Fixed some bugs.
[llvm/zpu.git] / lib / Analysis / BasicAliasAnalysis.cpp
blob669202f8599f244909c8eb97e7292160b8501669
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/GetElementPtrTypeIterator.h"
36 #include <algorithm>
37 using namespace llvm;
39 //===----------------------------------------------------------------------===//
40 // Useful predicates
41 //===----------------------------------------------------------------------===//
43 /// isKnownNonNull - Return true if we know that the specified value is never
44 /// null.
45 static bool isKnownNonNull(const Value *V) {
46 // Alloca never returns null, malloc might.
47 if (isa<AllocaInst>(V)) return true;
49 // A byval argument is never null.
50 if (const Argument *A = dyn_cast<Argument>(V))
51 return A->hasByValAttr();
53 // Global values are not null unless extern weak.
54 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
55 return !GV->hasExternalWeakLinkage();
56 return false;
59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
60 /// object that never escapes from the function.
61 static bool isNonEscapingLocalObject(const Value *V) {
62 // If this is a local allocation, check to see if it escapes.
63 if (isa<AllocaInst>(V) || isNoAliasCall(V))
64 // Set StoreCaptures to True so that we can assume in our callers that the
65 // pointer is not the result of a load instruction. Currently
66 // PointerMayBeCaptured doesn't have any special analysis for the
67 // StoreCaptures=false case; if it did, our callers could be refined to be
68 // more precise.
69 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71 // If this is an argument that corresponds to a byval or noalias argument,
72 // then it has not escaped before entering the function. Check if it escapes
73 // inside the function.
74 if (const Argument *A = dyn_cast<Argument>(V))
75 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
76 // Don't bother analyzing arguments already known not to escape.
77 if (A->hasNoCaptureAttr())
78 return true;
79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 return false;
84 /// isEscapeSource - Return true if the pointer is one which would have
85 /// been considered an escape by isNonEscapingLocalObject.
86 static bool isEscapeSource(const Value *V) {
87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
88 return true;
90 // The load case works because isNonEscapingLocalObject considers all
91 // stores to be escapes (it passes true for the StoreCaptures argument
92 // to PointerMayBeCaptured).
93 if (isa<LoadInst>(V))
94 return true;
96 return false;
99 /// isObjectSmallerThan - Return true if we can prove that the object specified
100 /// by V is smaller than Size.
101 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
102 const TargetData &TD) {
103 const Type *AccessTy;
104 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
105 AccessTy = GV->getType()->getElementType();
106 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
107 if (!AI->isArrayAllocation())
108 AccessTy = AI->getType()->getElementType();
109 else
110 return false;
111 } else if (const CallInst* CI = extractMallocCall(V)) {
112 if (!isArrayMalloc(V, &TD))
113 // The size is the argument to the malloc call.
114 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
115 return (C->getZExtValue() < Size);
116 return false;
117 } else if (const Argument *A = dyn_cast<Argument>(V)) {
118 if (A->hasByValAttr())
119 AccessTy = cast<PointerType>(A->getType())->getElementType();
120 else
121 return false;
122 } else {
123 return false;
126 if (AccessTy->isSized())
127 return TD.getTypeAllocSize(AccessTy) < Size;
128 return false;
131 //===----------------------------------------------------------------------===//
132 // GetElementPtr Instruction Decomposition and Analysis
133 //===----------------------------------------------------------------------===//
135 namespace {
136 enum ExtensionKind {
137 EK_NotExtended,
138 EK_SignExt,
139 EK_ZeroExt
142 struct VariableGEPIndex {
143 const Value *V;
144 ExtensionKind Extension;
145 int64_t Scale;
150 /// GetLinearExpression - Analyze the specified value as a linear expression:
151 /// "A*V + B", where A and B are constant integers. Return the scale and offset
152 /// values as APInts and return V as a Value*, and return whether we looked
153 /// through any sign or zero extends. The incoming Value is known to have
154 /// IntegerType and it may already be sign or zero extended.
156 /// Note that this looks through extends, so the high bits may not be
157 /// represented in the result.
158 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
159 ExtensionKind &Extension,
160 const TargetData &TD, unsigned Depth) {
161 assert(V->getType()->isIntegerTy() && "Not an integer value");
163 // Limit our recursion depth.
164 if (Depth == 6) {
165 Scale = 1;
166 Offset = 0;
167 return V;
170 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
171 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
172 switch (BOp->getOpcode()) {
173 default: break;
174 case Instruction::Or:
175 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
176 // analyze it.
177 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
178 break;
179 // FALL THROUGH.
180 case Instruction::Add:
181 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
182 TD, Depth+1);
183 Offset += RHSC->getValue();
184 return V;
185 case Instruction::Mul:
186 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
187 TD, Depth+1);
188 Offset *= RHSC->getValue();
189 Scale *= RHSC->getValue();
190 return V;
191 case Instruction::Shl:
192 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
193 TD, Depth+1);
194 Offset <<= RHSC->getValue().getLimitedValue();
195 Scale <<= RHSC->getValue().getLimitedValue();
196 return V;
201 // Since GEP indices are sign extended anyway, we don't care about the high
202 // bits of a sign or zero extended value - just scales and offsets. The
203 // extensions have to be consistent though.
204 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
205 (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
206 Value *CastOp = cast<CastInst>(V)->getOperand(0);
207 unsigned OldWidth = Scale.getBitWidth();
208 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
209 Scale.trunc(SmallWidth);
210 Offset.trunc(SmallWidth);
211 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
213 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
214 TD, Depth+1);
215 Scale.zext(OldWidth);
216 Offset.zext(OldWidth);
218 return Result;
221 Scale = 1;
222 Offset = 0;
223 return V;
226 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
227 /// into a base pointer with a constant offset and a number of scaled symbolic
228 /// offsets.
230 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
231 /// the VarIndices vector) are Value*'s that are known to be scaled by the
232 /// specified amount, but which may have other unrepresented high bits. As such,
233 /// the gep cannot necessarily be reconstructed from its decomposed form.
235 /// When TargetData is around, this function is capable of analyzing everything
236 /// that Value::getUnderlyingObject() can look through. When not, it just looks
237 /// through pointer casts.
239 static const Value *
240 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
241 SmallVectorImpl<VariableGEPIndex> &VarIndices,
242 const TargetData *TD) {
243 // Limit recursion depth to limit compile time in crazy cases.
244 unsigned MaxLookup = 6;
246 BaseOffs = 0;
247 do {
248 // See if this is a bitcast or GEP.
249 const Operator *Op = dyn_cast<Operator>(V);
250 if (Op == 0) {
251 // The only non-operator case we can handle are GlobalAliases.
252 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
253 if (!GA->mayBeOverridden()) {
254 V = GA->getAliasee();
255 continue;
258 return V;
261 if (Op->getOpcode() == Instruction::BitCast) {
262 V = Op->getOperand(0);
263 continue;
266 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
267 if (GEPOp == 0)
268 return V;
270 // Don't attempt to analyze GEPs over unsized objects.
271 if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
272 ->getElementType()->isSized())
273 return V;
275 // If we are lacking TargetData information, we can't compute the offets of
276 // elements computed by GEPs. However, we can handle bitcast equivalent
277 // GEPs.
278 if (TD == 0) {
279 if (!GEPOp->hasAllZeroIndices())
280 return V;
281 V = GEPOp->getOperand(0);
282 continue;
285 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
286 gep_type_iterator GTI = gep_type_begin(GEPOp);
287 for (User::const_op_iterator I = GEPOp->op_begin()+1,
288 E = GEPOp->op_end(); I != E; ++I) {
289 Value *Index = *I;
290 // Compute the (potentially symbolic) offset in bytes for this index.
291 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
292 // For a struct, add the member offset.
293 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
294 if (FieldNo == 0) continue;
296 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
297 continue;
300 // For an array/pointer, add the element offset, explicitly scaled.
301 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
302 if (CIdx->isZero()) continue;
303 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
304 continue;
307 uint64_t Scale = TD->getTypeAllocSize(*GTI);
308 ExtensionKind Extension = EK_NotExtended;
310 // If the integer type is smaller than the pointer size, it is implicitly
311 // sign extended to pointer size.
312 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
313 if (TD->getPointerSizeInBits() > Width)
314 Extension = EK_SignExt;
316 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
317 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
318 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
319 *TD, 0);
321 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
322 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
323 BaseOffs += IndexOffset.getSExtValue()*Scale;
324 Scale *= IndexScale.getSExtValue();
327 // If we already had an occurrance of this index variable, merge this
328 // scale into it. For example, we want to handle:
329 // A[x][x] -> x*16 + x*4 -> x*20
330 // This also ensures that 'x' only appears in the index list once.
331 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
332 if (VarIndices[i].V == Index &&
333 VarIndices[i].Extension == Extension) {
334 Scale += VarIndices[i].Scale;
335 VarIndices.erase(VarIndices.begin()+i);
336 break;
340 // Make sure that we have a scale that makes sense for this target's
341 // pointer size.
342 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
343 Scale <<= ShiftBits;
344 Scale = (int64_t)Scale >> ShiftBits;
347 if (Scale) {
348 VariableGEPIndex Entry = {Index, Extension, Scale};
349 VarIndices.push_back(Entry);
353 // Analyze the base pointer next.
354 V = GEPOp->getOperand(0);
355 } while (--MaxLookup);
357 // If the chain of expressions is too deep, just return early.
358 return V;
361 /// GetIndexDifference - Dest and Src are the variable indices from two
362 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
363 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
364 /// difference between the two pointers.
365 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
366 const SmallVectorImpl<VariableGEPIndex> &Src) {
367 if (Src.empty()) return;
369 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
370 const Value *V = Src[i].V;
371 ExtensionKind Extension = Src[i].Extension;
372 int64_t Scale = Src[i].Scale;
374 // Find V in Dest. This is N^2, but pointer indices almost never have more
375 // than a few variable indexes.
376 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
377 if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
379 // If we found it, subtract off Scale V's from the entry in Dest. If it
380 // goes to zero, remove the entry.
381 if (Dest[j].Scale != Scale)
382 Dest[j].Scale -= Scale;
383 else
384 Dest.erase(Dest.begin()+j);
385 Scale = 0;
386 break;
389 // If we didn't consume this entry, add it to the end of the Dest list.
390 if (Scale) {
391 VariableGEPIndex Entry = { V, Extension, -Scale };
392 Dest.push_back(Entry);
397 //===----------------------------------------------------------------------===//
398 // BasicAliasAnalysis Pass
399 //===----------------------------------------------------------------------===//
401 #ifndef NDEBUG
402 static const Function *getParent(const Value *V) {
403 if (const Instruction *inst = dyn_cast<Instruction>(V))
404 return inst->getParent()->getParent();
406 if (const Argument *arg = dyn_cast<Argument>(V))
407 return arg->getParent();
409 return NULL;
412 static bool notDifferentParent(const Value *O1, const Value *O2) {
414 const Function *F1 = getParent(O1);
415 const Function *F2 = getParent(O2);
417 return !F1 || !F2 || F1 == F2;
419 #endif
421 namespace {
422 /// BasicAliasAnalysis - This is the primary alias analysis implementation.
423 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
424 static char ID; // Class identification, replacement for typeinfo
425 BasicAliasAnalysis() : ImmutablePass(ID) {
426 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
429 virtual void initializePass() {
430 InitializeAliasAnalysis(this);
433 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
434 AU.addRequired<AliasAnalysis>();
437 virtual AliasResult alias(const Location &LocA,
438 const Location &LocB) {
439 assert(Visited.empty() && "Visited must be cleared after use!");
440 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
441 "BasicAliasAnalysis doesn't support interprocedural queries.");
442 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
443 LocB.Ptr, LocB.Size, LocB.TBAATag);
444 Visited.clear();
445 return Alias;
448 virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
449 const Location &Loc);
451 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
452 ImmutableCallSite CS2) {
453 // The AliasAnalysis base class has some smarts, lets use them.
454 return AliasAnalysis::getModRefInfo(CS1, CS2);
457 /// pointsToConstantMemory - Chase pointers until we find a (constant
458 /// global) or not.
459 virtual bool pointsToConstantMemory(const Location &Loc);
461 /// getModRefBehavior - Return the behavior when calling the given
462 /// call site.
463 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
465 /// getModRefBehavior - Return the behavior when calling the given function.
466 /// For use when the call site is not known.
467 virtual ModRefBehavior getModRefBehavior(const Function *F);
469 /// getAdjustedAnalysisPointer - This method is used when a pass implements
470 /// an analysis interface through multiple inheritance. If needed, it
471 /// should override this to adjust the this pointer as needed for the
472 /// specified pass info.
473 virtual void *getAdjustedAnalysisPointer(const void *ID) {
474 if (ID == &AliasAnalysis::ID)
475 return (AliasAnalysis*)this;
476 return this;
479 private:
480 // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
481 SmallPtrSet<const Value*, 16> Visited;
483 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
484 // instruction against another.
485 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
486 const Value *V2, uint64_t V2Size,
487 const MDNode *V2TBAAInfo,
488 const Value *UnderlyingV1, const Value *UnderlyingV2);
490 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
491 // instruction against another.
492 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
493 const MDNode *PNTBAAInfo,
494 const Value *V2, uint64_t V2Size,
495 const MDNode *V2TBAAInfo);
497 /// aliasSelect - Disambiguate a Select instruction against another value.
498 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
499 const MDNode *SITBAAInfo,
500 const Value *V2, uint64_t V2Size,
501 const MDNode *V2TBAAInfo);
503 AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
504 const MDNode *V1TBAATag,
505 const Value *V2, uint64_t V2Size,
506 const MDNode *V2TBAATag);
508 } // End of anonymous namespace
510 // Register this pass...
511 char BasicAliasAnalysis::ID = 0;
512 INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
513 "Basic Alias Analysis (stateless AA impl)",
514 false, true, false)
516 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
517 return new BasicAliasAnalysis();
521 /// pointsToConstantMemory - Chase pointers until we find a (constant
522 /// global) or not.
523 bool BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc) {
524 if (const GlobalVariable *GV =
525 dyn_cast<GlobalVariable>(Loc.Ptr->getUnderlyingObject()))
526 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
527 // global to be marked constant in some modules and non-constant in others.
528 // GV may even be a declaration, not a definition.
529 return GV->isConstant();
531 return AliasAnalysis::pointsToConstantMemory(Loc);
534 /// getModRefBehavior - Return the behavior when calling the given call site.
535 AliasAnalysis::ModRefBehavior
536 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
537 if (CS.doesNotAccessMemory())
538 // Can't do better than this.
539 return DoesNotAccessMemory;
541 ModRefBehavior Min = UnknownModRefBehavior;
543 // If the callsite knows it only reads memory, don't return worse
544 // than that.
545 if (CS.onlyReadsMemory())
546 Min = OnlyReadsMemory;
548 // The AliasAnalysis base class has some smarts, lets use them.
549 return std::min(AliasAnalysis::getModRefBehavior(CS), Min);
552 /// getModRefBehavior - Return the behavior when calling the given function.
553 /// For use when the call site is not known.
554 AliasAnalysis::ModRefBehavior
555 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
556 if (F->doesNotAccessMemory())
557 // Can't do better than this.
558 return DoesNotAccessMemory;
559 if (F->onlyReadsMemory())
560 return OnlyReadsMemory;
561 if (unsigned id = F->getIntrinsicID())
562 return getIntrinsicModRefBehavior(id);
564 return AliasAnalysis::getModRefBehavior(F);
567 /// getModRefInfo - Check to see if the specified callsite can clobber the
568 /// specified memory object. Since we only look at local properties of this
569 /// function, we really can't say much about this query. We do, however, use
570 /// simple "address taken" analysis on local objects.
571 AliasAnalysis::ModRefResult
572 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
573 const Location &Loc) {
574 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
575 "AliasAnalysis query involving multiple functions!");
577 const Value *Object = Loc.Ptr->getUnderlyingObject();
579 // If this is a tail call and Loc.Ptr points to a stack location, we know that
580 // the tail call cannot access or modify the local stack.
581 // We cannot exclude byval arguments here; these belong to the caller of
582 // the current function not to the current function, and a tail callee
583 // may reference them.
584 if (isa<AllocaInst>(Object))
585 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
586 if (CI->isTailCall())
587 return NoModRef;
589 // If the pointer is to a locally allocated object that does not escape,
590 // then the call can not mod/ref the pointer unless the call takes the pointer
591 // as an argument, and itself doesn't capture it.
592 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
593 isNonEscapingLocalObject(Object)) {
594 bool PassedAsArg = false;
595 unsigned ArgNo = 0;
596 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
597 CI != CE; ++CI, ++ArgNo) {
598 // Only look at the no-capture pointer arguments.
599 if (!(*CI)->getType()->isPointerTy() ||
600 !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
601 continue;
603 // If this is a no-capture pointer argument, see if we can tell that it
604 // is impossible to alias the pointer we're checking. If not, we have to
605 // assume that the call could touch the pointer, even though it doesn't
606 // escape.
607 if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
608 PassedAsArg = true;
609 break;
613 if (!PassedAsArg)
614 return NoModRef;
617 // Finally, handle specific knowledge of intrinsics.
618 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
619 if (II != 0)
620 switch (II->getIntrinsicID()) {
621 default: break;
622 case Intrinsic::memcpy:
623 case Intrinsic::memmove: {
624 uint64_t Len = UnknownSize;
625 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
626 Len = LenCI->getZExtValue();
627 Value *Dest = II->getArgOperand(0);
628 Value *Src = II->getArgOperand(1);
629 if (isNoAlias(Location(Dest, Len), Loc)) {
630 if (isNoAlias(Location(Src, Len), Loc))
631 return NoModRef;
632 return Ref;
634 break;
636 case Intrinsic::memset:
637 // Since memset is 'accesses arguments' only, the AliasAnalysis base class
638 // will handle it for the variable length case.
639 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
640 uint64_t Len = LenCI->getZExtValue();
641 Value *Dest = II->getArgOperand(0);
642 if (isNoAlias(Location(Dest, Len), Loc))
643 return NoModRef;
645 break;
646 case Intrinsic::atomic_cmp_swap:
647 case Intrinsic::atomic_swap:
648 case Intrinsic::atomic_load_add:
649 case Intrinsic::atomic_load_sub:
650 case Intrinsic::atomic_load_and:
651 case Intrinsic::atomic_load_nand:
652 case Intrinsic::atomic_load_or:
653 case Intrinsic::atomic_load_xor:
654 case Intrinsic::atomic_load_max:
655 case Intrinsic::atomic_load_min:
656 case Intrinsic::atomic_load_umax:
657 case Intrinsic::atomic_load_umin:
658 if (TD) {
659 Value *Op1 = II->getArgOperand(0);
660 uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
661 MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
662 if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
663 return NoModRef;
665 break;
666 case Intrinsic::lifetime_start:
667 case Intrinsic::lifetime_end:
668 case Intrinsic::invariant_start: {
669 uint64_t PtrSize =
670 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
671 if (isNoAlias(Location(II->getArgOperand(1),
672 PtrSize,
673 II->getMetadata(LLVMContext::MD_tbaa)),
674 Loc))
675 return NoModRef;
676 break;
678 case Intrinsic::invariant_end: {
679 uint64_t PtrSize =
680 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
681 if (isNoAlias(Location(II->getArgOperand(2),
682 PtrSize,
683 II->getMetadata(LLVMContext::MD_tbaa)),
684 Loc))
685 return NoModRef;
686 break;
690 // The AliasAnalysis base class has some smarts, lets use them.
691 return AliasAnalysis::getModRefInfo(CS, Loc);
694 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
695 /// against another pointer. We know that V1 is a GEP, but we don't know
696 /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),
697 /// UnderlyingV2 is the same for V2.
699 AliasAnalysis::AliasResult
700 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
701 const Value *V2, uint64_t V2Size,
702 const MDNode *V2TBAAInfo,
703 const Value *UnderlyingV1,
704 const Value *UnderlyingV2) {
705 // If this GEP has been visited before, we're on a use-def cycle.
706 // Such cycles are only valid when PHI nodes are involved or in unreachable
707 // code. The visitPHI function catches cycles containing PHIs, but there
708 // could still be a cycle without PHIs in unreachable code.
709 if (!Visited.insert(GEP1))
710 return MayAlias;
712 int64_t GEP1BaseOffset;
713 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
715 // If we have two gep instructions with must-alias'ing base pointers, figure
716 // out if the indexes to the GEP tell us anything about the derived pointer.
717 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
718 // Do the base pointers alias?
719 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
720 UnderlyingV2, UnknownSize, 0);
722 // If we get a No or May, then return it immediately, no amount of analysis
723 // will improve this situation.
724 if (BaseAlias != MustAlias) return BaseAlias;
726 // Otherwise, we have a MustAlias. Since the base pointers alias each other
727 // exactly, see if the computed offset from the common pointer tells us
728 // about the relation of the resulting pointer.
729 const Value *GEP1BasePtr =
730 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
732 int64_t GEP2BaseOffset;
733 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
734 const Value *GEP2BasePtr =
735 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
737 // If DecomposeGEPExpression isn't able to look all the way through the
738 // addressing operation, we must not have TD and this is too complex for us
739 // to handle without it.
740 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
741 assert(TD == 0 &&
742 "DecomposeGEPExpression and getUnderlyingObject disagree!");
743 return MayAlias;
746 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
747 // symbolic difference.
748 GEP1BaseOffset -= GEP2BaseOffset;
749 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
751 } else {
752 // Check to see if these two pointers are related by the getelementptr
753 // instruction. If one pointer is a GEP with a non-zero index of the other
754 // pointer, we know they cannot alias.
756 // If both accesses are unknown size, we can't do anything useful here.
757 if (V1Size == UnknownSize && V2Size == UnknownSize)
758 return MayAlias;
760 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
761 V2, V2Size, V2TBAAInfo);
762 if (R != MustAlias)
763 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
764 // If V2 is known not to alias GEP base pointer, then the two values
765 // cannot alias per GEP semantics: "A pointer value formed from a
766 // getelementptr instruction is associated with the addresses associated
767 // with the first operand of the getelementptr".
768 return R;
770 const Value *GEP1BasePtr =
771 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
773 // If DecomposeGEPExpression isn't able to look all the way through the
774 // addressing operation, we must not have TD and this is too complex for us
775 // to handle without it.
776 if (GEP1BasePtr != UnderlyingV1) {
777 assert(TD == 0 &&
778 "DecomposeGEPExpression and getUnderlyingObject disagree!");
779 return MayAlias;
783 // In the two GEP Case, if there is no difference in the offsets of the
784 // computed pointers, the resultant pointers are a must alias. This
785 // hapens when we have two lexically identical GEP's (for example).
787 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
788 // must aliases the GEP, the end result is a must alias also.
789 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
790 return MustAlias;
792 // If we have a known constant offset, see if this offset is larger than the
793 // access size being queried. If so, and if no variable indices can remove
794 // pieces of this constant, then we know we have a no-alias. For example,
795 // &A[100] != &A.
797 // In order to handle cases like &A[100][i] where i is an out of range
798 // subscript, we have to ignore all constant offset pieces that are a multiple
799 // of a scaled index. Do this by removing constant offsets that are a
800 // multiple of any of our variable indices. This allows us to transform
801 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
802 // provides an offset of 4 bytes (assuming a <= 4 byte access).
803 for (unsigned i = 0, e = GEP1VariableIndices.size();
804 i != e && GEP1BaseOffset;++i)
805 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
806 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
808 // If our known offset is bigger than the access size, we know we don't have
809 // an alias.
810 if (GEP1BaseOffset) {
811 if (GEP1BaseOffset >= 0 ?
812 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
813 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
814 GEP1BaseOffset != INT64_MIN))
815 return NoAlias;
818 return MayAlias;
821 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
822 /// instruction against another.
823 AliasAnalysis::AliasResult
824 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
825 const MDNode *SITBAAInfo,
826 const Value *V2, uint64_t V2Size,
827 const MDNode *V2TBAAInfo) {
828 // If this select has been visited before, we're on a use-def cycle.
829 // Such cycles are only valid when PHI nodes are involved or in unreachable
830 // code. The visitPHI function catches cycles containing PHIs, but there
831 // could still be a cycle without PHIs in unreachable code.
832 if (!Visited.insert(SI))
833 return MayAlias;
835 // If the values are Selects with the same condition, we can do a more precise
836 // check: just check for aliases between the values on corresponding arms.
837 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
838 if (SI->getCondition() == SI2->getCondition()) {
839 AliasResult Alias =
840 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
841 SI2->getTrueValue(), V2Size, V2TBAAInfo);
842 if (Alias == MayAlias)
843 return MayAlias;
844 AliasResult ThisAlias =
845 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
846 SI2->getFalseValue(), V2Size, V2TBAAInfo);
847 if (ThisAlias != Alias)
848 return MayAlias;
849 return Alias;
852 // If both arms of the Select node NoAlias or MustAlias V2, then returns
853 // NoAlias / MustAlias. Otherwise, returns MayAlias.
854 AliasResult Alias =
855 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
856 if (Alias == MayAlias)
857 return MayAlias;
859 // If V2 is visited, the recursive case will have been caught in the
860 // above aliasCheck call, so these subsequent calls to aliasCheck
861 // don't need to assume that V2 is being visited recursively.
862 Visited.erase(V2);
864 AliasResult ThisAlias =
865 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
866 if (ThisAlias != Alias)
867 return MayAlias;
868 return Alias;
871 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
872 // against another.
873 AliasAnalysis::AliasResult
874 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
875 const MDNode *PNTBAAInfo,
876 const Value *V2, uint64_t V2Size,
877 const MDNode *V2TBAAInfo) {
878 // The PHI node has already been visited, avoid recursion any further.
879 if (!Visited.insert(PN))
880 return MayAlias;
882 // If the values are PHIs in the same block, we can do a more precise
883 // as well as efficient check: just check for aliases between the values
884 // on corresponding edges.
885 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
886 if (PN2->getParent() == PN->getParent()) {
887 AliasResult Alias =
888 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
889 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
890 V2Size, V2TBAAInfo);
891 if (Alias == MayAlias)
892 return MayAlias;
893 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
894 AliasResult ThisAlias =
895 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
896 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
897 V2Size, V2TBAAInfo);
898 if (ThisAlias != Alias)
899 return MayAlias;
901 return Alias;
904 SmallPtrSet<Value*, 4> UniqueSrc;
905 SmallVector<Value*, 4> V1Srcs;
906 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
907 Value *PV1 = PN->getIncomingValue(i);
908 if (isa<PHINode>(PV1))
909 // If any of the source itself is a PHI, return MayAlias conservatively
910 // to avoid compile time explosion. The worst possible case is if both
911 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
912 // and 'n' are the number of PHI sources.
913 return MayAlias;
914 if (UniqueSrc.insert(PV1))
915 V1Srcs.push_back(PV1);
918 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
919 V1Srcs[0], PNSize, PNTBAAInfo);
920 // Early exit if the check of the first PHI source against V2 is MayAlias.
921 // Other results are not possible.
922 if (Alias == MayAlias)
923 return MayAlias;
925 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
926 // NoAlias / MustAlias. Otherwise, returns MayAlias.
927 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
928 Value *V = V1Srcs[i];
930 // If V2 is visited, the recursive case will have been caught in the
931 // above aliasCheck call, so these subsequent calls to aliasCheck
932 // don't need to assume that V2 is being visited recursively.
933 Visited.erase(V2);
935 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
936 V, PNSize, PNTBAAInfo);
937 if (ThisAlias != Alias || ThisAlias == MayAlias)
938 return MayAlias;
941 return Alias;
944 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
945 // such as array references.
947 AliasAnalysis::AliasResult
948 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
949 const MDNode *V1TBAAInfo,
950 const Value *V2, uint64_t V2Size,
951 const MDNode *V2TBAAInfo) {
952 // If either of the memory references is empty, it doesn't matter what the
953 // pointer values are.
954 if (V1Size == 0 || V2Size == 0)
955 return NoAlias;
957 // Strip off any casts if they exist.
958 V1 = V1->stripPointerCasts();
959 V2 = V2->stripPointerCasts();
961 // Are we checking for alias of the same value?
962 if (V1 == V2) return MustAlias;
964 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
965 return NoAlias; // Scalars cannot alias each other
967 // Figure out what objects these things are pointing to if we can.
968 const Value *O1 = V1->getUnderlyingObject();
969 const Value *O2 = V2->getUnderlyingObject();
971 // Null values in the default address space don't point to any object, so they
972 // don't alias any other pointer.
973 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
974 if (CPN->getType()->getAddressSpace() == 0)
975 return NoAlias;
976 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
977 if (CPN->getType()->getAddressSpace() == 0)
978 return NoAlias;
980 if (O1 != O2) {
981 // If V1/V2 point to two different objects we know that we have no alias.
982 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
983 return NoAlias;
985 // Constant pointers can't alias with non-const isIdentifiedObject objects.
986 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
987 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
988 return NoAlias;
990 // Arguments can't alias with local allocations or noalias calls
991 // in the same function.
992 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
993 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
994 return NoAlias;
996 // Most objects can't alias null.
997 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
998 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
999 return NoAlias;
1001 // If one pointer is the result of a call/invoke or load and the other is a
1002 // non-escaping local object within the same function, then we know the
1003 // object couldn't escape to a point where the call could return it.
1005 // Note that if the pointers are in different functions, there are a
1006 // variety of complications. A call with a nocapture argument may still
1007 // temporary store the nocapture argument's value in a temporary memory
1008 // location if that memory location doesn't escape. Or it may pass a
1009 // nocapture value to other functions as long as they don't capture it.
1010 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1011 return NoAlias;
1012 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1013 return NoAlias;
1016 // If the size of one access is larger than the entire object on the other
1017 // side, then we know such behavior is undefined and can assume no alias.
1018 if (TD)
1019 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1020 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1021 return NoAlias;
1023 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1024 // GEP can't simplify, we don't even look at the PHI cases.
1025 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1026 std::swap(V1, V2);
1027 std::swap(V1Size, V2Size);
1028 std::swap(O1, O2);
1030 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1031 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1032 if (Result != MayAlias) return Result;
1035 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1036 std::swap(V1, V2);
1037 std::swap(V1Size, V2Size);
1039 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1040 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1041 V2, V2Size, V2TBAAInfo);
1042 if (Result != MayAlias) return Result;
1045 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1046 std::swap(V1, V2);
1047 std::swap(V1Size, V2Size);
1049 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1050 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1051 V2, V2Size, V2TBAAInfo);
1052 if (Result != MayAlias) return Result;
1055 return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1056 Location(V2, V2Size, V2TBAAInfo));