Fixed some bugs.
[llvm/zpu.git] / docs / tutorial / LangImpl3.html
bloba8d96ac6b7005987775bdcc05a7bfa2c8e0dec4d
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
4 <html>
5 <head>
6 <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <link rel="stylesheet" href="../llvm.css" type="text/css">
10 </head>
12 <body>
14 <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
16 <ul>
17 <li><a href="index.html">Up to Tutorial Index</a></li>
18 <li>Chapter 3
19 <ol>
20 <li><a href="#intro">Chapter 3 Introduction</a></li>
21 <li><a href="#basics">Code Generation Setup</a></li>
22 <li><a href="#exprs">Expression Code Generation</a></li>
23 <li><a href="#funcs">Function Code Generation</a></li>
24 <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
25 <li><a href="#code">Full Code Listing</a></li>
26 </ol>
27 </li>
28 <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
29 Support</li>
30 </ul>
32 <div class="doc_author">
33 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
34 </div>
36 <!-- *********************************************************************** -->
37 <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
38 <!-- *********************************************************************** -->
40 <div class="doc_text">
42 <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
43 with LLVM</a>" tutorial. This chapter shows you how to transform the <a
44 href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
45 This will teach you a little bit about how LLVM does things, as well as
46 demonstrate how easy it is to use. It's much more work to build a lexer and
47 parser than it is to generate LLVM IR code. :)
48 </p>
50 <p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
51 later. LLVM 2.1 and before will not work with it. Also note that you need
52 to use a version of this tutorial that matches your LLVM release: If you are
53 using an official LLVM release, use the version of the documentation included
54 with your release or on the <a href="http://llvm.org/releases/">llvm.org
55 releases page</a>.</p>
57 </div>
59 <!-- *********************************************************************** -->
60 <div class="doc_section"><a name="basics">Code Generation Setup</a></div>
61 <!-- *********************************************************************** -->
63 <div class="doc_text">
65 <p>
66 In order to generate LLVM IR, we want some simple setup to get started. First
67 we define virtual code generation (codegen) methods in each AST class:</p>
69 <div class="doc_code">
70 <pre>
71 /// ExprAST - Base class for all expression nodes.
72 class ExprAST {
73 public:
74 virtual ~ExprAST() {}
75 <b>virtual Value *Codegen() = 0;</b>
78 /// NumberExprAST - Expression class for numeric literals like "1.0".
79 class NumberExprAST : public ExprAST {
80 double Val;
81 public:
82 NumberExprAST(double val) : Val(val) {}
83 <b>virtual Value *Codegen();</b>
85 ...
86 </pre>
87 </div>
89 <p>The Codegen() method says to emit IR for that AST node along with all the things it
90 depends on, and they all return an LLVM Value object.
91 "Value" is the class used to represent a "<a
92 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
93 Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect
94 of SSA values is that their value is computed as the related instruction
95 executes, and it does not get a new value until (and if) the instruction
96 re-executes. In other words, there is no way to "change" an SSA value. For
97 more information, please read up on <a
98 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
99 Assignment</a> - the concepts are really quite natural once you grok them.</p>
101 <p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
102 it could also make sense to use a <a
103 href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
104 other way to model this. Again, this tutorial won't dwell on good software
105 engineering practices: for our purposes, adding a virtual method is
106 simplest.</p>
108 <p>The
109 second thing we want is an "Error" method like we used for the parser, which will
110 be used to report errors found during code generation (for example, use of an
111 undeclared parameter):</p>
113 <div class="doc_code">
114 <pre>
115 Value *ErrorV(const char *Str) { Error(Str); return 0; }
117 static Module *TheModule;
118 static IRBuilder&lt;&gt; Builder(getGlobalContext());
119 static std::map&lt;std::string, Value*&gt; NamedValues;
120 </pre>
121 </div>
123 <p>The static variables will be used during code generation. <tt>TheModule</tt>
124 is the LLVM construct that contains all of the functions and global variables in
125 a chunk of code. In many ways, it is the top-level structure that the LLVM IR
126 uses to contain code.</p>
128 <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
129 LLVM instructions. Instances of the <a
130 href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
131 class template keep track of the current place to insert instructions and has
132 methods to create new instructions.</p>
134 <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
135 current scope and what their LLVM representation is. (In other words, it is a
136 symbol table for the code). In this form of Kaleidoscope, the only things that
137 can be referenced are function parameters. As such, function parameters will
138 be in this map when generating code for their function body.</p>
141 With these basics in place, we can start talking about how to generate code for
142 each expression. Note that this assumes that the <tt>Builder</tt> has been set
143 up to generate code <em>into</em> something. For now, we'll assume that this
144 has already been done, and we'll just use it to emit code.
145 </p>
147 </div>
149 <!-- *********************************************************************** -->
150 <div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
151 <!-- *********************************************************************** -->
153 <div class="doc_text">
155 <p>Generating LLVM code for expression nodes is very straightforward: less
156 than 45 lines of commented code for all four of our expression nodes. First
157 we'll do numeric literals:</p>
159 <div class="doc_code">
160 <pre>
161 Value *NumberExprAST::Codegen() {
162 return ConstantFP::get(getGlobalContext(), APFloat(Val));
164 </pre>
165 </div>
167 <p>In the LLVM IR, numeric constants are represented with the
168 <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
169 internally (<tt>APFloat</tt> has the capability of holding floating point
170 constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just
171 creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR
172 that constants are all uniqued together and shared. For this reason, the API
173 uses the "foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
175 <div class="doc_code">
176 <pre>
177 Value *VariableExprAST::Codegen() {
178 // Look this variable up in the function.
179 Value *V = NamedValues[Name];
180 return V ? V : ErrorV("Unknown variable name");
182 </pre>
183 </div>
185 <p>References to variables are also quite simple using LLVM. In the simple version
186 of Kaleidoscope, we assume that the variable has already been emitted somewhere
187 and its value is available. In practice, the only values that can be in the
188 <tt>NamedValues</tt> map are function arguments. This
189 code simply checks to see that the specified name is in the map (if not, an
190 unknown variable is being referenced) and returns the value for it. In future
191 chapters, we'll add support for <a href="LangImpl5.html#for">loop induction
192 variables</a> in the symbol table, and for <a
193 href="LangImpl7.html#localvars">local variables</a>.</p>
195 <div class="doc_code">
196 <pre>
197 Value *BinaryExprAST::Codegen() {
198 Value *L = LHS-&gt;Codegen();
199 Value *R = RHS-&gt;Codegen();
200 if (L == 0 || R == 0) return 0;
202 switch (Op) {
203 case '+': return Builder.CreateFAdd(L, R, "addtmp");
204 case '-': return Builder.CreateFSub(L, R, "subtmp");
205 case '*': return Builder.CreateFMul(L, R, "multmp");
206 case '&lt;':
207 L = Builder.CreateFCmpULT(L, R, "cmptmp");
208 // Convert bool 0/1 to double 0.0 or 1.0
209 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
210 "booltmp");
211 default: return ErrorV("invalid binary operator");
214 </pre>
215 </div>
217 <p>Binary operators start to get more interesting. The basic idea here is that
218 we recursively emit code for the left-hand side of the expression, then the
219 right-hand side, then we compute the result of the binary expression. In this
220 code, we do a simple switch on the opcode to create the right LLVM instruction.
221 </p>
223 <p>In the example above, the LLVM builder class is starting to show its value.
224 IRBuilder knows where to insert the newly created instruction, all you have to
225 do is specify what instruction to create (e.g. with <tt>CreateFAdd</tt>), which
226 operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
227 for the generated instruction.</p>
229 <p>One nice thing about LLVM is that the name is just a hint. For instance, if
230 the code above emits multiple "addtmp" variables, LLVM will automatically
231 provide each one with an increasing, unique numeric suffix. Local value names
232 for instructions are purely optional, but it makes it much easier to read the
233 IR dumps.</p>
235 <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
236 strict rules: for example, the Left and Right operators of
237 an <a href="../LangRef.html#i_add">add instruction</a> must have the same
238 type, and the result type of the add must match the operand types. Because
239 all values in Kaleidoscope are doubles, this makes for very simple code for add,
240 sub and mul.</p>
242 <p>On the other hand, LLVM specifies that the <a
243 href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
244 (a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with
245 a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction
246 converts its input integer into a floating point value by treating the input
247 as an unsigned value. In contrast, if we used the <a
248 href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
249 operator would return 0.0 and -1.0, depending on the input value.</p>
251 <div class="doc_code">
252 <pre>
253 Value *CallExprAST::Codegen() {
254 // Look up the name in the global module table.
255 Function *CalleeF = TheModule-&gt;getFunction(Callee);
256 if (CalleeF == 0)
257 return ErrorV("Unknown function referenced");
259 // If argument mismatch error.
260 if (CalleeF-&gt;arg_size() != Args.size())
261 return ErrorV("Incorrect # arguments passed");
263 std::vector&lt;Value*&gt; ArgsV;
264 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
265 ArgsV.push_back(Args[i]-&gt;Codegen());
266 if (ArgsV.back() == 0) return 0;
269 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
271 </pre>
272 </div>
274 <p>Code generation for function calls is quite straightforward with LLVM. The
275 code above initially does a function name lookup in the LLVM Module's symbol
276 table. Recall that the LLVM Module is the container that holds all of the
277 functions we are JIT'ing. By giving each function the same name as what the
278 user specifies, we can use the LLVM symbol table to resolve function names for
279 us.</p>
281 <p>Once we have the function to call, we recursively codegen each argument that
282 is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
283 instruction</a>. Note that LLVM uses the native C calling conventions by
284 default, allowing these calls to also call into standard library functions like
285 "sin" and "cos", with no additional effort.</p>
287 <p>This wraps up our handling of the four basic expressions that we have so far
288 in Kaleidoscope. Feel free to go in and add some more. For example, by
289 browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
290 several other interesting instructions that are really easy to plug into our
291 basic framework.</p>
293 </div>
295 <!-- *********************************************************************** -->
296 <div class="doc_section"><a name="funcs">Function Code Generation</a></div>
297 <!-- *********************************************************************** -->
299 <div class="doc_text">
301 <p>Code generation for prototypes and functions must handle a number of
302 details, which make their code less beautiful than expression code
303 generation, but allows us to illustrate some important points. First, lets
304 talk about code generation for prototypes: they are used both for function
305 bodies and external function declarations. The code starts with:</p>
307 <div class="doc_code">
308 <pre>
309 Function *PrototypeAST::Codegen() {
310 // Make the function type: double(double,double) etc.
311 std::vector&lt;const Type*&gt; Doubles(Args.size(),
312 Type::getDoubleTy(getGlobalContext()));
313 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
314 Doubles, false);
316 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
317 </pre>
318 </div>
320 <p>This code packs a lot of power into a few lines. Note first that this
321 function returns a "Function*" instead of a "Value*". Because a "prototype"
322 really talks about the external interface for a function (not the value computed
323 by an expression), it makes sense for it to return the LLVM Function it
324 corresponds to when codegen'd.</p>
326 <p>The call to <tt>FunctionType::get</tt> creates
327 the <tt>FunctionType</tt> that should be used for a given Prototype. Since all
328 function arguments in Kaleidoscope are of type double, the first line creates
329 a vector of "N" LLVM double types. It then uses the <tt>Functiontype::get</tt>
330 method to create a function type that takes "N" doubles as arguments, returns
331 one double as a result, and that is not vararg (the false parameter indicates
332 this). Note that Types in LLVM are uniqued just like Constants are, so you
333 don't "new" a type, you "get" it.</p>
335 <p>The final line above actually creates the function that the prototype will
336 correspond to. This indicates the type, linkage and name to use, as well as which
337 module to insert into. "<a href="../LangRef.html#linkage">external linkage</a>"
338 means that the function may be defined outside the current module and/or that it
339 is callable by functions outside the module. The Name passed in is the name the
340 user specified: since "<tt>TheModule</tt>" is specified, this name is registered
341 in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
342 above.</p>
344 <div class="doc_code">
345 <pre>
346 // If F conflicted, there was already something named 'Name'. If it has a
347 // body, don't allow redefinition or reextern.
348 if (F-&gt;getName() != Name) {
349 // Delete the one we just made and get the existing one.
350 F-&gt;eraseFromParent();
351 F = TheModule-&gt;getFunction(Name);
352 </pre>
353 </div>
355 <p>The Module symbol table works just like the Function symbol table when it
356 comes to name conflicts: if a new function is created with a name was previously
357 added to the symbol table, it will get implicitly renamed when added to the
358 Module. The code above exploits this fact to determine if there was a previous
359 definition of this function.</p>
361 <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
362 first, we want to allow 'extern'ing a function more than once, as long as the
363 prototypes for the externs match (since all arguments have the same type, we
364 just have to check that the number of arguments match). Second, we want to
365 allow 'extern'ing a function and then defining a body for it. This is useful
366 when defining mutually recursive functions.</p>
368 <p>In order to implement this, the code above first checks to see if there is
369 a collision on the name of the function. If so, it deletes the function we just
370 created (by calling <tt>eraseFromParent</tt>) and then calling
371 <tt>getFunction</tt> to get the existing function with the specified name. Note
372 that many APIs in LLVM have "erase" forms and "remove" forms. The "remove" form
373 unlinks the object from its parent (e.g. a Function from a Module) and returns
374 it. The "erase" form unlinks the object and then deletes it.</p>
376 <div class="doc_code">
377 <pre>
378 // If F already has a body, reject this.
379 if (!F-&gt;empty()) {
380 ErrorF("redefinition of function");
381 return 0;
384 // If F took a different number of args, reject.
385 if (F-&gt;arg_size() != Args.size()) {
386 ErrorF("redefinition of function with different # args");
387 return 0;
390 </pre>
391 </div>
393 <p>In order to verify the logic above, we first check to see if the pre-existing
394 function is "empty". In this case, empty means that it has no basic blocks in
395 it, which means it has no body. If it has no body, it is a forward
396 declaration. Since we don't allow anything after a full definition of the
397 function, the code rejects this case. If the previous reference to a function
398 was an 'extern', we simply verify that the number of arguments for that
399 definition and this one match up. If not, we emit an error.</p>
401 <div class="doc_code">
402 <pre>
403 // Set names for all arguments.
404 unsigned Idx = 0;
405 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
406 ++AI, ++Idx) {
407 AI-&gt;setName(Args[Idx]);
409 // Add arguments to variable symbol table.
410 NamedValues[Args[Idx]] = AI;
412 return F;
414 </pre>
415 </div>
417 <p>The last bit of code for prototypes loops over all of the arguments in the
418 function, setting the name of the LLVM Argument objects to match, and registering
419 the arguments in the <tt>NamedValues</tt> map for future use by the
420 <tt>VariableExprAST</tt> AST node. Once this is set up, it returns the Function
421 object to the caller. Note that we don't check for conflicting
422 argument names here (e.g. "extern foo(a b a)"). Doing so would be very
423 straight-forward with the mechanics we have already used above.</p>
425 <div class="doc_code">
426 <pre>
427 Function *FunctionAST::Codegen() {
428 NamedValues.clear();
430 Function *TheFunction = Proto-&gt;Codegen();
431 if (TheFunction == 0)
432 return 0;
433 </pre>
434 </div>
436 <p>Code generation for function definitions starts out simply enough: we just
437 codegen the prototype (Proto) and verify that it is ok. We then clear out the
438 <tt>NamedValues</tt> map to make sure that there isn't anything in it from the
439 last function we compiled. Code generation of the prototype ensures that there
440 is an LLVM Function object that is ready to go for us.</p>
442 <div class="doc_code">
443 <pre>
444 // Create a new basic block to start insertion into.
445 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
446 Builder.SetInsertPoint(BB);
448 if (Value *RetVal = Body-&gt;Codegen()) {
449 </pre>
450 </div>
452 <p>Now we get to the point where the <tt>Builder</tt> is set up. The first
453 line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
454 block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>. The
455 second line then tells the builder that new instructions should be inserted into
456 the end of the new basic block. Basic blocks in LLVM are an important part
457 of functions that define the <a
458 href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
459 Since we don't have any control flow, our functions will only contain one
460 block at this point. We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
462 <div class="doc_code">
463 <pre>
464 if (Value *RetVal = Body-&gt;Codegen()) {
465 // Finish off the function.
466 Builder.CreateRet(RetVal);
468 // Validate the generated code, checking for consistency.
469 verifyFunction(*TheFunction);
471 return TheFunction;
473 </pre>
474 </div>
476 <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
477 the root expression of the function. If no error happens, this emits code to
478 compute the expression into the entry block and returns the value that was
479 computed. Assuming no error, we then create an LLVM <a
480 href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
481 Once the function is built, we call <tt>verifyFunction</tt>, which
482 is provided by LLVM. This function does a variety of consistency checks on the
483 generated code, to determine if our compiler is doing everything right. Using
484 this is important: it can catch a lot of bugs. Once the function is finished
485 and validated, we return it.</p>
487 <div class="doc_code">
488 <pre>
489 // Error reading body, remove function.
490 TheFunction-&gt;eraseFromParent();
491 return 0;
493 </pre>
494 </div>
496 <p>The only piece left here is handling of the error case. For simplicity, we
497 handle this by merely deleting the function we produced with the
498 <tt>eraseFromParent</tt> method. This allows the user to redefine a function
499 that they incorrectly typed in before: if we didn't delete it, it would live in
500 the symbol table, with a body, preventing future redefinition.</p>
502 <p>This code does have a bug, though. Since the <tt>PrototypeAST::Codegen</tt>
503 can return a previously defined forward declaration, our code can actually delete
504 a forward declaration. There are a number of ways to fix this bug, see what you
505 can come up with! Here is a testcase:</p>
507 <div class="doc_code">
508 <pre>
509 extern foo(a b); # ok, defines foo.
510 def foo(a b) c; # error, 'c' is invalid.
511 def bar() foo(1, 2); # error, unknown function "foo"
512 </pre>
513 </div>
515 </div>
517 <!-- *********************************************************************** -->
518 <div class="doc_section"><a name="driver">Driver Changes and
519 Closing Thoughts</a></div>
520 <!-- *********************************************************************** -->
522 <div class="doc_text">
525 For now, code generation to LLVM doesn't really get us much, except that we can
526 look at the pretty IR calls. The sample code inserts calls to Codegen into the
527 "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
528 dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple
529 functions. For example:
530 </p>
532 <div class="doc_code">
533 <pre>
534 ready> <b>4+5</b>;
535 Read top-level expression:
536 define double @""() {
537 entry:
538 ret double 9.000000e+00
540 </pre>
541 </div>
543 <p>Note how the parser turns the top-level expression into anonymous functions
544 for us. This will be handy when we add <a href="LangImpl4.html#jit">JIT
545 support</a> in the next chapter. Also note that the code is very literally
546 transcribed, no optimizations are being performed except simple constant
547 folding done by IRBuilder. We will
548 <a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
549 the next chapter.</p>
551 <div class="doc_code">
552 <pre>
553 ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
554 Read function definition:
555 define double @foo(double %a, double %b) {
556 entry:
557 %multmp = fmul double %a, %a
558 %multmp1 = fmul double 2.000000e+00, %a
559 %multmp2 = fmul double %multmp1, %b
560 %addtmp = fadd double %multmp, %multmp2
561 %multmp3 = fmul double %b, %b
562 %addtmp4 = fadd double %addtmp, %multmp3
563 ret double %addtmp4
565 </pre>
566 </div>
568 <p>This shows some simple arithmetic. Notice the striking similarity to the
569 LLVM builder calls that we use to create the instructions.</p>
571 <div class="doc_code">
572 <pre>
573 ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
574 Read function definition:
575 define double @bar(double %a) {
576 entry:
577 %calltmp = call double @foo(double %a, double 4.000000e+00)
578 %calltmp1 = call double @bar(double 3.133700e+04)
579 %addtmp = fadd double %calltmp, %calltmp1
580 ret double %addtmp
582 </pre>
583 </div>
585 <p>This shows some function calls. Note that this function will take a long
586 time to execute if you call it. In the future we'll add conditional control
587 flow to actually make recursion useful :).</p>
589 <div class="doc_code">
590 <pre>
591 ready&gt; <b>extern cos(x);</b>
592 Read extern:
593 declare double @cos(double)
595 ready&gt; <b>cos(1.234);</b>
596 Read top-level expression:
597 define double @""() {
598 entry:
599 %calltmp = call double @cos(double 1.234000e+00)
600 ret double %calltmp
602 </pre>
603 </div>
605 <p>This shows an extern for the libm "cos" function, and a call to it.</p>
608 <div class="doc_code">
609 <pre>
610 ready&gt; <b>^D</b>
611 ; ModuleID = 'my cool jit'
613 define double @""() {
614 entry:
615 %addtmp = fadd double 4.000000e+00, 5.000000e+00
616 ret double %addtmp
619 define double @foo(double %a, double %b) {
620 entry:
621 %multmp = fmul double %a, %a
622 %multmp1 = fmul double 2.000000e+00, %a
623 %multmp2 = fmul double %multmp1, %b
624 %addtmp = fadd double %multmp, %multmp2
625 %multmp3 = fmul double %b, %b
626 %addtmp4 = fadd double %addtmp, %multmp3
627 ret double %addtmp4
630 define double @bar(double %a) {
631 entry:
632 %calltmp = call double @foo(double %a, double 4.000000e+00)
633 %calltmp1 = call double @bar(double 3.133700e+04)
634 %addtmp = fadd double %calltmp, %calltmp1
635 ret double %addtmp
638 declare double @cos(double)
640 define double @""() {
641 entry:
642 %calltmp = call double @cos(double 1.234000e+00)
643 ret double %calltmp
645 </pre>
646 </div>
648 <p>When you quit the current demo, it dumps out the IR for the entire module
649 generated. Here you can see the big picture with all the functions referencing
650 each other.</p>
652 <p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll
653 describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
654 support</a> to this so we can actually start running code!</p>
656 </div>
659 <!-- *********************************************************************** -->
660 <div class="doc_section"><a name="code">Full Code Listing</a></div>
661 <!-- *********************************************************************** -->
663 <div class="doc_text">
666 Here is the complete code listing for our running example, enhanced with the
667 LLVM code generator. Because this uses the LLVM libraries, we need to link
668 them in. To do this, we use the <a
669 href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
670 our makefile/command line about which options to use:</p>
672 <div class="doc_code">
673 <pre>
674 # Compile
675 g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
676 # Run
677 ./toy
678 </pre>
679 </div>
681 <p>Here is the code:</p>
683 <div class="doc_code">
684 <pre>
685 // To build this:
686 // See example below.
688 #include "llvm/DerivedTypes.h"
689 #include "llvm/LLVMContext.h"
690 #include "llvm/Module.h"
691 #include "llvm/Analysis/Verifier.h"
692 #include "llvm/Support/IRBuilder.h"
693 #include &lt;cstdio&gt;
694 #include &lt;string&gt;
695 #include &lt;map&gt;
696 #include &lt;vector&gt;
697 using namespace llvm;
699 //===----------------------------------------------------------------------===//
700 // Lexer
701 //===----------------------------------------------------------------------===//
703 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
704 // of these for known things.
705 enum Token {
706 tok_eof = -1,
708 // commands
709 tok_def = -2, tok_extern = -3,
711 // primary
712 tok_identifier = -4, tok_number = -5
715 static std::string IdentifierStr; // Filled in if tok_identifier
716 static double NumVal; // Filled in if tok_number
718 /// gettok - Return the next token from standard input.
719 static int gettok() {
720 static int LastChar = ' ';
722 // Skip any whitespace.
723 while (isspace(LastChar))
724 LastChar = getchar();
726 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
727 IdentifierStr = LastChar;
728 while (isalnum((LastChar = getchar())))
729 IdentifierStr += LastChar;
731 if (IdentifierStr == "def") return tok_def;
732 if (IdentifierStr == "extern") return tok_extern;
733 return tok_identifier;
736 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
737 std::string NumStr;
738 do {
739 NumStr += LastChar;
740 LastChar = getchar();
741 } while (isdigit(LastChar) || LastChar == '.');
743 NumVal = strtod(NumStr.c_str(), 0);
744 return tok_number;
747 if (LastChar == '#') {
748 // Comment until end of line.
749 do LastChar = getchar();
750 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
752 if (LastChar != EOF)
753 return gettok();
756 // Check for end of file. Don't eat the EOF.
757 if (LastChar == EOF)
758 return tok_eof;
760 // Otherwise, just return the character as its ascii value.
761 int ThisChar = LastChar;
762 LastChar = getchar();
763 return ThisChar;
766 //===----------------------------------------------------------------------===//
767 // Abstract Syntax Tree (aka Parse Tree)
768 //===----------------------------------------------------------------------===//
770 /// ExprAST - Base class for all expression nodes.
771 class ExprAST {
772 public:
773 virtual ~ExprAST() {}
774 virtual Value *Codegen() = 0;
777 /// NumberExprAST - Expression class for numeric literals like "1.0".
778 class NumberExprAST : public ExprAST {
779 double Val;
780 public:
781 NumberExprAST(double val) : Val(val) {}
782 virtual Value *Codegen();
785 /// VariableExprAST - Expression class for referencing a variable, like "a".
786 class VariableExprAST : public ExprAST {
787 std::string Name;
788 public:
789 VariableExprAST(const std::string &amp;name) : Name(name) {}
790 virtual Value *Codegen();
793 /// BinaryExprAST - Expression class for a binary operator.
794 class BinaryExprAST : public ExprAST {
795 char Op;
796 ExprAST *LHS, *RHS;
797 public:
798 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
799 : Op(op), LHS(lhs), RHS(rhs) {}
800 virtual Value *Codegen();
803 /// CallExprAST - Expression class for function calls.
804 class CallExprAST : public ExprAST {
805 std::string Callee;
806 std::vector&lt;ExprAST*&gt; Args;
807 public:
808 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
809 : Callee(callee), Args(args) {}
810 virtual Value *Codegen();
813 /// PrototypeAST - This class represents the "prototype" for a function,
814 /// which captures its name, and its argument names (thus implicitly the number
815 /// of arguments the function takes).
816 class PrototypeAST {
817 std::string Name;
818 std::vector&lt;std::string&gt; Args;
819 public:
820 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
821 : Name(name), Args(args) {}
823 Function *Codegen();
826 /// FunctionAST - This class represents a function definition itself.
827 class FunctionAST {
828 PrototypeAST *Proto;
829 ExprAST *Body;
830 public:
831 FunctionAST(PrototypeAST *proto, ExprAST *body)
832 : Proto(proto), Body(body) {}
834 Function *Codegen();
837 //===----------------------------------------------------------------------===//
838 // Parser
839 //===----------------------------------------------------------------------===//
841 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
842 /// token the parser is looking at. getNextToken reads another token from the
843 /// lexer and updates CurTok with its results.
844 static int CurTok;
845 static int getNextToken() {
846 return CurTok = gettok();
849 /// BinopPrecedence - This holds the precedence for each binary operator that is
850 /// defined.
851 static std::map&lt;char, int&gt; BinopPrecedence;
853 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
854 static int GetTokPrecedence() {
855 if (!isascii(CurTok))
856 return -1;
858 // Make sure it's a declared binop.
859 int TokPrec = BinopPrecedence[CurTok];
860 if (TokPrec &lt;= 0) return -1;
861 return TokPrec;
864 /// Error* - These are little helper functions for error handling.
865 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
866 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
867 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
869 static ExprAST *ParseExpression();
871 /// identifierexpr
872 /// ::= identifier
873 /// ::= identifier '(' expression* ')'
874 static ExprAST *ParseIdentifierExpr() {
875 std::string IdName = IdentifierStr;
877 getNextToken(); // eat identifier.
879 if (CurTok != '(') // Simple variable ref.
880 return new VariableExprAST(IdName);
882 // Call.
883 getNextToken(); // eat (
884 std::vector&lt;ExprAST*&gt; Args;
885 if (CurTok != ')') {
886 while (1) {
887 ExprAST *Arg = ParseExpression();
888 if (!Arg) return 0;
889 Args.push_back(Arg);
891 if (CurTok == ')') break;
893 if (CurTok != ',')
894 return Error("Expected ')' or ',' in argument list");
895 getNextToken();
899 // Eat the ')'.
900 getNextToken();
902 return new CallExprAST(IdName, Args);
905 /// numberexpr ::= number
906 static ExprAST *ParseNumberExpr() {
907 ExprAST *Result = new NumberExprAST(NumVal);
908 getNextToken(); // consume the number
909 return Result;
912 /// parenexpr ::= '(' expression ')'
913 static ExprAST *ParseParenExpr() {
914 getNextToken(); // eat (.
915 ExprAST *V = ParseExpression();
916 if (!V) return 0;
918 if (CurTok != ')')
919 return Error("expected ')'");
920 getNextToken(); // eat ).
921 return V;
924 /// primary
925 /// ::= identifierexpr
926 /// ::= numberexpr
927 /// ::= parenexpr
928 static ExprAST *ParsePrimary() {
929 switch (CurTok) {
930 default: return Error("unknown token when expecting an expression");
931 case tok_identifier: return ParseIdentifierExpr();
932 case tok_number: return ParseNumberExpr();
933 case '(': return ParseParenExpr();
937 /// binoprhs
938 /// ::= ('+' primary)*
939 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
940 // If this is a binop, find its precedence.
941 while (1) {
942 int TokPrec = GetTokPrecedence();
944 // If this is a binop that binds at least as tightly as the current binop,
945 // consume it, otherwise we are done.
946 if (TokPrec &lt; ExprPrec)
947 return LHS;
949 // Okay, we know this is a binop.
950 int BinOp = CurTok;
951 getNextToken(); // eat binop
953 // Parse the primary expression after the binary operator.
954 ExprAST *RHS = ParsePrimary();
955 if (!RHS) return 0;
957 // If BinOp binds less tightly with RHS than the operator after RHS, let
958 // the pending operator take RHS as its LHS.
959 int NextPrec = GetTokPrecedence();
960 if (TokPrec &lt; NextPrec) {
961 RHS = ParseBinOpRHS(TokPrec+1, RHS);
962 if (RHS == 0) return 0;
965 // Merge LHS/RHS.
966 LHS = new BinaryExprAST(BinOp, LHS, RHS);
970 /// expression
971 /// ::= primary binoprhs
973 static ExprAST *ParseExpression() {
974 ExprAST *LHS = ParsePrimary();
975 if (!LHS) return 0;
977 return ParseBinOpRHS(0, LHS);
980 /// prototype
981 /// ::= id '(' id* ')'
982 static PrototypeAST *ParsePrototype() {
983 if (CurTok != tok_identifier)
984 return ErrorP("Expected function name in prototype");
986 std::string FnName = IdentifierStr;
987 getNextToken();
989 if (CurTok != '(')
990 return ErrorP("Expected '(' in prototype");
992 std::vector&lt;std::string&gt; ArgNames;
993 while (getNextToken() == tok_identifier)
994 ArgNames.push_back(IdentifierStr);
995 if (CurTok != ')')
996 return ErrorP("Expected ')' in prototype");
998 // success.
999 getNextToken(); // eat ')'.
1001 return new PrototypeAST(FnName, ArgNames);
1004 /// definition ::= 'def' prototype expression
1005 static FunctionAST *ParseDefinition() {
1006 getNextToken(); // eat def.
1007 PrototypeAST *Proto = ParsePrototype();
1008 if (Proto == 0) return 0;
1010 if (ExprAST *E = ParseExpression())
1011 return new FunctionAST(Proto, E);
1012 return 0;
1015 /// toplevelexpr ::= expression
1016 static FunctionAST *ParseTopLevelExpr() {
1017 if (ExprAST *E = ParseExpression()) {
1018 // Make an anonymous proto.
1019 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1020 return new FunctionAST(Proto, E);
1022 return 0;
1025 /// external ::= 'extern' prototype
1026 static PrototypeAST *ParseExtern() {
1027 getNextToken(); // eat extern.
1028 return ParsePrototype();
1031 //===----------------------------------------------------------------------===//
1032 // Code Generation
1033 //===----------------------------------------------------------------------===//
1035 static Module *TheModule;
1036 static IRBuilder&lt;&gt; Builder(getGlobalContext());
1037 static std::map&lt;std::string, Value*&gt; NamedValues;
1039 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1041 Value *NumberExprAST::Codegen() {
1042 return ConstantFP::get(getGlobalContext(), APFloat(Val));
1045 Value *VariableExprAST::Codegen() {
1046 // Look this variable up in the function.
1047 Value *V = NamedValues[Name];
1048 return V ? V : ErrorV("Unknown variable name");
1051 Value *BinaryExprAST::Codegen() {
1052 Value *L = LHS-&gt;Codegen();
1053 Value *R = RHS-&gt;Codegen();
1054 if (L == 0 || R == 0) return 0;
1056 switch (Op) {
1057 case '+': return Builder.CreateFAdd(L, R, "addtmp");
1058 case '-': return Builder.CreateFSub(L, R, "subtmp");
1059 case '*': return Builder.CreateFMul(L, R, "multmp");
1060 case '&lt;':
1061 L = Builder.CreateFCmpULT(L, R, "cmptmp");
1062 // Convert bool 0/1 to double 0.0 or 1.0
1063 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1064 "booltmp");
1065 default: return ErrorV("invalid binary operator");
1069 Value *CallExprAST::Codegen() {
1070 // Look up the name in the global module table.
1071 Function *CalleeF = TheModule-&gt;getFunction(Callee);
1072 if (CalleeF == 0)
1073 return ErrorV("Unknown function referenced");
1075 // If argument mismatch error.
1076 if (CalleeF-&gt;arg_size() != Args.size())
1077 return ErrorV("Incorrect # arguments passed");
1079 std::vector&lt;Value*&gt; ArgsV;
1080 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1081 ArgsV.push_back(Args[i]-&gt;Codegen());
1082 if (ArgsV.back() == 0) return 0;
1085 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1088 Function *PrototypeAST::Codegen() {
1089 // Make the function type: double(double,double) etc.
1090 std::vector&lt;const Type*&gt; Doubles(Args.size(),
1091 Type::getDoubleTy(getGlobalContext()));
1092 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1093 Doubles, false);
1095 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1097 // If F conflicted, there was already something named 'Name'. If it has a
1098 // body, don't allow redefinition or reextern.
1099 if (F-&gt;getName() != Name) {
1100 // Delete the one we just made and get the existing one.
1101 F-&gt;eraseFromParent();
1102 F = TheModule-&gt;getFunction(Name);
1104 // If F already has a body, reject this.
1105 if (!F-&gt;empty()) {
1106 ErrorF("redefinition of function");
1107 return 0;
1110 // If F took a different number of args, reject.
1111 if (F-&gt;arg_size() != Args.size()) {
1112 ErrorF("redefinition of function with different # args");
1113 return 0;
1117 // Set names for all arguments.
1118 unsigned Idx = 0;
1119 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1120 ++AI, ++Idx) {
1121 AI-&gt;setName(Args[Idx]);
1123 // Add arguments to variable symbol table.
1124 NamedValues[Args[Idx]] = AI;
1127 return F;
1130 Function *FunctionAST::Codegen() {
1131 NamedValues.clear();
1133 Function *TheFunction = Proto-&gt;Codegen();
1134 if (TheFunction == 0)
1135 return 0;
1137 // Create a new basic block to start insertion into.
1138 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1139 Builder.SetInsertPoint(BB);
1141 if (Value *RetVal = Body-&gt;Codegen()) {
1142 // Finish off the function.
1143 Builder.CreateRet(RetVal);
1145 // Validate the generated code, checking for consistency.
1146 verifyFunction(*TheFunction);
1148 return TheFunction;
1151 // Error reading body, remove function.
1152 TheFunction-&gt;eraseFromParent();
1153 return 0;
1156 //===----------------------------------------------------------------------===//
1157 // Top-Level parsing and JIT Driver
1158 //===----------------------------------------------------------------------===//
1160 static void HandleDefinition() {
1161 if (FunctionAST *F = ParseDefinition()) {
1162 if (Function *LF = F-&gt;Codegen()) {
1163 fprintf(stderr, "Read function definition:");
1164 LF-&gt;dump();
1166 } else {
1167 // Skip token for error recovery.
1168 getNextToken();
1172 static void HandleExtern() {
1173 if (PrototypeAST *P = ParseExtern()) {
1174 if (Function *F = P-&gt;Codegen()) {
1175 fprintf(stderr, "Read extern: ");
1176 F-&gt;dump();
1178 } else {
1179 // Skip token for error recovery.
1180 getNextToken();
1184 static void HandleTopLevelExpression() {
1185 // Evaluate a top-level expression into an anonymous function.
1186 if (FunctionAST *F = ParseTopLevelExpr()) {
1187 if (Function *LF = F-&gt;Codegen()) {
1188 fprintf(stderr, "Read top-level expression:");
1189 LF-&gt;dump();
1191 } else {
1192 // Skip token for error recovery.
1193 getNextToken();
1197 /// top ::= definition | external | expression | ';'
1198 static void MainLoop() {
1199 while (1) {
1200 fprintf(stderr, "ready&gt; ");
1201 switch (CurTok) {
1202 case tok_eof: return;
1203 case ';': getNextToken(); break; // ignore top-level semicolons.
1204 case tok_def: HandleDefinition(); break;
1205 case tok_extern: HandleExtern(); break;
1206 default: HandleTopLevelExpression(); break;
1211 //===----------------------------------------------------------------------===//
1212 // "Library" functions that can be "extern'd" from user code.
1213 //===----------------------------------------------------------------------===//
1215 /// putchard - putchar that takes a double and returns 0.
1216 extern "C"
1217 double putchard(double X) {
1218 putchar((char)X);
1219 return 0;
1222 //===----------------------------------------------------------------------===//
1223 // Main driver code.
1224 //===----------------------------------------------------------------------===//
1226 int main() {
1227 LLVMContext &amp;Context = getGlobalContext();
1229 // Install standard binary operators.
1230 // 1 is lowest precedence.
1231 BinopPrecedence['&lt;'] = 10;
1232 BinopPrecedence['+'] = 20;
1233 BinopPrecedence['-'] = 20;
1234 BinopPrecedence['*'] = 40; // highest.
1236 // Prime the first token.
1237 fprintf(stderr, "ready&gt; ");
1238 getNextToken();
1240 // Make the module, which holds all the code.
1241 TheModule = new Module("my cool jit", Context);
1243 // Run the main "interpreter loop" now.
1244 MainLoop();
1246 // Print out all of the generated code.
1247 TheModule-&gt;dump();
1249 return 0;
1251 </pre>
1252 </div>
1253 <a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
1254 </div>
1256 <!-- *********************************************************************** -->
1257 <hr>
1258 <address>
1259 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1260 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1261 <a href="http://validator.w3.org/check/referer"><img
1262 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1264 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1265 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1266 Last modified: $Date$
1267 </address>
1268 </body>
1269 </html>