zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / unittests / ExecutionEngine / JIT / JITTest.cpp
blobceacbbe62a455e3e84d4b70183fb76c37ee2c6c2
1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "gtest/gtest.h"
11 #include "llvm/ADT/OwningPtr.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/Assembly/Parser.h"
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Bitcode/ReaderWriter.h"
16 #include "llvm/Constant.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/ExecutionEngine/JIT.h"
20 #include "llvm/ExecutionEngine/JITMemoryManager.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalValue.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Module.h"
26 #include "llvm/Support/IRBuilder.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/TypeBuilder.h"
30 #include "llvm/Target/TargetSelect.h"
31 #include "llvm/Type.h"
33 #include <vector>
35 using namespace llvm;
37 namespace {
39 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
40 std::vector<const Type*> params;
41 const FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
42 params, false);
43 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
44 BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
45 IRBuilder<> builder(Entry);
46 Value *Load = builder.CreateLoad(G);
47 const Type *GTy = G->getType()->getElementType();
48 Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
49 builder.CreateStore(Add, G);
50 builder.CreateRet(Add);
51 return F;
54 std::string DumpFunction(const Function *F) {
55 std::string Result;
56 raw_string_ostream(Result) << "" << *F;
57 return Result;
60 class RecordingJITMemoryManager : public JITMemoryManager {
61 const OwningPtr<JITMemoryManager> Base;
62 public:
63 RecordingJITMemoryManager()
64 : Base(JITMemoryManager::CreateDefaultMemManager()) {
65 stubsAllocated = 0;
68 virtual void setMemoryWritable() { Base->setMemoryWritable(); }
69 virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
70 virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
71 virtual void AllocateGOT() { Base->AllocateGOT(); }
72 virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
73 struct StartFunctionBodyCall {
74 StartFunctionBodyCall(uint8_t *Result, const Function *F,
75 uintptr_t ActualSize, uintptr_t ActualSizeResult)
76 : Result(Result), F(F), F_dump(DumpFunction(F)),
77 ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
78 uint8_t *Result;
79 const Function *F;
80 std::string F_dump;
81 uintptr_t ActualSize;
82 uintptr_t ActualSizeResult;
84 std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
85 virtual uint8_t *startFunctionBody(const Function *F,
86 uintptr_t &ActualSize) {
87 uintptr_t InitialActualSize = ActualSize;
88 uint8_t *Result = Base->startFunctionBody(F, ActualSize);
89 startFunctionBodyCalls.push_back(
90 StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
91 return Result;
93 int stubsAllocated;
94 virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
95 unsigned Alignment) {
96 stubsAllocated++;
97 return Base->allocateStub(F, StubSize, Alignment);
99 struct EndFunctionBodyCall {
100 EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
101 uint8_t *FunctionEnd)
102 : F(F), F_dump(DumpFunction(F)),
103 FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
104 const Function *F;
105 std::string F_dump;
106 uint8_t *FunctionStart;
107 uint8_t *FunctionEnd;
109 std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
110 virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
111 uint8_t *FunctionEnd) {
112 endFunctionBodyCalls.push_back(
113 EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
114 Base->endFunctionBody(F, FunctionStart, FunctionEnd);
116 virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
117 return Base->allocateSpace(Size, Alignment);
119 virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
120 return Base->allocateGlobal(Size, Alignment);
122 struct DeallocateFunctionBodyCall {
123 DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
124 const void *Body;
126 std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
127 virtual void deallocateFunctionBody(void *Body) {
128 deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
129 Base->deallocateFunctionBody(Body);
131 struct DeallocateExceptionTableCall {
132 DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
133 const void *ET;
135 std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
136 virtual void deallocateExceptionTable(void *ET) {
137 deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
138 Base->deallocateExceptionTable(ET);
140 struct StartExceptionTableCall {
141 StartExceptionTableCall(uint8_t *Result, const Function *F,
142 uintptr_t ActualSize, uintptr_t ActualSizeResult)
143 : Result(Result), F(F), F_dump(DumpFunction(F)),
144 ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
145 uint8_t *Result;
146 const Function *F;
147 std::string F_dump;
148 uintptr_t ActualSize;
149 uintptr_t ActualSizeResult;
151 std::vector<StartExceptionTableCall> startExceptionTableCalls;
152 virtual uint8_t* startExceptionTable(const Function* F,
153 uintptr_t &ActualSize) {
154 uintptr_t InitialActualSize = ActualSize;
155 uint8_t *Result = Base->startExceptionTable(F, ActualSize);
156 startExceptionTableCalls.push_back(
157 StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
158 return Result;
160 struct EndExceptionTableCall {
161 EndExceptionTableCall(const Function *F, uint8_t *TableStart,
162 uint8_t *TableEnd, uint8_t* FrameRegister)
163 : F(F), F_dump(DumpFunction(F)),
164 TableStart(TableStart), TableEnd(TableEnd),
165 FrameRegister(FrameRegister) {}
166 const Function *F;
167 std::string F_dump;
168 uint8_t *TableStart;
169 uint8_t *TableEnd;
170 uint8_t *FrameRegister;
172 std::vector<EndExceptionTableCall> endExceptionTableCalls;
173 virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
174 uint8_t *TableEnd, uint8_t* FrameRegister) {
175 endExceptionTableCalls.push_back(
176 EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
177 return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
181 bool LoadAssemblyInto(Module *M, const char *assembly) {
182 SMDiagnostic Error;
183 bool success =
184 NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
185 std::string errMsg;
186 raw_string_ostream os(errMsg);
187 Error.Print("", os);
188 EXPECT_TRUE(success) << os.str();
189 return success;
192 class JITTest : public testing::Test {
193 protected:
194 virtual void SetUp() {
195 M = new Module("<main>", Context);
196 RJMM = new RecordingJITMemoryManager;
197 RJMM->setPoisonMemory(true);
198 std::string Error;
199 TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
200 .setJITMemoryManager(RJMM)
201 .setErrorStr(&Error).create());
202 ASSERT_TRUE(TheJIT.get() != NULL) << Error;
205 void LoadAssembly(const char *assembly) {
206 LoadAssemblyInto(M, assembly);
209 LLVMContext Context;
210 Module *M; // Owned by ExecutionEngine.
211 RecordingJITMemoryManager *RJMM;
212 OwningPtr<ExecutionEngine> TheJIT;
215 // Regression test for a bug. The JIT used to allocate globals inside the same
216 // memory block used for the function, and when the function code was freed,
217 // the global was left in the same place. This test allocates a function
218 // that uses and global, deallocates it, and then makes sure that the global
219 // stays alive after that.
220 TEST(JIT, GlobalInFunction) {
221 LLVMContext context;
222 Module *M = new Module("<main>", context);
224 JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
225 // Tell the memory manager to poison freed memory so that accessing freed
226 // memory is more easily tested.
227 MemMgr->setPoisonMemory(true);
228 std::string Error;
229 OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
230 .setEngineKind(EngineKind::JIT)
231 .setErrorStr(&Error)
232 .setJITMemoryManager(MemMgr)
233 // The next line enables the fix:
234 .setAllocateGVsWithCode(false)
235 .create());
236 ASSERT_EQ(Error, "");
238 // Create a global variable.
239 const Type *GTy = Type::getInt32Ty(context);
240 GlobalVariable *G = new GlobalVariable(
242 GTy,
243 false, // Not constant.
244 GlobalValue::InternalLinkage,
245 Constant::getNullValue(GTy),
246 "myglobal");
248 // Make a function that points to a global.
249 Function *F1 = makeReturnGlobal("F1", G, M);
251 // Get the pointer to the native code to force it to JIT the function and
252 // allocate space for the global.
253 void (*F1Ptr)() =
254 reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
256 // Since F1 was codegen'd, a pointer to G should be available.
257 int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
258 ASSERT_NE((int32_t*)NULL, GPtr);
259 EXPECT_EQ(0, *GPtr);
261 // F1() should increment G.
262 F1Ptr();
263 EXPECT_EQ(1, *GPtr);
265 // Make a second function identical to the first, referring to the same
266 // global.
267 Function *F2 = makeReturnGlobal("F2", G, M);
268 void (*F2Ptr)() =
269 reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
271 // F2() should increment G.
272 F2Ptr();
273 EXPECT_EQ(2, *GPtr);
275 // Deallocate F1.
276 JIT->freeMachineCodeForFunction(F1);
278 // F2() should *still* increment G.
279 F2Ptr();
280 EXPECT_EQ(3, *GPtr);
283 int PlusOne(int arg) {
284 return arg + 1;
287 TEST_F(JITTest, FarCallToKnownFunction) {
288 // x86-64 can only make direct calls to functions within 32 bits of
289 // the current PC. To call anything farther away, we have to load
290 // the address into a register and call through the register. The
291 // current JIT does this by allocating a stub for any far call.
292 // There was a bug in which the JIT tried to emit a direct call when
293 // the target was already in the JIT's global mappings and lazy
294 // compilation was disabled.
296 Function *KnownFunction = Function::Create(
297 TypeBuilder<int(int), false>::get(Context),
298 GlobalValue::ExternalLinkage, "known", M);
299 TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
301 // int test() { return known(7); }
302 Function *TestFunction = Function::Create(
303 TypeBuilder<int(), false>::get(Context),
304 GlobalValue::ExternalLinkage, "test", M);
305 BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
306 IRBuilder<> Builder(Entry);
307 Value *result = Builder.CreateCall(
308 KnownFunction,
309 ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
310 Builder.CreateRet(result);
312 TheJIT->DisableLazyCompilation(true);
313 int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
314 (intptr_t)TheJIT->getPointerToFunction(TestFunction));
315 // This used to crash in trying to call PlusOne().
316 EXPECT_EQ(8, TestFunctionPtr());
319 // Test a function C which calls A and B which call each other.
320 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
321 TheJIT->DisableLazyCompilation(true);
323 const FunctionType *Func1Ty =
324 cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
325 std::vector<const Type*> arg_types;
326 arg_types.push_back(Type::getInt1Ty(Context));
327 const FunctionType *FuncTy = FunctionType::get(
328 Type::getVoidTy(Context), arg_types, false);
329 Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
330 "func1", M);
331 Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
332 "func2", M);
333 Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
334 "func3", M);
335 BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
336 BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
337 BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
338 BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
339 BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
340 BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
341 BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
343 // Make Func1 call Func2(0) and Func3(0).
344 IRBuilder<> Builder(Block1);
345 Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
346 Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
347 Builder.CreateRetVoid();
349 // void Func2(bool b) { if (b) { Func3(false); return; } return; }
350 Builder.SetInsertPoint(Block2);
351 Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
352 Builder.SetInsertPoint(True2);
353 Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
354 Builder.CreateRetVoid();
355 Builder.SetInsertPoint(False2);
356 Builder.CreateRetVoid();
358 // void Func3(bool b) { if (b) { Func2(false); return; } return; }
359 Builder.SetInsertPoint(Block3);
360 Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
361 Builder.SetInsertPoint(True3);
362 Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
363 Builder.CreateRetVoid();
364 Builder.SetInsertPoint(False3);
365 Builder.CreateRetVoid();
367 // Compile the function to native code
368 void (*F1Ptr)() =
369 reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
371 F1Ptr();
374 // Regression test for PR5162. This used to trigger an AssertingVH inside the
375 // JIT's Function to stub mapping.
376 TEST_F(JITTest, NonLazyLeaksNoStubs) {
377 TheJIT->DisableLazyCompilation(true);
379 // Create two functions with a single basic block each.
380 const FunctionType *FuncTy =
381 cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
382 Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
383 "func1", M);
384 Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
385 "func2", M);
386 BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
387 BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
389 // The first function calls the second and returns the result
390 IRBuilder<> Builder(Block1);
391 Value *Result = Builder.CreateCall(Func2);
392 Builder.CreateRet(Result);
394 // The second function just returns a constant
395 Builder.SetInsertPoint(Block2);
396 Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
398 // Compile the function to native code
399 (void)TheJIT->getPointerToFunction(Func1);
401 // Free the JIT state for the functions
402 TheJIT->freeMachineCodeForFunction(Func1);
403 TheJIT->freeMachineCodeForFunction(Func2);
405 // Delete the first function (and show that is has no users)
406 EXPECT_EQ(Func1->getNumUses(), 0u);
407 Func1->eraseFromParent();
409 // Delete the second function (and show that it has no users - it had one,
410 // func1 but that's gone now)
411 EXPECT_EQ(Func2->getNumUses(), 0u);
412 Func2->eraseFromParent();
415 TEST_F(JITTest, ModuleDeletion) {
416 TheJIT->DisableLazyCompilation(false);
417 LoadAssembly("define void @main() { "
418 " call i32 @computeVal() "
419 " ret void "
420 "} "
422 "define internal i32 @computeVal() { "
423 " ret i32 0 "
424 "} ");
425 Function *func = M->getFunction("main");
426 TheJIT->getPointerToFunction(func);
427 TheJIT->removeModule(M);
428 delete M;
430 SmallPtrSet<const void*, 2> FunctionsDeallocated;
431 for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
432 i != e; ++i) {
433 FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
435 for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
436 EXPECT_TRUE(FunctionsDeallocated.count(
437 RJMM->startFunctionBodyCalls[i].Result))
438 << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
440 EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
441 RJMM->deallocateFunctionBodyCalls.size());
443 SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
444 unsigned NumTablesDeallocated = 0;
445 for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
446 i != e; ++i) {
447 ExceptionTablesDeallocated.insert(
448 RJMM->deallocateExceptionTableCalls[i].ET);
449 if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
450 // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
451 // appear in startExceptionTableCalls.
452 NumTablesDeallocated++;
455 for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
456 EXPECT_TRUE(ExceptionTablesDeallocated.count(
457 RJMM->startExceptionTableCalls[i].Result))
458 << "Function's exception table leaked: \n"
459 << RJMM->startExceptionTableCalls[i].F_dump;
461 EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
462 NumTablesDeallocated);
465 // ARM and PPC still emit stubs for calls since the target may be too far away
466 // to call directly. This #if can probably be removed when
467 // http://llvm.org/PR5201 is fixed.
468 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
469 typedef int (*FooPtr) ();
471 TEST_F(JITTest, NoStubs) {
472 LoadAssembly("define void @bar() {"
473 "entry: "
474 "ret void"
477 "define i32 @foo() {"
478 "entry:"
479 "call void @bar()"
480 "ret i32 undef"
483 "define i32 @main() {"
484 "entry:"
485 "%0 = call i32 @foo()"
486 "call void @bar()"
487 "ret i32 undef"
488 "}");
489 Function *foo = M->getFunction("foo");
490 uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
491 FooPtr ptr = (FooPtr)(tmp);
493 (ptr)();
495 // We should now allocate no more stubs, we have the code to foo
496 // and the existing stub for bar.
497 int stubsBefore = RJMM->stubsAllocated;
498 Function *func = M->getFunction("main");
499 TheJIT->getPointerToFunction(func);
501 Function *bar = M->getFunction("bar");
502 TheJIT->getPointerToFunction(bar);
504 ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
506 #endif // !ARM && !PPC
508 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
509 TheJIT->DisableLazyCompilation(true);
510 LoadAssembly("define i8()* @get_foo_addr() { "
511 " ret i8()* @foo "
512 "} "
514 "define i8 @foo() { "
515 " ret i8 42 "
516 "} ");
517 Function *F_get_foo_addr = M->getFunction("get_foo_addr");
519 typedef char(*fooT)();
520 fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
521 (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
522 fooT foo_addr = get_foo_addr();
524 // Now free get_foo_addr. This should not free the machine code for foo or
525 // any call stub returned as foo's canonical address.
526 TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
528 // Check by calling the reported address of foo.
529 EXPECT_EQ(42, foo_addr());
531 // The reported address should also be the same as the result of a subsequent
532 // getPointerToFunction(foo).
533 #if 0
534 // Fails until PR5126 is fixed:
535 Function *F_foo = M->getFunction("foo");
536 fooT foo = reinterpret_cast<fooT>(
537 (intptr_t)TheJIT->getPointerToFunction(F_foo));
538 EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
539 #endif
542 // ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
543 // recompileAndRelinkFunction doesn't work.
544 #if !defined(__arm__)
545 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
546 Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
547 GlobalValue::ExternalLinkage, "test", M);
548 BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
549 IRBuilder<> Builder(Entry);
550 Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
551 Builder.CreateRet(Val);
553 TheJIT->DisableLazyCompilation(true);
554 // Compile the function once, and make sure it works.
555 int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
556 (intptr_t)TheJIT->recompileAndRelinkFunction(F));
557 EXPECT_EQ(1, OrigFPtr());
559 // Now change the function to return a different value.
560 Entry->eraseFromParent();
561 BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
562 Builder.SetInsertPoint(NewEntry);
563 Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
564 Builder.CreateRet(Val);
565 // Recompile it, which should produce a new function pointer _and_ update the
566 // old one.
567 int (*NewFPtr)() = reinterpret_cast<int(*)()>(
568 (intptr_t)TheJIT->recompileAndRelinkFunction(F));
570 EXPECT_EQ(2, NewFPtr())
571 << "The new pointer should call the new version of the function";
572 EXPECT_EQ(2, OrigFPtr())
573 << "The old pointer's target should now jump to the new version";
575 #endif // !defined(__arm__)
577 } // anonymous namespace
578 // This variable is intentionally defined differently in the statically-compiled
579 // program from the IR input to the JIT to assert that the JIT doesn't use its
580 // definition.
581 extern "C" int32_t JITTest_AvailableExternallyGlobal;
582 int32_t JITTest_AvailableExternallyGlobal = 42;
583 namespace {
585 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
586 TheJIT->DisableLazyCompilation(true);
587 LoadAssembly("@JITTest_AvailableExternallyGlobal = "
588 " available_externally global i32 7 "
590 "define i32 @loader() { "
591 " %result = load i32* @JITTest_AvailableExternallyGlobal "
592 " ret i32 %result "
593 "} ");
594 Function *loaderIR = M->getFunction("loader");
596 int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
597 (intptr_t)TheJIT->getPointerToFunction(loaderIR));
598 EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
599 << " not 7 from the IR version.";
602 } // anonymous namespace
603 // This function is intentionally defined differently in the statically-compiled
604 // program from the IR input to the JIT to assert that the JIT doesn't use its
605 // definition.
606 extern "C" int32_t JITTest_AvailableExternallyFunction() {
607 return 42;
609 namespace {
611 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
612 TheJIT->DisableLazyCompilation(true);
613 LoadAssembly("define available_externally i32 "
614 " @JITTest_AvailableExternallyFunction() { "
615 " ret i32 7 "
616 "} "
618 "define i32 @func() { "
619 " %result = tail call i32 "
620 " @JITTest_AvailableExternallyFunction() "
621 " ret i32 %result "
622 "} ");
623 Function *funcIR = M->getFunction("func");
625 int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
626 (intptr_t)TheJIT->getPointerToFunction(funcIR));
627 EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
628 << " not 7 from the IR version.";
631 TEST_F(JITTest, EscapedLazyStubStillCallable) {
632 TheJIT->DisableLazyCompilation(false);
633 LoadAssembly("define internal i32 @stubbed() { "
634 " ret i32 42 "
635 "} "
637 "define i32()* @get_stub() { "
638 " ret i32()* @stubbed "
639 "} ");
640 typedef int32_t(*StubTy)();
642 // Call get_stub() to get the address of @stubbed without actually JITting it.
643 Function *get_stubIR = M->getFunction("get_stub");
644 StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
645 (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
646 StubTy stubbed = get_stub();
647 // Now get_stubIR is the only reference to stubbed's stub.
648 get_stubIR->eraseFromParent();
649 // Now there are no references inside the JIT, but we've got a pointer outside
650 // it. The stub should be callable and return the right value.
651 EXPECT_EQ(42, stubbed());
654 // Converts the LLVM assembly to bitcode and returns it in a std::string. An
655 // empty string indicates an error.
656 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
657 Module TempModule("TempModule", Context);
658 if (!LoadAssemblyInto(&TempModule, Assembly)) {
659 return "";
662 std::string Result;
663 raw_string_ostream OS(Result);
664 WriteBitcodeToFile(&TempModule, OS);
665 OS.flush();
666 return Result;
669 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
670 // lazily. The associated Module (owned by the ExecutionEngine) is returned in
671 // M. Both will be NULL on an error. Bitcode must live at least as long as the
672 // ExecutionEngine.
673 ExecutionEngine *getJITFromBitcode(
674 LLVMContext &Context, const std::string &Bitcode, Module *&M) {
675 // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
676 MemoryBuffer *BitcodeBuffer =
677 MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
678 std::string errMsg;
679 M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
680 if (M == NULL) {
681 ADD_FAILURE() << errMsg;
682 delete BitcodeBuffer;
683 return NULL;
685 ExecutionEngine *TheJIT = EngineBuilder(M)
686 .setEngineKind(EngineKind::JIT)
687 .setErrorStr(&errMsg)
688 .create();
689 if (TheJIT == NULL) {
690 ADD_FAILURE() << errMsg;
691 delete M;
692 M = NULL;
693 return NULL;
695 return TheJIT;
698 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
699 LLVMContext Context;
700 const std::string Bitcode =
701 AssembleToBitcode(Context,
702 "define available_externally i32 "
703 " @JITTest_AvailableExternallyFunction() { "
704 " ret i32 7 "
705 "} "
707 "define i32 @func() { "
708 " %result = tail call i32 "
709 " @JITTest_AvailableExternallyFunction() "
710 " ret i32 %result "
711 "} ");
712 ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
713 Module *M;
714 OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
715 ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
716 TheJIT->DisableLazyCompilation(true);
718 Function *funcIR = M->getFunction("func");
719 Function *availableFunctionIR =
720 M->getFunction("JITTest_AvailableExternallyFunction");
722 // Double-check that the available_externally function is still unmaterialized
723 // when getPointerToFunction needs to find out if it's available_externally.
724 EXPECT_TRUE(availableFunctionIR->isMaterializable());
726 int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
727 (intptr_t)TheJIT->getPointerToFunction(funcIR));
728 EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
729 << " not 7 from the IR version.";
732 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
733 LLVMContext Context;
734 const std::string Bitcode =
735 AssembleToBitcode(Context,
736 "define i32 @recur1(i32 %a) { "
737 " %zero = icmp eq i32 %a, 0 "
738 " br i1 %zero, label %done, label %notdone "
739 "done: "
740 " ret i32 3 "
741 "notdone: "
742 " %am1 = sub i32 %a, 1 "
743 " %result = call i32 @recur2(i32 %am1) "
744 " ret i32 %result "
745 "} "
747 "define i32 @recur2(i32 %b) { "
748 " %result = call i32 @recur1(i32 %b) "
749 " ret i32 %result "
750 "} ");
751 ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
752 Module *M;
753 OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
754 ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
755 TheJIT->DisableLazyCompilation(true);
757 Function *recur1IR = M->getFunction("recur1");
758 Function *recur2IR = M->getFunction("recur2");
759 EXPECT_TRUE(recur1IR->isMaterializable());
760 EXPECT_TRUE(recur2IR->isMaterializable());
762 int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
763 (intptr_t)TheJIT->getPointerToFunction(recur1IR));
764 EXPECT_EQ(3, recur1(4));
767 // This code is copied from JITEventListenerTest, but it only runs once for all
768 // the tests in this directory. Everything seems fine, but that's strange
769 // behavior.
770 class JITEnvironment : public testing::Environment {
771 virtual void SetUp() {
772 // Required to create a JIT.
773 InitializeNativeTarget();
776 testing::Environment* const jit_env =
777 testing::AddGlobalTestEnvironment(new JITEnvironment);