoist or sink
436 // Otherwise these instructions are hoistable/sinkable
437 return isa
<BinaryOperator
>(I
) || isa
<CastInst
>(I
) ||
438 isa
<SelectInst
>(I
) || isa
<GetElementPtrInst
>(I
) || isa
<CmpInst
>(I
) ||
439 isa
<InsertElementInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
440 isa
<ShuffleVectorInst
>(I
);
443 /// isNotUsedInLoop - Return true if the only users of this instruction are
444 /// outside of the loop. If this is true, we can sink the instruction to the
445 /// exit blocks of the loop.
447 bool LICM::isNotUsedInLoop(Instruction
&I
) {
448 for (Value::use_iterator UI
= I
.use_begin(), E
= I
.use_end(); UI
!= E
; ++UI
) {
449 Instruction
*User
= cast
<Instruction
>(*UI
);
450 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
451 // PHI node uses occur in predecessor blocks!
452 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
453 if (PN
->getIncomingValue(i
) == &I
)
454 if (CurLoop
->contains(PN
->getIncomingBlock(i
)))
456 } else if (CurLoop
->contains(User
)) {
464 /// sink - When an instruction is found to only be used outside of the loop,
465 /// this function moves it to the exit blocks and patches up SSA form as needed.
466 /// This method is guaranteed to remove the original instruction from its
467 /// position, and may either delete it or move it to outside of the loop.
469 void LICM::sink(Instruction
&I
) {
470 DEBUG(dbgs() << "LICM sinking instruction: " << I
<< "\n");
472 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
473 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
475 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
476 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
480 // The case where there is only a single exit node of this loop is common
481 // enough that we handle it as a special (more efficient) case. It is more
482 // efficient to handle because there are no PHI nodes that need to be placed.
483 if (ExitBlocks
.size() == 1) {
484 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[0], I
.getParent())) {
485 // Instruction is not used, just delete it.
486 CurAST
->deleteValue(&I
);
487 // If I has users in unreachable blocks, eliminate.
488 // If I is not void type then replaceAllUsesWith undef.
489 // This allows ValueHandlers and custom metadata to adjust itself.
491 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
494 // Move the instruction to the start of the exit block, after any PHI
496 I
.moveBefore(ExitBlocks
[0]->getFirstNonPHI());
498 // This instruction is no longer in the AST for the current loop, because
499 // we just sunk it out of the loop. If we just sunk it into an outer
500 // loop, we will rediscover the operation when we process it.
501 CurAST
->deleteValue(&I
);
506 if (ExitBlocks
.empty()) {
507 // The instruction is actually dead if there ARE NO exit blocks.
508 CurAST
->deleteValue(&I
);
509 // If I has users in unreachable blocks, eliminate.
510 // If I is not void type then replaceAllUsesWith undef.
511 // This allows ValueHandlers and custom metadata to adjust itself.
513 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
518 // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
519 // hard work of inserting PHI nodes as necessary.
520 SmallVector
<PHINode
*, 8> NewPHIs
;
521 SSAUpdater
SSA(&NewPHIs
);
524 SSA
.Initialize(I
.getType(), I
.getName());
526 // Insert a copy of the instruction in each exit block of the loop that is
527 // dominated by the instruction. Each exit block is known to only be in the
528 // ExitBlocks list once.
529 BasicBlock
*InstOrigBB
= I
.getParent();
530 unsigned NumInserted
= 0;
532 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
533 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
535 if (!isExitBlockDominatedByBlockInLoop(ExitBlock
, InstOrigBB
))
538 // Insert the code after the last PHI node.
539 BasicBlock::iterator InsertPt
= ExitBlock
->getFirstNonPHI();
541 // If this is the first exit block processed, just move the original
542 // instruction, otherwise clone the original instruction and insert
545 if (NumInserted
++ == 0) {
546 I
.moveBefore(InsertPt
);
550 if (!I
.getName().empty())
551 New
->setName(I
.getName()+".le");
552 ExitBlock
->getInstList().insert(InsertPt
, New
);
555 // Now that we have inserted the instruction, inform SSAUpdater.
557 SSA
.AddAvailableValue(ExitBlock
, New
);
560 // If the instruction doesn't dominate any exit blocks, it must be dead.
561 if (NumInserted
== 0) {
562 CurAST
->deleteValue(&I
);
564 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
569 // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
570 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end(); UI
!= UE
; ) {
571 // Grab the use before incrementing the iterator.
572 Use
&U
= UI
.getUse();
573 // Increment the iterator before removing the use from the list.
575 SSA
.RewriteUseAfterInsertions(U
);
578 // Update CurAST for NewPHIs if I had pointer type.
579 if (I
.getType()->isPointerTy())
580 for (unsigned i
= 0, e
= NewPHIs
.size(); i
!= e
; ++i
)
581 CurAST
->copyValue(&I
, NewPHIs
[i
]);
583 // Finally, remove the instruction from CurAST. It is no longer in the loop.
584 CurAST
->deleteValue(&I
);
587 /// hoist - When an instruction is found to only use loop invariant operands
588 /// that is safe to hoist, this instruction is called to do the dirty work.
590 void LICM::hoist(Instruction
&I
) {
591 DEBUG(dbgs() << "LICM hoisting to " << Preheader
->getName() << ": "
594 // Move the new node to the Preheader, before its terminator.
595 I
.moveBefore(Preheader
->getTerminator());
597 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
598 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
603 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
604 /// not a trapping instruction or if it is a trapping instruction and is
605 /// guaranteed to execute.
607 bool LICM::isSafeToExecuteUnconditionally(Instruction
&Inst
) {
608 // If it is not a trapping instruction, it is always safe to hoist.
609 if (Inst
.isSafeToSpeculativelyExecute())
612 // Otherwise we have to check to make sure that the instruction dominates all
613 // of the exit blocks. If it doesn't, then there is a path out of the loop
614 // which does not execute this instruction, so we can't hoist it.
616 // If the instruction is in the header block for the loop (which is very
617 // common), it is always guaranteed to dominate the exit blocks. Since this
618 // is a common case, and can save some work, check it now.
619 if (Inst
.getParent() == CurLoop
->getHeader())
622 // Get the exit blocks for the current loop.
623 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
624 CurLoop
->getExitBlocks(ExitBlocks
);
626 // For each exit block, get the DT node and walk up the DT until the
627 // instruction's basic block is found or we exit the loop.
628 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
629 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[i
], Inst
.getParent()))
635 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
636 /// stores out of the loop and moving loads to before the loop. We do this by
637 /// looping over the stores in the loop, looking for stores to Must pointers
638 /// which are loop invariant.
640 void LICM::PromoteAliasSet(AliasSet
&AS
) {
641 // We can promote this alias set if it has a store, if it is a "Must" alias
642 // set, if the pointer is loop invariant, and if we are not eliminating any
643 // volatile loads or stores.
644 if (AS
.isForwardingAliasSet() || !AS
.isMod() || !AS
.isMustAlias() ||
645 AS
.isVolatile() || !CurLoop
->isLoopInvariant(AS
.begin()->getValue()))
648 assert(!AS
.empty() &&
649 "Must alias set should have at least one pointer element in it!");
650 Value
*SomePtr
= AS
.begin()->getValue();
652 // It isn't safe to promote a load/store from the loop if the load/store is
653 // conditional. For example, turning:
655 // for () { if (c) *P += 1; }
659 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
661 // is not safe, because *P may only be valid to access if 'c' is true.
663 // It is safe to promote P if all uses are direct load/stores and if at
664 // least one is guaranteed to be executed.
665 bool GuaranteedToExecute
= false;
667 SmallVector
<Instruction
*, 64> LoopUses
;
668 SmallPtrSet
<Value
*, 4> PointerMustAliases
;
670 // Check that all of the pointers in the alias set have the same type. We
671 // cannot (yet) promote a memory location that is loaded and stored in
673 for (AliasSet::iterator ASI
= AS
.begin(), E
= AS
.end(); ASI
!= E
; ++ASI
) {
674 Value
*ASIV
= ASI
->getValue();
675 PointerMustAliases
.insert(ASIV
);
677 // Check that all of the pointers in the alias set have the same type. We
678 // cannot (yet) promote a memory location that is loaded and stored in
680 if (SomePtr
->getType() != ASIV
->getType())
683 for (Value::use_iterator UI
= ASIV
->use_begin(), UE
= ASIV
->use_end();
685 // Ignore instructions that are outside the loop.
686 Instruction
*Use
= dyn_cast
<Instruction
>(*UI
);
687 if (!Use
|| !CurLoop
->contains(Use
))
690 // If there is an non-load/store instruction in the loop, we can't promote
692 if (isa
<LoadInst
>(Use
))
693 assert(!cast
<LoadInst
>(Use
)->isVolatile() && "AST broken");
694 else if (isa
<StoreInst
>(Use
)) {
695 assert(!cast
<StoreInst
>(Use
)->isVolatile() && "AST broken");
696 if (Use
->getOperand(0) == ASIV
) return;
698 return; // Not a load or store.
700 if (!GuaranteedToExecute
)
701 GuaranteedToExecute
= isSafeToExecuteUnconditionally(*Use
);
703 LoopUses
.push_back(Use
);
707 // If there isn't a guaranteed-to-execute instruction, we can't promote.
708 if (!GuaranteedToExecute
)
711 // Otherwise, this is safe to promote, lets do it!
712 DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr
<<'\n');
716 // We use the SSAUpdater interface to insert phi nodes as required.
717 SmallVector
<PHINode
*, 16> NewPHIs
;
718 SSAUpdater
SSA(&NewPHIs
);
720 // It wants to know some value of the same type as what we'll be inserting.
722 if (isa
<LoadInst
>(LoopUses
[0]))
723 SomeValue
= LoopUses
[0];
725 SomeValue
= cast
<StoreInst
>(LoopUses
[0])->getOperand(0);
726 SSA
.Initialize(SomeValue
->getType(), SomeValue
->getName());
728 // First step: bucket up uses of the pointers by the block they occur in.
729 // This is important because we have to handle multiple defs/uses in a block
730 // ourselves: SSAUpdater is purely for cross-block references.
731 // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
732 DenseMap
<BasicBlock
*, std::vector
<Instruction
*> > UsesByBlock
;
733 for (unsigned i
= 0, e
= LoopUses
.size(); i
!= e
; ++i
) {
734 Instruction
*User
= LoopUses
[i
];
735 UsesByBlock
[User
->getParent()].push_back(User
);
738 // Okay, now we can iterate over all the blocks in the loop with uses,
739 // processing them. Keep track of which loads are loading a live-in value.
740 SmallVector
<LoadInst
*, 32> LiveInLoads
;
741 DenseMap
<Value
*, Value
*> ReplacedLoads
;
743 for (unsigned LoopUse
= 0, e
= LoopUses
.size(); LoopUse
!= e
; ++LoopUse
) {
744 Instruction
*User
= LoopUses
[LoopUse
];
745 std::vector
<Instruction
*> &BlockUses
= UsesByBlock
[User
->getParent()];
747 // If this block has already been processed, ignore this repeat use.
748 if (BlockUses
.empty()) continue;
750 // Okay, this is the first use in the block. If this block just has a
751 // single user in it, we can rewrite it trivially.
752 if (BlockUses
.size() == 1) {
753 // If it is a store, it is a trivial def of the value in the block.
754 if (isa
<StoreInst
>(User
)) {
755 SSA
.AddAvailableValue(User
->getParent(),
756 cast
<StoreInst
>(User
)->getOperand(0));
758 // Otherwise it is a load, queue it to rewrite as a live-in load.
759 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
765 // Otherwise, check to see if this block is all loads. If so, we can queue
766 // them all as live in loads.
767 bool HasStore
= false;
768 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
) {
769 if (isa
<StoreInst
>(BlockUses
[i
])) {
776 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
)
777 LiveInLoads
.push_back(cast
<LoadInst
>(BlockUses
[i
]));
782 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
783 // Since SSAUpdater is purely for cross-block values, we need to determine
784 // the order of these instructions in the block. If the first use in the
785 // block is a load, then it uses the live in value. The last store defines
786 // the live out value. We handle this by doing a linear scan of the block.
787 BasicBlock
*BB
= User
->getParent();
788 Value
*StoredValue
= 0;
789 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
790 if (LoadInst
*L
= dyn_cast
<LoadInst
>(II
)) {
791 // If this is a load from an unrelated pointer, ignore it.
792 if (!PointerMustAliases
.count(L
->getOperand(0))) continue;
794 // If we haven't seen a store yet, this is a live in use, otherwise
795 // use the stored value.
797 L
->replaceAllUsesWith(StoredValue
);
798 ReplacedLoads
[L
] = StoredValue
;
800 LiveInLoads
.push_back(L
);
805 if (StoreInst
*S
= dyn_cast
<StoreInst
>(II
)) {
806 // If this is a store to an unrelated pointer, ignore it.
807 if (!PointerMustAliases
.count(S
->getOperand(1))) continue;
809 // Remember that this is the active value in the block.
810 StoredValue
= S
->getOperand(0);
814 // The last stored value that happened is the live-out for the block.
815 assert(StoredValue
&& "Already checked that there is a store in block");
816 SSA
.AddAvailableValue(BB
, StoredValue
);
820 // Now that all the intra-loop values are classified, set up the preheader.
821 // It gets a load of the pointer we're promoting, and it is the live-out value
822 // from the preheader.
823 LoadInst
*PreheaderLoad
= new LoadInst(SomePtr
,SomePtr
->getName()+".promoted",
824 Preheader
->getTerminator());
825 SSA
.AddAvailableValue(Preheader
, PreheaderLoad
);
827 // Now that the preheader is good to go, set up the exit blocks. Each exit
828 // block gets a store of the live-out values that feed them. Since we've
829 // already told the SSA updater about the defs in the loop and the preheader
830 // definition, it is all set and we can start using it.
831 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
832 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
833 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
834 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
835 Value
*LiveInValue
= SSA
.GetValueInMiddleOfBlock(ExitBlock
);
836 Instruction
*InsertPos
= ExitBlock
->getFirstNonPHI();
837 new StoreInst(LiveInValue
, SomePtr
, InsertPos
);
840 // Okay, now we rewrite all loads that use live-in values in the loop,
841 // inserting PHI nodes as necessary.
842 for (unsigned i
= 0, e
= LiveInLoads
.size(); i
!= e
; ++i
) {
843 LoadInst
*ALoad
= LiveInLoads
[i
];
844 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
845 ALoad
->replaceAllUsesWith(NewVal
);
846 CurAST
->copyValue(ALoad
, NewVal
);
847 ReplacedLoads
[ALoad
] = NewVal
;
850 // If the preheader load is itself a pointer, we need to tell alias analysis
851 // about the new pointer we created in the preheader block and about any PHI
852 // nodes that just got inserted.
853 if (PreheaderLoad
->getType()->isPointerTy()) {
854 // Copy any value stored to or loaded from a must-alias of the pointer.
855 CurAST
->copyValue(SomeValue
, PreheaderLoad
);
857 for (unsigned i
= 0, e
= NewPHIs
.size(); i
!= e
; ++i
)
858 CurAST
->copyValue(SomeValue
, NewPHIs
[i
]);
861 // Now that everything is rewritten, delete the old instructions from the body
862 // of the loop. They should all be dead now.
863 for (unsigned i
= 0, e
= LoopUses
.size(); i
!= e
; ++i
) {
864 Instruction
*User
= LoopUses
[i
];
866 // If this is a load that still has uses, then the load must have been added
867 // as a live value in the SSAUpdate data structure for a block (e.g. because
868 // the loaded value was stored later). In this case, we need to recursively
869 // propagate the updates until we get to the real value.
870 if (!User
->use_empty()) {
871 Value
*NewVal
= ReplacedLoads
[User
];
872 assert(NewVal
&& "not a replaced load?");
874 // Propagate down to the ultimate replacee. The intermediately loads
875 // could theoretically already have been deleted, so we don't want to
876 // dereference the Value*'s.
877 DenseMap
<Value
*, Value
*>::iterator RLI
= ReplacedLoads
.find(NewVal
);
878 while (RLI
!= ReplacedLoads
.end()) {
879 NewVal
= RLI
->second
;
880 RLI
= ReplacedLoads
.find(NewVal
);
883 User
->replaceAllUsesWith(NewVal
);
884 CurAST
->copyValue(User
, NewVal
);
887 CurAST
->deleteValue(User
);
888 User
->eraseFromParent();
895 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
896 void LICM::cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
) {
897 AliasSetTracker
*AST
= LoopToAliasSetMap
.lookup(L
);
901 AST
->copyValue(From
, To
);
904 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
906 void LICM::deleteAnalysisValue(Value
*V
, Loop
*L
) {
907 AliasSetTracker
*AST
= LoopToAliasSetMap
.lookup(L
);