1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GetElementPtrTypeIterator.h"
40 #include "llvm/Support/IRBuilder.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
47 STATISTIC(NumReplaced
, "Number of allocas broken up");
48 STATISTIC(NumPromoted
, "Number of allocas promoted");
49 STATISTIC(NumConverted
, "Number of aggregates converted to scalar");
50 STATISTIC(NumGlobals
, "Number of allocas copied from constant global");
53 struct SROA
: public FunctionPass
{
54 static char ID
; // Pass identification, replacement for typeid
55 explicit SROA(signed T
= -1) : FunctionPass(ID
) {
56 initializeSROAPass(*PassRegistry::getPassRegistry());
63 bool runOnFunction(Function
&F
);
65 bool performScalarRepl(Function
&F
);
66 bool performPromotion(Function
&F
);
68 // getAnalysisUsage - This pass does not require any passes, but we know it
69 // will not alter the CFG, so say so.
70 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
71 AU
.addRequired
<DominatorTree
>();
72 AU
.addRequired
<DominanceFrontier
>();
79 /// DeadInsts - Keep track of instructions we have made dead, so that
80 /// we can remove them after we are done working.
81 SmallVector
<Value
*, 32> DeadInsts
;
83 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84 /// information about the uses. All these fields are initialized to false
85 /// and set to true when something is learned.
87 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
90 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
93 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
97 : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
100 unsigned SRThreshold
;
102 void MarkUnsafe(AllocaInfo
&I
) { I
.isUnsafe
= true; }
104 bool isSafeAllocaToScalarRepl(AllocaInst
*AI
);
106 void isSafeForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
108 void isSafeGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t &Offset
,
110 void isSafeMemAccess(AllocaInst
*AI
, uint64_t Offset
, uint64_t MemSize
,
111 const Type
*MemOpType
, bool isStore
, AllocaInfo
&Info
);
112 bool TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
);
113 uint64_t FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
116 void DoScalarReplacement(AllocaInst
*AI
,
117 std::vector
<AllocaInst
*> &WorkList
);
118 void DeleteDeadInstructions();
120 void RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
121 SmallVector
<AllocaInst
*, 32> &NewElts
);
122 void RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
123 SmallVector
<AllocaInst
*, 32> &NewElts
);
124 void RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
125 SmallVector
<AllocaInst
*, 32> &NewElts
);
126 void RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
128 SmallVector
<AllocaInst
*, 32> &NewElts
);
129 void RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
130 SmallVector
<AllocaInst
*, 32> &NewElts
);
131 void RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
132 SmallVector
<AllocaInst
*, 32> &NewElts
);
134 static MemTransferInst
*isOnlyCopiedFromConstantGlobal(AllocaInst
*AI
);
139 INITIALIZE_PASS_BEGIN(SROA
, "scalarrepl",
140 "Scalar Replacement of Aggregates", false, false)
141 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
142 INITIALIZE_PASS_DEPENDENCY(DominanceFrontier
)
143 INITIALIZE_PASS_END(SROA
, "scalarrepl",
144 "Scalar Replacement of Aggregates", false, false)
146 // Public interface to the ScalarReplAggregates pass
147 FunctionPass
*llvm::createScalarReplAggregatesPass(signed int Threshold
) {
148 return new SROA(Threshold
);
152 //===----------------------------------------------------------------------===//
153 // Convert To Scalar Optimization.
154 //===----------------------------------------------------------------------===//
157 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
158 /// optimization, which scans the uses of an alloca and determines if it can
159 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
160 class ConvertToScalarInfo
{
161 /// AllocaSize - The size of the alloca being considered.
163 const TargetData
&TD
;
165 /// IsNotTrivial - This is set to true if there is some access to the object
166 /// which means that mem2reg can't promote it.
169 /// VectorTy - This tracks the type that we should promote the vector to if
170 /// it is possible to turn it into a vector. This starts out null, and if it
171 /// isn't possible to turn into a vector type, it gets set to VoidTy.
172 const Type
*VectorTy
;
174 /// HadAVector - True if there is at least one vector access to the alloca.
175 /// We don't want to turn random arrays into vectors and use vector element
176 /// insert/extract, but if there are element accesses to something that is
177 /// also declared as a vector, we do want to promote to a vector.
181 explicit ConvertToScalarInfo(unsigned Size
, const TargetData
&td
)
182 : AllocaSize(Size
), TD(td
) {
183 IsNotTrivial
= false;
188 AllocaInst
*TryConvert(AllocaInst
*AI
);
191 bool CanConvertToScalar(Value
*V
, uint64_t Offset
);
192 void MergeInType(const Type
*In
, uint64_t Offset
);
193 void ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
, uint64_t Offset
);
195 Value
*ConvertScalar_ExtractValue(Value
*NV
, const Type
*ToType
,
196 uint64_t Offset
, IRBuilder
<> &Builder
);
197 Value
*ConvertScalar_InsertValue(Value
*StoredVal
, Value
*ExistingVal
,
198 uint64_t Offset
, IRBuilder
<> &Builder
);
200 } // end anonymous namespace.
203 /// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
204 /// allowed to form. We do this to avoid MMX types, which is a complete hack,
205 /// but is required until the backend is fixed.
206 static bool IsVerbotenVectorType(const VectorType
*VTy
, const Instruction
*I
) {
207 StringRef
Triple(I
->getParent()->getParent()->getParent()->getTargetTriple());
208 if (!Triple
.startswith("i386") &&
209 !Triple
.startswith("x86_64"))
212 // Reject all the MMX vector types.
213 switch (VTy
->getNumElements()) {
214 default: return false;
215 case 1: return VTy
->getElementType()->isIntegerTy(64);
216 case 2: return VTy
->getElementType()->isIntegerTy(32);
217 case 4: return VTy
->getElementType()->isIntegerTy(16);
218 case 8: return VTy
->getElementType()->isIntegerTy(8);
223 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
224 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
225 /// alloca if possible or null if not.
226 AllocaInst
*ConvertToScalarInfo::TryConvert(AllocaInst
*AI
) {
227 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
229 if (!CanConvertToScalar(AI
, 0) || !IsNotTrivial
)
232 // If we were able to find a vector type that can handle this with
233 // insert/extract elements, and if there was at least one use that had
234 // a vector type, promote this to a vector. We don't want to promote
235 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
236 // we just get a lot of insert/extracts. If at least one vector is
237 // involved, then we probably really do have a union of vector/array.
239 if (VectorTy
&& VectorTy
->isVectorTy() && HadAVector
&&
240 !IsVerbotenVectorType(cast
<VectorType
>(VectorTy
), AI
)) {
241 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI
<< "\n TYPE = "
242 << *VectorTy
<< '\n');
243 NewTy
= VectorTy
; // Use the vector type.
245 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI
<< "\n");
246 // Create and insert the integer alloca.
247 NewTy
= IntegerType::get(AI
->getContext(), AllocaSize
*8);
249 AllocaInst
*NewAI
= new AllocaInst(NewTy
, 0, "", AI
->getParent()->begin());
250 ConvertUsesToScalar(AI
, NewAI
, 0);
254 /// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
255 /// so far at the offset specified by Offset (which is specified in bytes).
257 /// There are two cases we handle here:
258 /// 1) A union of vector types of the same size and potentially its elements.
259 /// Here we turn element accesses into insert/extract element operations.
260 /// This promotes a <4 x float> with a store of float to the third element
261 /// into a <4 x float> that uses insert element.
262 /// 2) A fully general blob of memory, which we turn into some (potentially
263 /// large) integer type with extract and insert operations where the loads
264 /// and stores would mutate the memory. We mark this by setting VectorTy
266 void ConvertToScalarInfo::MergeInType(const Type
*In
, uint64_t Offset
) {
267 // If we already decided to turn this into a blob of integer memory, there is
268 // nothing to be done.
269 if (VectorTy
&& VectorTy
->isVoidTy())
272 // If this could be contributing to a vector, analyze it.
274 // If the In type is a vector that is the same size as the alloca, see if it
275 // matches the existing VecTy.
276 if (const VectorType
*VInTy
= dyn_cast
<VectorType
>(In
)) {
277 // Remember if we saw a vector type.
280 if (VInTy
->getBitWidth()/8 == AllocaSize
&& Offset
== 0) {
281 // If we're storing/loading a vector of the right size, allow it as a
282 // vector. If this the first vector we see, remember the type so that
283 // we know the element size. If this is a subsequent access, ignore it
284 // even if it is a differing type but the same size. Worst case we can
285 // bitcast the resultant vectors.
290 } else if (In
->isFloatTy() || In
->isDoubleTy() ||
291 (In
->isIntegerTy() && In
->getPrimitiveSizeInBits() >= 8 &&
292 isPowerOf2_32(In
->getPrimitiveSizeInBits()))) {
293 // If we're accessing something that could be an element of a vector, see
294 // if the implied vector agrees with what we already have and if Offset is
295 // compatible with it.
296 unsigned EltSize
= In
->getPrimitiveSizeInBits()/8;
297 if (Offset
% EltSize
== 0 && AllocaSize
% EltSize
== 0 &&
299 cast
<VectorType
>(VectorTy
)->getElementType()
300 ->getPrimitiveSizeInBits()/8 == EltSize
)) {
302 VectorTy
= VectorType::get(In
, AllocaSize
/EltSize
);
307 // Otherwise, we have a case that we can't handle with an optimized vector
308 // form. We can still turn this into a large integer.
309 VectorTy
= Type::getVoidTy(In
->getContext());
312 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
313 /// its accesses to a single vector type, return true and set VecTy to
314 /// the new type. If we could convert the alloca into a single promotable
315 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
316 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
317 /// is the current offset from the base of the alloca being analyzed.
319 /// If we see at least one access to the value that is as a vector type, set the
321 bool ConvertToScalarInfo::CanConvertToScalar(Value
*V
, uint64_t Offset
) {
322 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
323 Instruction
*User
= cast
<Instruction
>(*UI
);
325 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
326 // Don't break volatile loads.
327 if (LI
->isVolatile())
329 // Don't touch MMX operations.
330 if (LI
->getType()->isX86_MMXTy())
332 MergeInType(LI
->getType(), Offset
);
336 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
337 // Storing the pointer, not into the value?
338 if (SI
->getOperand(0) == V
|| SI
->isVolatile()) return false;
339 // Don't touch MMX operations.
340 if (SI
->getOperand(0)->getType()->isX86_MMXTy())
342 MergeInType(SI
->getOperand(0)->getType(), Offset
);
346 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
347 IsNotTrivial
= true; // Can't be mem2reg'd.
348 if (!CanConvertToScalar(BCI
, Offset
))
353 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
354 // If this is a GEP with a variable indices, we can't handle it.
355 if (!GEP
->hasAllConstantIndices())
358 // Compute the offset that this GEP adds to the pointer.
359 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
360 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
361 &Indices
[0], Indices
.size());
362 // See if all uses can be converted.
363 if (!CanConvertToScalar(GEP
, Offset
+GEPOffset
))
365 IsNotTrivial
= true; // Can't be mem2reg'd.
369 // If this is a constant sized memset of a constant value (e.g. 0) we can
371 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
372 // Store of constant value and constant size.
373 if (!isa
<ConstantInt
>(MSI
->getValue()) ||
374 !isa
<ConstantInt
>(MSI
->getLength()))
376 IsNotTrivial
= true; // Can't be mem2reg'd.
380 // If this is a memcpy or memmove into or out of the whole allocation, we
381 // can handle it like a load or store of the scalar type.
382 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
383 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MTI
->getLength());
384 if (Len
== 0 || Len
->getZExtValue() != AllocaSize
|| Offset
!= 0)
387 IsNotTrivial
= true; // Can't be mem2reg'd.
391 // Otherwise, we cannot handle this!
398 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
399 /// directly. This happens when we are converting an "integer union" to a
400 /// single integer scalar, or when we are converting a "vector union" to a
401 /// vector with insert/extractelement instructions.
403 /// Offset is an offset from the original alloca, in bits that need to be
404 /// shifted to the right. By the end of this, there should be no uses of Ptr.
405 void ConvertToScalarInfo::ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
,
407 while (!Ptr
->use_empty()) {
408 Instruction
*User
= cast
<Instruction
>(Ptr
->use_back());
410 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(User
)) {
411 ConvertUsesToScalar(CI
, NewAI
, Offset
);
412 CI
->eraseFromParent();
416 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
417 // Compute the offset that this GEP adds to the pointer.
418 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
419 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
420 &Indices
[0], Indices
.size());
421 ConvertUsesToScalar(GEP
, NewAI
, Offset
+GEPOffset
*8);
422 GEP
->eraseFromParent();
426 IRBuilder
<> Builder(User
->getParent(), User
);
428 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
429 // The load is a bit extract from NewAI shifted right by Offset bits.
430 Value
*LoadedVal
= Builder
.CreateLoad(NewAI
, "tmp");
432 = ConvertScalar_ExtractValue(LoadedVal
, LI
->getType(), Offset
, Builder
);
433 LI
->replaceAllUsesWith(NewLoadVal
);
434 LI
->eraseFromParent();
438 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
439 assert(SI
->getOperand(0) != Ptr
&& "Consistency error!");
440 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
441 Value
*New
= ConvertScalar_InsertValue(SI
->getOperand(0), Old
, Offset
,
443 Builder
.CreateStore(New
, NewAI
);
444 SI
->eraseFromParent();
446 // If the load we just inserted is now dead, then the inserted store
447 // overwrote the entire thing.
448 if (Old
->use_empty())
449 Old
->eraseFromParent();
453 // If this is a constant sized memset of a constant value (e.g. 0) we can
454 // transform it into a store of the expanded constant value.
455 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
456 assert(MSI
->getRawDest() == Ptr
&& "Consistency error!");
457 unsigned NumBytes
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
459 unsigned Val
= cast
<ConstantInt
>(MSI
->getValue())->getZExtValue();
461 // Compute the value replicated the right number of times.
462 APInt
APVal(NumBytes
*8, Val
);
464 // Splat the value if non-zero.
466 for (unsigned i
= 1; i
!= NumBytes
; ++i
)
469 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
470 Value
*New
= ConvertScalar_InsertValue(
471 ConstantInt::get(User
->getContext(), APVal
),
472 Old
, Offset
, Builder
);
473 Builder
.CreateStore(New
, NewAI
);
475 // If the load we just inserted is now dead, then the memset overwrote
477 if (Old
->use_empty())
478 Old
->eraseFromParent();
480 MSI
->eraseFromParent();
484 // If this is a memcpy or memmove into or out of the whole allocation, we
485 // can handle it like a load or store of the scalar type.
486 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
487 assert(Offset
== 0 && "must be store to start of alloca");
489 // If the source and destination are both to the same alloca, then this is
490 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
492 AllocaInst
*OrigAI
= cast
<AllocaInst
>(Ptr
->getUnderlyingObject(0));
494 if (MTI
->getSource()->getUnderlyingObject(0) != OrigAI
) {
495 // Dest must be OrigAI, change this to be a load from the original
496 // pointer (bitcasted), then a store to our new alloca.
497 assert(MTI
->getRawDest() == Ptr
&& "Neither use is of pointer?");
498 Value
*SrcPtr
= MTI
->getSource();
499 SrcPtr
= Builder
.CreateBitCast(SrcPtr
, NewAI
->getType());
501 LoadInst
*SrcVal
= Builder
.CreateLoad(SrcPtr
, "srcval");
502 SrcVal
->setAlignment(MTI
->getAlignment());
503 Builder
.CreateStore(SrcVal
, NewAI
);
504 } else if (MTI
->getDest()->getUnderlyingObject(0) != OrigAI
) {
505 // Src must be OrigAI, change this to be a load from NewAI then a store
506 // through the original dest pointer (bitcasted).
507 assert(MTI
->getRawSource() == Ptr
&& "Neither use is of pointer?");
508 LoadInst
*SrcVal
= Builder
.CreateLoad(NewAI
, "srcval");
510 Value
*DstPtr
= Builder
.CreateBitCast(MTI
->getDest(), NewAI
->getType());
511 StoreInst
*NewStore
= Builder
.CreateStore(SrcVal
, DstPtr
);
512 NewStore
->setAlignment(MTI
->getAlignment());
514 // Noop transfer. Src == Dst
517 MTI
->eraseFromParent();
521 llvm_unreachable("Unsupported operation!");
525 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
526 /// or vector value FromVal, extracting the bits from the offset specified by
527 /// Offset. This returns the value, which is of type ToType.
529 /// This happens when we are converting an "integer union" to a single
530 /// integer scalar, or when we are converting a "vector union" to a vector with
531 /// insert/extractelement instructions.
533 /// Offset is an offset from the original alloca, in bits that need to be
534 /// shifted to the right.
535 Value
*ConvertToScalarInfo::
536 ConvertScalar_ExtractValue(Value
*FromVal
, const Type
*ToType
,
537 uint64_t Offset
, IRBuilder
<> &Builder
) {
538 // If the load is of the whole new alloca, no conversion is needed.
539 if (FromVal
->getType() == ToType
&& Offset
== 0)
542 // If the result alloca is a vector type, this is either an element
543 // access or a bitcast to another vector type of the same size.
544 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(FromVal
->getType())) {
545 if (ToType
->isVectorTy())
546 return Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
548 // Otherwise it must be an element access.
551 unsigned EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
552 Elt
= Offset
/EltSize
;
553 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
555 // Return the element extracted out of it.
556 Value
*V
= Builder
.CreateExtractElement(FromVal
, ConstantInt::get(
557 Type::getInt32Ty(FromVal
->getContext()), Elt
), "tmp");
558 if (V
->getType() != ToType
)
559 V
= Builder
.CreateBitCast(V
, ToType
, "tmp");
563 // If ToType is a first class aggregate, extract out each of the pieces and
564 // use insertvalue's to form the FCA.
565 if (const StructType
*ST
= dyn_cast
<StructType
>(ToType
)) {
566 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
567 Value
*Res
= UndefValue::get(ST
);
568 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
569 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, ST
->getElementType(i
),
570 Offset
+Layout
.getElementOffsetInBits(i
),
572 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
577 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(ToType
)) {
578 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
579 Value
*Res
= UndefValue::get(AT
);
580 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
581 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, AT
->getElementType(),
582 Offset
+i
*EltSize
, Builder
);
583 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
588 // Otherwise, this must be a union that was converted to an integer value.
589 const IntegerType
*NTy
= cast
<IntegerType
>(FromVal
->getType());
591 // If this is a big-endian system and the load is narrower than the
592 // full alloca type, we need to do a shift to get the right bits.
594 if (TD
.isBigEndian()) {
595 // On big-endian machines, the lowest bit is stored at the bit offset
596 // from the pointer given by getTypeStoreSizeInBits. This matters for
597 // integers with a bitwidth that is not a multiple of 8.
598 ShAmt
= TD
.getTypeStoreSizeInBits(NTy
) -
599 TD
.getTypeStoreSizeInBits(ToType
) - Offset
;
604 // Note: we support negative bitwidths (with shl) which are not defined.
605 // We do this to support (f.e.) loads off the end of a structure where
606 // only some bits are used.
607 if (ShAmt
> 0 && (unsigned)ShAmt
< NTy
->getBitWidth())
608 FromVal
= Builder
.CreateLShr(FromVal
,
609 ConstantInt::get(FromVal
->getType(),
611 else if (ShAmt
< 0 && (unsigned)-ShAmt
< NTy
->getBitWidth())
612 FromVal
= Builder
.CreateShl(FromVal
,
613 ConstantInt::get(FromVal
->getType(),
616 // Finally, unconditionally truncate the integer to the right width.
617 unsigned LIBitWidth
= TD
.getTypeSizeInBits(ToType
);
618 if (LIBitWidth
< NTy
->getBitWidth())
620 Builder
.CreateTrunc(FromVal
, IntegerType::get(FromVal
->getContext(),
622 else if (LIBitWidth
> NTy
->getBitWidth())
624 Builder
.CreateZExt(FromVal
, IntegerType::get(FromVal
->getContext(),
627 // If the result is an integer, this is a trunc or bitcast.
628 if (ToType
->isIntegerTy()) {
630 } else if (ToType
->isFloatingPointTy() || ToType
->isVectorTy()) {
631 // Just do a bitcast, we know the sizes match up.
632 FromVal
= Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
634 // Otherwise must be a pointer.
635 FromVal
= Builder
.CreateIntToPtr(FromVal
, ToType
, "tmp");
637 assert(FromVal
->getType() == ToType
&& "Didn't convert right?");
641 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
642 /// or vector value "Old" at the offset specified by Offset.
644 /// This happens when we are converting an "integer union" to a
645 /// single integer scalar, or when we are converting a "vector union" to a
646 /// vector with insert/extractelement instructions.
648 /// Offset is an offset from the original alloca, in bits that need to be
649 /// shifted to the right.
650 Value
*ConvertToScalarInfo::
651 ConvertScalar_InsertValue(Value
*SV
, Value
*Old
,
652 uint64_t Offset
, IRBuilder
<> &Builder
) {
653 // Convert the stored type to the actual type, shift it left to insert
654 // then 'or' into place.
655 const Type
*AllocaType
= Old
->getType();
656 LLVMContext
&Context
= Old
->getContext();
658 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(AllocaType
)) {
659 uint64_t VecSize
= TD
.getTypeAllocSizeInBits(VTy
);
660 uint64_t ValSize
= TD
.getTypeAllocSizeInBits(SV
->getType());
662 // Changing the whole vector with memset or with an access of a different
664 if (ValSize
== VecSize
)
665 return Builder
.CreateBitCast(SV
, AllocaType
, "tmp");
667 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
669 // Must be an element insertion.
670 unsigned Elt
= Offset
/EltSize
;
672 if (SV
->getType() != VTy
->getElementType())
673 SV
= Builder
.CreateBitCast(SV
, VTy
->getElementType(), "tmp");
675 SV
= Builder
.CreateInsertElement(Old
, SV
,
676 ConstantInt::get(Type::getInt32Ty(SV
->getContext()), Elt
),
681 // If SV is a first-class aggregate value, insert each value recursively.
682 if (const StructType
*ST
= dyn_cast
<StructType
>(SV
->getType())) {
683 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
684 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
685 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
686 Old
= ConvertScalar_InsertValue(Elt
, Old
,
687 Offset
+Layout
.getElementOffsetInBits(i
),
693 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(SV
->getType())) {
694 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
695 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
696 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
697 Old
= ConvertScalar_InsertValue(Elt
, Old
, Offset
+i
*EltSize
, Builder
);
702 // If SV is a float, convert it to the appropriate integer type.
703 // If it is a pointer, do the same.
704 unsigned SrcWidth
= TD
.getTypeSizeInBits(SV
->getType());
705 unsigned DestWidth
= TD
.getTypeSizeInBits(AllocaType
);
706 unsigned SrcStoreWidth
= TD
.getTypeStoreSizeInBits(SV
->getType());
707 unsigned DestStoreWidth
= TD
.getTypeStoreSizeInBits(AllocaType
);
708 if (SV
->getType()->isFloatingPointTy() || SV
->getType()->isVectorTy())
709 SV
= Builder
.CreateBitCast(SV
,
710 IntegerType::get(SV
->getContext(),SrcWidth
), "tmp");
711 else if (SV
->getType()->isPointerTy())
712 SV
= Builder
.CreatePtrToInt(SV
, TD
.getIntPtrType(SV
->getContext()), "tmp");
714 // Zero extend or truncate the value if needed.
715 if (SV
->getType() != AllocaType
) {
716 if (SV
->getType()->getPrimitiveSizeInBits() <
717 AllocaType
->getPrimitiveSizeInBits())
718 SV
= Builder
.CreateZExt(SV
, AllocaType
, "tmp");
720 // Truncation may be needed if storing more than the alloca can hold
721 // (undefined behavior).
722 SV
= Builder
.CreateTrunc(SV
, AllocaType
, "tmp");
723 SrcWidth
= DestWidth
;
724 SrcStoreWidth
= DestStoreWidth
;
728 // If this is a big-endian system and the store is narrower than the
729 // full alloca type, we need to do a shift to get the right bits.
731 if (TD
.isBigEndian()) {
732 // On big-endian machines, the lowest bit is stored at the bit offset
733 // from the pointer given by getTypeStoreSizeInBits. This matters for
734 // integers with a bitwidth that is not a multiple of 8.
735 ShAmt
= DestStoreWidth
- SrcStoreWidth
- Offset
;
740 // Note: we support negative bitwidths (with shr) which are not defined.
741 // We do this to support (f.e.) stores off the end of a structure where
742 // only some bits in the structure are set.
743 APInt
Mask(APInt::getLowBitsSet(DestWidth
, SrcWidth
));
744 if (ShAmt
> 0 && (unsigned)ShAmt
< DestWidth
) {
745 SV
= Builder
.CreateShl(SV
, ConstantInt::get(SV
->getType(),
748 } else if (ShAmt
< 0 && (unsigned)-ShAmt
< DestWidth
) {
749 SV
= Builder
.CreateLShr(SV
, ConstantInt::get(SV
->getType(),
751 Mask
= Mask
.lshr(-ShAmt
);
754 // Mask out the bits we are about to insert from the old value, and or
756 if (SrcWidth
!= DestWidth
) {
757 assert(DestWidth
> SrcWidth
);
758 Old
= Builder
.CreateAnd(Old
, ConstantInt::get(Context
, ~Mask
), "mask");
759 SV
= Builder
.CreateOr(Old
, SV
, "ins");
765 //===----------------------------------------------------------------------===//
767 //===----------------------------------------------------------------------===//
770 bool SROA::runOnFunction(Function
&F
) {
771 TD
= getAnalysisIfAvailable
<TargetData
>();
773 bool Changed
= performPromotion(F
);
775 // FIXME: ScalarRepl currently depends on TargetData more than it
776 // theoretically needs to. It should be refactored in order to support
777 // target-independent IR. Until this is done, just skip the actual
778 // scalar-replacement portion of this pass.
779 if (!TD
) return Changed
;
782 bool LocalChange
= performScalarRepl(F
);
783 if (!LocalChange
) break; // No need to repromote if no scalarrepl
785 LocalChange
= performPromotion(F
);
786 if (!LocalChange
) break; // No need to re-scalarrepl if no promotion
793 bool SROA::performPromotion(Function
&F
) {
794 std::vector
<AllocaInst
*> Allocas
;
795 DominatorTree
&DT
= getAnalysis
<DominatorTree
>();
796 DominanceFrontier
&DF
= getAnalysis
<DominanceFrontier
>();
798 BasicBlock
&BB
= F
.getEntryBlock(); // Get the entry node for the function
800 bool Changed
= false;
805 // Find allocas that are safe to promote, by looking at all instructions in
807 for (BasicBlock::iterator I
= BB
.begin(), E
= --BB
.end(); I
!= E
; ++I
)
808 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) // Is it an alloca?
809 if (isAllocaPromotable(AI
))
810 Allocas
.push_back(AI
);
812 if (Allocas
.empty()) break;
814 PromoteMemToReg(Allocas
, DT
, DF
);
815 NumPromoted
+= Allocas
.size();
823 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
824 /// SROA. It must be a struct or array type with a small number of elements.
825 static bool ShouldAttemptScalarRepl(AllocaInst
*AI
) {
826 const Type
*T
= AI
->getAllocatedType();
827 // Do not promote any struct into more than 32 separate vars.
828 if (const StructType
*ST
= dyn_cast
<StructType
>(T
))
829 return ST
->getNumElements() <= 32;
830 // Arrays are much less likely to be safe for SROA; only consider
831 // them if they are very small.
832 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
833 return AT
->getNumElements() <= 8;
838 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
839 // which runs on all of the malloc/alloca instructions in the function, removing
840 // them if they are only used by getelementptr instructions.
842 bool SROA::performScalarRepl(Function
&F
) {
843 std::vector
<AllocaInst
*> WorkList
;
845 // Scan the entry basic block, adding allocas to the worklist.
846 BasicBlock
&BB
= F
.getEntryBlock();
847 for (BasicBlock::iterator I
= BB
.begin(), E
= BB
.end(); I
!= E
; ++I
)
848 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(I
))
849 WorkList
.push_back(A
);
851 // Process the worklist
852 bool Changed
= false;
853 while (!WorkList
.empty()) {
854 AllocaInst
*AI
= WorkList
.back();
857 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
858 // with unused elements.
859 if (AI
->use_empty()) {
860 AI
->eraseFromParent();
865 // If this alloca is impossible for us to promote, reject it early.
866 if (AI
->isArrayAllocation() || !AI
->getAllocatedType()->isSized())
869 // Check to see if this allocation is only modified by a memcpy/memmove from
870 // a constant global. If this is the case, we can change all users to use
871 // the constant global instead. This is commonly produced by the CFE by
872 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
873 // is only subsequently read.
874 if (MemTransferInst
*TheCopy
= isOnlyCopiedFromConstantGlobal(AI
)) {
875 DEBUG(dbgs() << "Found alloca equal to global: " << *AI
<< '\n');
876 DEBUG(dbgs() << " memcpy = " << *TheCopy
<< '\n');
877 Constant
*TheSrc
= cast
<Constant
>(TheCopy
->getSource());
878 AI
->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc
, AI
->getType()));
879 TheCopy
->eraseFromParent(); // Don't mutate the global.
880 AI
->eraseFromParent();
886 // Check to see if we can perform the core SROA transformation. We cannot
887 // transform the allocation instruction if it is an array allocation
888 // (allocations OF arrays are ok though), and an allocation of a scalar
889 // value cannot be decomposed at all.
890 uint64_t AllocaSize
= TD
->getTypeAllocSize(AI
->getAllocatedType());
892 // Do not promote [0 x %struct].
893 if (AllocaSize
== 0) continue;
895 // Do not promote any struct whose size is too big.
896 if (AllocaSize
> SRThreshold
) continue;
898 // If the alloca looks like a good candidate for scalar replacement, and if
899 // all its users can be transformed, then split up the aggregate into its
900 // separate elements.
901 if (ShouldAttemptScalarRepl(AI
) && isSafeAllocaToScalarRepl(AI
)) {
902 DoScalarReplacement(AI
, WorkList
);
907 // If we can turn this aggregate value (potentially with casts) into a
908 // simple scalar value that can be mem2reg'd into a register value.
909 // IsNotTrivial tracks whether this is something that mem2reg could have
910 // promoted itself. If so, we don't want to transform it needlessly. Note
911 // that we can't just check based on the type: the alloca may be of an i32
912 // but that has pointer arithmetic to set byte 3 of it or something.
913 if (AllocaInst
*NewAI
=
914 ConvertToScalarInfo((unsigned)AllocaSize
, *TD
).TryConvert(AI
)) {
916 AI
->eraseFromParent();
922 // Otherwise, couldn't process this alloca.
928 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
929 /// predicate, do SROA now.
930 void SROA::DoScalarReplacement(AllocaInst
*AI
,
931 std::vector
<AllocaInst
*> &WorkList
) {
932 DEBUG(dbgs() << "Found inst to SROA: " << *AI
<< '\n');
933 SmallVector
<AllocaInst
*, 32> ElementAllocas
;
934 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
935 ElementAllocas
.reserve(ST
->getNumContainedTypes());
936 for (unsigned i
= 0, e
= ST
->getNumContainedTypes(); i
!= e
; ++i
) {
937 AllocaInst
*NA
= new AllocaInst(ST
->getContainedType(i
), 0,
939 AI
->getName() + "." + Twine(i
), AI
);
940 ElementAllocas
.push_back(NA
);
941 WorkList
.push_back(NA
); // Add to worklist for recursive processing
944 const ArrayType
*AT
= cast
<ArrayType
>(AI
->getAllocatedType());
945 ElementAllocas
.reserve(AT
->getNumElements());
946 const Type
*ElTy
= AT
->getElementType();
947 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
948 AllocaInst
*NA
= new AllocaInst(ElTy
, 0, AI
->getAlignment(),
949 AI
->getName() + "." + Twine(i
), AI
);
950 ElementAllocas
.push_back(NA
);
951 WorkList
.push_back(NA
); // Add to worklist for recursive processing
955 // Now that we have created the new alloca instructions, rewrite all the
956 // uses of the old alloca.
957 RewriteForScalarRepl(AI
, AI
, 0, ElementAllocas
);
959 // Now erase any instructions that were made dead while rewriting the alloca.
960 DeleteDeadInstructions();
961 AI
->eraseFromParent();
966 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
967 /// recursively including all their operands that become trivially dead.
968 void SROA::DeleteDeadInstructions() {
969 while (!DeadInsts
.empty()) {
970 Instruction
*I
= cast
<Instruction
>(DeadInsts
.pop_back_val());
972 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
)
973 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
974 // Zero out the operand and see if it becomes trivially dead.
975 // (But, don't add allocas to the dead instruction list -- they are
976 // already on the worklist and will be deleted separately.)
978 if (isInstructionTriviallyDead(U
) && !isa
<AllocaInst
>(U
))
979 DeadInsts
.push_back(U
);
982 I
->eraseFromParent();
986 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
987 /// performing scalar replacement of alloca AI. The results are flagged in
988 /// the Info parameter. Offset indicates the position within AI that is
989 /// referenced by this instruction.
990 void SROA::isSafeForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
992 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
993 Instruction
*User
= cast
<Instruction
>(*UI
);
995 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
996 isSafeForScalarRepl(BC
, AI
, Offset
, Info
);
997 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
998 uint64_t GEPOffset
= Offset
;
999 isSafeGEP(GEPI
, AI
, GEPOffset
, Info
);
1001 isSafeForScalarRepl(GEPI
, AI
, GEPOffset
, Info
);
1002 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1003 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1005 isSafeMemAccess(AI
, Offset
, Length
->getZExtValue(), 0,
1006 UI
.getOperandNo() == 0, Info
);
1009 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1010 if (!LI
->isVolatile()) {
1011 const Type
*LIType
= LI
->getType();
1012 isSafeMemAccess(AI
, Offset
, TD
->getTypeAllocSize(LIType
),
1013 LIType
, false, Info
);
1016 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1017 // Store is ok if storing INTO the pointer, not storing the pointer
1018 if (!SI
->isVolatile() && SI
->getOperand(0) != I
) {
1019 const Type
*SIType
= SI
->getOperand(0)->getType();
1020 isSafeMemAccess(AI
, Offset
, TD
->getTypeAllocSize(SIType
),
1021 SIType
, true, Info
);
1025 DEBUG(errs() << " Transformation preventing inst: " << *User
<< '\n');
1028 if (Info
.isUnsafe
) return;
1032 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1033 /// replacement. It is safe when all the indices are constant, in-bounds
1034 /// references, and when the resulting offset corresponds to an element within
1035 /// the alloca type. The results are flagged in the Info parameter. Upon
1036 /// return, Offset is adjusted as specified by the GEP indices.
1037 void SROA::isSafeGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
,
1038 uint64_t &Offset
, AllocaInfo
&Info
) {
1039 gep_type_iterator GEPIt
= gep_type_begin(GEPI
), E
= gep_type_end(GEPI
);
1043 // Walk through the GEP type indices, checking the types that this indexes
1045 for (; GEPIt
!= E
; ++GEPIt
) {
1046 // Ignore struct elements, no extra checking needed for these.
1047 if ((*GEPIt
)->isStructTy())
1050 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPIt
.getOperand());
1052 return MarkUnsafe(Info
);
1055 // Compute the offset due to this GEP and check if the alloca has a
1056 // component element at that offset.
1057 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
1058 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
1059 &Indices
[0], Indices
.size());
1060 if (!TypeHasComponent(AI
->getAllocatedType(), Offset
, 0))
1064 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1065 /// alloca or has an offset and size that corresponds to a component element
1066 /// within it. The offset checked here may have been formed from a GEP with a
1067 /// pointer bitcasted to a different type.
1068 void SROA::isSafeMemAccess(AllocaInst
*AI
, uint64_t Offset
, uint64_t MemSize
,
1069 const Type
*MemOpType
, bool isStore
,
1071 // Check if this is a load/store of the entire alloca.
1072 if (Offset
== 0 && MemSize
== TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1073 bool UsesAggregateType
= (MemOpType
== AI
->getAllocatedType());
1074 // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1075 // (which are essentially the same as the MemIntrinsics, especially with
1076 // regard to copying padding between elements), or references using the
1077 // aggregate type of the alloca.
1078 if (!MemOpType
|| MemOpType
->isIntegerTy() || UsesAggregateType
) {
1079 if (!UsesAggregateType
) {
1081 Info
.isMemCpyDst
= true;
1083 Info
.isMemCpySrc
= true;
1088 // Check if the offset/size correspond to a component within the alloca type.
1089 const Type
*T
= AI
->getAllocatedType();
1090 if (TypeHasComponent(T
, Offset
, MemSize
))
1093 return MarkUnsafe(Info
);
1096 /// TypeHasComponent - Return true if T has a component type with the
1097 /// specified offset and size. If Size is zero, do not check the size.
1098 bool SROA::TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
) {
1101 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1102 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
1103 unsigned EltIdx
= Layout
->getElementContainingOffset(Offset
);
1104 EltTy
= ST
->getContainedType(EltIdx
);
1105 EltSize
= TD
->getTypeAllocSize(EltTy
);
1106 Offset
-= Layout
->getElementOffset(EltIdx
);
1107 } else if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
)) {
1108 EltTy
= AT
->getElementType();
1109 EltSize
= TD
->getTypeAllocSize(EltTy
);
1110 if (Offset
>= AT
->getNumElements() * EltSize
)
1116 if (Offset
== 0 && (Size
== 0 || EltSize
== Size
))
1118 // Check if the component spans multiple elements.
1119 if (Offset
+ Size
> EltSize
)
1121 return TypeHasComponent(EltTy
, Offset
, Size
);
1124 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1125 /// the instruction I, which references it, to use the separate elements.
1126 /// Offset indicates the position within AI that is referenced by this
1128 void SROA::RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
1129 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1130 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
1131 Instruction
*User
= cast
<Instruction
>(*UI
);
1133 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1134 RewriteBitCast(BC
, AI
, Offset
, NewElts
);
1135 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1136 RewriteGEP(GEPI
, AI
, Offset
, NewElts
);
1137 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1138 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1139 uint64_t MemSize
= Length
->getZExtValue();
1141 MemSize
== TD
->getTypeAllocSize(AI
->getAllocatedType()))
1142 RewriteMemIntrinUserOfAlloca(MI
, I
, AI
, NewElts
);
1143 // Otherwise the intrinsic can only touch a single element and the
1144 // address operand will be updated, so nothing else needs to be done.
1145 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1146 const Type
*LIType
= LI
->getType();
1147 if (LIType
== AI
->getAllocatedType()) {
1149 // %res = load { i32, i32 }* %alloc
1151 // %load.0 = load i32* %alloc.0
1152 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1153 // %load.1 = load i32* %alloc.1
1154 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1155 // (Also works for arrays instead of structs)
1156 Value
*Insert
= UndefValue::get(LIType
);
1157 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1158 Value
*Load
= new LoadInst(NewElts
[i
], "load", LI
);
1159 Insert
= InsertValueInst::Create(Insert
, Load
, i
, "insert", LI
);
1161 LI
->replaceAllUsesWith(Insert
);
1162 DeadInsts
.push_back(LI
);
1163 } else if (LIType
->isIntegerTy() &&
1164 TD
->getTypeAllocSize(LIType
) ==
1165 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1166 // If this is a load of the entire alloca to an integer, rewrite it.
1167 RewriteLoadUserOfWholeAlloca(LI
, AI
, NewElts
);
1169 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1170 Value
*Val
= SI
->getOperand(0);
1171 const Type
*SIType
= Val
->getType();
1172 if (SIType
== AI
->getAllocatedType()) {
1174 // store { i32, i32 } %val, { i32, i32 }* %alloc
1176 // %val.0 = extractvalue { i32, i32 } %val, 0
1177 // store i32 %val.0, i32* %alloc.0
1178 // %val.1 = extractvalue { i32, i32 } %val, 1
1179 // store i32 %val.1, i32* %alloc.1
1180 // (Also works for arrays instead of structs)
1181 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1182 Value
*Extract
= ExtractValueInst::Create(Val
, i
, Val
->getName(), SI
);
1183 new StoreInst(Extract
, NewElts
[i
], SI
);
1185 DeadInsts
.push_back(SI
);
1186 } else if (SIType
->isIntegerTy() &&
1187 TD
->getTypeAllocSize(SIType
) ==
1188 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1189 // If this is a store of the entire alloca from an integer, rewrite it.
1190 RewriteStoreUserOfWholeAlloca(SI
, AI
, NewElts
);
1196 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1197 /// and recursively continue updating all of its uses.
1198 void SROA::RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
1199 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1200 RewriteForScalarRepl(BC
, AI
, Offset
, NewElts
);
1201 if (BC
->getOperand(0) != AI
)
1204 // The bitcast references the original alloca. Replace its uses with
1205 // references to the first new element alloca.
1206 Instruction
*Val
= NewElts
[0];
1207 if (Val
->getType() != BC
->getDestTy()) {
1208 Val
= new BitCastInst(Val
, BC
->getDestTy(), "", BC
);
1211 BC
->replaceAllUsesWith(Val
);
1212 DeadInsts
.push_back(BC
);
1215 /// FindElementAndOffset - Return the index of the element containing Offset
1216 /// within the specified type, which must be either a struct or an array.
1217 /// Sets T to the type of the element and Offset to the offset within that
1218 /// element. IdxTy is set to the type of the index result to be used in a
1219 /// GEP instruction.
1220 uint64_t SROA::FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
1221 const Type
*&IdxTy
) {
1223 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1224 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
1225 Idx
= Layout
->getElementContainingOffset(Offset
);
1226 T
= ST
->getContainedType(Idx
);
1227 Offset
-= Layout
->getElementOffset(Idx
);
1228 IdxTy
= Type::getInt32Ty(T
->getContext());
1231 const ArrayType
*AT
= cast
<ArrayType
>(T
);
1232 T
= AT
->getElementType();
1233 uint64_t EltSize
= TD
->getTypeAllocSize(T
);
1234 Idx
= Offset
/ EltSize
;
1235 Offset
-= Idx
* EltSize
;
1236 IdxTy
= Type::getInt64Ty(T
->getContext());
1240 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1241 /// elements of the alloca that are being split apart, and if so, rewrite
1242 /// the GEP to be relative to the new element.
1243 void SROA::RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
1244 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1245 uint64_t OldOffset
= Offset
;
1246 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
1247 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
1248 &Indices
[0], Indices
.size());
1250 RewriteForScalarRepl(GEPI
, AI
, Offset
, NewElts
);
1252 const Type
*T
= AI
->getAllocatedType();
1254 uint64_t OldIdx
= FindElementAndOffset(T
, OldOffset
, IdxTy
);
1255 if (GEPI
->getOperand(0) == AI
)
1256 OldIdx
= ~0ULL; // Force the GEP to be rewritten.
1258 T
= AI
->getAllocatedType();
1259 uint64_t EltOffset
= Offset
;
1260 uint64_t Idx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
1262 // If this GEP does not move the pointer across elements of the alloca
1263 // being split, then it does not needs to be rewritten.
1267 const Type
*i32Ty
= Type::getInt32Ty(AI
->getContext());
1268 SmallVector
<Value
*, 8> NewArgs
;
1269 NewArgs
.push_back(Constant::getNullValue(i32Ty
));
1270 while (EltOffset
!= 0) {
1271 uint64_t EltIdx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
1272 NewArgs
.push_back(ConstantInt::get(IdxTy
, EltIdx
));
1274 Instruction
*Val
= NewElts
[Idx
];
1275 if (NewArgs
.size() > 1) {
1276 Val
= GetElementPtrInst::CreateInBounds(Val
, NewArgs
.begin(),
1277 NewArgs
.end(), "", GEPI
);
1278 Val
->takeName(GEPI
);
1280 if (Val
->getType() != GEPI
->getType())
1281 Val
= new BitCastInst(Val
, GEPI
->getType(), Val
->getName(), GEPI
);
1282 GEPI
->replaceAllUsesWith(Val
);
1283 DeadInsts
.push_back(GEPI
);
1286 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1287 /// Rewrite it to copy or set the elements of the scalarized memory.
1288 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
1290 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1291 // If this is a memcpy/memmove, construct the other pointer as the
1292 // appropriate type. The "Other" pointer is the pointer that goes to memory
1293 // that doesn't have anything to do with the alloca that we are promoting. For
1294 // memset, this Value* stays null.
1295 Value
*OtherPtr
= 0;
1296 unsigned MemAlignment
= MI
->getAlignment();
1297 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) { // memmove/memcopy
1298 if (Inst
== MTI
->getRawDest())
1299 OtherPtr
= MTI
->getRawSource();
1301 assert(Inst
== MTI
->getRawSource());
1302 OtherPtr
= MTI
->getRawDest();
1306 // If there is an other pointer, we want to convert it to the same pointer
1307 // type as AI has, so we can GEP through it safely.
1309 unsigned AddrSpace
=
1310 cast
<PointerType
>(OtherPtr
->getType())->getAddressSpace();
1312 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1313 // optimization, but it's also required to detect the corner case where
1314 // both pointer operands are referencing the same memory, and where
1315 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1316 // function is only called for mem intrinsics that access the whole
1317 // aggregate, so non-zero GEPs are not an issue here.)
1318 OtherPtr
= OtherPtr
->stripPointerCasts();
1320 // Copying the alloca to itself is a no-op: just delete it.
1321 if (OtherPtr
== AI
|| OtherPtr
== NewElts
[0]) {
1322 // This code will run twice for a no-op memcpy -- once for each operand.
1323 // Put only one reference to MI on the DeadInsts list.
1324 for (SmallVector
<Value
*, 32>::const_iterator I
= DeadInsts
.begin(),
1325 E
= DeadInsts
.end(); I
!= E
; ++I
)
1326 if (*I
== MI
) return;
1327 DeadInsts
.push_back(MI
);
1331 // If the pointer is not the right type, insert a bitcast to the right
1334 PointerType::get(AI
->getType()->getElementType(), AddrSpace
);
1336 if (OtherPtr
->getType() != NewTy
)
1337 OtherPtr
= new BitCastInst(OtherPtr
, NewTy
, OtherPtr
->getName(), MI
);
1340 // Process each element of the aggregate.
1341 Value
*TheFn
= MI
->getCalledValue();
1342 const Type
*BytePtrTy
= MI
->getRawDest()->getType();
1343 bool SROADest
= MI
->getRawDest() == Inst
;
1345 Constant
*Zero
= Constant::getNullValue(Type::getInt32Ty(MI
->getContext()));
1347 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1348 // If this is a memcpy/memmove, emit a GEP of the other element address.
1349 Value
*OtherElt
= 0;
1350 unsigned OtherEltAlign
= MemAlignment
;
1353 Value
*Idx
[2] = { Zero
,
1354 ConstantInt::get(Type::getInt32Ty(MI
->getContext()), i
) };
1355 OtherElt
= GetElementPtrInst::CreateInBounds(OtherPtr
, Idx
, Idx
+ 2,
1356 OtherPtr
->getName()+"."+Twine(i
),
1359 const PointerType
*OtherPtrTy
= cast
<PointerType
>(OtherPtr
->getType());
1360 const Type
*OtherTy
= OtherPtrTy
->getElementType();
1361 if (const StructType
*ST
= dyn_cast
<StructType
>(OtherTy
)) {
1362 EltOffset
= TD
->getStructLayout(ST
)->getElementOffset(i
);
1364 const Type
*EltTy
= cast
<SequentialType
>(OtherTy
)->getElementType();
1365 EltOffset
= TD
->getTypeAllocSize(EltTy
)*i
;
1368 // The alignment of the other pointer is the guaranteed alignment of the
1369 // element, which is affected by both the known alignment of the whole
1370 // mem intrinsic and the alignment of the element. If the alignment of
1371 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1372 // known alignment is just 4 bytes.
1373 OtherEltAlign
= (unsigned)MinAlign(OtherEltAlign
, EltOffset
);
1376 Value
*EltPtr
= NewElts
[i
];
1377 const Type
*EltTy
= cast
<PointerType
>(EltPtr
->getType())->getElementType();
1379 // If we got down to a scalar, insert a load or store as appropriate.
1380 if (EltTy
->isSingleValueType()) {
1381 if (isa
<MemTransferInst
>(MI
)) {
1383 // From Other to Alloca.
1384 Value
*Elt
= new LoadInst(OtherElt
, "tmp", false, OtherEltAlign
, MI
);
1385 new StoreInst(Elt
, EltPtr
, MI
);
1387 // From Alloca to Other.
1388 Value
*Elt
= new LoadInst(EltPtr
, "tmp", MI
);
1389 new StoreInst(Elt
, OtherElt
, false, OtherEltAlign
, MI
);
1393 assert(isa
<MemSetInst
>(MI
));
1395 // If the stored element is zero (common case), just store a null
1398 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(MI
->getArgOperand(1))) {
1400 StoreVal
= Constant::getNullValue(EltTy
); // 0.0, null, 0, <0,0>
1402 // If EltTy is a vector type, get the element type.
1403 const Type
*ValTy
= EltTy
->getScalarType();
1405 // Construct an integer with the right value.
1406 unsigned EltSize
= TD
->getTypeSizeInBits(ValTy
);
1407 APInt
OneVal(EltSize
, CI
->getZExtValue());
1408 APInt
TotalVal(OneVal
);
1410 for (unsigned i
= 0; 8*i
< EltSize
; ++i
) {
1411 TotalVal
= TotalVal
.shl(8);
1415 // Convert the integer value to the appropriate type.
1416 StoreVal
= ConstantInt::get(CI
->getContext(), TotalVal
);
1417 if (ValTy
->isPointerTy())
1418 StoreVal
= ConstantExpr::getIntToPtr(StoreVal
, ValTy
);
1419 else if (ValTy
->isFloatingPointTy())
1420 StoreVal
= ConstantExpr::getBitCast(StoreVal
, ValTy
);
1421 assert(StoreVal
->getType() == ValTy
&& "Type mismatch!");
1423 // If the requested value was a vector constant, create it.
1424 if (EltTy
!= ValTy
) {
1425 unsigned NumElts
= cast
<VectorType
>(ValTy
)->getNumElements();
1426 SmallVector
<Constant
*, 16> Elts(NumElts
, StoreVal
);
1427 StoreVal
= ConstantVector::get(&Elts
[0], NumElts
);
1430 new StoreInst(StoreVal
, EltPtr
, MI
);
1433 // Otherwise, if we're storing a byte variable, use a memset call for
1437 // Cast the element pointer to BytePtrTy.
1438 if (EltPtr
->getType() != BytePtrTy
)
1439 EltPtr
= new BitCastInst(EltPtr
, BytePtrTy
, EltPtr
->getName(), MI
);
1441 // Cast the other pointer (if we have one) to BytePtrTy.
1442 if (OtherElt
&& OtherElt
->getType() != BytePtrTy
) {
1443 // Preserve address space of OtherElt
1444 const PointerType
* OtherPTy
= cast
<PointerType
>(OtherElt
->getType());
1445 const PointerType
* PTy
= cast
<PointerType
>(BytePtrTy
);
1446 if (OtherPTy
->getElementType() != PTy
->getElementType()) {
1447 Type
*NewOtherPTy
= PointerType::get(PTy
->getElementType(),
1448 OtherPTy
->getAddressSpace());
1449 OtherElt
= new BitCastInst(OtherElt
, NewOtherPTy
,
1450 OtherElt
->getName(), MI
);
1454 unsigned EltSize
= TD
->getTypeAllocSize(EltTy
);
1456 // Finally, insert the meminst for this element.
1457 if (isa
<MemTransferInst
>(MI
)) {
1459 SROADest
? EltPtr
: OtherElt
, // Dest ptr
1460 SROADest
? OtherElt
: EltPtr
, // Src ptr
1461 ConstantInt::get(MI
->getArgOperand(2)->getType(), EltSize
), // Size
1463 ConstantInt::get(Type::getInt32Ty(MI
->getContext()), OtherEltAlign
),
1464 MI
->getVolatileCst()
1466 // In case we fold the address space overloaded memcpy of A to B
1467 // with memcpy of B to C, change the function to be a memcpy of A to C.
1468 const Type
*Tys
[] = { Ops
[0]->getType(), Ops
[1]->getType(),
1469 Ops
[2]->getType() };
1470 Module
*M
= MI
->getParent()->getParent()->getParent();
1471 TheFn
= Intrinsic::getDeclaration(M
, MI
->getIntrinsicID(), Tys
, 3);
1472 CallInst::Create(TheFn
, Ops
, Ops
+ 5, "", MI
);
1474 assert(isa
<MemSetInst
>(MI
));
1476 EltPtr
, MI
->getArgOperand(1), // Dest, Value,
1477 ConstantInt::get(MI
->getArgOperand(2)->getType(), EltSize
), // Size
1479 ConstantInt::get(Type::getInt1Ty(MI
->getContext()), 0) // isVolatile
1481 const Type
*Tys
[] = { Ops
[0]->getType(), Ops
[2]->getType() };
1482 Module
*M
= MI
->getParent()->getParent()->getParent();
1483 TheFn
= Intrinsic::getDeclaration(M
, Intrinsic::memset
, Tys
, 2);
1484 CallInst::Create(TheFn
, Ops
, Ops
+ 5, "", MI
);
1487 DeadInsts
.push_back(MI
);
1490 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1491 /// overwrites the entire allocation. Extract out the pieces of the stored
1492 /// integer and store them individually.
1493 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
1494 SmallVector
<AllocaInst
*, 32> &NewElts
){
1495 // Extract each element out of the integer according to its structure offset
1496 // and store the element value to the individual alloca.
1497 Value
*SrcVal
= SI
->getOperand(0);
1498 const Type
*AllocaEltTy
= AI
->getAllocatedType();
1499 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
1501 // Handle tail padding by extending the operand
1502 if (TD
->getTypeSizeInBits(SrcVal
->getType()) != AllocaSizeBits
)
1503 SrcVal
= new ZExtInst(SrcVal
,
1504 IntegerType::get(SI
->getContext(), AllocaSizeBits
),
1507 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI
<< '\n' << *SI
1510 // There are two forms here: AI could be an array or struct. Both cases
1511 // have different ways to compute the element offset.
1512 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
1513 const StructLayout
*Layout
= TD
->getStructLayout(EltSTy
);
1515 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1516 // Get the number of bits to shift SrcVal to get the value.
1517 const Type
*FieldTy
= EltSTy
->getElementType(i
);
1518 uint64_t Shift
= Layout
->getElementOffsetInBits(i
);
1520 if (TD
->isBigEndian())
1521 Shift
= AllocaSizeBits
-Shift
-TD
->getTypeAllocSizeInBits(FieldTy
);
1523 Value
*EltVal
= SrcVal
;
1525 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
1526 EltVal
= BinaryOperator::CreateLShr(EltVal
, ShiftVal
,
1527 "sroa.store.elt", SI
);
1530 // Truncate down to an integer of the right size.
1531 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
1533 // Ignore zero sized fields like {}, they obviously contain no data.
1534 if (FieldSizeBits
== 0) continue;
1536 if (FieldSizeBits
!= AllocaSizeBits
)
1537 EltVal
= new TruncInst(EltVal
,
1538 IntegerType::get(SI
->getContext(), FieldSizeBits
),
1540 Value
*DestField
= NewElts
[i
];
1541 if (EltVal
->getType() == FieldTy
) {
1542 // Storing to an integer field of this size, just do it.
1543 } else if (FieldTy
->isFloatingPointTy() || FieldTy
->isVectorTy()) {
1544 // Bitcast to the right element type (for fp/vector values).
1545 EltVal
= new BitCastInst(EltVal
, FieldTy
, "", SI
);
1547 // Otherwise, bitcast the dest pointer (for aggregates).
1548 DestField
= new BitCastInst(DestField
,
1549 PointerType::getUnqual(EltVal
->getType()),
1552 new StoreInst(EltVal
, DestField
, SI
);
1556 const ArrayType
*ATy
= cast
<ArrayType
>(AllocaEltTy
);
1557 const Type
*ArrayEltTy
= ATy
->getElementType();
1558 uint64_t ElementOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
1559 uint64_t ElementSizeBits
= TD
->getTypeSizeInBits(ArrayEltTy
);
1563 if (TD
->isBigEndian())
1564 Shift
= AllocaSizeBits
-ElementOffset
;
1568 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1569 // Ignore zero sized fields like {}, they obviously contain no data.
1570 if (ElementSizeBits
== 0) continue;
1572 Value
*EltVal
= SrcVal
;
1574 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
1575 EltVal
= BinaryOperator::CreateLShr(EltVal
, ShiftVal
,
1576 "sroa.store.elt", SI
);
1579 // Truncate down to an integer of the right size.
1580 if (ElementSizeBits
!= AllocaSizeBits
)
1581 EltVal
= new TruncInst(EltVal
,
1582 IntegerType::get(SI
->getContext(),
1583 ElementSizeBits
),"",SI
);
1584 Value
*DestField
= NewElts
[i
];
1585 if (EltVal
->getType() == ArrayEltTy
) {
1586 // Storing to an integer field of this size, just do it.
1587 } else if (ArrayEltTy
->isFloatingPointTy() ||
1588 ArrayEltTy
->isVectorTy()) {
1589 // Bitcast to the right element type (for fp/vector values).
1590 EltVal
= new BitCastInst(EltVal
, ArrayEltTy
, "", SI
);
1592 // Otherwise, bitcast the dest pointer (for aggregates).
1593 DestField
= new BitCastInst(DestField
,
1594 PointerType::getUnqual(EltVal
->getType()),
1597 new StoreInst(EltVal
, DestField
, SI
);
1599 if (TD
->isBigEndian())
1600 Shift
-= ElementOffset
;
1602 Shift
+= ElementOffset
;
1606 DeadInsts
.push_back(SI
);
1609 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1610 /// an integer. Load the individual pieces to form the aggregate value.
1611 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
1612 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1613 // Extract each element out of the NewElts according to its structure offset
1614 // and form the result value.
1615 const Type
*AllocaEltTy
= AI
->getAllocatedType();
1616 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
1618 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI
<< '\n' << *LI
1621 // There are two forms here: AI could be an array or struct. Both cases
1622 // have different ways to compute the element offset.
1623 const StructLayout
*Layout
= 0;
1624 uint64_t ArrayEltBitOffset
= 0;
1625 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
1626 Layout
= TD
->getStructLayout(EltSTy
);
1628 const Type
*ArrayEltTy
= cast
<ArrayType
>(AllocaEltTy
)->getElementType();
1629 ArrayEltBitOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
1633 Constant::getNullValue(IntegerType::get(LI
->getContext(), AllocaSizeBits
));
1635 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1636 // Load the value from the alloca. If the NewElt is an aggregate, cast
1637 // the pointer to an integer of the same size before doing the load.
1638 Value
*SrcField
= NewElts
[i
];
1639 const Type
*FieldTy
=
1640 cast
<PointerType
>(SrcField
->getType())->getElementType();
1641 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
1643 // Ignore zero sized fields like {}, they obviously contain no data.
1644 if (FieldSizeBits
== 0) continue;
1646 const IntegerType
*FieldIntTy
= IntegerType::get(LI
->getContext(),
1648 if (!FieldTy
->isIntegerTy() && !FieldTy
->isFloatingPointTy() &&
1649 !FieldTy
->isVectorTy())
1650 SrcField
= new BitCastInst(SrcField
,
1651 PointerType::getUnqual(FieldIntTy
),
1653 SrcField
= new LoadInst(SrcField
, "sroa.load.elt", LI
);
1655 // If SrcField is a fp or vector of the right size but that isn't an
1656 // integer type, bitcast to an integer so we can shift it.
1657 if (SrcField
->getType() != FieldIntTy
)
1658 SrcField
= new BitCastInst(SrcField
, FieldIntTy
, "", LI
);
1660 // Zero extend the field to be the same size as the final alloca so that
1661 // we can shift and insert it.
1662 if (SrcField
->getType() != ResultVal
->getType())
1663 SrcField
= new ZExtInst(SrcField
, ResultVal
->getType(), "", LI
);
1665 // Determine the number of bits to shift SrcField.
1667 if (Layout
) // Struct case.
1668 Shift
= Layout
->getElementOffsetInBits(i
);
1670 Shift
= i
*ArrayEltBitOffset
;
1672 if (TD
->isBigEndian())
1673 Shift
= AllocaSizeBits
-Shift
-FieldIntTy
->getBitWidth();
1676 Value
*ShiftVal
= ConstantInt::get(SrcField
->getType(), Shift
);
1677 SrcField
= BinaryOperator::CreateShl(SrcField
, ShiftVal
, "", LI
);
1680 // Don't create an 'or x, 0' on the first iteration.
1681 if (!isa
<Constant
>(ResultVal
) ||
1682 !cast
<Constant
>(ResultVal
)->isNullValue())
1683 ResultVal
= BinaryOperator::CreateOr(SrcField
, ResultVal
, "", LI
);
1685 ResultVal
= SrcField
;
1688 // Handle tail padding by truncating the result
1689 if (TD
->getTypeSizeInBits(LI
->getType()) != AllocaSizeBits
)
1690 ResultVal
= new TruncInst(ResultVal
, LI
->getType(), "", LI
);
1692 LI
->replaceAllUsesWith(ResultVal
);
1693 DeadInsts
.push_back(LI
);
1696 /// HasPadding - Return true if the specified type has any structure or
1697 /// alignment padding, false otherwise.
1698 static bool HasPadding(const Type
*Ty
, const TargetData
&TD
) {
1699 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
))
1700 return HasPadding(ATy
->getElementType(), TD
);
1702 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
1703 return HasPadding(VTy
->getElementType(), TD
);
1705 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1706 const StructLayout
*SL
= TD
.getStructLayout(STy
);
1707 unsigned PrevFieldBitOffset
= 0;
1708 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1709 unsigned FieldBitOffset
= SL
->getElementOffsetInBits(i
);
1711 // Padding in sub-elements?
1712 if (HasPadding(STy
->getElementType(i
), TD
))
1715 // Check to see if there is any padding between this element and the
1718 unsigned PrevFieldEnd
=
1719 PrevFieldBitOffset
+TD
.getTypeSizeInBits(STy
->getElementType(i
-1));
1720 if (PrevFieldEnd
< FieldBitOffset
)
1724 PrevFieldBitOffset
= FieldBitOffset
;
1727 // Check for tail padding.
1728 if (unsigned EltCount
= STy
->getNumElements()) {
1729 unsigned PrevFieldEnd
= PrevFieldBitOffset
+
1730 TD
.getTypeSizeInBits(STy
->getElementType(EltCount
-1));
1731 if (PrevFieldEnd
< SL
->getSizeInBits())
1736 return TD
.getTypeSizeInBits(Ty
) != TD
.getTypeAllocSizeInBits(Ty
);
1739 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1740 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1741 /// or 1 if safe after canonicalization has been performed.
1742 bool SROA::isSafeAllocaToScalarRepl(AllocaInst
*AI
) {
1743 // Loop over the use list of the alloca. We can only transform it if all of
1744 // the users are safe to transform.
1747 isSafeForScalarRepl(AI
, AI
, 0, Info
);
1748 if (Info
.isUnsafe
) {
1749 DEBUG(dbgs() << "Cannot transform: " << *AI
<< '\n');
1753 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1754 // source and destination, we have to be careful. In particular, the memcpy
1755 // could be moving around elements that live in structure padding of the LLVM
1756 // types, but may actually be used. In these cases, we refuse to promote the
1758 if (Info
.isMemCpySrc
&& Info
.isMemCpyDst
&&
1759 HasPadding(AI
->getAllocatedType(), *TD
))
1767 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1768 /// some part of a constant global variable. This intentionally only accepts
1769 /// constant expressions because we don't can't rewrite arbitrary instructions.
1770 static bool PointsToConstantGlobal(Value
*V
) {
1771 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
1772 return GV
->isConstant();
1773 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
1774 if (CE
->getOpcode() == Instruction::BitCast
||
1775 CE
->getOpcode() == Instruction::GetElementPtr
)
1776 return PointsToConstantGlobal(CE
->getOperand(0));
1780 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1781 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1782 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1783 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1784 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1785 /// the alloca, and if the source pointer is a pointer to a constant global, we
1786 /// can optimize this.
1787 static bool isOnlyCopiedFromConstantGlobal(Value
*V
, MemTransferInst
*&TheCopy
,
1789 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
1790 User
*U
= cast
<Instruction
>(*UI
);
1792 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1793 // Ignore non-volatile loads, they are always ok.
1794 if (!LI
->isVolatile())
1797 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
1798 // If uses of the bitcast are ok, we are ok.
1799 if (!isOnlyCopiedFromConstantGlobal(BCI
, TheCopy
, isOffset
))
1803 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
1804 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1805 // doesn't, it does.
1806 if (!isOnlyCopiedFromConstantGlobal(GEP
, TheCopy
,
1807 isOffset
|| !GEP
->hasAllZeroIndices()))
1812 // If this is isn't our memcpy/memmove, reject it as something we can't
1814 MemTransferInst
*MI
= dyn_cast
<MemTransferInst
>(U
);
1818 // If we already have seen a copy, reject the second one.
1819 if (TheCopy
) return false;
1821 // If the pointer has been offset from the start of the alloca, we can't
1822 // safely handle this.
1823 if (isOffset
) return false;
1825 // If the memintrinsic isn't using the alloca as the dest, reject it.
1826 if (UI
.getOperandNo() != 0) return false;
1828 // If the source of the memcpy/move is not a constant global, reject it.
1829 if (!PointsToConstantGlobal(MI
->getSource()))
1832 // Otherwise, the transform is safe. Remember the copy instruction.
1838 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1839 /// modified by a copy from a constant global. If we can prove this, we can
1840 /// replace any uses of the alloca with uses of the global directly.
1841 MemTransferInst
*SROA::isOnlyCopiedFromConstantGlobal(AllocaInst
*AI
) {
1842 MemTransferInst
*TheCopy
= 0;
1843 if (::isOnlyCopiedFromConstantGlobal(AI
, TheCopy
, false))