1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "loop-delete"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/SmallVector.h"
25 STATISTIC(NumDeleted
, "Number of loops deleted");
28 class LoopDeletion
: public LoopPass
{
30 static char ID
; // Pass ID, replacement for typeid
31 LoopDeletion() : LoopPass(ID
) {
32 initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
35 // Possibly eliminate loop L if it is dead.
36 bool runOnLoop(Loop
* L
, LPPassManager
& LPM
);
38 bool IsLoopDead(Loop
* L
, SmallVector
<BasicBlock
*, 4>& exitingBlocks
,
39 SmallVector
<BasicBlock
*, 4>& exitBlocks
,
40 bool &Changed
, BasicBlock
*Preheader
);
42 virtual void getAnalysisUsage(AnalysisUsage
& AU
) const {
43 AU
.addRequired
<DominatorTree
>();
44 AU
.addRequired
<LoopInfo
>();
45 AU
.addRequired
<ScalarEvolution
>();
46 AU
.addRequiredID(LoopSimplifyID
);
47 AU
.addRequiredID(LCSSAID
);
49 AU
.addPreserved
<ScalarEvolution
>();
50 AU
.addPreserved
<DominatorTree
>();
51 AU
.addPreserved
<LoopInfo
>();
52 AU
.addPreservedID(LoopSimplifyID
);
53 AU
.addPreservedID(LCSSAID
);
54 AU
.addPreserved
<DominanceFrontier
>();
59 char LoopDeletion::ID
= 0;
60 INITIALIZE_PASS_BEGIN(LoopDeletion
, "loop-deletion",
61 "Delete dead loops", false, false)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
64 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
66 INITIALIZE_PASS_DEPENDENCY(LCSSA
)
67 INITIALIZE_PASS_END(LoopDeletion
, "loop-deletion",
68 "Delete dead loops", false, false)
70 Pass
* llvm::createLoopDeletionPass() {
71 return new LoopDeletion();
74 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
75 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
77 bool LoopDeletion::IsLoopDead(Loop
* L
,
78 SmallVector
<BasicBlock
*, 4>& exitingBlocks
,
79 SmallVector
<BasicBlock
*, 4>& exitBlocks
,
80 bool &Changed
, BasicBlock
*Preheader
) {
81 BasicBlock
* exitingBlock
= exitingBlocks
[0];
82 BasicBlock
* exitBlock
= exitBlocks
[0];
84 // Make sure that all PHI entries coming from the loop are loop invariant.
85 // Because the code is in LCSSA form, any values used outside of the loop
86 // must pass through a PHI in the exit block, meaning that this check is
87 // sufficient to guarantee that no loop-variant values are used outside
89 BasicBlock::iterator BI
= exitBlock
->begin();
90 while (PHINode
* P
= dyn_cast
<PHINode
>(BI
)) {
91 Value
* incoming
= P
->getIncomingValueForBlock(exitingBlock
);
92 if (Instruction
* I
= dyn_cast
<Instruction
>(incoming
))
93 if (!L
->makeLoopInvariant(I
, Changed
, Preheader
->getTerminator()))
99 // Make sure that no instructions in the block have potential side-effects.
100 // This includes instructions that could write to memory, and loads that are
101 // marked volatile. This could be made more aggressive by using aliasing
102 // information to identify readonly and readnone calls.
103 for (Loop::block_iterator LI
= L
->block_begin(), LE
= L
->block_end();
105 for (BasicBlock::iterator BI
= (*LI
)->begin(), BE
= (*LI
)->end();
107 if (BI
->mayHaveSideEffects())
115 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
116 /// observable behavior of the program other than finite running time. Note
117 /// we do ensure that this never remove a loop that might be infinite, as doing
118 /// so could change the halting/non-halting nature of a program.
119 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
120 /// in order to make various safety checks work.
121 bool LoopDeletion::runOnLoop(Loop
* L
, LPPassManager
& LPM
) {
122 // We can only remove the loop if there is a preheader that we can
123 // branch from after removing it.
124 BasicBlock
* preheader
= L
->getLoopPreheader();
128 // If LoopSimplify form is not available, stay out of trouble.
129 if (!L
->hasDedicatedExits())
132 // We can't remove loops that contain subloops. If the subloops were dead,
133 // they would already have been removed in earlier executions of this pass.
134 if (L
->begin() != L
->end())
137 SmallVector
<BasicBlock
*, 4> exitingBlocks
;
138 L
->getExitingBlocks(exitingBlocks
);
140 SmallVector
<BasicBlock
*, 4> exitBlocks
;
141 L
->getUniqueExitBlocks(exitBlocks
);
143 // We require that the loop only have a single exit block. Otherwise, we'd
144 // be in the situation of needing to be able to solve statically which exit
145 // block will be branched to, or trying to preserve the branching logic in
146 // a loop invariant manner.
147 if (exitBlocks
.size() != 1)
150 // Loops with multiple exits are too complicated to handle correctly.
151 if (exitingBlocks
.size() != 1)
154 // Finally, we have to check that the loop really is dead.
155 bool Changed
= false;
156 if (!IsLoopDead(L
, exitingBlocks
, exitBlocks
, Changed
, preheader
))
159 // Don't remove loops for which we can't solve the trip count.
160 // They could be infinite, in which case we'd be changing program behavior.
161 ScalarEvolution
& SE
= getAnalysis
<ScalarEvolution
>();
162 const SCEV
*S
= SE
.getMaxBackedgeTakenCount(L
);
163 if (isa
<SCEVCouldNotCompute
>(S
))
166 // Now that we know the removal is safe, remove the loop by changing the
167 // branch from the preheader to go to the single exit block.
168 BasicBlock
* exitBlock
= exitBlocks
[0];
169 BasicBlock
* exitingBlock
= exitingBlocks
[0];
171 // Because we're deleting a large chunk of code at once, the sequence in which
172 // we remove things is very important to avoid invalidation issues. Don't
173 // mess with this unless you have good reason and know what you're doing.
175 // Tell ScalarEvolution that the loop is deleted. Do this before
176 // deleting the loop so that ScalarEvolution can look at the loop
177 // to determine what it needs to clean up.
180 // Connect the preheader directly to the exit block.
181 TerminatorInst
* TI
= preheader
->getTerminator();
182 TI
->replaceUsesOfWith(L
->getHeader(), exitBlock
);
184 // Rewrite phis in the exit block to get their inputs from
185 // the preheader instead of the exiting block.
186 BasicBlock::iterator BI
= exitBlock
->begin();
187 while (PHINode
* P
= dyn_cast
<PHINode
>(BI
)) {
188 P
->replaceUsesOfWith(exitingBlock
, preheader
);
192 // Update the dominator tree and remove the instructions and blocks that will
193 // be deleted from the reference counting scheme.
194 DominatorTree
& DT
= getAnalysis
<DominatorTree
>();
195 DominanceFrontier
* DF
= getAnalysisIfAvailable
<DominanceFrontier
>();
196 SmallPtrSet
<DomTreeNode
*, 8> ChildNodes
;
197 for (Loop::block_iterator LI
= L
->block_begin(), LE
= L
->block_end();
199 // Move all of the block's children to be children of the preheader, which
200 // allows us to remove the domtree entry for the block.
201 ChildNodes
.insert(DT
[*LI
]->begin(), DT
[*LI
]->end());
202 for (SmallPtrSet
<DomTreeNode
*, 8>::iterator DI
= ChildNodes
.begin(),
203 DE
= ChildNodes
.end(); DI
!= DE
; ++DI
) {
204 DT
.changeImmediateDominator(*DI
, DT
[preheader
]);
205 if (DF
) DF
->changeImmediateDominator((*DI
)->getBlock(), preheader
, &DT
);
210 if (DF
) DF
->removeBlock(*LI
);
212 // Remove the block from the reference counting scheme, so that we can
213 // delete it freely later.
214 (*LI
)->dropAllReferences();
217 // Erase the instructions and the blocks without having to worry
218 // about ordering because we already dropped the references.
219 // NOTE: This iteration is safe because erasing the block does not remove its
220 // entry from the loop's block list. We do that in the next section.
221 for (Loop::block_iterator LI
= L
->block_begin(), LE
= L
->block_end();
223 (*LI
)->eraseFromParent();
225 // Finally, the blocks from loopinfo. This has to happen late because
226 // otherwise our loop iterators won't work.
227 LoopInfo
& loopInfo
= getAnalysis
<LoopInfo
>();
228 SmallPtrSet
<BasicBlock
*, 8> blocks
;
229 blocks
.insert(L
->block_begin(), L
->block_end());
230 for (SmallPtrSet
<BasicBlock
*,8>::iterator I
= blocks
.begin(),
231 E
= blocks
.end(); I
!= E
; ++I
)
232 loopInfo
.removeBlock(*I
);
234 // The last step is to inform the loop pass manager that we've
235 // eliminated this loop.
236 LPM
.deleteLoopFromQueue(L
);