zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / Scalar / LoopDeletion.cpp
blobcf68ddda7a1b070c9aaaecc178471164bf394fce
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "loop-delete"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/SmallVector.h"
23 using namespace llvm;
25 STATISTIC(NumDeleted, "Number of loops deleted");
27 namespace {
28 class LoopDeletion : public LoopPass {
29 public:
30 static char ID; // Pass ID, replacement for typeid
31 LoopDeletion() : LoopPass(ID) {
32 initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
35 // Possibly eliminate loop L if it is dead.
36 bool runOnLoop(Loop* L, LPPassManager& LPM);
38 bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
39 SmallVector<BasicBlock*, 4>& exitBlocks,
40 bool &Changed, BasicBlock *Preheader);
42 virtual void getAnalysisUsage(AnalysisUsage& AU) const {
43 AU.addRequired<DominatorTree>();
44 AU.addRequired<LoopInfo>();
45 AU.addRequired<ScalarEvolution>();
46 AU.addRequiredID(LoopSimplifyID);
47 AU.addRequiredID(LCSSAID);
49 AU.addPreserved<ScalarEvolution>();
50 AU.addPreserved<DominatorTree>();
51 AU.addPreserved<LoopInfo>();
52 AU.addPreservedID(LoopSimplifyID);
53 AU.addPreservedID(LCSSAID);
54 AU.addPreserved<DominanceFrontier>();
59 char LoopDeletion::ID = 0;
60 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
61 "Delete dead loops", false, false)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
64 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
67 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
68 "Delete dead loops", false, false)
70 Pass* llvm::createLoopDeletionPass() {
71 return new LoopDeletion();
74 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
75 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
76 /// form.
77 bool LoopDeletion::IsLoopDead(Loop* L,
78 SmallVector<BasicBlock*, 4>& exitingBlocks,
79 SmallVector<BasicBlock*, 4>& exitBlocks,
80 bool &Changed, BasicBlock *Preheader) {
81 BasicBlock* exitingBlock = exitingBlocks[0];
82 BasicBlock* exitBlock = exitBlocks[0];
84 // Make sure that all PHI entries coming from the loop are loop invariant.
85 // Because the code is in LCSSA form, any values used outside of the loop
86 // must pass through a PHI in the exit block, meaning that this check is
87 // sufficient to guarantee that no loop-variant values are used outside
88 // of the loop.
89 BasicBlock::iterator BI = exitBlock->begin();
90 while (PHINode* P = dyn_cast<PHINode>(BI)) {
91 Value* incoming = P->getIncomingValueForBlock(exitingBlock);
92 if (Instruction* I = dyn_cast<Instruction>(incoming))
93 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
94 return false;
96 ++BI;
99 // Make sure that no instructions in the block have potential side-effects.
100 // This includes instructions that could write to memory, and loads that are
101 // marked volatile. This could be made more aggressive by using aliasing
102 // information to identify readonly and readnone calls.
103 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
104 LI != LE; ++LI) {
105 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
106 BI != BE; ++BI) {
107 if (BI->mayHaveSideEffects())
108 return false;
112 return true;
115 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
116 /// observable behavior of the program other than finite running time. Note
117 /// we do ensure that this never remove a loop that might be infinite, as doing
118 /// so could change the halting/non-halting nature of a program.
119 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
120 /// in order to make various safety checks work.
121 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
122 // We can only remove the loop if there is a preheader that we can
123 // branch from after removing it.
124 BasicBlock* preheader = L->getLoopPreheader();
125 if (!preheader)
126 return false;
128 // If LoopSimplify form is not available, stay out of trouble.
129 if (!L->hasDedicatedExits())
130 return false;
132 // We can't remove loops that contain subloops. If the subloops were dead,
133 // they would already have been removed in earlier executions of this pass.
134 if (L->begin() != L->end())
135 return false;
137 SmallVector<BasicBlock*, 4> exitingBlocks;
138 L->getExitingBlocks(exitingBlocks);
140 SmallVector<BasicBlock*, 4> exitBlocks;
141 L->getUniqueExitBlocks(exitBlocks);
143 // We require that the loop only have a single exit block. Otherwise, we'd
144 // be in the situation of needing to be able to solve statically which exit
145 // block will be branched to, or trying to preserve the branching logic in
146 // a loop invariant manner.
147 if (exitBlocks.size() != 1)
148 return false;
150 // Loops with multiple exits are too complicated to handle correctly.
151 if (exitingBlocks.size() != 1)
152 return false;
154 // Finally, we have to check that the loop really is dead.
155 bool Changed = false;
156 if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
157 return Changed;
159 // Don't remove loops for which we can't solve the trip count.
160 // They could be infinite, in which case we'd be changing program behavior.
161 ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
162 const SCEV *S = SE.getMaxBackedgeTakenCount(L);
163 if (isa<SCEVCouldNotCompute>(S))
164 return Changed;
166 // Now that we know the removal is safe, remove the loop by changing the
167 // branch from the preheader to go to the single exit block.
168 BasicBlock* exitBlock = exitBlocks[0];
169 BasicBlock* exitingBlock = exitingBlocks[0];
171 // Because we're deleting a large chunk of code at once, the sequence in which
172 // we remove things is very important to avoid invalidation issues. Don't
173 // mess with this unless you have good reason and know what you're doing.
175 // Tell ScalarEvolution that the loop is deleted. Do this before
176 // deleting the loop so that ScalarEvolution can look at the loop
177 // to determine what it needs to clean up.
178 SE.forgetLoop(L);
180 // Connect the preheader directly to the exit block.
181 TerminatorInst* TI = preheader->getTerminator();
182 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
184 // Rewrite phis in the exit block to get their inputs from
185 // the preheader instead of the exiting block.
186 BasicBlock::iterator BI = exitBlock->begin();
187 while (PHINode* P = dyn_cast<PHINode>(BI)) {
188 P->replaceUsesOfWith(exitingBlock, preheader);
189 ++BI;
192 // Update the dominator tree and remove the instructions and blocks that will
193 // be deleted from the reference counting scheme.
194 DominatorTree& DT = getAnalysis<DominatorTree>();
195 DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
196 SmallPtrSet<DomTreeNode*, 8> ChildNodes;
197 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
198 LI != LE; ++LI) {
199 // Move all of the block's children to be children of the preheader, which
200 // allows us to remove the domtree entry for the block.
201 ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
202 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
203 DE = ChildNodes.end(); DI != DE; ++DI) {
204 DT.changeImmediateDominator(*DI, DT[preheader]);
205 if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
208 ChildNodes.clear();
209 DT.eraseNode(*LI);
210 if (DF) DF->removeBlock(*LI);
212 // Remove the block from the reference counting scheme, so that we can
213 // delete it freely later.
214 (*LI)->dropAllReferences();
217 // Erase the instructions and the blocks without having to worry
218 // about ordering because we already dropped the references.
219 // NOTE: This iteration is safe because erasing the block does not remove its
220 // entry from the loop's block list. We do that in the next section.
221 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
222 LI != LE; ++LI)
223 (*LI)->eraseFromParent();
225 // Finally, the blocks from loopinfo. This has to happen late because
226 // otherwise our loop iterators won't work.
227 LoopInfo& loopInfo = getAnalysis<LoopInfo>();
228 SmallPtrSet<BasicBlock*, 8> blocks;
229 blocks.insert(L->block_begin(), L->block_end());
230 for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
231 E = blocks.end(); I != E; ++I)
232 loopInfo.removeBlock(*I);
234 // The last step is to inform the loop pass manager that we've
235 // eliminated this loop.
236 LPM.deleteLoopFromQueue(L);
237 Changed = true;
239 ++NumDeleted;
241 return Changed;