1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 /// isKnownNonNull - Return true if we know that the specified value is never
45 static bool isKnownNonNull(const Value
*V
) {
46 // Alloca never returns null, malloc might.
47 if (isa
<AllocaInst
>(V
)) return true;
49 // A byval argument is never null.
50 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
51 return A
->hasByValAttr();
53 // Global values are not null unless extern weak.
54 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
55 return !GV
->hasExternalWeakLinkage();
59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
60 /// object that never escapes from the function.
61 static bool isNonEscapingLocalObject(const Value
*V
) {
62 // If this is a local allocation, check to see if it escapes.
63 if (isa
<AllocaInst
>(V
) || isNoAliasCall(V
))
64 // Set StoreCaptures to True so that we can assume in our callers that the
65 // pointer is not the result of a load instruction. Currently
66 // PointerMayBeCaptured doesn't have any special analysis for the
67 // StoreCaptures=false case; if it did, our callers could be refined to be
69 return !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
71 // If this is an argument that corresponds to a byval or noalias argument,
72 // then it has not escaped before entering the function. Check if it escapes
73 // inside the function.
74 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
75 if (A
->hasByValAttr() || A
->hasNoAliasAttr()) {
76 // Don't bother analyzing arguments already known not to escape.
77 if (A
->hasNoCaptureAttr())
79 return !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
84 /// isEscapeSource - Return true if the pointer is one which would have
85 /// been considered an escape by isNonEscapingLocalObject.
86 static bool isEscapeSource(const Value
*V
) {
87 if (isa
<CallInst
>(V
) || isa
<InvokeInst
>(V
) || isa
<Argument
>(V
))
90 // The load case works because isNonEscapingLocalObject considers all
91 // stores to be escapes (it passes true for the StoreCaptures argument
92 // to PointerMayBeCaptured).
99 /// isObjectSmallerThan - Return true if we can prove that the object specified
100 /// by V is smaller than Size.
101 static bool isObjectSmallerThan(const Value
*V
, uint64_t Size
,
102 const TargetData
&TD
) {
103 const Type
*AccessTy
;
104 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
)) {
105 AccessTy
= GV
->getType()->getElementType();
106 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
107 if (!AI
->isArrayAllocation())
108 AccessTy
= AI
->getType()->getElementType();
111 } else if (const CallInst
* CI
= extractMallocCall(V
)) {
112 if (!isArrayMalloc(V
, &TD
))
113 // The size is the argument to the malloc call.
114 if (const ConstantInt
* C
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(0)))
115 return (C
->getZExtValue() < Size
);
117 } else if (const Argument
*A
= dyn_cast
<Argument
>(V
)) {
118 if (A
->hasByValAttr())
119 AccessTy
= cast
<PointerType
>(A
->getType())->getElementType();
126 if (AccessTy
->isSized())
127 return TD
.getTypeAllocSize(AccessTy
) < Size
;
131 //===----------------------------------------------------------------------===//
132 // GetElementPtr Instruction Decomposition and Analysis
133 //===----------------------------------------------------------------------===//
142 struct VariableGEPIndex
{
144 ExtensionKind Extension
;
150 /// GetLinearExpression - Analyze the specified value as a linear expression:
151 /// "A*V + B", where A and B are constant integers. Return the scale and offset
152 /// values as APInts and return V as a Value*, and return whether we looked
153 /// through any sign or zero extends. The incoming Value is known to have
154 /// IntegerType and it may already be sign or zero extended.
156 /// Note that this looks through extends, so the high bits may not be
157 /// represented in the result.
158 static Value
*GetLinearExpression(Value
*V
, APInt
&Scale
, APInt
&Offset
,
159 ExtensionKind
&Extension
,
160 const TargetData
&TD
, unsigned Depth
) {
161 assert(V
->getType()->isIntegerTy() && "Not an integer value");
163 // Limit our recursion depth.
170 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(V
)) {
171 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(BOp
->getOperand(1))) {
172 switch (BOp
->getOpcode()) {
174 case Instruction::Or
:
175 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
177 if (!MaskedValueIsZero(BOp
->getOperand(0), RHSC
->getValue(), &TD
))
180 case Instruction::Add
:
181 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, Extension
,
183 Offset
+= RHSC
->getValue();
185 case Instruction::Mul
:
186 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, Extension
,
188 Offset
*= RHSC
->getValue();
189 Scale
*= RHSC
->getValue();
191 case Instruction::Shl
:
192 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, Extension
,
194 Offset
<<= RHSC
->getValue().getLimitedValue();
195 Scale
<<= RHSC
->getValue().getLimitedValue();
201 // Since GEP indices are sign extended anyway, we don't care about the high
202 // bits of a sign or zero extended value - just scales and offsets. The
203 // extensions have to be consistent though.
204 if ((isa
<SExtInst
>(V
) && Extension
!= EK_ZeroExt
) ||
205 (isa
<ZExtInst
>(V
) && Extension
!= EK_SignExt
)) {
206 Value
*CastOp
= cast
<CastInst
>(V
)->getOperand(0);
207 unsigned OldWidth
= Scale
.getBitWidth();
208 unsigned SmallWidth
= CastOp
->getType()->getPrimitiveSizeInBits();
209 Scale
.trunc(SmallWidth
);
210 Offset
.trunc(SmallWidth
);
211 Extension
= isa
<SExtInst
>(V
) ? EK_SignExt
: EK_ZeroExt
;
213 Value
*Result
= GetLinearExpression(CastOp
, Scale
, Offset
, Extension
,
215 Scale
.zext(OldWidth
);
216 Offset
.zext(OldWidth
);
226 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
227 /// into a base pointer with a constant offset and a number of scaled symbolic
230 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
231 /// the VarIndices vector) are Value*'s that are known to be scaled by the
232 /// specified amount, but which may have other unrepresented high bits. As such,
233 /// the gep cannot necessarily be reconstructed from its decomposed form.
235 /// When TargetData is around, this function is capable of analyzing everything
236 /// that Value::getUnderlyingObject() can look through. When not, it just looks
237 /// through pointer casts.
240 DecomposeGEPExpression(const Value
*V
, int64_t &BaseOffs
,
241 SmallVectorImpl
<VariableGEPIndex
> &VarIndices
,
242 const TargetData
*TD
) {
243 // Limit recursion depth to limit compile time in crazy cases.
244 unsigned MaxLookup
= 6;
248 // See if this is a bitcast or GEP.
249 const Operator
*Op
= dyn_cast
<Operator
>(V
);
251 // The only non-operator case we can handle are GlobalAliases.
252 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
253 if (!GA
->mayBeOverridden()) {
254 V
= GA
->getAliasee();
261 if (Op
->getOpcode() == Instruction::BitCast
) {
262 V
= Op
->getOperand(0);
266 const GEPOperator
*GEPOp
= dyn_cast
<GEPOperator
>(Op
);
270 // Don't attempt to analyze GEPs over unsized objects.
271 if (!cast
<PointerType
>(GEPOp
->getOperand(0)->getType())
272 ->getElementType()->isSized())
275 // If we are lacking TargetData information, we can't compute the offets of
276 // elements computed by GEPs. However, we can handle bitcast equivalent
279 if (!GEPOp
->hasAllZeroIndices())
281 V
= GEPOp
->getOperand(0);
285 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
286 gep_type_iterator GTI
= gep_type_begin(GEPOp
);
287 for (User::const_op_iterator I
= GEPOp
->op_begin()+1,
288 E
= GEPOp
->op_end(); I
!= E
; ++I
) {
290 // Compute the (potentially symbolic) offset in bytes for this index.
291 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
292 // For a struct, add the member offset.
293 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
294 if (FieldNo
== 0) continue;
296 BaseOffs
+= TD
->getStructLayout(STy
)->getElementOffset(FieldNo
);
300 // For an array/pointer, add the element offset, explicitly scaled.
301 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Index
)) {
302 if (CIdx
->isZero()) continue;
303 BaseOffs
+= TD
->getTypeAllocSize(*GTI
)*CIdx
->getSExtValue();
307 uint64_t Scale
= TD
->getTypeAllocSize(*GTI
);
308 ExtensionKind Extension
= EK_NotExtended
;
310 // If the integer type is smaller than the pointer size, it is implicitly
311 // sign extended to pointer size.
312 unsigned Width
= cast
<IntegerType
>(Index
->getType())->getBitWidth();
313 if (TD
->getPointerSizeInBits() > Width
)
314 Extension
= EK_SignExt
;
316 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
317 APInt
IndexScale(Width
, 0), IndexOffset(Width
, 0);
318 Index
= GetLinearExpression(Index
, IndexScale
, IndexOffset
, Extension
,
321 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
322 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
323 BaseOffs
+= IndexOffset
.getSExtValue()*Scale
;
324 Scale
*= IndexScale
.getSExtValue();
327 // If we already had an occurrance of this index variable, merge this
328 // scale into it. For example, we want to handle:
329 // A[x][x] -> x*16 + x*4 -> x*20
330 // This also ensures that 'x' only appears in the index list once.
331 for (unsigned i
= 0, e
= VarIndices
.size(); i
!= e
; ++i
) {
332 if (VarIndices
[i
].V
== Index
&&
333 VarIndices
[i
].Extension
== Extension
) {
334 Scale
+= VarIndices
[i
].Scale
;
335 VarIndices
.erase(VarIndices
.begin()+i
);
340 // Make sure that we have a scale that makes sense for this target's
342 if (unsigned ShiftBits
= 64-TD
->getPointerSizeInBits()) {
344 Scale
= (int64_t)Scale
>> ShiftBits
;
348 VariableGEPIndex Entry
= {Index
, Extension
, Scale
};
349 VarIndices
.push_back(Entry
);
353 // Analyze the base pointer next.
354 V
= GEPOp
->getOperand(0);
355 } while (--MaxLookup
);
357 // If the chain of expressions is too deep, just return early.
361 /// GetIndexDifference - Dest and Src are the variable indices from two
362 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
363 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
364 /// difference between the two pointers.
365 static void GetIndexDifference(SmallVectorImpl
<VariableGEPIndex
> &Dest
,
366 const SmallVectorImpl
<VariableGEPIndex
> &Src
) {
367 if (Src
.empty()) return;
369 for (unsigned i
= 0, e
= Src
.size(); i
!= e
; ++i
) {
370 const Value
*V
= Src
[i
].V
;
371 ExtensionKind Extension
= Src
[i
].Extension
;
372 int64_t Scale
= Src
[i
].Scale
;
374 // Find V in Dest. This is N^2, but pointer indices almost never have more
375 // than a few variable indexes.
376 for (unsigned j
= 0, e
= Dest
.size(); j
!= e
; ++j
) {
377 if (Dest
[j
].V
!= V
|| Dest
[j
].Extension
!= Extension
) continue;
379 // If we found it, subtract off Scale V's from the entry in Dest. If it
380 // goes to zero, remove the entry.
381 if (Dest
[j
].Scale
!= Scale
)
382 Dest
[j
].Scale
-= Scale
;
384 Dest
.erase(Dest
.begin()+j
);
389 // If we didn't consume this entry, add it to the end of the Dest list.
391 VariableGEPIndex Entry
= { V
, Extension
, -Scale
};
392 Dest
.push_back(Entry
);
397 //===----------------------------------------------------------------------===//
398 // BasicAliasAnalysis Pass
399 //===----------------------------------------------------------------------===//
402 static const Function
*getParent(const Value
*V
) {
403 if (const Instruction
*inst
= dyn_cast
<Instruction
>(V
))
404 return inst
->getParent()->getParent();
406 if (const Argument
*arg
= dyn_cast
<Argument
>(V
))
407 return arg
->getParent();
412 static bool notDifferentParent(const Value
*O1
, const Value
*O2
) {
414 const Function
*F1
= getParent(O1
);
415 const Function
*F2
= getParent(O2
);
417 return !F1
|| !F2
|| F1
== F2
;
422 /// BasicAliasAnalysis - This is the primary alias analysis implementation.
423 struct BasicAliasAnalysis
: public ImmutablePass
, public AliasAnalysis
{
424 static char ID
; // Class identification, replacement for typeinfo
425 BasicAliasAnalysis() : ImmutablePass(ID
) {
426 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
429 virtual void initializePass() {
430 InitializeAliasAnalysis(this);
433 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
434 AU
.addRequired
<AliasAnalysis
>();
437 virtual AliasResult
alias(const Location
&LocA
,
438 const Location
&LocB
) {
439 assert(Visited
.empty() && "Visited must be cleared after use!");
440 assert(notDifferentParent(LocA
.Ptr
, LocB
.Ptr
) &&
441 "BasicAliasAnalysis doesn't support interprocedural queries.");
442 AliasResult Alias
= aliasCheck(LocA
.Ptr
, LocA
.Size
, LocA
.TBAATag
,
443 LocB
.Ptr
, LocB
.Size
, LocB
.TBAATag
);
448 virtual ModRefResult
getModRefInfo(ImmutableCallSite CS
,
449 const Location
&Loc
);
451 virtual ModRefResult
getModRefInfo(ImmutableCallSite CS1
,
452 ImmutableCallSite CS2
) {
453 // The AliasAnalysis base class has some smarts, lets use them.
454 return AliasAnalysis::getModRefInfo(CS1
, CS2
);
457 /// pointsToConstantMemory - Chase pointers until we find a (constant
459 virtual bool pointsToConstantMemory(const Location
&Loc
);
461 /// getModRefBehavior - Return the behavior when calling the given
463 virtual ModRefBehavior
getModRefBehavior(ImmutableCallSite CS
);
465 /// getModRefBehavior - Return the behavior when calling the given function.
466 /// For use when the call site is not known.
467 virtual ModRefBehavior
getModRefBehavior(const Function
*F
);
469 /// getAdjustedAnalysisPointer - This method is used when a pass implements
470 /// an analysis interface through multiple inheritance. If needed, it
471 /// should override this to adjust the this pointer as needed for the
472 /// specified pass info.
473 virtual void *getAdjustedAnalysisPointer(const void *ID
) {
474 if (ID
== &AliasAnalysis::ID
)
475 return (AliasAnalysis
*)this;
480 // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
481 SmallPtrSet
<const Value
*, 16> Visited
;
483 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
484 // instruction against another.
485 AliasResult
aliasGEP(const GEPOperator
*V1
, uint64_t V1Size
,
486 const Value
*V2
, uint64_t V2Size
,
487 const MDNode
*V2TBAAInfo
,
488 const Value
*UnderlyingV1
, const Value
*UnderlyingV2
);
490 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
491 // instruction against another.
492 AliasResult
aliasPHI(const PHINode
*PN
, uint64_t PNSize
,
493 const MDNode
*PNTBAAInfo
,
494 const Value
*V2
, uint64_t V2Size
,
495 const MDNode
*V2TBAAInfo
);
497 /// aliasSelect - Disambiguate a Select instruction against another value.
498 AliasResult
aliasSelect(const SelectInst
*SI
, uint64_t SISize
,
499 const MDNode
*SITBAAInfo
,
500 const Value
*V2
, uint64_t V2Size
,
501 const MDNode
*V2TBAAInfo
);
503 AliasResult
aliasCheck(const Value
*V1
, uint64_t V1Size
,
504 const MDNode
*V1TBAATag
,
505 const Value
*V2
, uint64_t V2Size
,
506 const MDNode
*V2TBAATag
);
508 } // End of anonymous namespace
510 // Register this pass...
511 char BasicAliasAnalysis::ID
= 0;
512 INITIALIZE_AG_PASS(BasicAliasAnalysis
, AliasAnalysis
, "basicaa",
513 "Basic Alias Analysis (stateless AA impl)",
516 ImmutablePass
*llvm::createBasicAliasAnalysisPass() {
517 return new BasicAliasAnalysis();
521 /// pointsToConstantMemory - Chase pointers until we find a (constant
523 bool BasicAliasAnalysis::pointsToConstantMemory(const Location
&Loc
) {
524 if (const GlobalVariable
*GV
=
525 dyn_cast
<GlobalVariable
>(Loc
.Ptr
->getUnderlyingObject()))
526 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
527 // global to be marked constant in some modules and non-constant in others.
528 // GV may even be a declaration, not a definition.
529 return GV
->isConstant();
531 return AliasAnalysis::pointsToConstantMemory(Loc
);
534 /// getModRefBehavior - Return the behavior when calling the given call site.
535 AliasAnalysis::ModRefBehavior
536 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS
) {
537 if (CS
.doesNotAccessMemory())
538 // Can't do better than this.
539 return DoesNotAccessMemory
;
541 ModRefBehavior Min
= UnknownModRefBehavior
;
543 // If the callsite knows it only reads memory, don't return worse
545 if (CS
.onlyReadsMemory())
546 Min
= OnlyReadsMemory
;
548 // The AliasAnalysis base class has some smarts, lets use them.
549 return std::min(AliasAnalysis::getModRefBehavior(CS
), Min
);
552 /// getModRefBehavior - Return the behavior when calling the given function.
553 /// For use when the call site is not known.
554 AliasAnalysis::ModRefBehavior
555 BasicAliasAnalysis::getModRefBehavior(const Function
*F
) {
556 if (F
->doesNotAccessMemory())
557 // Can't do better than this.
558 return DoesNotAccessMemory
;
559 if (F
->onlyReadsMemory())
560 return OnlyReadsMemory
;
561 if (unsigned id
= F
->getIntrinsicID())
562 return getIntrinsicModRefBehavior(id
);
564 return AliasAnalysis::getModRefBehavior(F
);
567 /// getModRefInfo - Check to see if the specified callsite can clobber the
568 /// specified memory object. Since we only look at local properties of this
569 /// function, we really can't say much about this query. We do, however, use
570 /// simple "address taken" analysis on local objects.
571 AliasAnalysis::ModRefResult
572 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS
,
573 const Location
&Loc
) {
574 assert(notDifferentParent(CS
.getInstruction(), Loc
.Ptr
) &&
575 "AliasAnalysis query involving multiple functions!");
577 const Value
*Object
= Loc
.Ptr
->getUnderlyingObject();
579 // If this is a tail call and Loc.Ptr points to a stack location, we know that
580 // the tail call cannot access or modify the local stack.
581 // We cannot exclude byval arguments here; these belong to the caller of
582 // the current function not to the current function, and a tail callee
583 // may reference them.
584 if (isa
<AllocaInst
>(Object
))
585 if (const CallInst
*CI
= dyn_cast
<CallInst
>(CS
.getInstruction()))
586 if (CI
->isTailCall())
589 // If the pointer is to a locally allocated object that does not escape,
590 // then the call can not mod/ref the pointer unless the call takes the pointer
591 // as an argument, and itself doesn't capture it.
592 if (!isa
<Constant
>(Object
) && CS
.getInstruction() != Object
&&
593 isNonEscapingLocalObject(Object
)) {
594 bool PassedAsArg
= false;
596 for (ImmutableCallSite::arg_iterator CI
= CS
.arg_begin(), CE
= CS
.arg_end();
597 CI
!= CE
; ++CI
, ++ArgNo
) {
598 // Only look at the no-capture pointer arguments.
599 if (!(*CI
)->getType()->isPointerTy() ||
600 !CS
.paramHasAttr(ArgNo
+1, Attribute::NoCapture
))
603 // If this is a no-capture pointer argument, see if we can tell that it
604 // is impossible to alias the pointer we're checking. If not, we have to
605 // assume that the call could touch the pointer, even though it doesn't
607 if (!isNoAlias(Location(cast
<Value
>(CI
)), Loc
)) {
617 // Finally, handle specific knowledge of intrinsics.
618 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CS
.getInstruction());
620 switch (II
->getIntrinsicID()) {
622 case Intrinsic::memcpy
:
623 case Intrinsic::memmove
: {
624 uint64_t Len
= UnknownSize
;
625 if (ConstantInt
*LenCI
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2)))
626 Len
= LenCI
->getZExtValue();
627 Value
*Dest
= II
->getArgOperand(0);
628 Value
*Src
= II
->getArgOperand(1);
629 if (isNoAlias(Location(Dest
, Len
), Loc
)) {
630 if (isNoAlias(Location(Src
, Len
), Loc
))
636 case Intrinsic::memset
:
637 // Since memset is 'accesses arguments' only, the AliasAnalysis base class
638 // will handle it for the variable length case.
639 if (ConstantInt
*LenCI
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2))) {
640 uint64_t Len
= LenCI
->getZExtValue();
641 Value
*Dest
= II
->getArgOperand(0);
642 if (isNoAlias(Location(Dest
, Len
), Loc
))
646 case Intrinsic::atomic_cmp_swap
:
647 case Intrinsic::atomic_swap
:
648 case Intrinsic::atomic_load_add
:
649 case Intrinsic::atomic_load_sub
:
650 case Intrinsic::atomic_load_and
:
651 case Intrinsic::atomic_load_nand
:
652 case Intrinsic::atomic_load_or
:
653 case Intrinsic::atomic_load_xor
:
654 case Intrinsic::atomic_load_max
:
655 case Intrinsic::atomic_load_min
:
656 case Intrinsic::atomic_load_umax
:
657 case Intrinsic::atomic_load_umin
:
659 Value
*Op1
= II
->getArgOperand(0);
660 uint64_t Op1Size
= TD
->getTypeStoreSize(Op1
->getType());
661 MDNode
*Tag
= II
->getMetadata(LLVMContext::MD_tbaa
);
662 if (isNoAlias(Location(Op1
, Op1Size
, Tag
), Loc
))
666 case Intrinsic::lifetime_start
:
667 case Intrinsic::lifetime_end
:
668 case Intrinsic::invariant_start
: {
670 cast
<ConstantInt
>(II
->getArgOperand(0))->getZExtValue();
671 if (isNoAlias(Location(II
->getArgOperand(1),
673 II
->getMetadata(LLVMContext::MD_tbaa
)),
678 case Intrinsic::invariant_end
: {
680 cast
<ConstantInt
>(II
->getArgOperand(1))->getZExtValue();
681 if (isNoAlias(Location(II
->getArgOperand(2),
683 II
->getMetadata(LLVMContext::MD_tbaa
)),
690 // The AliasAnalysis base class has some smarts, lets use them.
691 return AliasAnalysis::getModRefInfo(CS
, Loc
);
694 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
695 /// against another pointer. We know that V1 is a GEP, but we don't know
696 /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),
697 /// UnderlyingV2 is the same for V2.
699 AliasAnalysis::AliasResult
700 BasicAliasAnalysis::aliasGEP(const GEPOperator
*GEP1
, uint64_t V1Size
,
701 const Value
*V2
, uint64_t V2Size
,
702 const MDNode
*V2TBAAInfo
,
703 const Value
*UnderlyingV1
,
704 const Value
*UnderlyingV2
) {
705 // If this GEP has been visited before, we're on a use-def cycle.
706 // Such cycles are only valid when PHI nodes are involved or in unreachable
707 // code. The visitPHI function catches cycles containing PHIs, but there
708 // could still be a cycle without PHIs in unreachable code.
709 if (!Visited
.insert(GEP1
))
712 int64_t GEP1BaseOffset
;
713 SmallVector
<VariableGEPIndex
, 4> GEP1VariableIndices
;
715 // If we have two gep instructions with must-alias'ing base pointers, figure
716 // out if the indexes to the GEP tell us anything about the derived pointer.
717 if (const GEPOperator
*GEP2
= dyn_cast
<GEPOperator
>(V2
)) {
718 // Do the base pointers alias?
719 AliasResult BaseAlias
= aliasCheck(UnderlyingV1
, UnknownSize
, 0,
720 UnderlyingV2
, UnknownSize
, 0);
722 // If we get a No or May, then return it immediately, no amount of analysis
723 // will improve this situation.
724 if (BaseAlias
!= MustAlias
) return BaseAlias
;
726 // Otherwise, we have a MustAlias. Since the base pointers alias each other
727 // exactly, see if the computed offset from the common pointer tells us
728 // about the relation of the resulting pointer.
729 const Value
*GEP1BasePtr
=
730 DecomposeGEPExpression(GEP1
, GEP1BaseOffset
, GEP1VariableIndices
, TD
);
732 int64_t GEP2BaseOffset
;
733 SmallVector
<VariableGEPIndex
, 4> GEP2VariableIndices
;
734 const Value
*GEP2BasePtr
=
735 DecomposeGEPExpression(GEP2
, GEP2BaseOffset
, GEP2VariableIndices
, TD
);
737 // If DecomposeGEPExpression isn't able to look all the way through the
738 // addressing operation, we must not have TD and this is too complex for us
739 // to handle without it.
740 if (GEP1BasePtr
!= UnderlyingV1
|| GEP2BasePtr
!= UnderlyingV2
) {
742 "DecomposeGEPExpression and getUnderlyingObject disagree!");
746 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
747 // symbolic difference.
748 GEP1BaseOffset
-= GEP2BaseOffset
;
749 GetIndexDifference(GEP1VariableIndices
, GEP2VariableIndices
);
752 // Check to see if these two pointers are related by the getelementptr
753 // instruction. If one pointer is a GEP with a non-zero index of the other
754 // pointer, we know they cannot alias.
756 // If both accesses are unknown size, we can't do anything useful here.
757 if (V1Size
== UnknownSize
&& V2Size
== UnknownSize
)
760 AliasResult R
= aliasCheck(UnderlyingV1
, UnknownSize
, 0,
761 V2
, V2Size
, V2TBAAInfo
);
763 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
764 // If V2 is known not to alias GEP base pointer, then the two values
765 // cannot alias per GEP semantics: "A pointer value formed from a
766 // getelementptr instruction is associated with the addresses associated
767 // with the first operand of the getelementptr".
770 const Value
*GEP1BasePtr
=
771 DecomposeGEPExpression(GEP1
, GEP1BaseOffset
, GEP1VariableIndices
, TD
);
773 // If DecomposeGEPExpression isn't able to look all the way through the
774 // addressing operation, we must not have TD and this is too complex for us
775 // to handle without it.
776 if (GEP1BasePtr
!= UnderlyingV1
) {
778 "DecomposeGEPExpression and getUnderlyingObject disagree!");
783 // In the two GEP Case, if there is no difference in the offsets of the
784 // computed pointers, the resultant pointers are a must alias. This
785 // hapens when we have two lexically identical GEP's (for example).
787 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
788 // must aliases the GEP, the end result is a must alias also.
789 if (GEP1BaseOffset
== 0 && GEP1VariableIndices
.empty())
792 // If we have a known constant offset, see if this offset is larger than the
793 // access size being queried. If so, and if no variable indices can remove
794 // pieces of this constant, then we know we have a no-alias. For example,
797 // In order to handle cases like &A[100][i] where i is an out of range
798 // subscript, we have to ignore all constant offset pieces that are a multiple
799 // of a scaled index. Do this by removing constant offsets that are a
800 // multiple of any of our variable indices. This allows us to transform
801 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
802 // provides an offset of 4 bytes (assuming a <= 4 byte access).
803 for (unsigned i
= 0, e
= GEP1VariableIndices
.size();
804 i
!= e
&& GEP1BaseOffset
;++i
)
805 if (int64_t RemovedOffset
= GEP1BaseOffset
/GEP1VariableIndices
[i
].Scale
)
806 GEP1BaseOffset
-= RemovedOffset
*GEP1VariableIndices
[i
].Scale
;
808 // If our known offset is bigger than the access size, we know we don't have
810 if (GEP1BaseOffset
) {
811 if (GEP1BaseOffset
>= 0 ?
812 (V2Size
!= UnknownSize
&& (uint64_t)GEP1BaseOffset
>= V2Size
) :
813 (V1Size
!= UnknownSize
&& -(uint64_t)GEP1BaseOffset
>= V1Size
&&
814 GEP1BaseOffset
!= INT64_MIN
))
821 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
822 /// instruction against another.
823 AliasAnalysis::AliasResult
824 BasicAliasAnalysis::aliasSelect(const SelectInst
*SI
, uint64_t SISize
,
825 const MDNode
*SITBAAInfo
,
826 const Value
*V2
, uint64_t V2Size
,
827 const MDNode
*V2TBAAInfo
) {
828 // If this select has been visited before, we're on a use-def cycle.
829 // Such cycles are only valid when PHI nodes are involved or in unreachable
830 // code. The visitPHI function catches cycles containing PHIs, but there
831 // could still be a cycle without PHIs in unreachable code.
832 if (!Visited
.insert(SI
))
835 // If the values are Selects with the same condition, we can do a more precise
836 // check: just check for aliases between the values on corresponding arms.
837 if (const SelectInst
*SI2
= dyn_cast
<SelectInst
>(V2
))
838 if (SI
->getCondition() == SI2
->getCondition()) {
840 aliasCheck(SI
->getTrueValue(), SISize
, SITBAAInfo
,
841 SI2
->getTrueValue(), V2Size
, V2TBAAInfo
);
842 if (Alias
== MayAlias
)
844 AliasResult ThisAlias
=
845 aliasCheck(SI
->getFalseValue(), SISize
, SITBAAInfo
,
846 SI2
->getFalseValue(), V2Size
, V2TBAAInfo
);
847 if (ThisAlias
!= Alias
)
852 // If both arms of the Select node NoAlias or MustAlias V2, then returns
853 // NoAlias / MustAlias. Otherwise, returns MayAlias.
855 aliasCheck(V2
, V2Size
, V2TBAAInfo
, SI
->getTrueValue(), SISize
, SITBAAInfo
);
856 if (Alias
== MayAlias
)
859 // If V2 is visited, the recursive case will have been caught in the
860 // above aliasCheck call, so these subsequent calls to aliasCheck
861 // don't need to assume that V2 is being visited recursively.
864 AliasResult ThisAlias
=
865 aliasCheck(V2
, V2Size
, V2TBAAInfo
, SI
->getFalseValue(), SISize
, SITBAAInfo
);
866 if (ThisAlias
!= Alias
)
871 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
873 AliasAnalysis::AliasResult
874 BasicAliasAnalysis::aliasPHI(const PHINode
*PN
, uint64_t PNSize
,
875 const MDNode
*PNTBAAInfo
,
876 const Value
*V2
, uint64_t V2Size
,
877 const MDNode
*V2TBAAInfo
) {
878 // The PHI node has already been visited, avoid recursion any further.
879 if (!Visited
.insert(PN
))
882 // If the values are PHIs in the same block, we can do a more precise
883 // as well as efficient check: just check for aliases between the values
884 // on corresponding edges.
885 if (const PHINode
*PN2
= dyn_cast
<PHINode
>(V2
))
886 if (PN2
->getParent() == PN
->getParent()) {
888 aliasCheck(PN
->getIncomingValue(0), PNSize
, PNTBAAInfo
,
889 PN2
->getIncomingValueForBlock(PN
->getIncomingBlock(0)),
891 if (Alias
== MayAlias
)
893 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
894 AliasResult ThisAlias
=
895 aliasCheck(PN
->getIncomingValue(i
), PNSize
, PNTBAAInfo
,
896 PN2
->getIncomingValueForBlock(PN
->getIncomingBlock(i
)),
898 if (ThisAlias
!= Alias
)
904 SmallPtrSet
<Value
*, 4> UniqueSrc
;
905 SmallVector
<Value
*, 4> V1Srcs
;
906 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
907 Value
*PV1
= PN
->getIncomingValue(i
);
908 if (isa
<PHINode
>(PV1
))
909 // If any of the source itself is a PHI, return MayAlias conservatively
910 // to avoid compile time explosion. The worst possible case is if both
911 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
912 // and 'n' are the number of PHI sources.
914 if (UniqueSrc
.insert(PV1
))
915 V1Srcs
.push_back(PV1
);
918 AliasResult Alias
= aliasCheck(V2
, V2Size
, V2TBAAInfo
,
919 V1Srcs
[0], PNSize
, PNTBAAInfo
);
920 // Early exit if the check of the first PHI source against V2 is MayAlias.
921 // Other results are not possible.
922 if (Alias
== MayAlias
)
925 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
926 // NoAlias / MustAlias. Otherwise, returns MayAlias.
927 for (unsigned i
= 1, e
= V1Srcs
.size(); i
!= e
; ++i
) {
928 Value
*V
= V1Srcs
[i
];
930 // If V2 is visited, the recursive case will have been caught in the
931 // above aliasCheck call, so these subsequent calls to aliasCheck
932 // don't need to assume that V2 is being visited recursively.
935 AliasResult ThisAlias
= aliasCheck(V2
, V2Size
, V2TBAAInfo
,
936 V
, PNSize
, PNTBAAInfo
);
937 if (ThisAlias
!= Alias
|| ThisAlias
== MayAlias
)
944 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
945 // such as array references.
947 AliasAnalysis::AliasResult
948 BasicAliasAnalysis::aliasCheck(const Value
*V1
, uint64_t V1Size
,
949 const MDNode
*V1TBAAInfo
,
950 const Value
*V2
, uint64_t V2Size
,
951 const MDNode
*V2TBAAInfo
) {
952 // If either of the memory references is empty, it doesn't matter what the
953 // pointer values are.
954 if (V1Size
== 0 || V2Size
== 0)
957 // Strip off any casts if they exist.
958 V1
= V1
->stripPointerCasts();
959 V2
= V2
->stripPointerCasts();
961 // Are we checking for alias of the same value?
962 if (V1
== V2
) return MustAlias
;
964 if (!V1
->getType()->isPointerTy() || !V2
->getType()->isPointerTy())
965 return NoAlias
; // Scalars cannot alias each other
967 // Figure out what objects these things are pointing to if we can.
968 const Value
*O1
= V1
->getUnderlyingObject();
969 const Value
*O2
= V2
->getUnderlyingObject();
971 // Null values in the default address space don't point to any object, so they
972 // don't alias any other pointer.
973 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O1
))
974 if (CPN
->getType()->getAddressSpace() == 0)
976 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O2
))
977 if (CPN
->getType()->getAddressSpace() == 0)
981 // If V1/V2 point to two different objects we know that we have no alias.
982 if (isIdentifiedObject(O1
) && isIdentifiedObject(O2
))
985 // Constant pointers can't alias with non-const isIdentifiedObject objects.
986 if ((isa
<Constant
>(O1
) && isIdentifiedObject(O2
) && !isa
<Constant
>(O2
)) ||
987 (isa
<Constant
>(O2
) && isIdentifiedObject(O1
) && !isa
<Constant
>(O1
)))
990 // Arguments can't alias with local allocations or noalias calls
991 // in the same function.
992 if (((isa
<Argument
>(O1
) && (isa
<AllocaInst
>(O2
) || isNoAliasCall(O2
))) ||
993 (isa
<Argument
>(O2
) && (isa
<AllocaInst
>(O1
) || isNoAliasCall(O1
)))))
996 // Most objects can't alias null.
997 if ((isa
<ConstantPointerNull
>(O2
) && isKnownNonNull(O1
)) ||
998 (isa
<ConstantPointerNull
>(O1
) && isKnownNonNull(O2
)))
1001 // If one pointer is the result of a call/invoke or load and the other is a
1002 // non-escaping local object within the same function, then we know the
1003 // object couldn't escape to a point where the call could return it.
1005 // Note that if the pointers are in different functions, there are a
1006 // variety of complications. A call with a nocapture argument may still
1007 // temporary store the nocapture argument's value in a temporary memory
1008 // location if that memory location doesn't escape. Or it may pass a
1009 // nocapture value to other functions as long as they don't capture it.
1010 if (isEscapeSource(O1
) && isNonEscapingLocalObject(O2
))
1012 if (isEscapeSource(O2
) && isNonEscapingLocalObject(O1
))
1016 // If the size of one access is larger than the entire object on the other
1017 // side, then we know such behavior is undefined and can assume no alias.
1019 if ((V1Size
!= UnknownSize
&& isObjectSmallerThan(O2
, V1Size
, *TD
)) ||
1020 (V2Size
!= UnknownSize
&& isObjectSmallerThan(O1
, V2Size
, *TD
)))
1023 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1024 // GEP can't simplify, we don't even look at the PHI cases.
1025 if (!isa
<GEPOperator
>(V1
) && isa
<GEPOperator
>(V2
)) {
1027 std::swap(V1Size
, V2Size
);
1030 if (const GEPOperator
*GV1
= dyn_cast
<GEPOperator
>(V1
)) {
1031 AliasResult Result
= aliasGEP(GV1
, V1Size
, V2
, V2Size
, V2TBAAInfo
, O1
, O2
);
1032 if (Result
!= MayAlias
) return Result
;
1035 if (isa
<PHINode
>(V2
) && !isa
<PHINode
>(V1
)) {
1037 std::swap(V1Size
, V2Size
);
1039 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V1
)) {
1040 AliasResult Result
= aliasPHI(PN
, V1Size
, V1TBAAInfo
,
1041 V2
, V2Size
, V2TBAAInfo
);
1042 if (Result
!= MayAlias
) return Result
;
1045 if (isa
<SelectInst
>(V2
) && !isa
<SelectInst
>(V1
)) {
1047 std::swap(V1Size
, V2Size
);
1049 if (const SelectInst
*S1
= dyn_cast
<SelectInst
>(V1
)) {
1050 AliasResult Result
= aliasSelect(S1
, V1Size
, V1TBAAInfo
,
1051 V2
, V2Size
, V2TBAAInfo
);
1052 if (Result
!= MayAlias
) return Result
;
1055 return AliasAnalysis::alias(Location(V1
, V1Size
, V1TBAAInfo
),
1056 Location(V2
, V2Size
, V2TBAAInfo
));