1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately preceeds the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Constants.h"
57 #include "llvm/DerivedTypes.h"
58 #include "llvm/Function.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Analysis/CaptureTracking.h"
62 #include "llvm/Analysis/InlineCost.h"
63 #include "llvm/Analysis/Loads.h"
64 #include "llvm/Support/CallSite.h"
65 #include "llvm/Support/CFG.h"
66 #include "llvm/ADT/Statistic.h"
69 STATISTIC(NumEliminated
, "Number of tail calls removed");
70 STATISTIC(NumAccumAdded
, "Number of accumulators introduced");
73 struct TailCallElim
: public FunctionPass
{
74 static char ID
; // Pass identification, replacement for typeid
75 TailCallElim() : FunctionPass(ID
) {
76 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
79 virtual bool runOnFunction(Function
&F
);
82 bool ProcessReturningBlock(ReturnInst
*RI
, BasicBlock
*&OldEntry
,
83 bool &TailCallsAreMarkedTail
,
84 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
85 bool CannotTailCallElimCallsMarkedTail
);
86 bool CanMoveAboveCall(Instruction
*I
, CallInst
*CI
);
87 Value
*CanTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
);
91 char TailCallElim::ID
= 0;
92 INITIALIZE_PASS(TailCallElim
, "tailcallelim",
93 "Tail Call Elimination", false, false)
95 // Public interface to the TailCallElimination pass
96 FunctionPass
*llvm::createTailCallEliminationPass() {
97 return new TailCallElim();
100 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
101 /// callees of this function. We only do very simple analysis right now, this
102 /// could be expanded in the future to use mod/ref information for particular
103 /// call sites if desired.
104 static bool AllocaMightEscapeToCalls(AllocaInst
*AI
) {
105 // FIXME: do simple 'address taken' analysis.
109 /// CheckForEscapingAllocas - Scan the specified basic block for alloca
110 /// instructions. If it contains any that might be accessed by calls, return
112 static bool CheckForEscapingAllocas(BasicBlock
*BB
,
113 bool &CannotTCETailMarkedCall
) {
115 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
116 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
117 RetVal
|= AllocaMightEscapeToCalls(AI
);
119 // If this alloca is in the body of the function, or if it is a variable
120 // sized allocation, we cannot tail call eliminate calls marked 'tail'
121 // with this mechanism.
122 if (BB
!= &BB
->getParent()->getEntryBlock() ||
123 !isa
<ConstantInt
>(AI
->getArraySize()))
124 CannotTCETailMarkedCall
= true;
129 bool TailCallElim::runOnFunction(Function
&F
) {
130 // If this function is a varargs function, we won't be able to PHI the args
131 // right, so don't even try to convert it...
132 if (F
.getFunctionType()->isVarArg()) return false;
134 BasicBlock
*OldEntry
= 0;
135 bool TailCallsAreMarkedTail
= false;
136 SmallVector
<PHINode
*, 8> ArgumentPHIs
;
137 bool MadeChange
= false;
139 bool FunctionContainsEscapingAllocas
= false;
141 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
142 // marked with the 'tail' attribute, because doing so would cause the stack
143 // size to increase (real TCE would deallocate variable sized allocas, TCE
145 bool CannotTCETailMarkedCall
= false;
147 // Loop over the function, looking for any returning blocks, and keeping track
148 // of whether this function has any non-trivially used allocas.
149 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
150 if (FunctionContainsEscapingAllocas
&& CannotTCETailMarkedCall
)
153 FunctionContainsEscapingAllocas
|=
154 CheckForEscapingAllocas(BB
, CannotTCETailMarkedCall
);
157 /// FIXME: The code generator produces really bad code when an 'escaping
158 /// alloca' is changed from being a static alloca to being a dynamic alloca.
159 /// Until this is resolved, disable this transformation if that would ever
160 /// happen. This bug is PR962.
161 if (FunctionContainsEscapingAllocas
)
164 // Second pass, change any tail calls to loops.
165 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
166 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
167 MadeChange
|= ProcessReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
168 ArgumentPHIs
,CannotTCETailMarkedCall
);
170 // If we eliminated any tail recursions, it's possible that we inserted some
171 // silly PHI nodes which just merge an initial value (the incoming operand)
172 // with themselves. Check to see if we did and clean up our mess if so. This
173 // occurs when a function passes an argument straight through to its tail
175 if (!ArgumentPHIs
.empty()) {
176 for (unsigned i
= 0, e
= ArgumentPHIs
.size(); i
!= e
; ++i
) {
177 PHINode
*PN
= ArgumentPHIs
[i
];
179 // If the PHI Node is a dynamic constant, replace it with the value it is.
180 if (Value
*PNV
= PN
->hasConstantValue()) {
181 PN
->replaceAllUsesWith(PNV
);
182 PN
->eraseFromParent();
187 // Finally, if this function contains no non-escaping allocas, mark all calls
188 // in the function as eligible for tail calls (there is no stack memory for
190 if (!FunctionContainsEscapingAllocas
)
191 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
192 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
193 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
202 /// CanMoveAboveCall - Return true if it is safe to move the specified
203 /// instruction from after the call to before the call, assuming that all
204 /// instructions between the call and this instruction are movable.
206 bool TailCallElim::CanMoveAboveCall(Instruction
*I
, CallInst
*CI
) {
207 // FIXME: We can move load/store/call/free instructions above the call if the
208 // call does not mod/ref the memory location being processed.
209 if (I
->mayHaveSideEffects()) // This also handles volatile loads.
212 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
213 // Loads may always be moved above calls without side effects.
214 if (CI
->mayHaveSideEffects()) {
215 // Non-volatile loads may be moved above a call with side effects if it
216 // does not write to memory and the load provably won't trap.
217 // FIXME: Writes to memory only matter if they may alias the pointer
218 // being loaded from.
219 if (CI
->mayWriteToMemory() ||
220 !isSafeToLoadUnconditionally(L
->getPointerOperand(), L
,
226 // Otherwise, if this is a side-effect free instruction, check to make sure
227 // that it does not use the return value of the call. If it doesn't use the
228 // return value of the call, it must only use things that are defined before
229 // the call, or movable instructions between the call and the instruction
231 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
232 if (I
->getOperand(i
) == CI
)
237 // isDynamicConstant - Return true if the specified value is the same when the
238 // return would exit as it was when the initial iteration of the recursive
239 // function was executed.
241 // We currently handle static constants and arguments that are not modified as
242 // part of the recursion.
244 static bool isDynamicConstant(Value
*V
, CallInst
*CI
, ReturnInst
*RI
) {
245 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
247 // Check to see if this is an immutable argument, if so, the value
248 // will be available to initialize the accumulator.
249 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
250 // Figure out which argument number this is...
252 Function
*F
= CI
->getParent()->getParent();
253 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
256 // If we are passing this argument into call as the corresponding
257 // argument operand, then the argument is dynamically constant.
258 // Otherwise, we cannot transform this function safely.
259 if (CI
->getArgOperand(ArgNo
) == Arg
)
263 // Switch cases are always constant integers. If the value is being switched
264 // on and the return is only reachable from one of its cases, it's
265 // effectively constant.
266 if (BasicBlock
*UniquePred
= RI
->getParent()->getUniquePredecessor())
267 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UniquePred
->getTerminator()))
268 if (SI
->getCondition() == V
)
269 return SI
->getDefaultDest() != RI
->getParent();
271 // Not a constant or immutable argument, we can't safely transform.
275 // getCommonReturnValue - Check to see if the function containing the specified
276 // tail call consistently returns the same runtime-constant value at all exit
277 // points except for IgnoreRI. If so, return the returned value.
279 static Value
*getCommonReturnValue(ReturnInst
*IgnoreRI
, CallInst
*CI
) {
280 Function
*F
= CI
->getParent()->getParent();
281 Value
*ReturnedValue
= 0;
283 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
) {
284 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator());
285 if (RI
== 0 || RI
== IgnoreRI
) continue;
287 // We can only perform this transformation if the value returned is
288 // evaluatable at the start of the initial invocation of the function,
289 // instead of at the end of the evaluation.
291 Value
*RetOp
= RI
->getOperand(0);
292 if (!isDynamicConstant(RetOp
, CI
, RI
))
295 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
296 return 0; // Cannot transform if differing values are returned.
297 ReturnedValue
= RetOp
;
299 return ReturnedValue
;
302 /// CanTransformAccumulatorRecursion - If the specified instruction can be
303 /// transformed using accumulator recursion elimination, return the constant
304 /// which is the start of the accumulator value. Otherwise return null.
306 Value
*TailCallElim::CanTransformAccumulatorRecursion(Instruction
*I
,
308 if (!I
->isAssociative() || !I
->isCommutative()) return 0;
309 assert(I
->getNumOperands() == 2 &&
310 "Associative/commutative operations should have 2 args!");
312 // Exactly one operand should be the result of the call instruction.
313 if ((I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
) ||
314 (I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
))
317 // The only user of this instruction we allow is a single return instruction.
318 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->use_back()))
321 // Ok, now we have to check all of the other return instructions in this
322 // function. If they return non-constants or differing values, then we cannot
323 // transform the function safely.
324 return getCommonReturnValue(cast
<ReturnInst
>(I
->use_back()), CI
);
327 bool TailCallElim::ProcessReturningBlock(ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
328 bool &TailCallsAreMarkedTail
,
329 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
330 bool CannotTailCallElimCallsMarkedTail
) {
331 BasicBlock
*BB
= Ret
->getParent();
332 Function
*F
= BB
->getParent();
334 if (&BB
->front() == Ret
) // Make sure there is something before the ret...
337 // Scan backwards from the return, checking to see if there is a tail call in
338 // this block. If so, set CI to it.
340 BasicBlock::iterator BBI
= Ret
;
342 CI
= dyn_cast
<CallInst
>(BBI
);
343 if (CI
&& CI
->getCalledFunction() == F
)
346 if (BBI
== BB
->begin())
347 return false; // Didn't find a potential tail call.
351 // If this call is marked as a tail call, and if there are dynamic allocas in
352 // the function, we cannot perform this optimization.
353 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
356 // As a special case, detect code like this:
357 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
358 // and disable this xform in this case, because the code generator will
359 // lower the call to fabs into inline code.
360 if (BB
== &F
->getEntryBlock() &&
361 &BB
->front() == CI
&& &*++BB
->begin() == Ret
&&
363 // A single-block function with just a call and a return. Check that
364 // the arguments match.
365 CallSite::arg_iterator I
= CallSite(CI
).arg_begin(),
366 E
= CallSite(CI
).arg_end();
367 Function::arg_iterator FI
= F
->arg_begin(),
369 for (; I
!= E
&& FI
!= FE
; ++I
, ++FI
)
370 if (*I
!= &*FI
) break;
371 if (I
== E
&& FI
== FE
)
375 // If we are introducing accumulator recursion to eliminate operations after
376 // the call instruction that are both associative and commutative, the initial
377 // value for the accumulator is placed in this variable. If this value is set
378 // then we actually perform accumulator recursion elimination instead of
379 // simple tail recursion elimination. If the operation is an LLVM instruction
380 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
381 // we are handling the case when the return instruction returns a constant C
382 // which is different to the constant returned by other return instructions
383 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
384 // special case of accumulator recursion, the operation being "return C".
385 Value
*AccumulatorRecursionEliminationInitVal
= 0;
386 Instruction
*AccumulatorRecursionInstr
= 0;
388 // Ok, we found a potential tail call. We can currently only transform the
389 // tail call if all of the instructions between the call and the return are
390 // movable to above the call itself, leaving the call next to the return.
391 // Check that this is the case now.
392 for (BBI
= CI
, ++BBI
; &*BBI
!= Ret
; ++BBI
) {
393 if (CanMoveAboveCall(BBI
, CI
)) continue;
395 // If we can't move the instruction above the call, it might be because it
396 // is an associative and commutative operation that could be tranformed
397 // using accumulator recursion elimination. Check to see if this is the
398 // case, and if so, remember the initial accumulator value for later.
399 if ((AccumulatorRecursionEliminationInitVal
=
400 CanTransformAccumulatorRecursion(BBI
, CI
))) {
401 // Yes, this is accumulator recursion. Remember which instruction
403 AccumulatorRecursionInstr
= BBI
;
405 return false; // Otherwise, we cannot eliminate the tail recursion!
409 // We can only transform call/return pairs that either ignore the return value
410 // of the call and return void, ignore the value of the call and return a
411 // constant, return the value returned by the tail call, or that are being
412 // accumulator recursion variable eliminated.
413 if (Ret
->getNumOperands() == 1 && Ret
->getReturnValue() != CI
&&
414 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
415 AccumulatorRecursionEliminationInitVal
== 0 &&
416 !getCommonReturnValue(0, CI
)) {
417 // One case remains that we are able to handle: the current return
418 // instruction returns a constant, and all other return instructions
419 // return a different constant.
420 if (!isDynamicConstant(Ret
->getReturnValue(), CI
, Ret
))
421 return false; // Current return instruction does not return a constant.
422 // Check that all other return instructions return a common constant. If
423 // so, record it in AccumulatorRecursionEliminationInitVal.
424 AccumulatorRecursionEliminationInitVal
= getCommonReturnValue(Ret
, CI
);
425 if (!AccumulatorRecursionEliminationInitVal
)
429 // OK! We can transform this tail call. If this is the first one found,
430 // create the new entry block, allowing us to branch back to the old entry.
432 OldEntry
= &F
->getEntryBlock();
433 BasicBlock
*NewEntry
= BasicBlock::Create(F
->getContext(), "", F
, OldEntry
);
434 NewEntry
->takeName(OldEntry
);
435 OldEntry
->setName("tailrecurse");
436 BranchInst::Create(OldEntry
, NewEntry
);
438 // If this tail call is marked 'tail' and if there are any allocas in the
439 // entry block, move them up to the new entry block.
440 TailCallsAreMarkedTail
= CI
->isTailCall();
441 if (TailCallsAreMarkedTail
)
442 // Move all fixed sized allocas from OldEntry to NewEntry.
443 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
444 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
445 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
446 if (isa
<ConstantInt
>(AI
->getArraySize()))
447 AI
->moveBefore(NEBI
);
449 // Now that we have created a new block, which jumps to the entry
450 // block, insert a PHI node for each argument of the function.
451 // For now, we initialize each PHI to only have the real arguments
452 // which are passed in.
453 Instruction
*InsertPos
= OldEntry
->begin();
454 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
456 PHINode
*PN
= PHINode::Create(I
->getType(),
457 I
->getName() + ".tr", InsertPos
);
458 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
459 PN
->addIncoming(I
, NewEntry
);
460 ArgumentPHIs
.push_back(PN
);
464 // If this function has self recursive calls in the tail position where some
465 // are marked tail and some are not, only transform one flavor or another. We
466 // have to choose whether we move allocas in the entry block to the new entry
467 // block or not, so we can't make a good choice for both. NOTE: We could do
468 // slightly better here in the case that the function has no entry block
470 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
473 // Ok, now that we know we have a pseudo-entry block WITH all of the
474 // required PHI nodes, add entries into the PHI node for the actual
475 // parameters passed into the tail-recursive call.
476 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
477 ArgumentPHIs
[i
]->addIncoming(CI
->getArgOperand(i
), BB
);
479 // If we are introducing an accumulator variable to eliminate the recursion,
480 // do so now. Note that we _know_ that no subsequent tail recursion
481 // eliminations will happen on this function because of the way the
482 // accumulator recursion predicate is set up.
484 if (AccumulatorRecursionEliminationInitVal
) {
485 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
486 // Start by inserting a new PHI node for the accumulator.
488 PHINode::Create(AccumulatorRecursionEliminationInitVal
->getType(),
489 "accumulator.tr", OldEntry
->begin());
491 // Loop over all of the predecessors of the tail recursion block. For the
492 // real entry into the function we seed the PHI with the initial value,
493 // computed earlier. For any other existing branches to this block (due to
494 // other tail recursions eliminated) the accumulator is not modified.
495 // Because we haven't added the branch in the current block to OldEntry yet,
496 // it will not show up as a predecessor.
497 for (pred_iterator PI
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
500 if (P
== &F
->getEntryBlock())
501 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, P
);
503 AccPN
->addIncoming(AccPN
, P
);
507 // Add an incoming argument for the current block, which is computed by
508 // our associative and commutative accumulator instruction.
509 AccPN
->addIncoming(AccRecInstr
, BB
);
511 // Next, rewrite the accumulator recursion instruction so that it does not
512 // use the result of the call anymore, instead, use the PHI node we just
514 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
516 // Add an incoming argument for the current block, which is just the
517 // constant returned by the current return instruction.
518 AccPN
->addIncoming(Ret
->getReturnValue(), BB
);
521 // Finally, rewrite any return instructions in the program to return the PHI
522 // node instead of the "initval" that they do currently. This loop will
523 // actually rewrite the return value we are destroying, but that's ok.
524 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
525 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
526 RI
->setOperand(0, AccPN
);
530 // Now that all of the PHI nodes are in place, remove the call and
531 // ret instructions, replacing them with an unconditional branch.
532 BranchInst::Create(OldEntry
, Ret
);
533 BB
->getInstList().erase(Ret
); // Remove return.
534 BB
->getInstList().erase(CI
); // Remove call.