zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blob8b4f35570d0d6635acd9d751203649a7118f9be0
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GetElementPtrTypeIterator.h"
40 #include "llvm/Support/IRBuilder.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 using namespace llvm;
47 STATISTIC(NumReplaced, "Number of allocas broken up");
48 STATISTIC(NumPromoted, "Number of allocas promoted");
49 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
50 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
52 namespace {
53 struct SROA : public FunctionPass {
54 static char ID; // Pass identification, replacement for typeid
55 explicit SROA(signed T = -1) : FunctionPass(ID) {
56 initializeSROAPass(*PassRegistry::getPassRegistry());
57 if (T == -1)
58 SRThreshold = 128;
59 else
60 SRThreshold = T;
63 bool runOnFunction(Function &F);
65 bool performScalarRepl(Function &F);
66 bool performPromotion(Function &F);
68 // getAnalysisUsage - This pass does not require any passes, but we know it
69 // will not alter the CFG, so say so.
70 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71 AU.addRequired<DominatorTree>();
72 AU.addRequired<DominanceFrontier>();
73 AU.setPreservesCFG();
76 private:
77 TargetData *TD;
79 /// DeadInsts - Keep track of instructions we have made dead, so that
80 /// we can remove them after we are done working.
81 SmallVector<Value*, 32> DeadInsts;
83 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84 /// information about the uses. All these fields are initialized to false
85 /// and set to true when something is learned.
86 struct AllocaInfo {
87 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
88 bool isUnsafe : 1;
90 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
91 bool isMemCpySrc : 1;
93 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
94 bool isMemCpyDst : 1;
96 AllocaInfo()
97 : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
100 unsigned SRThreshold;
102 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
104 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
106 void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
107 AllocaInfo &Info);
108 void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
109 AllocaInfo &Info);
110 void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
111 const Type *MemOpType, bool isStore, AllocaInfo &Info);
112 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
113 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
114 const Type *&IdxTy);
116 void DoScalarReplacement(AllocaInst *AI,
117 std::vector<AllocaInst*> &WorkList);
118 void DeleteDeadInstructions();
120 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
121 SmallVector<AllocaInst*, 32> &NewElts);
122 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
123 SmallVector<AllocaInst*, 32> &NewElts);
124 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
125 SmallVector<AllocaInst*, 32> &NewElts);
126 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
127 AllocaInst *AI,
128 SmallVector<AllocaInst*, 32> &NewElts);
129 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
130 SmallVector<AllocaInst*, 32> &NewElts);
131 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
132 SmallVector<AllocaInst*, 32> &NewElts);
134 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
138 char SROA::ID = 0;
139 INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
140 "Scalar Replacement of Aggregates", false, false)
141 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
142 INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
143 INITIALIZE_PASS_END(SROA, "scalarrepl",
144 "Scalar Replacement of Aggregates", false, false)
146 // Public interface to the ScalarReplAggregates pass
147 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
148 return new SROA(Threshold);
152 //===----------------------------------------------------------------------===//
153 // Convert To Scalar Optimization.
154 //===----------------------------------------------------------------------===//
156 namespace {
157 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
158 /// optimization, which scans the uses of an alloca and determines if it can
159 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
160 class ConvertToScalarInfo {
161 /// AllocaSize - The size of the alloca being considered.
162 unsigned AllocaSize;
163 const TargetData &TD;
165 /// IsNotTrivial - This is set to true if there is some access to the object
166 /// which means that mem2reg can't promote it.
167 bool IsNotTrivial;
169 /// VectorTy - This tracks the type that we should promote the vector to if
170 /// it is possible to turn it into a vector. This starts out null, and if it
171 /// isn't possible to turn into a vector type, it gets set to VoidTy.
172 const Type *VectorTy;
174 /// HadAVector - True if there is at least one vector access to the alloca.
175 /// We don't want to turn random arrays into vectors and use vector element
176 /// insert/extract, but if there are element accesses to something that is
177 /// also declared as a vector, we do want to promote to a vector.
178 bool HadAVector;
180 public:
181 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
182 : AllocaSize(Size), TD(td) {
183 IsNotTrivial = false;
184 VectorTy = 0;
185 HadAVector = false;
188 AllocaInst *TryConvert(AllocaInst *AI);
190 private:
191 bool CanConvertToScalar(Value *V, uint64_t Offset);
192 void MergeInType(const Type *In, uint64_t Offset);
193 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
195 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
196 uint64_t Offset, IRBuilder<> &Builder);
197 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
198 uint64_t Offset, IRBuilder<> &Builder);
200 } // end anonymous namespace.
203 /// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
204 /// allowed to form. We do this to avoid MMX types, which is a complete hack,
205 /// but is required until the backend is fixed.
206 static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
207 StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
208 if (!Triple.startswith("i386") &&
209 !Triple.startswith("x86_64"))
210 return false;
212 // Reject all the MMX vector types.
213 switch (VTy->getNumElements()) {
214 default: return false;
215 case 1: return VTy->getElementType()->isIntegerTy(64);
216 case 2: return VTy->getElementType()->isIntegerTy(32);
217 case 4: return VTy->getElementType()->isIntegerTy(16);
218 case 8: return VTy->getElementType()->isIntegerTy(8);
223 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
224 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
225 /// alloca if possible or null if not.
226 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
227 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
228 // out.
229 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
230 return 0;
232 // If we were able to find a vector type that can handle this with
233 // insert/extract elements, and if there was at least one use that had
234 // a vector type, promote this to a vector. We don't want to promote
235 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
236 // we just get a lot of insert/extracts. If at least one vector is
237 // involved, then we probably really do have a union of vector/array.
238 const Type *NewTy;
239 if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
240 !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
241 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
242 << *VectorTy << '\n');
243 NewTy = VectorTy; // Use the vector type.
244 } else {
245 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
246 // Create and insert the integer alloca.
247 NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
249 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
250 ConvertUsesToScalar(AI, NewAI, 0);
251 return NewAI;
254 /// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
255 /// so far at the offset specified by Offset (which is specified in bytes).
257 /// There are two cases we handle here:
258 /// 1) A union of vector types of the same size and potentially its elements.
259 /// Here we turn element accesses into insert/extract element operations.
260 /// This promotes a <4 x float> with a store of float to the third element
261 /// into a <4 x float> that uses insert element.
262 /// 2) A fully general blob of memory, which we turn into some (potentially
263 /// large) integer type with extract and insert operations where the loads
264 /// and stores would mutate the memory. We mark this by setting VectorTy
265 /// to VoidTy.
266 void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
267 // If we already decided to turn this into a blob of integer memory, there is
268 // nothing to be done.
269 if (VectorTy && VectorTy->isVoidTy())
270 return;
272 // If this could be contributing to a vector, analyze it.
274 // If the In type is a vector that is the same size as the alloca, see if it
275 // matches the existing VecTy.
276 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
277 // Remember if we saw a vector type.
278 HadAVector = true;
280 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
281 // If we're storing/loading a vector of the right size, allow it as a
282 // vector. If this the first vector we see, remember the type so that
283 // we know the element size. If this is a subsequent access, ignore it
284 // even if it is a differing type but the same size. Worst case we can
285 // bitcast the resultant vectors.
286 if (VectorTy == 0)
287 VectorTy = VInTy;
288 return;
290 } else if (In->isFloatTy() || In->isDoubleTy() ||
291 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
292 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
293 // If we're accessing something that could be an element of a vector, see
294 // if the implied vector agrees with what we already have and if Offset is
295 // compatible with it.
296 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
297 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
298 (VectorTy == 0 ||
299 cast<VectorType>(VectorTy)->getElementType()
300 ->getPrimitiveSizeInBits()/8 == EltSize)) {
301 if (VectorTy == 0)
302 VectorTy = VectorType::get(In, AllocaSize/EltSize);
303 return;
307 // Otherwise, we have a case that we can't handle with an optimized vector
308 // form. We can still turn this into a large integer.
309 VectorTy = Type::getVoidTy(In->getContext());
312 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
313 /// its accesses to a single vector type, return true and set VecTy to
314 /// the new type. If we could convert the alloca into a single promotable
315 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
316 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
317 /// is the current offset from the base of the alloca being analyzed.
319 /// If we see at least one access to the value that is as a vector type, set the
320 /// SawVec flag.
321 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
322 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
323 Instruction *User = cast<Instruction>(*UI);
325 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
326 // Don't break volatile loads.
327 if (LI->isVolatile())
328 return false;
329 // Don't touch MMX operations.
330 if (LI->getType()->isX86_MMXTy())
331 return false;
332 MergeInType(LI->getType(), Offset);
333 continue;
336 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
337 // Storing the pointer, not into the value?
338 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
339 // Don't touch MMX operations.
340 if (SI->getOperand(0)->getType()->isX86_MMXTy())
341 return false;
342 MergeInType(SI->getOperand(0)->getType(), Offset);
343 continue;
346 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
347 IsNotTrivial = true; // Can't be mem2reg'd.
348 if (!CanConvertToScalar(BCI, Offset))
349 return false;
350 continue;
353 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
354 // If this is a GEP with a variable indices, we can't handle it.
355 if (!GEP->hasAllConstantIndices())
356 return false;
358 // Compute the offset that this GEP adds to the pointer.
359 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
360 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
361 &Indices[0], Indices.size());
362 // See if all uses can be converted.
363 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
364 return false;
365 IsNotTrivial = true; // Can't be mem2reg'd.
366 continue;
369 // If this is a constant sized memset of a constant value (e.g. 0) we can
370 // handle it.
371 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
372 // Store of constant value and constant size.
373 if (!isa<ConstantInt>(MSI->getValue()) ||
374 !isa<ConstantInt>(MSI->getLength()))
375 return false;
376 IsNotTrivial = true; // Can't be mem2reg'd.
377 continue;
380 // If this is a memcpy or memmove into or out of the whole allocation, we
381 // can handle it like a load or store of the scalar type.
382 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
383 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
384 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
385 return false;
387 IsNotTrivial = true; // Can't be mem2reg'd.
388 continue;
391 // Otherwise, we cannot handle this!
392 return false;
395 return true;
398 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
399 /// directly. This happens when we are converting an "integer union" to a
400 /// single integer scalar, or when we are converting a "vector union" to a
401 /// vector with insert/extractelement instructions.
403 /// Offset is an offset from the original alloca, in bits that need to be
404 /// shifted to the right. By the end of this, there should be no uses of Ptr.
405 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
406 uint64_t Offset) {
407 while (!Ptr->use_empty()) {
408 Instruction *User = cast<Instruction>(Ptr->use_back());
410 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
411 ConvertUsesToScalar(CI, NewAI, Offset);
412 CI->eraseFromParent();
413 continue;
416 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
417 // Compute the offset that this GEP adds to the pointer.
418 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
419 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
420 &Indices[0], Indices.size());
421 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
422 GEP->eraseFromParent();
423 continue;
426 IRBuilder<> Builder(User->getParent(), User);
428 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
429 // The load is a bit extract from NewAI shifted right by Offset bits.
430 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
431 Value *NewLoadVal
432 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
433 LI->replaceAllUsesWith(NewLoadVal);
434 LI->eraseFromParent();
435 continue;
438 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
439 assert(SI->getOperand(0) != Ptr && "Consistency error!");
440 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
441 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
442 Builder);
443 Builder.CreateStore(New, NewAI);
444 SI->eraseFromParent();
446 // If the load we just inserted is now dead, then the inserted store
447 // overwrote the entire thing.
448 if (Old->use_empty())
449 Old->eraseFromParent();
450 continue;
453 // If this is a constant sized memset of a constant value (e.g. 0) we can
454 // transform it into a store of the expanded constant value.
455 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
456 assert(MSI->getRawDest() == Ptr && "Consistency error!");
457 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
458 if (NumBytes != 0) {
459 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
461 // Compute the value replicated the right number of times.
462 APInt APVal(NumBytes*8, Val);
464 // Splat the value if non-zero.
465 if (Val)
466 for (unsigned i = 1; i != NumBytes; ++i)
467 APVal |= APVal << 8;
469 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
470 Value *New = ConvertScalar_InsertValue(
471 ConstantInt::get(User->getContext(), APVal),
472 Old, Offset, Builder);
473 Builder.CreateStore(New, NewAI);
475 // If the load we just inserted is now dead, then the memset overwrote
476 // the entire thing.
477 if (Old->use_empty())
478 Old->eraseFromParent();
480 MSI->eraseFromParent();
481 continue;
484 // If this is a memcpy or memmove into or out of the whole allocation, we
485 // can handle it like a load or store of the scalar type.
486 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
487 assert(Offset == 0 && "must be store to start of alloca");
489 // If the source and destination are both to the same alloca, then this is
490 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
491 // as appropriate.
492 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
494 if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
495 // Dest must be OrigAI, change this to be a load from the original
496 // pointer (bitcasted), then a store to our new alloca.
497 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
498 Value *SrcPtr = MTI->getSource();
499 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
501 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
502 SrcVal->setAlignment(MTI->getAlignment());
503 Builder.CreateStore(SrcVal, NewAI);
504 } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
505 // Src must be OrigAI, change this to be a load from NewAI then a store
506 // through the original dest pointer (bitcasted).
507 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
508 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
510 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
511 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
512 NewStore->setAlignment(MTI->getAlignment());
513 } else {
514 // Noop transfer. Src == Dst
517 MTI->eraseFromParent();
518 continue;
521 llvm_unreachable("Unsupported operation!");
525 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
526 /// or vector value FromVal, extracting the bits from the offset specified by
527 /// Offset. This returns the value, which is of type ToType.
529 /// This happens when we are converting an "integer union" to a single
530 /// integer scalar, or when we are converting a "vector union" to a vector with
531 /// insert/extractelement instructions.
533 /// Offset is an offset from the original alloca, in bits that need to be
534 /// shifted to the right.
535 Value *ConvertToScalarInfo::
536 ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
537 uint64_t Offset, IRBuilder<> &Builder) {
538 // If the load is of the whole new alloca, no conversion is needed.
539 if (FromVal->getType() == ToType && Offset == 0)
540 return FromVal;
542 // If the result alloca is a vector type, this is either an element
543 // access or a bitcast to another vector type of the same size.
544 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
545 if (ToType->isVectorTy())
546 return Builder.CreateBitCast(FromVal, ToType, "tmp");
548 // Otherwise it must be an element access.
549 unsigned Elt = 0;
550 if (Offset) {
551 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
552 Elt = Offset/EltSize;
553 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
555 // Return the element extracted out of it.
556 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
557 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
558 if (V->getType() != ToType)
559 V = Builder.CreateBitCast(V, ToType, "tmp");
560 return V;
563 // If ToType is a first class aggregate, extract out each of the pieces and
564 // use insertvalue's to form the FCA.
565 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
566 const StructLayout &Layout = *TD.getStructLayout(ST);
567 Value *Res = UndefValue::get(ST);
568 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
569 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
570 Offset+Layout.getElementOffsetInBits(i),
571 Builder);
572 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
574 return Res;
577 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
578 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
579 Value *Res = UndefValue::get(AT);
580 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
581 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
582 Offset+i*EltSize, Builder);
583 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
585 return Res;
588 // Otherwise, this must be a union that was converted to an integer value.
589 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
591 // If this is a big-endian system and the load is narrower than the
592 // full alloca type, we need to do a shift to get the right bits.
593 int ShAmt = 0;
594 if (TD.isBigEndian()) {
595 // On big-endian machines, the lowest bit is stored at the bit offset
596 // from the pointer given by getTypeStoreSizeInBits. This matters for
597 // integers with a bitwidth that is not a multiple of 8.
598 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
599 TD.getTypeStoreSizeInBits(ToType) - Offset;
600 } else {
601 ShAmt = Offset;
604 // Note: we support negative bitwidths (with shl) which are not defined.
605 // We do this to support (f.e.) loads off the end of a structure where
606 // only some bits are used.
607 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
608 FromVal = Builder.CreateLShr(FromVal,
609 ConstantInt::get(FromVal->getType(),
610 ShAmt), "tmp");
611 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
612 FromVal = Builder.CreateShl(FromVal,
613 ConstantInt::get(FromVal->getType(),
614 -ShAmt), "tmp");
616 // Finally, unconditionally truncate the integer to the right width.
617 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
618 if (LIBitWidth < NTy->getBitWidth())
619 FromVal =
620 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
621 LIBitWidth), "tmp");
622 else if (LIBitWidth > NTy->getBitWidth())
623 FromVal =
624 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
625 LIBitWidth), "tmp");
627 // If the result is an integer, this is a trunc or bitcast.
628 if (ToType->isIntegerTy()) {
629 // Should be done.
630 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
631 // Just do a bitcast, we know the sizes match up.
632 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
633 } else {
634 // Otherwise must be a pointer.
635 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
637 assert(FromVal->getType() == ToType && "Didn't convert right?");
638 return FromVal;
641 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
642 /// or vector value "Old" at the offset specified by Offset.
644 /// This happens when we are converting an "integer union" to a
645 /// single integer scalar, or when we are converting a "vector union" to a
646 /// vector with insert/extractelement instructions.
648 /// Offset is an offset from the original alloca, in bits that need to be
649 /// shifted to the right.
650 Value *ConvertToScalarInfo::
651 ConvertScalar_InsertValue(Value *SV, Value *Old,
652 uint64_t Offset, IRBuilder<> &Builder) {
653 // Convert the stored type to the actual type, shift it left to insert
654 // then 'or' into place.
655 const Type *AllocaType = Old->getType();
656 LLVMContext &Context = Old->getContext();
658 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
659 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
660 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
662 // Changing the whole vector with memset or with an access of a different
663 // vector type?
664 if (ValSize == VecSize)
665 return Builder.CreateBitCast(SV, AllocaType, "tmp");
667 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
669 // Must be an element insertion.
670 unsigned Elt = Offset/EltSize;
672 if (SV->getType() != VTy->getElementType())
673 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
675 SV = Builder.CreateInsertElement(Old, SV,
676 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
677 "tmp");
678 return SV;
681 // If SV is a first-class aggregate value, insert each value recursively.
682 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
683 const StructLayout &Layout = *TD.getStructLayout(ST);
684 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
685 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
686 Old = ConvertScalar_InsertValue(Elt, Old,
687 Offset+Layout.getElementOffsetInBits(i),
688 Builder);
690 return Old;
693 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
694 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
695 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
696 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
697 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
699 return Old;
702 // If SV is a float, convert it to the appropriate integer type.
703 // If it is a pointer, do the same.
704 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
705 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
706 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
707 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
708 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
709 SV = Builder.CreateBitCast(SV,
710 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
711 else if (SV->getType()->isPointerTy())
712 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
714 // Zero extend or truncate the value if needed.
715 if (SV->getType() != AllocaType) {
716 if (SV->getType()->getPrimitiveSizeInBits() <
717 AllocaType->getPrimitiveSizeInBits())
718 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
719 else {
720 // Truncation may be needed if storing more than the alloca can hold
721 // (undefined behavior).
722 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
723 SrcWidth = DestWidth;
724 SrcStoreWidth = DestStoreWidth;
728 // If this is a big-endian system and the store is narrower than the
729 // full alloca type, we need to do a shift to get the right bits.
730 int ShAmt = 0;
731 if (TD.isBigEndian()) {
732 // On big-endian machines, the lowest bit is stored at the bit offset
733 // from the pointer given by getTypeStoreSizeInBits. This matters for
734 // integers with a bitwidth that is not a multiple of 8.
735 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
736 } else {
737 ShAmt = Offset;
740 // Note: we support negative bitwidths (with shr) which are not defined.
741 // We do this to support (f.e.) stores off the end of a structure where
742 // only some bits in the structure are set.
743 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
744 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
745 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
746 ShAmt), "tmp");
747 Mask <<= ShAmt;
748 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
749 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
750 -ShAmt), "tmp");
751 Mask = Mask.lshr(-ShAmt);
754 // Mask out the bits we are about to insert from the old value, and or
755 // in the new bits.
756 if (SrcWidth != DestWidth) {
757 assert(DestWidth > SrcWidth);
758 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
759 SV = Builder.CreateOr(Old, SV, "ins");
761 return SV;
765 //===----------------------------------------------------------------------===//
766 // SRoA Driver
767 //===----------------------------------------------------------------------===//
770 bool SROA::runOnFunction(Function &F) {
771 TD = getAnalysisIfAvailable<TargetData>();
773 bool Changed = performPromotion(F);
775 // FIXME: ScalarRepl currently depends on TargetData more than it
776 // theoretically needs to. It should be refactored in order to support
777 // target-independent IR. Until this is done, just skip the actual
778 // scalar-replacement portion of this pass.
779 if (!TD) return Changed;
781 while (1) {
782 bool LocalChange = performScalarRepl(F);
783 if (!LocalChange) break; // No need to repromote if no scalarrepl
784 Changed = true;
785 LocalChange = performPromotion(F);
786 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
789 return Changed;
793 bool SROA::performPromotion(Function &F) {
794 std::vector<AllocaInst*> Allocas;
795 DominatorTree &DT = getAnalysis<DominatorTree>();
796 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
798 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
800 bool Changed = false;
802 while (1) {
803 Allocas.clear();
805 // Find allocas that are safe to promote, by looking at all instructions in
806 // the entry node
807 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
808 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
809 if (isAllocaPromotable(AI))
810 Allocas.push_back(AI);
812 if (Allocas.empty()) break;
814 PromoteMemToReg(Allocas, DT, DF);
815 NumPromoted += Allocas.size();
816 Changed = true;
819 return Changed;
823 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
824 /// SROA. It must be a struct or array type with a small number of elements.
825 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
826 const Type *T = AI->getAllocatedType();
827 // Do not promote any struct into more than 32 separate vars.
828 if (const StructType *ST = dyn_cast<StructType>(T))
829 return ST->getNumElements() <= 32;
830 // Arrays are much less likely to be safe for SROA; only consider
831 // them if they are very small.
832 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
833 return AT->getNumElements() <= 8;
834 return false;
838 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
839 // which runs on all of the malloc/alloca instructions in the function, removing
840 // them if they are only used by getelementptr instructions.
842 bool SROA::performScalarRepl(Function &F) {
843 std::vector<AllocaInst*> WorkList;
845 // Scan the entry basic block, adding allocas to the worklist.
846 BasicBlock &BB = F.getEntryBlock();
847 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
848 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
849 WorkList.push_back(A);
851 // Process the worklist
852 bool Changed = false;
853 while (!WorkList.empty()) {
854 AllocaInst *AI = WorkList.back();
855 WorkList.pop_back();
857 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
858 // with unused elements.
859 if (AI->use_empty()) {
860 AI->eraseFromParent();
861 Changed = true;
862 continue;
865 // If this alloca is impossible for us to promote, reject it early.
866 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
867 continue;
869 // Check to see if this allocation is only modified by a memcpy/memmove from
870 // a constant global. If this is the case, we can change all users to use
871 // the constant global instead. This is commonly produced by the CFE by
872 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
873 // is only subsequently read.
874 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
875 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
876 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
877 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
878 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
879 TheCopy->eraseFromParent(); // Don't mutate the global.
880 AI->eraseFromParent();
881 ++NumGlobals;
882 Changed = true;
883 continue;
886 // Check to see if we can perform the core SROA transformation. We cannot
887 // transform the allocation instruction if it is an array allocation
888 // (allocations OF arrays are ok though), and an allocation of a scalar
889 // value cannot be decomposed at all.
890 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
892 // Do not promote [0 x %struct].
893 if (AllocaSize == 0) continue;
895 // Do not promote any struct whose size is too big.
896 if (AllocaSize > SRThreshold) continue;
898 // If the alloca looks like a good candidate for scalar replacement, and if
899 // all its users can be transformed, then split up the aggregate into its
900 // separate elements.
901 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
902 DoScalarReplacement(AI, WorkList);
903 Changed = true;
904 continue;
907 // If we can turn this aggregate value (potentially with casts) into a
908 // simple scalar value that can be mem2reg'd into a register value.
909 // IsNotTrivial tracks whether this is something that mem2reg could have
910 // promoted itself. If so, we don't want to transform it needlessly. Note
911 // that we can't just check based on the type: the alloca may be of an i32
912 // but that has pointer arithmetic to set byte 3 of it or something.
913 if (AllocaInst *NewAI =
914 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
915 NewAI->takeName(AI);
916 AI->eraseFromParent();
917 ++NumConverted;
918 Changed = true;
919 continue;
922 // Otherwise, couldn't process this alloca.
925 return Changed;
928 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
929 /// predicate, do SROA now.
930 void SROA::DoScalarReplacement(AllocaInst *AI,
931 std::vector<AllocaInst*> &WorkList) {
932 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
933 SmallVector<AllocaInst*, 32> ElementAllocas;
934 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
935 ElementAllocas.reserve(ST->getNumContainedTypes());
936 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
937 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
938 AI->getAlignment(),
939 AI->getName() + "." + Twine(i), AI);
940 ElementAllocas.push_back(NA);
941 WorkList.push_back(NA); // Add to worklist for recursive processing
943 } else {
944 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
945 ElementAllocas.reserve(AT->getNumElements());
946 const Type *ElTy = AT->getElementType();
947 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
948 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
949 AI->getName() + "." + Twine(i), AI);
950 ElementAllocas.push_back(NA);
951 WorkList.push_back(NA); // Add to worklist for recursive processing
955 // Now that we have created the new alloca instructions, rewrite all the
956 // uses of the old alloca.
957 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
959 // Now erase any instructions that were made dead while rewriting the alloca.
960 DeleteDeadInstructions();
961 AI->eraseFromParent();
963 ++NumReplaced;
966 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
967 /// recursively including all their operands that become trivially dead.
968 void SROA::DeleteDeadInstructions() {
969 while (!DeadInsts.empty()) {
970 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
972 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
973 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
974 // Zero out the operand and see if it becomes trivially dead.
975 // (But, don't add allocas to the dead instruction list -- they are
976 // already on the worklist and will be deleted separately.)
977 *OI = 0;
978 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
979 DeadInsts.push_back(U);
982 I->eraseFromParent();
986 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
987 /// performing scalar replacement of alloca AI. The results are flagged in
988 /// the Info parameter. Offset indicates the position within AI that is
989 /// referenced by this instruction.
990 void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
991 AllocaInfo &Info) {
992 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
993 Instruction *User = cast<Instruction>(*UI);
995 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
996 isSafeForScalarRepl(BC, AI, Offset, Info);
997 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
998 uint64_t GEPOffset = Offset;
999 isSafeGEP(GEPI, AI, GEPOffset, Info);
1000 if (!Info.isUnsafe)
1001 isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1002 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1003 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1004 if (Length)
1005 isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1006 UI.getOperandNo() == 0, Info);
1007 else
1008 MarkUnsafe(Info);
1009 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1010 if (!LI->isVolatile()) {
1011 const Type *LIType = LI->getType();
1012 isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1013 LIType, false, Info);
1014 } else
1015 MarkUnsafe(Info);
1016 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1017 // Store is ok if storing INTO the pointer, not storing the pointer
1018 if (!SI->isVolatile() && SI->getOperand(0) != I) {
1019 const Type *SIType = SI->getOperand(0)->getType();
1020 isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1021 SIType, true, Info);
1022 } else
1023 MarkUnsafe(Info);
1024 } else {
1025 DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
1026 MarkUnsafe(Info);
1028 if (Info.isUnsafe) return;
1032 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1033 /// replacement. It is safe when all the indices are constant, in-bounds
1034 /// references, and when the resulting offset corresponds to an element within
1035 /// the alloca type. The results are flagged in the Info parameter. Upon
1036 /// return, Offset is adjusted as specified by the GEP indices.
1037 void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1038 uint64_t &Offset, AllocaInfo &Info) {
1039 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1040 if (GEPIt == E)
1041 return;
1043 // Walk through the GEP type indices, checking the types that this indexes
1044 // into.
1045 for (; GEPIt != E; ++GEPIt) {
1046 // Ignore struct elements, no extra checking needed for these.
1047 if ((*GEPIt)->isStructTy())
1048 continue;
1050 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1051 if (!IdxVal)
1052 return MarkUnsafe(Info);
1055 // Compute the offset due to this GEP and check if the alloca has a
1056 // component element at that offset.
1057 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1058 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1059 &Indices[0], Indices.size());
1060 if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1061 MarkUnsafe(Info);
1064 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1065 /// alloca or has an offset and size that corresponds to a component element
1066 /// within it. The offset checked here may have been formed from a GEP with a
1067 /// pointer bitcasted to a different type.
1068 void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1069 const Type *MemOpType, bool isStore,
1070 AllocaInfo &Info) {
1071 // Check if this is a load/store of the entire alloca.
1072 if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1073 bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
1074 // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1075 // (which are essentially the same as the MemIntrinsics, especially with
1076 // regard to copying padding between elements), or references using the
1077 // aggregate type of the alloca.
1078 if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
1079 if (!UsesAggregateType) {
1080 if (isStore)
1081 Info.isMemCpyDst = true;
1082 else
1083 Info.isMemCpySrc = true;
1085 return;
1088 // Check if the offset/size correspond to a component within the alloca type.
1089 const Type *T = AI->getAllocatedType();
1090 if (TypeHasComponent(T, Offset, MemSize))
1091 return;
1093 return MarkUnsafe(Info);
1096 /// TypeHasComponent - Return true if T has a component type with the
1097 /// specified offset and size. If Size is zero, do not check the size.
1098 bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1099 const Type *EltTy;
1100 uint64_t EltSize;
1101 if (const StructType *ST = dyn_cast<StructType>(T)) {
1102 const StructLayout *Layout = TD->getStructLayout(ST);
1103 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1104 EltTy = ST->getContainedType(EltIdx);
1105 EltSize = TD->getTypeAllocSize(EltTy);
1106 Offset -= Layout->getElementOffset(EltIdx);
1107 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1108 EltTy = AT->getElementType();
1109 EltSize = TD->getTypeAllocSize(EltTy);
1110 if (Offset >= AT->getNumElements() * EltSize)
1111 return false;
1112 Offset %= EltSize;
1113 } else {
1114 return false;
1116 if (Offset == 0 && (Size == 0 || EltSize == Size))
1117 return true;
1118 // Check if the component spans multiple elements.
1119 if (Offset + Size > EltSize)
1120 return false;
1121 return TypeHasComponent(EltTy, Offset, Size);
1124 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1125 /// the instruction I, which references it, to use the separate elements.
1126 /// Offset indicates the position within AI that is referenced by this
1127 /// instruction.
1128 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1129 SmallVector<AllocaInst*, 32> &NewElts) {
1130 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1131 Instruction *User = cast<Instruction>(*UI);
1133 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1134 RewriteBitCast(BC, AI, Offset, NewElts);
1135 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1136 RewriteGEP(GEPI, AI, Offset, NewElts);
1137 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1138 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1139 uint64_t MemSize = Length->getZExtValue();
1140 if (Offset == 0 &&
1141 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1142 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1143 // Otherwise the intrinsic can only touch a single element and the
1144 // address operand will be updated, so nothing else needs to be done.
1145 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1146 const Type *LIType = LI->getType();
1147 if (LIType == AI->getAllocatedType()) {
1148 // Replace:
1149 // %res = load { i32, i32 }* %alloc
1150 // with:
1151 // %load.0 = load i32* %alloc.0
1152 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1153 // %load.1 = load i32* %alloc.1
1154 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1155 // (Also works for arrays instead of structs)
1156 Value *Insert = UndefValue::get(LIType);
1157 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1158 Value *Load = new LoadInst(NewElts[i], "load", LI);
1159 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1161 LI->replaceAllUsesWith(Insert);
1162 DeadInsts.push_back(LI);
1163 } else if (LIType->isIntegerTy() &&
1164 TD->getTypeAllocSize(LIType) ==
1165 TD->getTypeAllocSize(AI->getAllocatedType())) {
1166 // If this is a load of the entire alloca to an integer, rewrite it.
1167 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1169 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1170 Value *Val = SI->getOperand(0);
1171 const Type *SIType = Val->getType();
1172 if (SIType == AI->getAllocatedType()) {
1173 // Replace:
1174 // store { i32, i32 } %val, { i32, i32 }* %alloc
1175 // with:
1176 // %val.0 = extractvalue { i32, i32 } %val, 0
1177 // store i32 %val.0, i32* %alloc.0
1178 // %val.1 = extractvalue { i32, i32 } %val, 1
1179 // store i32 %val.1, i32* %alloc.1
1180 // (Also works for arrays instead of structs)
1181 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1182 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1183 new StoreInst(Extract, NewElts[i], SI);
1185 DeadInsts.push_back(SI);
1186 } else if (SIType->isIntegerTy() &&
1187 TD->getTypeAllocSize(SIType) ==
1188 TD->getTypeAllocSize(AI->getAllocatedType())) {
1189 // If this is a store of the entire alloca from an integer, rewrite it.
1190 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1196 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1197 /// and recursively continue updating all of its uses.
1198 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1199 SmallVector<AllocaInst*, 32> &NewElts) {
1200 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1201 if (BC->getOperand(0) != AI)
1202 return;
1204 // The bitcast references the original alloca. Replace its uses with
1205 // references to the first new element alloca.
1206 Instruction *Val = NewElts[0];
1207 if (Val->getType() != BC->getDestTy()) {
1208 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1209 Val->takeName(BC);
1211 BC->replaceAllUsesWith(Val);
1212 DeadInsts.push_back(BC);
1215 /// FindElementAndOffset - Return the index of the element containing Offset
1216 /// within the specified type, which must be either a struct or an array.
1217 /// Sets T to the type of the element and Offset to the offset within that
1218 /// element. IdxTy is set to the type of the index result to be used in a
1219 /// GEP instruction.
1220 uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1221 const Type *&IdxTy) {
1222 uint64_t Idx = 0;
1223 if (const StructType *ST = dyn_cast<StructType>(T)) {
1224 const StructLayout *Layout = TD->getStructLayout(ST);
1225 Idx = Layout->getElementContainingOffset(Offset);
1226 T = ST->getContainedType(Idx);
1227 Offset -= Layout->getElementOffset(Idx);
1228 IdxTy = Type::getInt32Ty(T->getContext());
1229 return Idx;
1231 const ArrayType *AT = cast<ArrayType>(T);
1232 T = AT->getElementType();
1233 uint64_t EltSize = TD->getTypeAllocSize(T);
1234 Idx = Offset / EltSize;
1235 Offset -= Idx * EltSize;
1236 IdxTy = Type::getInt64Ty(T->getContext());
1237 return Idx;
1240 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1241 /// elements of the alloca that are being split apart, and if so, rewrite
1242 /// the GEP to be relative to the new element.
1243 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1244 SmallVector<AllocaInst*, 32> &NewElts) {
1245 uint64_t OldOffset = Offset;
1246 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1247 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1248 &Indices[0], Indices.size());
1250 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1252 const Type *T = AI->getAllocatedType();
1253 const Type *IdxTy;
1254 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1255 if (GEPI->getOperand(0) == AI)
1256 OldIdx = ~0ULL; // Force the GEP to be rewritten.
1258 T = AI->getAllocatedType();
1259 uint64_t EltOffset = Offset;
1260 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1262 // If this GEP does not move the pointer across elements of the alloca
1263 // being split, then it does not needs to be rewritten.
1264 if (Idx == OldIdx)
1265 return;
1267 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1268 SmallVector<Value*, 8> NewArgs;
1269 NewArgs.push_back(Constant::getNullValue(i32Ty));
1270 while (EltOffset != 0) {
1271 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1272 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1274 Instruction *Val = NewElts[Idx];
1275 if (NewArgs.size() > 1) {
1276 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1277 NewArgs.end(), "", GEPI);
1278 Val->takeName(GEPI);
1280 if (Val->getType() != GEPI->getType())
1281 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1282 GEPI->replaceAllUsesWith(Val);
1283 DeadInsts.push_back(GEPI);
1286 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1287 /// Rewrite it to copy or set the elements of the scalarized memory.
1288 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1289 AllocaInst *AI,
1290 SmallVector<AllocaInst*, 32> &NewElts) {
1291 // If this is a memcpy/memmove, construct the other pointer as the
1292 // appropriate type. The "Other" pointer is the pointer that goes to memory
1293 // that doesn't have anything to do with the alloca that we are promoting. For
1294 // memset, this Value* stays null.
1295 Value *OtherPtr = 0;
1296 unsigned MemAlignment = MI->getAlignment();
1297 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1298 if (Inst == MTI->getRawDest())
1299 OtherPtr = MTI->getRawSource();
1300 else {
1301 assert(Inst == MTI->getRawSource());
1302 OtherPtr = MTI->getRawDest();
1306 // If there is an other pointer, we want to convert it to the same pointer
1307 // type as AI has, so we can GEP through it safely.
1308 if (OtherPtr) {
1309 unsigned AddrSpace =
1310 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1312 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1313 // optimization, but it's also required to detect the corner case where
1314 // both pointer operands are referencing the same memory, and where
1315 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1316 // function is only called for mem intrinsics that access the whole
1317 // aggregate, so non-zero GEPs are not an issue here.)
1318 OtherPtr = OtherPtr->stripPointerCasts();
1320 // Copying the alloca to itself is a no-op: just delete it.
1321 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1322 // This code will run twice for a no-op memcpy -- once for each operand.
1323 // Put only one reference to MI on the DeadInsts list.
1324 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1325 E = DeadInsts.end(); I != E; ++I)
1326 if (*I == MI) return;
1327 DeadInsts.push_back(MI);
1328 return;
1331 // If the pointer is not the right type, insert a bitcast to the right
1332 // type.
1333 const Type *NewTy =
1334 PointerType::get(AI->getType()->getElementType(), AddrSpace);
1336 if (OtherPtr->getType() != NewTy)
1337 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1340 // Process each element of the aggregate.
1341 Value *TheFn = MI->getCalledValue();
1342 const Type *BytePtrTy = MI->getRawDest()->getType();
1343 bool SROADest = MI->getRawDest() == Inst;
1345 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1347 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1348 // If this is a memcpy/memmove, emit a GEP of the other element address.
1349 Value *OtherElt = 0;
1350 unsigned OtherEltAlign = MemAlignment;
1352 if (OtherPtr) {
1353 Value *Idx[2] = { Zero,
1354 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1355 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1356 OtherPtr->getName()+"."+Twine(i),
1357 MI);
1358 uint64_t EltOffset;
1359 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1360 const Type *OtherTy = OtherPtrTy->getElementType();
1361 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1362 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1363 } else {
1364 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1365 EltOffset = TD->getTypeAllocSize(EltTy)*i;
1368 // The alignment of the other pointer is the guaranteed alignment of the
1369 // element, which is affected by both the known alignment of the whole
1370 // mem intrinsic and the alignment of the element. If the alignment of
1371 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1372 // known alignment is just 4 bytes.
1373 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1376 Value *EltPtr = NewElts[i];
1377 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1379 // If we got down to a scalar, insert a load or store as appropriate.
1380 if (EltTy->isSingleValueType()) {
1381 if (isa<MemTransferInst>(MI)) {
1382 if (SROADest) {
1383 // From Other to Alloca.
1384 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1385 new StoreInst(Elt, EltPtr, MI);
1386 } else {
1387 // From Alloca to Other.
1388 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1389 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1391 continue;
1393 assert(isa<MemSetInst>(MI));
1395 // If the stored element is zero (common case), just store a null
1396 // constant.
1397 Constant *StoreVal;
1398 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1399 if (CI->isZero()) {
1400 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
1401 } else {
1402 // If EltTy is a vector type, get the element type.
1403 const Type *ValTy = EltTy->getScalarType();
1405 // Construct an integer with the right value.
1406 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1407 APInt OneVal(EltSize, CI->getZExtValue());
1408 APInt TotalVal(OneVal);
1409 // Set each byte.
1410 for (unsigned i = 0; 8*i < EltSize; ++i) {
1411 TotalVal = TotalVal.shl(8);
1412 TotalVal |= OneVal;
1415 // Convert the integer value to the appropriate type.
1416 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1417 if (ValTy->isPointerTy())
1418 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1419 else if (ValTy->isFloatingPointTy())
1420 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1421 assert(StoreVal->getType() == ValTy && "Type mismatch!");
1423 // If the requested value was a vector constant, create it.
1424 if (EltTy != ValTy) {
1425 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1426 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1427 StoreVal = ConstantVector::get(&Elts[0], NumElts);
1430 new StoreInst(StoreVal, EltPtr, MI);
1431 continue;
1433 // Otherwise, if we're storing a byte variable, use a memset call for
1434 // this element.
1437 // Cast the element pointer to BytePtrTy.
1438 if (EltPtr->getType() != BytePtrTy)
1439 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
1441 // Cast the other pointer (if we have one) to BytePtrTy.
1442 if (OtherElt && OtherElt->getType() != BytePtrTy) {
1443 // Preserve address space of OtherElt
1444 const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
1445 const PointerType* PTy = cast<PointerType>(BytePtrTy);
1446 if (OtherPTy->getElementType() != PTy->getElementType()) {
1447 Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
1448 OtherPTy->getAddressSpace());
1449 OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
1450 OtherElt->getName(), MI);
1454 unsigned EltSize = TD->getTypeAllocSize(EltTy);
1456 // Finally, insert the meminst for this element.
1457 if (isa<MemTransferInst>(MI)) {
1458 Value *Ops[] = {
1459 SROADest ? EltPtr : OtherElt, // Dest ptr
1460 SROADest ? OtherElt : EltPtr, // Src ptr
1461 ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1462 // Align
1463 ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
1464 MI->getVolatileCst()
1466 // In case we fold the address space overloaded memcpy of A to B
1467 // with memcpy of B to C, change the function to be a memcpy of A to C.
1468 const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
1469 Ops[2]->getType() };
1470 Module *M = MI->getParent()->getParent()->getParent();
1471 TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
1472 CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1473 } else {
1474 assert(isa<MemSetInst>(MI));
1475 Value *Ops[] = {
1476 EltPtr, MI->getArgOperand(1), // Dest, Value,
1477 ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1478 Zero, // Align
1479 ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
1481 const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
1482 Module *M = MI->getParent()->getParent()->getParent();
1483 TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
1484 CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1487 DeadInsts.push_back(MI);
1490 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1491 /// overwrites the entire allocation. Extract out the pieces of the stored
1492 /// integer and store them individually.
1493 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1494 SmallVector<AllocaInst*, 32> &NewElts){
1495 // Extract each element out of the integer according to its structure offset
1496 // and store the element value to the individual alloca.
1497 Value *SrcVal = SI->getOperand(0);
1498 const Type *AllocaEltTy = AI->getAllocatedType();
1499 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1501 // Handle tail padding by extending the operand
1502 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1503 SrcVal = new ZExtInst(SrcVal,
1504 IntegerType::get(SI->getContext(), AllocaSizeBits),
1505 "", SI);
1507 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1508 << '\n');
1510 // There are two forms here: AI could be an array or struct. Both cases
1511 // have different ways to compute the element offset.
1512 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1513 const StructLayout *Layout = TD->getStructLayout(EltSTy);
1515 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1516 // Get the number of bits to shift SrcVal to get the value.
1517 const Type *FieldTy = EltSTy->getElementType(i);
1518 uint64_t Shift = Layout->getElementOffsetInBits(i);
1520 if (TD->isBigEndian())
1521 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1523 Value *EltVal = SrcVal;
1524 if (Shift) {
1525 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1526 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1527 "sroa.store.elt", SI);
1530 // Truncate down to an integer of the right size.
1531 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1533 // Ignore zero sized fields like {}, they obviously contain no data.
1534 if (FieldSizeBits == 0) continue;
1536 if (FieldSizeBits != AllocaSizeBits)
1537 EltVal = new TruncInst(EltVal,
1538 IntegerType::get(SI->getContext(), FieldSizeBits),
1539 "", SI);
1540 Value *DestField = NewElts[i];
1541 if (EltVal->getType() == FieldTy) {
1542 // Storing to an integer field of this size, just do it.
1543 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1544 // Bitcast to the right element type (for fp/vector values).
1545 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1546 } else {
1547 // Otherwise, bitcast the dest pointer (for aggregates).
1548 DestField = new BitCastInst(DestField,
1549 PointerType::getUnqual(EltVal->getType()),
1550 "", SI);
1552 new StoreInst(EltVal, DestField, SI);
1555 } else {
1556 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1557 const Type *ArrayEltTy = ATy->getElementType();
1558 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1559 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1561 uint64_t Shift;
1563 if (TD->isBigEndian())
1564 Shift = AllocaSizeBits-ElementOffset;
1565 else
1566 Shift = 0;
1568 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1569 // Ignore zero sized fields like {}, they obviously contain no data.
1570 if (ElementSizeBits == 0) continue;
1572 Value *EltVal = SrcVal;
1573 if (Shift) {
1574 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1575 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1576 "sroa.store.elt", SI);
1579 // Truncate down to an integer of the right size.
1580 if (ElementSizeBits != AllocaSizeBits)
1581 EltVal = new TruncInst(EltVal,
1582 IntegerType::get(SI->getContext(),
1583 ElementSizeBits),"",SI);
1584 Value *DestField = NewElts[i];
1585 if (EltVal->getType() == ArrayEltTy) {
1586 // Storing to an integer field of this size, just do it.
1587 } else if (ArrayEltTy->isFloatingPointTy() ||
1588 ArrayEltTy->isVectorTy()) {
1589 // Bitcast to the right element type (for fp/vector values).
1590 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1591 } else {
1592 // Otherwise, bitcast the dest pointer (for aggregates).
1593 DestField = new BitCastInst(DestField,
1594 PointerType::getUnqual(EltVal->getType()),
1595 "", SI);
1597 new StoreInst(EltVal, DestField, SI);
1599 if (TD->isBigEndian())
1600 Shift -= ElementOffset;
1601 else
1602 Shift += ElementOffset;
1606 DeadInsts.push_back(SI);
1609 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1610 /// an integer. Load the individual pieces to form the aggregate value.
1611 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1612 SmallVector<AllocaInst*, 32> &NewElts) {
1613 // Extract each element out of the NewElts according to its structure offset
1614 // and form the result value.
1615 const Type *AllocaEltTy = AI->getAllocatedType();
1616 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1618 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1619 << '\n');
1621 // There are two forms here: AI could be an array or struct. Both cases
1622 // have different ways to compute the element offset.
1623 const StructLayout *Layout = 0;
1624 uint64_t ArrayEltBitOffset = 0;
1625 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1626 Layout = TD->getStructLayout(EltSTy);
1627 } else {
1628 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1629 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1632 Value *ResultVal =
1633 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1635 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1636 // Load the value from the alloca. If the NewElt is an aggregate, cast
1637 // the pointer to an integer of the same size before doing the load.
1638 Value *SrcField = NewElts[i];
1639 const Type *FieldTy =
1640 cast<PointerType>(SrcField->getType())->getElementType();
1641 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1643 // Ignore zero sized fields like {}, they obviously contain no data.
1644 if (FieldSizeBits == 0) continue;
1646 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1647 FieldSizeBits);
1648 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1649 !FieldTy->isVectorTy())
1650 SrcField = new BitCastInst(SrcField,
1651 PointerType::getUnqual(FieldIntTy),
1652 "", LI);
1653 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1655 // If SrcField is a fp or vector of the right size but that isn't an
1656 // integer type, bitcast to an integer so we can shift it.
1657 if (SrcField->getType() != FieldIntTy)
1658 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1660 // Zero extend the field to be the same size as the final alloca so that
1661 // we can shift and insert it.
1662 if (SrcField->getType() != ResultVal->getType())
1663 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1665 // Determine the number of bits to shift SrcField.
1666 uint64_t Shift;
1667 if (Layout) // Struct case.
1668 Shift = Layout->getElementOffsetInBits(i);
1669 else // Array case.
1670 Shift = i*ArrayEltBitOffset;
1672 if (TD->isBigEndian())
1673 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1675 if (Shift) {
1676 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1677 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1680 // Don't create an 'or x, 0' on the first iteration.
1681 if (!isa<Constant>(ResultVal) ||
1682 !cast<Constant>(ResultVal)->isNullValue())
1683 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1684 else
1685 ResultVal = SrcField;
1688 // Handle tail padding by truncating the result
1689 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1690 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1692 LI->replaceAllUsesWith(ResultVal);
1693 DeadInsts.push_back(LI);
1696 /// HasPadding - Return true if the specified type has any structure or
1697 /// alignment padding, false otherwise.
1698 static bool HasPadding(const Type *Ty, const TargetData &TD) {
1699 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1700 return HasPadding(ATy->getElementType(), TD);
1702 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
1703 return HasPadding(VTy->getElementType(), TD);
1705 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1706 const StructLayout *SL = TD.getStructLayout(STy);
1707 unsigned PrevFieldBitOffset = 0;
1708 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1709 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1711 // Padding in sub-elements?
1712 if (HasPadding(STy->getElementType(i), TD))
1713 return true;
1715 // Check to see if there is any padding between this element and the
1716 // previous one.
1717 if (i) {
1718 unsigned PrevFieldEnd =
1719 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1720 if (PrevFieldEnd < FieldBitOffset)
1721 return true;
1724 PrevFieldBitOffset = FieldBitOffset;
1727 // Check for tail padding.
1728 if (unsigned EltCount = STy->getNumElements()) {
1729 unsigned PrevFieldEnd = PrevFieldBitOffset +
1730 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1731 if (PrevFieldEnd < SL->getSizeInBits())
1732 return true;
1736 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1739 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1740 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1741 /// or 1 if safe after canonicalization has been performed.
1742 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1743 // Loop over the use list of the alloca. We can only transform it if all of
1744 // the users are safe to transform.
1745 AllocaInfo Info;
1747 isSafeForScalarRepl(AI, AI, 0, Info);
1748 if (Info.isUnsafe) {
1749 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1750 return false;
1753 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1754 // source and destination, we have to be careful. In particular, the memcpy
1755 // could be moving around elements that live in structure padding of the LLVM
1756 // types, but may actually be used. In these cases, we refuse to promote the
1757 // struct.
1758 if (Info.isMemCpySrc && Info.isMemCpyDst &&
1759 HasPadding(AI->getAllocatedType(), *TD))
1760 return false;
1762 return true;
1767 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1768 /// some part of a constant global variable. This intentionally only accepts
1769 /// constant expressions because we don't can't rewrite arbitrary instructions.
1770 static bool PointsToConstantGlobal(Value *V) {
1771 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1772 return GV->isConstant();
1773 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1774 if (CE->getOpcode() == Instruction::BitCast ||
1775 CE->getOpcode() == Instruction::GetElementPtr)
1776 return PointsToConstantGlobal(CE->getOperand(0));
1777 return false;
1780 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1781 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1782 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1783 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1784 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1785 /// the alloca, and if the source pointer is a pointer to a constant global, we
1786 /// can optimize this.
1787 static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1788 bool isOffset) {
1789 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1790 User *U = cast<Instruction>(*UI);
1792 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1793 // Ignore non-volatile loads, they are always ok.
1794 if (!LI->isVolatile())
1795 continue;
1797 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1798 // If uses of the bitcast are ok, we are ok.
1799 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1800 return false;
1801 continue;
1803 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1804 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1805 // doesn't, it does.
1806 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1807 isOffset || !GEP->hasAllZeroIndices()))
1808 return false;
1809 continue;
1812 // If this is isn't our memcpy/memmove, reject it as something we can't
1813 // handle.
1814 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1815 if (MI == 0)
1816 return false;
1818 // If we already have seen a copy, reject the second one.
1819 if (TheCopy) return false;
1821 // If the pointer has been offset from the start of the alloca, we can't
1822 // safely handle this.
1823 if (isOffset) return false;
1825 // If the memintrinsic isn't using the alloca as the dest, reject it.
1826 if (UI.getOperandNo() != 0) return false;
1828 // If the source of the memcpy/move is not a constant global, reject it.
1829 if (!PointsToConstantGlobal(MI->getSource()))
1830 return false;
1832 // Otherwise, the transform is safe. Remember the copy instruction.
1833 TheCopy = MI;
1835 return true;
1838 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1839 /// modified by a copy from a constant global. If we can prove this, we can
1840 /// replace any uses of the alloca with uses of the global directly.
1841 MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1842 MemTransferInst *TheCopy = 0;
1843 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1844 return TheCopy;
1845 return 0;