zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / Transforms / Scalar / TailDuplication.cpp
blobe954c15cb78e83d0148e13a0529142b748898050
1 //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a limited form of tail duplication, intended to simplify
11 // CFGs by removing some unconditional branches. This pass is necessary to
12 // straighten out loops created by the C front-end, but also is capable of
13 // making other code nicer. After this pass is run, the CFG simplify pass
14 // should be run to clean up the mess.
16 // This pass could be enhanced in the future to use profile information to be
17 // more aggressive.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "tailduplicate"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Constant.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Type.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include <map>
38 using namespace llvm;
40 STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
42 static cl::opt<unsigned>
43 TailDupThreshold("taildup-threshold",
44 cl::desc("Max block size to tail duplicate"),
45 cl::init(1), cl::Hidden);
47 namespace {
48 class TailDup : public FunctionPass {
49 bool runOnFunction(Function &F);
50 public:
51 static char ID; // Pass identification, replacement for typeid
52 TailDup() : FunctionPass(ID) {
53 initializeTailDupPass(*PassRegistry::getPassRegistry());
56 private:
57 inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned);
58 inline void eliminateUnconditionalBranch(BranchInst *BI);
59 SmallPtrSet<BasicBlock*, 4> CycleDetector;
63 char TailDup::ID = 0;
64 INITIALIZE_PASS(TailDup, "tailduplicate", "Tail Duplication", false, false)
66 // Public interface to the Tail Duplication pass
67 FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
69 /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
70 /// the function, eliminating it if it looks attractive enough. CycleDetector
71 /// prevents infinite loops by checking that we aren't redirecting a branch to
72 /// a place it already pointed to earlier; see PR 2323.
73 bool TailDup::runOnFunction(Function &F) {
74 bool Changed = false;
75 CycleDetector.clear();
76 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
77 if (shouldEliminateUnconditionalBranch(I->getTerminator(),
78 TailDupThreshold)) {
79 eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
80 Changed = true;
81 } else {
82 ++I;
83 CycleDetector.clear();
86 return Changed;
89 /// shouldEliminateUnconditionalBranch - Return true if this branch looks
90 /// attractive to eliminate. We eliminate the branch if the destination basic
91 /// block has <= 5 instructions in it, not counting PHI nodes. In practice,
92 /// since one of these is a terminator instruction, this means that we will add
93 /// up to 4 instructions to the new block.
94 ///
95 /// We don't count PHI nodes in the count since they will be removed when the
96 /// contents of the block are copied over.
97 ///
98 bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
99 unsigned Threshold) {
100 BranchInst *BI = dyn_cast<BranchInst>(TI);
101 if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
103 BasicBlock *Dest = BI->getSuccessor(0);
104 if (Dest == BI->getParent()) return false; // Do not loop infinitely!
106 // Do not inline a block if we will just get another branch to the same block!
107 TerminatorInst *DTI = Dest->getTerminator();
108 if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
109 if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
110 return false; // Do not loop infinitely!
112 // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
113 // because doing so would require breaking critical edges. This should be
114 // fixed eventually.
115 if (!DTI->use_empty())
116 return false;
118 // Do not bother with blocks with only a single predecessor: simplify
119 // CFG will fold these two blocks together!
120 pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
121 ++PI;
122 if (PI == PE) return false; // Exactly one predecessor!
124 BasicBlock::iterator I = Dest->getFirstNonPHI();
126 for (unsigned Size = 0; I != Dest->end(); ++I) {
127 if (Size == Threshold) return false; // The block is too large.
129 // Don't tail duplicate call instructions. They are very large compared to
130 // other instructions.
131 if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
133 // Also alloca and malloc.
134 if (isa<AllocaInst>(I)) return false;
136 // Some vector instructions can expand into a number of instructions.
137 if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) ||
138 isa<InsertElementInst>(I)) return false;
140 // Only count instructions that are not debugger intrinsics.
141 if (!isa<DbgInfoIntrinsic>(I)) ++Size;
144 // Do not tail duplicate a block that has thousands of successors into a block
145 // with a single successor if the block has many other predecessors. This can
146 // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
147 // cases that have a large number of indirect gotos.
148 unsigned NumSuccs = DTI->getNumSuccessors();
149 if (NumSuccs > 8) {
150 unsigned TooMany = 128;
151 if (NumSuccs >= TooMany) return false;
152 TooMany = TooMany/NumSuccs;
153 for (; PI != PE; ++PI)
154 if (TooMany-- == 0) return false;
157 // If this unconditional branch is a fall-through, be careful about
158 // tail duplicating it. In particular, we don't want to taildup it if the
159 // original block will still be there after taildup is completed: doing so
160 // would eliminate the fall-through, requiring unconditional branches.
161 Function::iterator DestI = Dest;
162 if (&*--DestI == BI->getParent()) {
163 // The uncond branch is a fall-through. Tail duplication of the block is
164 // will eliminate the fall-through-ness and end up cloning the terminator
165 // at the end of the Dest block. Since the original Dest block will
166 // continue to exist, this means that one or the other will not be able to
167 // fall through. One typical example that this helps with is code like:
168 // if (a)
169 // foo();
170 // if (b)
171 // foo();
172 // Cloning the 'if b' block into the end of the first foo block is messy.
174 // The messy case is when the fall-through block falls through to other
175 // blocks. This is what we would be preventing if we cloned the block.
176 DestI = Dest;
177 if (++DestI != Dest->getParent()->end()) {
178 BasicBlock *DestSucc = DestI;
179 // If any of Dest's successors are fall-throughs, don't do this xform.
180 for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
181 SI != SE; ++SI)
182 if (*SI == DestSucc)
183 return false;
187 // Finally, check that we haven't redirected to this target block earlier;
188 // there are cases where we loop forever if we don't check this (PR 2323).
189 if (!CycleDetector.insert(Dest))
190 return false;
192 return true;
195 /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
196 /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
197 /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
198 /// DstBlock, return it.
199 static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
200 BasicBlock *DstBlock) {
201 // SrcBlock must have a single predecessor.
202 pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
203 if (PI == PE || ++PI != PE) return 0;
205 BasicBlock *SrcPred = *pred_begin(SrcBlock);
207 // Look at the predecessors of DstBlock. One of them will be SrcBlock. If
208 // there is only one other pred, get it, otherwise we can't handle it.
209 PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
210 BasicBlock *DstOtherPred = 0;
211 BasicBlock *P = *PI;
212 if (P == SrcBlock) {
213 if (++PI == PE) return 0;
214 DstOtherPred = *PI;
215 if (++PI != PE) return 0;
216 } else {
217 DstOtherPred = P;
218 if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
221 // We can handle two situations here: "if then" and "if then else" blocks. An
222 // 'if then' situation is just where DstOtherPred == SrcPred.
223 if (DstOtherPred == SrcPred)
224 return SrcPred;
226 // Check to see if we have an "if then else" situation, which means that
227 // DstOtherPred will have a single predecessor and it will be SrcPred.
228 PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
229 if (PI != PE && *PI == SrcPred) {
230 if (++PI != PE) return 0; // Not a single pred.
231 return SrcPred; // Otherwise, it's an "if then" situation. Return the if.
234 // Otherwise, this is something we can't handle.
235 return 0;
239 /// eliminateUnconditionalBranch - Clone the instructions from the destination
240 /// block into the source block, eliminating the specified unconditional branch.
241 /// If the destination block defines values used by successors of the dest
242 /// block, we may need to insert PHI nodes.
244 void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
245 BasicBlock *SourceBlock = Branch->getParent();
246 BasicBlock *DestBlock = Branch->getSuccessor(0);
247 assert(SourceBlock != DestBlock && "Our predicate is broken!");
249 DEBUG(dbgs() << "TailDuplication[" << SourceBlock->getParent()->getName()
250 << "]: Eliminating branch: " << *Branch);
252 // See if we can avoid duplicating code by moving it up to a dominator of both
253 // blocks.
254 if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
255 DEBUG(dbgs() << "Found shared dominator: " << DomBlock->getName() << "\n");
257 // If there are non-phi instructions in DestBlock that have no operands
258 // defined in DestBlock, and if the instruction has no side effects, we can
259 // move the instruction to DomBlock instead of duplicating it.
260 BasicBlock::iterator BBI = DestBlock->getFirstNonPHI();
261 while (!isa<TerminatorInst>(BBI)) {
262 Instruction *I = BBI++;
264 bool CanHoist = I->isSafeToSpeculativelyExecute() &&
265 !I->mayReadFromMemory();
266 if (CanHoist) {
267 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
268 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
269 if (OpI->getParent() == DestBlock ||
270 (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
271 CanHoist = false;
272 break;
274 if (CanHoist) {
275 // Remove from DestBlock, move right before the term in DomBlock.
276 DestBlock->getInstList().remove(I);
277 DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
278 DEBUG(dbgs() << "Hoisted: " << *I);
284 // Tail duplication can not update SSA properties correctly if the values
285 // defined in the duplicated tail are used outside of the tail itself. For
286 // this reason, we spill all values that are used outside of the tail to the
287 // stack.
288 for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
289 if (I->isUsedOutsideOfBlock(DestBlock)) {
290 // We found a use outside of the tail. Create a new stack slot to
291 // break this inter-block usage pattern.
292 DemoteRegToStack(*I);
295 // We are going to have to map operands from the original block B to the new
296 // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
297 // nodes also define part of this mapping. Loop over these PHI nodes, adding
298 // them to our mapping.
300 std::map<Value*, Value*> ValueMapping;
302 BasicBlock::iterator BI = DestBlock->begin();
303 bool HadPHINodes = isa<PHINode>(BI);
304 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
305 ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
307 // Clone the non-phi instructions of the dest block into the source block,
308 // keeping track of the mapping...
310 for (; BI != DestBlock->end(); ++BI) {
311 Instruction *New = BI->clone();
312 New->setName(BI->getName());
313 SourceBlock->getInstList().push_back(New);
314 ValueMapping[BI] = New;
317 // Now that we have built the mapping information and cloned all of the
318 // instructions (giving us a new terminator, among other things), walk the new
319 // instructions, rewriting references of old instructions to use new
320 // instructions.
322 BI = Branch; ++BI; // Get an iterator to the first new instruction
323 for (; BI != SourceBlock->end(); ++BI)
324 for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
325 std::map<Value*, Value*>::const_iterator I =
326 ValueMapping.find(BI->getOperand(i));
327 if (I != ValueMapping.end())
328 BI->setOperand(i, I->second);
331 // Next we check to see if any of the successors of DestBlock had PHI nodes.
332 // If so, we need to add entries to the PHI nodes for SourceBlock now.
333 for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
334 SI != SE; ++SI) {
335 BasicBlock *Succ = *SI;
336 for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
337 PHINode *PN = cast<PHINode>(PNI);
338 // Ok, we have a PHI node. Figure out what the incoming value was for the
339 // DestBlock.
340 Value *IV = PN->getIncomingValueForBlock(DestBlock);
342 // Remap the value if necessary...
343 std::map<Value*, Value*>::const_iterator I = ValueMapping.find(IV);
344 if (I != ValueMapping.end())
345 IV = I->second;
346 PN->addIncoming(IV, SourceBlock);
350 // Next, remove the old branch instruction, and any PHI node entries that we
351 // had.
352 BI = Branch; ++BI; // Get an iterator to the first new instruction
353 DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
354 SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
356 // Final step: now that we have finished everything up, walk the cloned
357 // instructions one last time, constant propagating and DCE'ing them, because
358 // they may not be needed anymore.
360 if (HadPHINodes) {
361 while (BI != SourceBlock->end()) {
362 Instruction *Inst = BI++;
363 if (isInstructionTriviallyDead(Inst))
364 Inst->eraseFromParent();
365 else if (Constant *C = ConstantFoldInstruction(Inst)) {
366 Inst->replaceAllUsesWith(C);
367 Inst->eraseFromParent();
372 ++NumEliminated; // We just killed a branch!